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Dankwoord

Voor ik iedereen ga noemen die van belang is geweest voor de totstandkoming
van mijn proefschrift en voor mijn vorming als wetenschappelijk onderzoeker
of als mens eerst een klein stukje persoonlijke geschiedenis. Het idee voor het
schrijven van een proefschrift, op basis van gepubliceerde wetenschappelijke
artikelen, stamt uit de tijd dat ik, in het kader van nauwere samenwerking
tussen de werkgroep Klimaatscenario’s (WKS) en de afdeling Voorspelbaar-
heidsonderzoek (VO), voor de helft van mijn tijd bij VO gedetacheerd was.
De beide hoofden, Günther Können (WKS) en Theo Opteegh (VO), waren
oprecht van mening dat een onderzoeker het aan zijn ‘stand verplicht is’ een
proefschrift te schrijven. Zij waren bereid mij die ruimte te geven en vonden
dat ik die ook moest benutten. Günther en Theo, ik ben jullie zeer dankbaar
voor die ruimte en voor jullie inspiratie en aansporingen. Ook mijn latere
baas Albert Klein Tank en huidige baas Arnout Feijt hebben mij alle ruimte
gegeven en steeds gesteund.

Het oorspronkelijke idee was dat mijn proefschrift zowel zou gaan over het
ontwikkelen van statistische methoden om verschillen of veranderingen in de
variabiliteit te detecteren (zoals beschreven in hoofdstuk 2) als over onder-
zoek naar de oorzaken van verschillen en veranderingen in variabiliteit van het
klimaat, met behulp van het binnen VO ontwikkelde ‘intermediate complexi-
ty’ klimaatmodel ECBilt. De eerder genoemde statistische methoden zouden
daarbij in de praktijk worden gebracht om hun nut te demonstreren. Het liep
echter anders. De detachering bij VO leverde wel een eenvoudige (diagnosti-
sche) wolkenparameterisatie, en, als gevolg daarvan, een noodzakelijke nieuwe
kortgolvige stralingsparameterisatie voor ECBilt op maar geen publiceerbaar
materiaal in het kader van onderzoek naar de variabiliteit van het klimaat.
Geen papers voor mijn proefschrift dus, maar wel een nuttige en interessante
ervaring op het gebied van klimaatmodellering. Uit die tijd bewaar ik goede
herinneringen aan de samenwerking met Rein Haarsma, Frank Selten, Xueli
Wang en Rob van Dorland. In dat rijtje hoort ook Michiel Schaeffer (RIVM)
die op dat moment aan een nieuwe langgolvige stralingsparameterisatie voor
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ECBilt werkte. Buiten de statistiek heb ik veel van jullie geleerd.
Dan het uiteindelijke onderwerp, of beter, de uiteindelijke onderwerpen van

mijn proefschrift. Van de mensen van wie ik veel van statistiek in het algemeen
en van resampling in het bijzonder heb opgestoken staat mijn co-promotor Adri
Buishand met stip op één. Adri, het heeft misschien wat lang geduurd maar
zonder jou was dit proefschrift er waarschijnlijk nooit gekomen. Daarnaast
heb ik veel interessante gesprekken en discussies gehad met mijn kamergenoot
Robert Leander, de man van ‘de Neerslaggenerator voor de Maas’, en diens
voorganger Rafa l Wójcik van wie ik nog heb geleerd om eetbare paddestoelen
in het bos te zoeken. Memorabel zijn ook de bijeenkomsten met de RIZA
partners. De gesprekken met Hendrik Buiteveld, Sacha de Goederen, Pieter
Jacobs, Timo Kroon en Marcel de Wit, en vele anderen, hebben me duidelijk
gemaakt wat de echte vragen zijn en wat voor de (hydrologische) praktijk
van belang is. En dan natuurlijk Bert Holtslag, mijn promotor, die een heel
herkenbare rol heeft gespeeld door, vooral in de slotfase, een vinger aan de
pols te houden bij de planning en door mij te stimuleren om te proberen ‘voor
een wat breder publiek’ te schrijven en daarmee de toegankelijkheid van het
proefschrift te vergroten. Bert, bedankt voor je wijze en stimulerende invloed.

Naast de mensen die een inhoudelijke rol hebben gespeeld of van belang
zijn geweest voor mijn wetenschappelijke vorming wil ik ook de (ex)KNMI-ers
bedanken die op sportief en sociaal vlak voor onvergetelijke momenten hebben
gezorgd; voor mij in betere tijden (vóór mijn knieongelukje) de leden van de
hardloopclub en de voetbalclub, you know who you are, en last but not least
de harde kern van ‘onze’ fietsclub: Cisco de Bruijn, Hans Cuijpers, Stephan de
Roode, Wim de Rooy, Pier Siebesma, Job Verkaik en Rudolf van Westrhenen.

Tot slot wil ik hier stil staan bij mijn familie en dierbaren. Mijn ouders
hebben, ondanks dat ze zelf nauwelijks een opleiding hebben genoten, omdat ze
daarvoor de kans niet kregen, wel altijd ingezien dat je met een goede opleiding
vaak verder komt dan zonder. Zij hebben mij die kans wel gegeven en mij
daarin ook gestimuleerd en daar ben ik hen zeer dankbaar voor. Op het KNMI
heb ik mijn grote liefde Janet Wijngaard leren kennen waarmee ik inmiddels
al weer 15 jaar samen leef. In de periode dat het idee om te promoveren vaste
vorm begon te krijgen werd Feija, onze eerste dochter, geboren. Ruim twee jaar
later kwam ons tweede ‘meisie’ Hilde ons gezinnetje verblijden. Achterafgezien
is het doen van promotieonderzoek, het schrijven van een proefschift en het
krijgen en opvoeden van kinderen misschien niet helemaal optimaal getimed
maar het is het wel helemaal waard geweest. Lieve Janet, jij hebt het mij nog
heel gemakkelijk gemaakt door je altijd flexibel op te stellen en door een meer
dan evenredig aandeel in de zorg voor ons voor je rekening te nemen. Zonder
jou was ik wat dat betreft nergens geweest, maar ja, dan had ik waarschijnlijk
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ook geen twee bloedjes van meisjes gehad. Ik ben je daar bijzonder dankbaar
voor. De komende jaren hoop ik het zowel voor jou als voor Feija en Hilde
weer een beetje te kunnen compenseren. Meiden, na het serieuze werk is het
nu tijd voor wat fun...
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Abstract

Extreme hydro-meteorological events usually have a large impact on our soci-
ety. For safety standards regarding life and property and for design purposes
of large structures extreme events with return periods between 100 and 10 000
years are often required. A practical difficulty in determining such rare events
is due to the fact that our instrumental meteorological records are typically
not longer than about 100 years. We are thus interested in extreme events
that may never have occurred in the instrumental history. Such extremes are
therefore usually estimated by extrapolating a fitted probability distribution.
The results obtained with statistical extrapolation methods, however, strongly
depend on the assumed probability distribution. An attractive alternative to
these classical methods is resampling of historical meteorological time series.
Resampling is attractive since it is a nonparametric technique, which means
that no assumptions about the underlying distributions of the data have to
be made. In addition, resampling offers the opportunity to simulate different
meteorological variables (multivariate) for different locations (multi-site) si-
multaneously, while the cross-correlations (between variables) and the spatial
correlations (between locations) are automatically preserved. Resampling, fi-
nally, makes it possible to simulate much longer time series than the historical
records from which is resampled. Such very long time series usually contain
many unprecedented extreme events which can serve in a frequency analysis
of the extremes. In short, resampling is a very suitable nonparametric tech-
nique to simulate multi-site multivariate meteorological time series that are
much longer than those from the instrumental records. With specific hydro-
logical applications in mind such very long resampled time series are used
to determine the size and probabilities of occurrence of extremely wet peri-
ods in the Rhine basin (that may result in river flooding) and of extreme
droughts in the Netherlands (leading to economic losses in agriculture and
shipping). Resampling techniques are further used to determine the statisti-
cal uncertainty of extreme hydro-meteorological events and of other properties
of (hydro-)meteorological data.
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Chapter 1

Introduction

Human societies are vulnerable to extreme hydro-meteorological events such
as extreme drought and heavy precipitation. Typically societies are organized
in such a way that events that occur, for instance, every year cause no or very
little damage. For much rarer events, let’s say events that occur less than
once in hundred years, it is often not clear how large the damage in terms of
life and property can be. Although effective protection may be possible, there
is a price tag attached to the level of protection. Usually, decisions about
protection levels are determined by cost-benefit and risk analyses as well as
social and political choices. In the Netherlands, e.g., the level of protection
against flooding along the embanked parts of the rivers Rhine and Meuse is
based on the river discharge that is exceeded on average only once every 1250
years. This discharge is usually called the 1250-year discharge, or the design
discharge.

In practice, it is often difficult to accurately determine the associated size
or level of a T -year event1. This level is also denoted as the return level. To
design a structure or system that meets a desired protection level, i.e., is able
to withstand the T -year event, an accurate estimate of this event is needed.

The problem with very rare events is ‘that they are so rare’ that no statis-
tics of these events exist. This is especially true when the extreme event is so
rare that it has not occurred in the (documented) historical records at all. In
that case the return level has to be ‘predicted’ from the less extreme events
that have been recorded so far. The traditional way to obtain the return levels
of very rare extreme events, which is common in (engineering) practice, is to

1By definition, the T -year event has a 1/T probability of being exceeded in any year, and
therefore has a return period of T years. The T -year event corresponds with the 1 − 1/T
quantile of the probability distribution of the variable of interest. Quantiles, T -year events
and return levels therefore all refer to the same thing and are used interchangeably.
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make use of a statistical method known as extreme value analysis. This in-
volves fitting a probability distribution to the extreme values in the recorded
data and extrapolating to the required level. Quite often, the extreme values
are taken as the values exceeding a certain threshold or as the largest value in
each year. As a result a large proportion of the data is unused. One argument
for such a large thinning of the data is that fitting a probability distribution
to the bulk of the data may lead to biased estimates of properties of extremes
due to lack-of-fit in the tail of the distribution. However, the large thinning
of the data in extreme value analysis introduces an undesired uncertainty to
the resulting return levels.

Resampling is a computer-based technique that opens up new prospects
to obtain reliable estimates of extreme events. The basic idea behind resam-
pling is that new data samples are constructed in which the original data
are ‘re-ordered’ by sampling with replacement. Let us assume, for example,
that daily rainfall data are resampled. Although resampling of daily rainfall
amounts does not give new information about the probability of the 1-day rain-
fall amounts it does create new and unprecedented multi-day rainfall amounts
as a result of the different temporal ordering of the daily data. Such unprece-
dented multi-day rainfall amounts could have occurred but did not occur, sim-
ply because of the limited length of the original data record. With resampling
very long series of daily rainfall can be generated in which the (statistical) in-
formation of the original sample is used most efficiently. This enables a more
accurate estimation of extreme multi-day rainfall events (Buishand, 2006). In
short, while traditional extreme value analysis usually ignores a large part of
the (statistical) information in the original data sample, resampling squeezes
out as much (statistical) information as possible.

Is resampling then the method to go for? The answer, as always, depends
on the type of problem that one wants to solve. In the example above it was
already noted that resampling is not the solution if one is interested in the
probability of extreme 1-day rainfall events and only daily rainfall data are
available. But regarding the probability of extreme multi-day rainfall events
resampling has added value. Similarly, resampling can improve the estimation
of extreme 1-day rainfall events when sub-daily, e.g., hourly, rainfall data
rather than daily data are available.

Severe impacts of hydro-meteorological events on society are often the
result of extremes on the multi-day level. This applies for instance to accu-
mulated (e.g., 10-day) extreme precipitation amounts which cause flooding in
large river basins, or to extreme (summer) droughts which are largely due to
persistent lack of precipitation during several months. For analyses of such
hydro-meteorological extremes resampling of daily time series is a serious al-
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ternative.
And there is more in favour of time series resampling. Many hydro-

meteorological applications need data that is both multivariate and multi-site
in nature. For example, to model the (extreme) discharge of the river Rhine
not only precipitation is important but also temperature since it largely deter-
mines evaporation (in summer) and it controls snow accumulation and snow
melt, particularly in the mountainous areas (multivariate). In addition, pre-
cipitation and temperature are both needed, at a certain spatial resolution,
for the whole river basin simultaneously (multi-site). In traditional parametric
time series modelling it is generally necessary to make assumptions, which are
often difficult to verify, about properties of the data before statistical meth-
ods can proceed. A big advantage of resampling procedures is that they are
so-called nonparametric methods which means that they work without such
assumptions about the underlying distribution of the data. In particular when
multivariate and multi-site problems are considered, it is very convenient that
no (correct or false) assumptions are needed regarding the distributional form
and the temporal, spatial and mutual dependencies of the data since these are
often seasonally or state dependent and therefore difficult to assess.

Besides as an alternative to traditional extreme value analysis resampling
techniques are used in this thesis to assess statistical uncertainty. Statistical
uncertainty is always around, although quite often we don’t bother about it.
This may be allowed for the mean of large samples, but in general, the un-
certainty of characteristics of hydro-meteorological extremes is considerably
larger than that of the mean and can therefore not be ignored. This is some-
thing we have to be aware of and have to live with. There is thus a serious
need to quantify the statistical uncertainty of extreme events. Analytical ex-
pressions or approximations for the statistical uncertainty may strongly rely on
assumptions about the underlying distribution. Resampling techniques do not
require these assumptions and can even be used if no mathematical expression
for the uncertainty is available.

Regarding statistical uncertainty, resampling in this thesis is used to de-
termine the standard error (a measure of the statistical uncertainty) of the
variance of (hydro-)meteorological variables, which makes it possible to test
whether the variance of the data simulated with time series resampling equals
that of the reference data, but also whether the variance of the data simulated
with a climate model equals that of the observed data or whether the variance
of the data simulated for the future climate differs from that for the current or
past climate. Resampling is further used to determine the standard error of
large quantiles (T -year events) and to construct confidence intervals for those
quantiles.
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It may be clear now that resampling procedures are the connecting thread
in this thesis, but, although very important, they are only a means to an
end. The ultimate goal is to identify and model relevant hydro-meteorological
extremes and their probabilities of occurrence including uncertainty estimates.

This chapter continues with a brief overview of the history of resampling,
followed by a simple example of playing dice to illustrate the potential of
resampling. A description of the different topics and resampling procedures
presented in the four papers (Chapters 2-5) that constitute the core of this
thesis, including the interconnections between the topics and resampling pro-
cedures, concludes this chapter.

1.1 History of resampling procedures

The first resampling procedure that came into existence is the ‘jackknife’.
The jackknife was introduced in the mid-1950s as a bias reduction technique.
Quenouille (1956) laid the basis for the procedure that was called the jackknife
for the first time by John W. Tukey in 1959 in an unpublished manuscript.
In that manuscript Tukey (both a professor at Princeton University and a
researcher at AT&T Bell Laboratories) compared the jackknife with a Boy
Scout Jackknife, i.e., a large pocketknife with multipurpose blades (Brillinger,
1964) similar to a modern Swiss army knife, to underline that this tool can be
used for more than bias correction only. In the 1960s and 70s the emphasis in
resampling theory was on estimation of statistical uncertainty (i.e., standard
errors).

To demonstrate the use of the jackknife, let us assume that we have a data
sample of 100 values, and that we are interested in the statistical properties
of a statistic (e.g., the mean, standard deviation, autocorrelation, skewness,
kurtosis, etc.) of these data. The most used version of the jackknife consists of
recomputing the statistic of interest a number of times with a different sample
value (or group of sample values) deleted each time. Thus for the sample of
100 values, besides calculation of the statistic from the full sample (of 100
values), the statistic is recalculated from 100 jackknife samples in which one
value is omitted (and 99 values are left in). The statistic from the full sample
and those from the 100 jackknife samples together give the jackknife estimates
of the bias and the standard error of the statistic.

In practice the jackknife works on almost any kind of statistic except for
statistics directly related to sample quantiles, e.g., the median. It is clear
that the jackknife procedure relies on the use of a computer and it is not
surprising that in that era the development of resampling procedures and
computers ran more or less parallel. Professor Tukey played a notable role in
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the development of computers (at AT&T) as well, and it is generally accepted
that he has invented the names ‘bit’ and ‘software’.

About two decades later, in 1979, Bradley Efron, professor at Stanford
University, introduced the ‘bootstrap’ to the world. He coined the term boot-
strap since he wanted a word that sounds as good as ‘jackknife’ (Diaconis
and Efron, 1983). The name bootstrap is derived from one of the surprising
adventures of Baron Munchausen in which he ‘pulled himself up by his own
bootstraps’ from the bottom of a deep lake (Efron and Tibshirani, 1993). Like-
wise, Efron’s bootstrap seems to accomplish the impossible (Johnson, 2001).
Even more than the jackknife the bootstrap relies on the use of a computer.
The bootstrap uses a computer to give a numerical value of the statistical
uncertainty (e.g., the standard error) of a statistic without using a formula
at all. The computer performs a (Monte Carlo) algorithm that consists of
three steps: (i) a large number B, say 1000, of bootstrap samples is generated
using a random number generator, where each bootstrap sample consists of a
random sample of size n drawn with replacement from the original sample; (ii)
for each bootstrap sample the statistic of interest is calculated (which results
in B different values of the statistic); and (iii) the sample standard deviation
of these values is calculated or a confidence interval is constructed from the
empirical distribution of these B values.

In the above example of the sample of 100 values, each of the B bootstrap
samples consists again of 100 values obtained from random sampling (with
replacement) from the original sample. As a result certain values from the
original sample will not be represented in a particular bootstrap sample while
other values will be represented more than once. Note that, the number of
possibly different bootstrap samples grows very rapidly with the size of the
sample, e.g., for a sample of size 3 only 10 different bootstrap samples exist
while for a sample of size 10 already 92 378 (∼ hundred thousand) different
bootstrap samples can be constructed. An analytical expression for the num-
ber of different bootstrap samples m from a sample of size n is provided by
Davison and Hinkley (1997):

m =
(2n − 1)!

n!(n − 1)!
(1.1)

A large part of the power of the bootstrap procedure comes from this rapidly
growing number.

The bootstrap has been applied to a large number of problems including
problems for which the correct answer is known. For the latter, it is shown
that the algorithm provides a good uncertainty estimate, and it can be proved
mathematically to work for similar, more complicated, problems (Diaconis and
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Efron, 1983). And therefore, the bootstrap’s good theoretical properties carry
over into real statistical practice. In contrast to the jackknife, the bootstrap
even works for statistics based on sample quantiles (although an accurate
bootstrap estimate of the standard error of a sample quantile requires a large
sample size).

Nearest-neighbour resampling was introduced to generate time series with
a certain amount of ‘persistence’, i.e., dependence on previous values. It can
be regarded as an extension of the ordinary bootstrap. The crucial difference
between generating a bootstrap sample and nearest-neighbour resampling is
that for the former the sampling of a new value (with replacement) is com-
pletely random while for the latter the sampling (with replacement) of a new
value is – by nearest-neighbour selection – conditioned on the previously sam-
pled value or on a number of previously sampled values. Another practical,
but theoretically unimportant, difference is that bootstrap samples usually
have the same size as the original sample since the bootstrap is usually used
to determine statistical uncertainty which typically depends on the sample
size, while nearest-neighbour resampling is predominantly used to generate
time series (i.e., samples) which are much longer than the original one. It was
however not until 1994 when Young (1994) introduced and applied such a type
of time series model, which he called multivariate chain model, to simultane-
ously simulate minimum and maximum temperatures and daily precipitation.
Independently, and apparently unaware of Young’s work, Lall and Sharma
(1996) developed resampling models similar in spirit to simulate hydrolic time
series. They referred to their method as ‘nearest-neighbor bootstrap’ and
‘nearest-neighbor resampling algorithm’. Lall, with various co-authors, pio-
neered and further developed the method. Rajagopalan and Lall (1999), e.g.,
used nearest-neighbour resampling to simulate daily precipitation and other
weather variables simultaneously.

1.2 Bootstrapping in a game of dice

As an illustration of the power of bootstrapping, the bootstrap is applied to
an experiment with playing dice. Let us assume that we throw a die 100 times
and that we are interested in the chance that a run of 3 or more consecutive
sixes occurs in those 100 throws. A run of at least 3 consecutive sixes in a
series of 100 throws may serve as an analog of some (aggregated) extreme event
in climate. If we assume that we use a perfect die (i.e., each of the six faces
has a probability of exactly 1/6) than there is a rather complicated analytical
solution for this probability which can be approximated very accurately with
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a formula2 due to Feller (1968). This formula gives a probability of 0.316 for
the required probability. Now let’s roll the die. The outcome of the 100 throws
is for example:

552654466454521315432324121111512655236156314656212

13264551446455454421654262242 666 36551624221235535

In this sample of 100 throws a run of 3 sixes occurs in the second half of the
series. Now assume that we are not in a situation to roll the die anymore and
that we want to derive the probability of a run of at least 3 sixes from this
particular sample (like in the real climate where we typically also have a single
sample only). A wrong answer is obviously: we have one occurrence in one
sample, so the probability is 1/1 = 1. How can the bootstrap help us here?
From our original sample we can construct new bootstrap samples by randomly
selecting individual throws from the sample until they have a size of 100 again.
If we construct a large number of bootstrap samples, we can approximate the
probability of getting a run of at least 3 sixes in a series of 100 throws by
dividing the number of bootstrap samples in which such a run occurs by the
total number of bootstrap samples. The value that the bootstrap procedure
(with 100 000 bootstrap samples) returns for this probability is 0.335 which is
quite close to the theoretical value3 of 0.316. We can even go a step further
and use the bootstrap procedure for ‘extrapolation’. Assume that instead of
a run of at least 3 sixes we are interested in the probability of a run of at least
5 sixes, i.e., an event that is so rare that it doesn’t even occur in our original
sample (a situation that is very often encountered in real life problems). The
bootstrap gives for this probability 0.011 while Feller’s (1968) approximation
gives 0.010. Thank you Mr. Efron for the bootstrap!

And that’s still not everything. By applying an additional bootstrap pro-
cedure it is even possible to give an estimate of the statistical uncertainty of
the (bootstrap) probability estimates. This procedure is also known as the
double-bootstrap (Efron and Tibshirani, 1993; Davison and Hinkley, 1997).
First, N primary bootstrap samples (of size 100) are constructed from the
original sample. Second, from each of the N primary bootstrap samples M
secondary bootstrap samples (also of size 100) are constructed. For each of
the N primary bootstrap samples, the M secondary bootstrap samples give

2The probability Pk,n of at least k consecutive sixes in a series of n throws is approximated
by: Pk,n ≈ 1−(1−px)/[q(k+1−kx)xn] where x = 1+qpk +(k+1)q2p2k +(k+1)2q3p3k +. . . ,
p = 1/6 and q = 1 − p.

3The reason why the bootstrap slightly overestimates this value is that in the sample of
100 throws the number of individual sixes, 17, is slightly larger than one would expect from
a perfect die, i.e., 100 times 1/6 giving 16.667. As a consequence also the probability of runs
of consecutive sixes will be somewhat overestimated
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an estimate of the probability of getting a run of sixes in a series of 100 throws
as in the single-bootstrap. The N primary bootstrap samples then provide a
distribution of this probability. From this empirical distribution, which char-
acterizes the statistical uncertainty, a standard error or confidence interval
can be derived. Using our original sample, a double-bootstrap (with N = 199
and M = 100 000) yields a 95% confidence interval4 of [0.062, 0.738] for the
probability of getting a run of at least 3 sixes in 100 throws, and similarly
[0.001, 0.081] for a run of at least 5 sixes in 100 throws.

The example given above only serves to demonstrate the power of resam-
pling techniques such as the bootstrap. It will be clear that the analysis of
extreme events in hydro-meteorological data is incomparable with throwing a
die. However, research in the past few decades has demonstrated that this is
no restriction for resampling techniques to work in more complicated real life
problems as encountered in the field of hydro-meteorology.

1.3 Resampling in this thesis

In this thesis resampling techniques are tailored and applied mainly in the
field of hydro-meteorology. But this does not mean that these techniques
could not be used in other areas. Neither does it mean that this thesis deals
only with resampling. Although resampling definitely is a main theme, resam-
pling methods are in several instances also accompanied and compared with
more traditional (statistical) methods and the best performing method is used
where possible. Another theme that recurs throughout this thesis is that of ex-
treme events. The combination of extreme events and hydro-meteorology leads
to: ‘extreme hydro-meteorological events’ as reflected in the title of the the-
sis. This involves modelling of extreme (unprecedented) hydro-meteorological
events themselves (including their evolution in time), modelling of the return
level (or the associated return period) of certain well-defined extreme (histor-
ical) events, as well as assessing their statistical uncertainty.

In Chapter 2 the jackknife is used to determine the statistical uncertainty
of variances of climate data. Based on the jackknife uncertainty, tests for
the equality of variances of monthly data are introduced. Note that, since
the variance largely determines the width of the distribution, one can roughly
state that the larger the variance, the larger the probability of extreme events.
And thus a difference (or change) in the variance is a first (rough) indication
of a difference (or change) in the frequency of extreme events.

4A 95% confidence interval denotes a random interval which contains the value of interest
with 95% probability. In practice the interval is usually chosen such that there is equal
probability (2.5%) that this value is outside the lower or upper boundary of the interval.
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The motivation for developing these (non-parametric) variance tests is that
the traditional F -test heavily relies on the assumption that the data come
from a normal distribution and that it cannot be extended easily to the case of
multiple correlated records on a grid as, e.g., provided by climate models. The
jackknife provides a (distribution-free) standard error of the variance which
is an essential ingredient for a test for equality of variances. The jackknife
based test allows for a multi-site extension of the test by using data from
several locations or grid points in a region. Such a combined test will be
more powerful than that for a single location when the differences between
the two climates have the same sign across the whole region because of the
larger sample size.

As an example, let us assume that we have 30 locations and that at each
location we have one sample of size 10 from a normal distribution with a
certain variance and another independent sample of the same size from a
normal distribution with a 4 times as large variance. The standard deviations
differ thus by a factor of 2. If we consider only a single location (univariate
test) the probability that this large difference in variance would be detected by
a statistical test at the 5% level is less than 50%. Combining the data for the 30
locations (multivariate test) results in a detection probability of almost 100% if
the samples at the different locations are not more than moderately correlated.
A single combined test further avoids the difficult interpretation of multiple
correlated (univariate) tests in a region which often leads to misinterpretation
and is therefore notoriously known as the multiplicity problem (see, e.g., von
Storch, 1982).

The multivariate test is applied in Chapter 2 to simulated time series
of monthly mean near-surface temperature and precipitation from a climate
change simulation (UKTR) with the UK Met Office Hadley Centre climate
model. Besides this illustration, either the test statistic or the underlying
jackknife procedure to estimate the standard error of the variance is applied
for diagnostic purposes in all subsequent chapters.

Chapter 3 deals with modelling of extreme precipitation (and temperature)
in the German part of the Rhine basin. With the 1250-year river discharge in
mind, long-duration multi-site simulations of daily precipitation and tempera-
ture are performed by means of conditional nearest-neighbour resampling. In
these long-duration simulations much larger 10-day area-average precipitation
amounts are produced than observed in the 35-year reference period. Since, the
weather observed on historical days is resampled as a whole, the dependence
between daily precipitation at different sites and the dependence between daily
precipitation and temperature is automatically preserved. As mentioned ear-
lier, these dependencies often have a complicated structure, which may not
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be adequately described by parametric models or would otherwise require an
unrealistic degree of modelling. For many hydrological applications, including
the modelling of (extreme) river discharges in large river basins, the spatial
and temporal dependencies are of crucial importance. This makes multivariate
time series resampling models particularly suitable for hydrological purposes.

In conditional nearest-neighbour resampling the sampling of new values is
conditioned on previously sampled values and on the large-scale atmospheric
circulation. The rationale for simulating precipitation and temperature con-
ditional on the large-scale atmospheric circulation is that the atmospheric
circulation largely determines whether a day will be wet or dry and whether
a day will be relatively warm or cold (for the time of the year). In these con-
ditional resampling models the (change in) atmospheric circulation thus acts
as a predictor for (the change) in precipitation and temperature. Recognizing
that systematic changes in the atmospheric circulation are possible as a result
of (anthropogenic) climate change, such conditional resampling models might
be useful to assess (future) changes in precipitation statistics, in particular
changes in extreme multi-day precipitation amounts.

In Chapter 3 conditional nearest-neighbour resampling models are also
compared with the alternative, and closely related, analog method which is
in use somewhat longer (Zorita et al., 1995; Zorita and von Storch, 1999) and
which is also popular in the context of weather prediction.

While Chapter 3 deals with modelling of precipitation with a focus on ex-
tremely wet events, Chapter 4 deals with drought, i.e., extremely dry events.
More explicitly, it deals with modelling the joint probability of precipitation
deficits in the Netherlands and discharge deficits of the river Rhine. Large
parts of the Netherlands can be supplied with water from this river in the
case of precipitation deficits. For drought assessment it is therefore necessary
to consider the joint probability distribution of precipitation and discharge
deficits. In Chapter 4 nearest-neighbour resampling is used to estimate joint
probabilities of precipitation and discharge deficits. The results are compared
with those obtained from fitting different bivariate probability distributions.
The (modelled) dependence structure between extreme precipitation and dis-
charge deficits plays a crucial role in estimating joint (exceedance) probabil-
ities. As can be expected nearest-neighbour resampling performs superior in
this respect since the dependence structure is inherited from the original data
without the need to make assumptions about it. In the framework of bivariate
probability distributions the observed dependence structure can be reproduced
by constructing a novel bivariate distribution: a bivariate normal distribution
with the dependence structure taken from a bivariate Gumbel distribution.

In Chapter 5 spatial variation in the probability distribution of the precip-
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itation deficit is the central theme. The Netherlands is therefore divided into
six districts. In the probability distribution of the precipitation deficit of all
six districts an extraordinary curvature shows up in the upper tail. Two al-
ternatives are investigated to reproduce the spatial variation and the common
extraordinary curvature in the tail: a regional frequency analysis and time
series simulation by means of nearest-neighbour resampling. By introducing
additional long-term persistence in the nearest-neighbour resampling proce-
dure, the curvature in the upper tail of the distribution can be realistically
reproduced.

The statistical uncertainty of quantile estimates based on nearest-neighbour
resampling is assessed in Chapter 5 by combining nearest-neighbour resam-
pling with the jackknife and the bootstrap. To achieve this, jackknife and
bootstrap samples are constructed from the original data first. Subsequently,
a simulation with the nearest-neighbour resampling model is performed based
on each of the jackknife and bootstrap samples. The statistical uncertainty is
finally determined in the same way as in the standard jackknife and bootstrap
methods. In the case of the bootstrap, the procedure resembles very much
that of the double-bootstrap in the dice example in Section 1.2. Apart from
the standard errors of quantiles, nearest-neighbour resampling and the boot-
strap are used to construct confidence intervals for the return periods of the
largest observed precipitation deficit for each of the six districts.

Chapter 6, finally, gives a summary and synthesis of the research in this
thesis.
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Chapter 2

A simple test for equality of
variances in monthly climate
data

Jules J. Beersma and T. Adri Buishand, 1999

Published in Journal of Climate, 12, 1770–1779

Abstract

Tests for equality of variances of monthly climate data using resampling tech-
niques are discussed. The application of a jackknife test to spatially correlated
time series is worked out in this chapter. Besides this spatial extension, it is
also possible to combine the data for the individual calendar months into a
single seasonal or annual test statistic. The derivation of the critical values
of the test statistic from Student’s t-distribution in such multivariate applica-
tions is investigated. A modification to improve the use of the t-distribution
is given for the case that the distribution of the data is close to the normal
distribution. The power of the simple jackknife test is compared with that of
a permutation test.

The test is illustrated with a comparison of the variances of monthly
temperatures and precipitation amounts in the anomaly simulation, with en-
hanced greenhouse gas concentrations, and in the control simulation of the
high-resolution transient experiment (UKTR) with the Hadley Centre coupled
ocean-atmosphere General Circulation Model. Three regions are considered:
Central North America, Southern Europe and Northern Europe. For a num-
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ber of regions and seasons the differences between the variances of the two
simulations are significant at the 5% level. In particular, a significant increase
in the variance of monthly precipitation over Northern Europe is found in the
anomaly simulation for winter, summer and autumn. Limitations of the use
of the test to monthly precipitation time series containing a large proportion
of zeros are identified.

2.1 Introduction

The study of changes in the variance of meteorological variables is of recent
interest. It is now well recognized that climate change may not be restricted
to changes in the mean alone. Several authors have compared the variances of
monthly and seasonal values of observed data or simulated data from General
Circulation Models (GCMs). The determination of the statistical significance
of observed differences meets, however, difficulties. Rind et al. (1989), Mearns
et al. (1990), Cao et al. (1992) and Gordon and Hunt (1994) used the F -test for
this purpose. The F -test assumes that the data are independent and normally
distributed. Furthermore, the test often fails to discover meaningful differences
in the variances due to lack of degrees of freedom. Zwiers and Thiébaux (1987)
tried to overcome the low power of the F -test by deriving the interannual
variability from the spectral density function of the daily values. Their test
requires a careful elimination of the annual cycle in the mean. Moreover, the
distribution of the test statistic has only been studied for (daily) samples from
a normal distribution.

The above tests refer to data at a single location. GCM data consist,
however, of a large number of correlated time series on a spatial grid. Wigley
and Santer (1990) presented a number of tests to compare the variances of such
multivariate data. Resampling techniques using computer-intensive Monte
Carlo methods were proposed to decide whether a result is significant or not.

Buishand and Beersma (1996) discussed the use of the jackknife for the
comparison of daily variability in observed and simulated climates. The jack-
knife method is a resampling technique which does not require Monte Carlo
methods. The resulting tests are reasonably robust against non-normality of
the data. The critical values can generally be based on Student’s t-distribution
both for univariate testing with data at a single location and for multivariate
testing with data on a spatial grid.

This chapter focuses on the use of the jackknife for testing equality of vari-
ances of monthly values. Section 2.2 presents an overview of tests for equality
of variances using resampling techniques. Particular attention is given to the
jackknife method in the multivariate situation. The method is illustrated in
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Section 2.3 with simulated monthly temperatures and precipitation amounts
from the high-resolution transient experiment (UKTR) with the Hadley Cen-
tre coupled ocean-atmosphere GCM (Murphy, 1995; Murphy and Mitchell,
1995). Section 2.4 concludes the chapter with a discussion.

2.2 Tests based on resampling

For estimating standard errors resampling techniques are often good alterna-
tives to analytic approximations. They also provide tests of significance in
situations that the validity of the normal distribution is questionable. Several
papers in the statistical literature have discussed the use of the jackknife and
the bootstrap for testing equality of variances. An attractive property of these
tests is that rather simple multivariate versions for samples on a spatial grid
or samples of different seasons can be obtained. A correction of a standard
jackknife test is proposed for such multivariate applications.

2.2.1 Univariate tests

In this section we confine ourselves to the monthly means (or totals) at a single
location. A sample for J successive years (e.g., January average temperatures)
is represented as x1, x2, . . . , xJ . The sample mean is denoted as x and the
unbiased sample variance s2 is given by:

s2 =
1

J − 1

J
∑

j=1

(xj − x)2 . (2.1)

The statistic s2 is an unbiased estimate of the true variance σ2 of the monthly
values xj if these data are independent, a quite common assumption for
monthly data from different years. Tests for equality of variances are often
based on θ̂ = ln(s2) rather than on s2 itself, because the distribution of θ̂ is
usually closer to the normal distribution than that of s2. For independent
data, var(θ̂) can be approximated as (O’Brien, 1978):

var(θ̂) ≈ 2 + γ2

J
, (2.2)

where γ2 is the kurtosis (a standardized fourth-order moment). For the normal
distribution γ2 = 0. An estimate of var(θ̂) can be obtained by replacing γ2 by
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the sample kurtosis:

γ̂2 =

J
J
∑

j=1
(xj − x)4

[

J
∑

j=1
(xj − x)2

]2 − 3 . (2.3)

Some caution is needed however, because γ̂2 can be seriously biased (see Ap-
pendix B). The jackknife provides a distribution-free alternative estimate of
var(θ̂).

Although s2 is an unbiased estimate of σ2 for independent and identically
distributed data, θ̂ = ln(s2) is a biased estimate of θ = ln(σ2). The bias is of
order 1/J (O’Brien, 1978):

bias(θ̂) ≈ −1 − 2γ2

J
. (2.4)

a. The jackknife

In the jackknife method the statistic θ̂ is recomputed for each sub-sample of
size J − 1. Let θ̂−j be the value of the statistic after omitting xj . From θ̂ and

θ̂−j a pseudovalue can be formed as:

θ∗j = θ̂ + (J − 1)(θ̂ − θ̂−j) . (2.5)

Although the pseudovalues θ∗j can be seen as estimates of θ, they have a much

larger variance than θ̂. However, their mean:

θ̂jack =
1

J

J
∑

j=1

θ∗j , (2.6)

which is known as the jackknife estimate of θ (Miller, 1968), can be a good
alternative to θ̂. The jackknife estimate reduces the bias in estimating ln(σ2)
to order 1/J2.

Unlike the θ̂−j values, the pseudovalues exhibit little correlation (Sec-
tion 2.2.3). Jackknife tests treat the pseudovalues as independent normal
variables. Tests for equality of variances are then similar to those for equality
of means in normal populations using Student’s t-distribution. These tests
need θ̂jack and its estimated variance:

V̂jack =
1

J(J − 1)

J
∑

j=1

(

θ∗j − θ̂jack

)2
. (2.7)
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From the jackknife estimates a number of different statistics can be derived
to test for equality of the variances σ2(I) and σ2(II) of two mutually indepen-
dent time series of monthly climate data. Let θ̂jack(I), θ̂jack(II) be jackknife

estimates of ln(σ2) and V̂jack(I), V̂jack(II) their estimated variances, then the
usual two-sample pooled t-statistic can be represented as:

Ta =

[

JK(J + K − 2)

J + K

]1/2
θ̂jack(II) − θ̂jack(I)

[

J(J − 1)V̂jack(I) + K(K − 1)V̂jack(II)
]1/2

,

(2.8)
with J and K the number of years for climate I and climate II, respectively.
Under the null hypothesis of equal variances, the distribution of Ta is approx-
imated by Student’s t-distribution with J + K − 2 degrees of freedom. For
the case of equal sample sizes, Miller (1968) demonstrates that this approxi-
mation works well for sample sizes as small as J = 10. The test is also quite
robust against non-normality. However, for J 6= K, Monte Carlo experiments
show that the critical values of the test should be larger than those obtained
from Student’s t-distribution, especially for long-tailed distributions (Brown
and Forsythe, 1974; Boos and Brownie, 1989). Besides the earlier mentioned
assumptions about the normality and correlation of the pseudovalues, there
are two additional complications in the case of unequal sample sizes that limit
the use of Student’s t-distribution with J +K−2 degrees of freedom (O’Brien,
1978). First, the pseudovalues have different variances in climate I and cli-
mate II if J 6= K. Second, the fact that bias(θ̂jack) depends on J implies
that the mean of the numerator of the test statistic slightly differs from zero
under the null hypothesis. Furthermore, the two-sample Student test becomes
less robust against non-normality if the sample sizes are unequal (Kendall and
Stuart, 1973).

Keselman et al. (1979) suggested the use of Welch’s t-statistic to cope with
variance heterogeneity of the pseudovalues in case of unequal sample sizes. The
test statistic reads:

Tb =
θ̂jack(II) − θ̂jack(I)

[

V̂jack(I) + V̂jack(II)
]1/2

. (2.9)

Buishand and Beersma (1996) used a similar statistic to compare the daily
variability in observed and simulated climates. The critical values of Tb are
derived from Student’s t-distribution with an effective number d∗ of degrees
of freedom:

d∗ =

[

V̂jack(I) + V̂jack(II)
]2

V̂ 2
jack(I)/(J − 1) + V̂ 2

jack(II)/(K − 1)
. (2.10)
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For equal sample sizes, Tb = Ta, but d∗ tends to be smaller than J + K − 2.
Besides unequal sample sizes, differences in kurtosis γ2 for the two climates
also lead to variance heterogeneity. A correction of the test for correlation
between pseudovalues is presented in Section 2.2.3.

b. Permutation and bootstrap procedures

Permutation procedures are computer-intensive techniques to determine the
statistical significance of a result. The method is free of assumptions about
the parametric form of the distribution of the data. A pooled permutation
procedure can be used to test for equality of variances of two climate time
series {x1, . . . , xJ} and {y1, . . . , yK}. The means x and y have to be subtracted
first (Boos and Brownie, 1989). The method then assumes that under the
null hypothesis each permutation of the combined sample {x1 − x, . . . , xJ −
x, y1 − y, . . . , yK − y} is equally likely. A permutation sample is obtained
by taking a sample of size J without replacement to represent the centred
data for climate I; the remaining K values represent the centred data for
climate II. For each permutation sample the ratio of the sample variances
s2(I) and s2(II) is computed. Comparing the distribution of this ratio in the
permutation samples with the observed ratio gives the achieved significance
level.

In contrast to this permutation test, the pooled bootstrap procedure in
Boos and Brownie (1989) resamples with replacement from the combined sam-
ple of centred data. The two techniques are further identical. Downton and
Katz (1993) applied the pooled bootstrap technique to test for discontinuities
in the variance in long-term records of seasonal mean maximum temperatures.
They observed that a test at the 10% level can detect changes of 25–30% in
the standard deviations of seasonal mean maximum temperatures in records
of 10 years or more and that such a test is generally not sensitive enough to
be able to detect changes less than 20%.

For the bootstrap it makes sense to consider studentized statistics like Ta

and Tb instead of the ratio of the sample variances (Boos and Brownie, 1989).
The actual rejection rate of the null hypothesis is then closer to the desired
significance level. Boos and Brownie show that bootstrapping the jackknife
statistic Ta results in an improvement compared with the use of Student’s
t-distribution with J + K − 2 degrees of freedom, in particular if J 6= K.

Pooled permutation and bootstrap procedures are not robust against un-
equal kurtoses. It is possible to achieve asymptotic correct significance lev-
els in that case by bootstrapping the scaled samples {x1/s(I), . . . , xJ/s(I)},
{y1/s(II), . . . , yK/s(II)}, separately (Boos et al., 1989). Because convergence
is slow, the test cannot be applied to small and moderate samples (say J, K ≤
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50).

2.2.2 Multivariate extensions

The jackknife procedure allows for a multivariate test for equality of variances
in two different climates using data at several grid points in a region. Such
a multivariate extension is presented in Buishand and Beersma (1996) First,
the pseudovalues θ∗1, θ∗2, . . . , θ∗J are calculated for each grid point separately.
These pseudovalues are then averaged over the various grid points, giving θ∗1,
θ∗2, . . . , θ∗J . The jackknife statistic Ta or Tb is finally obtained by applying
(2.6) and (2.7) to these average pseudovalues. This combined test will be more
powerful than that for an individual grid point when the differences between
climate I and climate II have the same sign across the whole region because of
the larger sample size. The test is not suitable for very large regions (e.g., a
hemisphere) where areas with negative differences may compensate those with
positive differences.

The above multivariate extension compares spatial averages of the loga-
rithms of the variances. This is equivalent with a comparison of the geometric
means rather than the arithmetic means as in the SPRET1 statistic of Wigley
and Santer (1990):

SPRET1 = s2(I)/s2(II) , (2.11)

where s2(I) and s2(II) are the spatial averages of the sample variances1 for
climate I and climate II, respectively, for a particular calendar month. There
is, however, not a simple approximation to the distribution of SPRET1 under
the null hypothesis. Wigley and Santer (1990) used the pooled permutation
procedure of Preisendorfer and Barnett (1983) to determine the statistical
significance of the observed value of SPRET1. The method is usually unnec-
essarily restricted to equal sample sizes only. As for the univariate tests in
Section 2.2.1, it is also necessary here to adjust the monthly values for differ-
ences in the means of the two climates (Santer and Wigley, 1990). Otherwise
the kurtosis in each permutation would differ from that in the original series,
resulting in an incorrect significance level.

The data for the individual (calendar) months can be combined into a
single seasonal or annual test by averaging the monthly pseudovalues in a
similar way. There is a gain in power when the sign of the differences in
variance for the two climates is the same for the months under consideration.

1In contrast to the unbiased estimate in equation (2.1), Wigley and Santer divide the
sum of the squared deviations about the mean by J rather than J − 1. This choice does not
influence the outcome of a permutation test and the value of the jackknife statistics Ta and
Tb is affected only in case of unequal sample sizes.
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On the other hand the combined test may fail when the sign of the differences
varies over the year.

2.2.3 A corrected jackknife test

In Section 2.2.1 it was noted that in case of equal sample sizes the t-approximation
of the null distribution did quite well in a jackknife test for sample sizes as
small as 10. Correlation between the pseudovalues and the fact that their
distribution deviates from the normal distribution, even if the data come from
a normal distribution, limits the use of the t-distribution for smaller sample
sizes. The situation is different in the multivariate extension of Section 2.2.2
because spatial averaging influences the distribution of the pseudovalues. The
effect of spatial averaging on the validity of the t-approximation for the test
based on the statistic Tb has been investigated in a Monte Carlo experiment.
Table 2.1 considers both the situation of two single climate time series and
that of averaging the pseudovalues of N independent sequences. This averag-
ing does not affect the correlation between the pseudovalues, while the effect
of non-normality of the pseudovalues decreases with increasing N . For N large

Table 2.1. Actual rejection rates of the null hypothesis of equal variances for
two-sided tests based on the jackknife statistic Tb (5000 simulations). The
pseudovalues in the test statistic are averaged over N independent sequences.
The critical values of Tb are obtained from Student’s t-distribution with d∗

degrees of freedom.

Significance level
Distribution J K N 0.100 0.050 0.010

Normal 5 5 1 0.074 0.035 0.009
3 0.055 0.025 0.005
5 0.051 0.021 0.003
9 0.055 0.021 0.002

10 10 1 0.099 0.050 0.012
3 0.074 0.037 0.008
5 0.077 0.032 0.005
9 0.074 0.031 0.005

Exponential 10 10 1 0.169 0.107 0.037
3 0.129 0.071 0.017
5 0.123 0.066 0.016
9 0.119 0.062 0.012
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enough the distribution of Tb therefore no longer depends on N . The empir-
ical significance levels for samples from the normal distribution are for large
N much lower than the nominal values because of the negative correlation
between the pseudovalues (O’Brien, 1978). The situation is in fact better if
N = 1 because then the correlation effect is counteracted by the non-normality
of the pseudovalues. For the case J = K = 10 the two effects just compensate.
In the generated samples from the exponential distribution the correlation be-
tween the pseudovalues is positive (O’Brien, 1978). Because of this positive
correlation and non-normality of the pseudovalues the test is progressive, i.e.,
the null hypothesis is rejected too frequently.

Like the F -test our jackknife statistic Tb has little power to detect differ-
ences in the variances of two short independent climate time series at a single
location. Averaging over successive months or grid points is therefore neces-
sary to obtain a meaningful test. Through the averaging procedure the effect
of non-normality of the pseudovalues is small. Departures from the assumed
t-distribution are then mainly due to correlation between the pseudovalues.
These pseudovalues are equicorrelated, i.e.,

Corr(θ∗i , θ
∗
j ) = ρ (2.12)

for all i 6= j. If ρ is known the test statistic can easily be corrected for this
type of correlation (Walsh, 1947). The main point behind the correction is
that V̂jack in equation (2.7) does not provide a purely unbiased estimate of

var(θ̂jack), but such an estimate is given by

Ṽjack =
1 + (J − 1)ρ

1 − ρ
V̂jack , (2.13)

leading to the modified test statistic:

T̃b =
θ̂jack(II) − θ̂jack(I)

[

Ṽjack(I) + Ṽjack(II)
]1/2

. (2.14)

From the Satterthwaite procedure in Welch (1938) it follows that the variance
estimate Ṽjack should also be used in equation (2.10) for the degrees of free-
dom. Table 2.2 shows that the null distribution of the corrected statistic T̃b is
generally much better approximated by Student’s t-distribution than that of
the jackknife statistic Tb. The corrected test even works well in case of unequal
sample sizes despite the differences in the means of the jackknife estimates in
the numerator of equation (2.14) under the null hypothesis.

Table 2.2 also presents estimates of ρ. Details about the derivation of
these estimates are given in Appendix A. The table shows that the values
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Table 2.2. Actual rejection rates of the null hypothesis of equal variances for
two-sided tests based on the jackknife (2500 simulations for J = 10, K =
30; 5000 simulations in the other cases). The results in the first row refer
to the jackknife statistic Tb and those in the second row to the corrected
jackknife statistic T̃b. The pseudovalues in the test statistics are averaged
over N = 9 independent sequences. The estimated correlation coefficients
between these pseudovalues in climate I and climate II are denoted as ρ̂(I)
and ρ̂(II), respectively. The critical values of Tb and T̃b are obtained from
Student’s t-distribution with d∗ degrees of freedom.

Significance level
Distribution J K ρ̂(I) ρ̂(II) 0.100 0.050 0.010

Normal 5 5 −0.063 −0.064 0.055 0.021 0.002
0.095 0.048 0.008

10 10 −0.017 −0.020 0.074 0.031 0.005
0.098 0.050 0.010

5 15 −0.066 −0.010 0.067 0.030 0.006
0.111 0.054 0.015

10 30 −0.015 −0.003 0.073 0.037 0.006
0.100 0.049 0.013

Exponential 5 5 0.021 0.018 0.106 0.047 0.007
0.090 0.037 0.006

10 10 0.014 0.014 0.119 0.062 0.012
0.098 0.050 0.008

of ρ̂ are rather small. Nevertheless this correlation may have a considerable
effect on the distribution of the test statistic, because it does not decrease
with increasing separation in time. Unfortunately, the procedure on which
the estimates of ρ in Table 2.2 are based does not apply to a single realization.
Moreover, the amount of data is generally not sufficient to obtain a sensible
estimate of ρ directly. The value of ρ is determined by the sample size and the
underlying distribution. This dependence was examined in order to obtain a
suitable modification of the jackknife statistic Tb.

Table 2.3 presents estimates of ρ for J = 5, 10 and 30 for a number of distri-
butions. These values increase with increasing kurtosis γ2 of the distribution.
Both for the symmetric Laplace distribution and the skewed χ2

4-distribution
the effect of correlation on the distribution of the test statistic can be ne-
glected. The kurtosis of these distributions is, however, as large as 3. The
monthly means of climatic data generally have kurtosis close to zero. It is



2.2 Tests based on resampling 23

Table 2.3. Estimated correlation coefficients between the pseudovalues of se-
quences of J independent observations from the normal and other distributions
(10 000 simulations for J = 5 and J = 10; 2500 simulations for J = 30). As
in Table 2.2 the correlation coefficients are derived from average pseudovalues
taken over N = 9 independent sequences.

ρ̂
Distribution Skewness Kurtosis J = 5 J = 10 J = 30

Uniform 0 −1.2 −0.101 −0.040 −0.005
Normal 0 0 −0.064 −0.019 −0.003
Laplace 0 3 −0.013 0.002 0.002

χ2
4

√
2 3 −0.002 0.009 0.002

Exponential 2 6 0.020 0.014 0.004

therefore often sufficient to apply a correction to the test statistic valid for
the normal distribution. The estimates of ρ for the normal distribution in
Table 2.3 can be approximated as:

ρ̃ = −J−1.7 . (2.15)

Substitution of ρ̃ in equation (2.13) gives the desired correction. Unfortu-
nately, it is difficult to verify the validity of this correction. The sample
kurtosis in equation (2.3) has a very strong bias in small samples from dis-
tributions with positive kurtosis, the so-called leptokurtic distributions (see
Appendix B). In the examples in Section 2.3, the kurtosis for a single grid
point was estimated as

γ̂2 =

nsJ
ns
∑

i=1

J
∑

j=1
(xi,j − xi·)

4

[

ns
∑

i=1

J
∑

j=1
(xi,j − xi·)2

]2 − 3 , (2.16)

where xi,j is the value of the ith calendar month for year J , xi· is the average
of that calendar month, and ns is the number of calendar months in the season
of interest. The pooling over successive months reduces the bias because of
the larger sample size. The estimate in equation (2.16) is, however, sensitive
to a systematic variation of the variance within the season of interest.
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2.2.4 Power of tests for equality of variances

A Monte Carlo experiment was performed to study the performance of the
proposed jackknife test. The SPRET1 statistic of Wigley and Santer (1990)
was also considered in that experiment. To demonstrate the effect of spatial
averaging, one set of data was generated for univariate tests on the variances
at a single location, and another set was generated for multivariate tests on
the variances of N = 30 sequences. In the latter case, vectors of length 30
were generated from a multivariate normal distribution analogous to a Monte
Carlo experiment of Zwiers (1987), where the correlation coefficient between
the ith and jth sequence was set equal to the lag k autocorrelation coefficient
of a second order autoregressive process:

ρ0 = 1
ρ1 = φ1/(1 − φ2)
ρk = φ1ρk−1 + φ2ρk−2, k ≥ 2







, (2.17)

with k = |i−j|, φ1 = 1.6 and φ2 = −0.8. This correlation function represents a
damped sine curve. It can be seen as the one-dimensional analog of the spatial
correlation function of a climate variable exhibiting teleconnection patterns.
From the Monte Carlo experiment it turns out that averaging the pseudovalues
over N = 30 correlated sequences leads to a reduction in the standard error of
θ̂jack of 66%, which is comparable to the effect of averaging over 9 independent
sequences. The standard deviations, σ(I) in climate I and σ(II) in climate II,
were taken to be the same for every sequence.

Table 2.4 presents the results for two-sided tests at the 5% level in samples
of size 10. The power is low in the univariate case (N = 1), in agreement
with the discussion on the power of the F -test in Zwiers and Thiébaux (1987).
Even if σ(II)/σ(I) is as large as 2 more than 50% of the cases passes the test.
A large gain in power is achieved with the multivariate tests. About 80%
of the cases is declared significant if σ(II)/σ(I) = 1.5. It is further seen in
Table 2.4 that the power of the simple jackknife test is comparable with that
of a computer-intensive permutation test using the SPRET1 statistic.

2.3 Examples

The multivariate jackknife test in Section 2.2 was applied to simulated time
series of monthly mean near-surface temperature and precipitation from the
UKTR climate change experiment with the Hadley Centre coupled ocean-
atmosphere GCM (Murphy, 1995; Murphy and Mitchell, 1995). Data of the
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Table 2.4. Power of tests for equality of variances for various ratios of the
standard deviations in climate I and climate II (1000 simulations, and 1000
permutations of each combined sample for the two climates to determine the
statistical significance of the SPRET1 statistic). The values of the power refer
to a two-sided test at the 5% level for samples of size 10 (J = K = 10) from
a univariate (N = 1) or a multivariate (N = 30) normal distribution.

N = 1 N = 30

σ(II)/σ(I) Tb SPRET1 T̃b SPRET1

1.2 0.077 0.076 0.273 0.262
1.5 0.176 0.175 0.808 0.842
2.0 0.434 0.399 0.996 0.994

last 10 years of the 75-year integration from the control simulation (with con-
stant CO2 concentration) are compared with those from the anomaly simula-
tion for the same decade (with an increase in CO2 of 1% per year, resulting in
an effective CO2 doubling after 70 years). The land areas of three regions are
considered: central North America (CNA; 35◦–50◦N, 85◦–105◦W), southern
Europe (SEU; 35◦–50◦N, 10◦W–45◦E) and northern Europe (NEU; 50◦–70◦N,
10◦W–60◦E ). The first two regions were previously selected for analysis of re-
gional climate change simulation by the Intergovernmental Panel on Climate
Change (IPCC, 1990, 1996).

The latter region was introduced by Raisanen (1995) and later also consid-
ered by IPCC (1996). The monthly mean near-surface temperature is obtained
by averaging the monthly mean maximum and minimum temperature. Results
for monthly mean maximum and minimum temperature separately are similar
to those for monthly mean temperature and are therefore not presented. The
precipitation amounts considered are the sums of large scale and convective
precipitation.

2.3.1 Near-surface temperature

Table 2.5 summarizes some relevant sample statistics. The values in this table
are averages of monthly estimates over a season or year and over the land grid
points in the region. The kurtosis estimates are generally close to zero. Excep-
tions occur in spring and autumn. Values of γ̂2 > 1 in those transition seasons
are rather due to systematic differences between the temperature variances of
successive calendar months than to leptokurtic distributions. Equation (2.15)
was therefore used to correct for correlation between the pseudovalues in the
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Table 2.5. Mean, variance and kurtosis of monthly near-surface temperature
for central North America (CNA), southern Europe (SEU) and northern Eu-
rope (NEU). Here C refers to the control simulation and A to the anomaly
simulation of the UKTR experiment: Dec–Feb (DJF), Mar–May (MAM), and
etc.

Area Data DJF MAM JJA SON Year

Mean (◦C)
CNA C −9.73 6.48 22.58 10.74 7.52
CNA A −4.96 8.95 27.00 15.55 11.63
SEU C −1.89 6.42 20.41 10.33 8.82
SEU A 0.80 9.39 24.29 14.19 12.17
NEU C −22.04 −5.86 12.91 −2.70 −4.42
NEU A −17.34 −1.52 15.47 0.95 −0.61

Variance (◦C2)
CNA C 13.39 5.65 4.28 4.98 7.07
CNA A 11.58 4.70 7.30 4.84 7.10
SEU C 11.74 6.19 4.38 4.24 6.64
SEU A 11.90 3.94 5.33 3.63 6.20
NEU C 17.49 11.01 2.92 8.09 9.88
NEU A 23.16 6.53 3.73 5.37 9.70

Kurtosis
CNA C 0.16 1.66 0.34 0.64 0.70
CNA A −0.55 −0.21 0.29 −0.23 −0.18
SEU C −0.08 1.15 0.07 1.90 0.76
SEU A −0.11 −0.24 0.53 −0.08 0.02
NEU C −0.36 0.00 0.17 1.20 0.25
NEU A −0.54 −0.01 0.35 0.55 0.09

jackknife test for equality of variances.
In the anomaly simulation the average temperature is about 4◦C higher

for most seasons. For the three regions the variances are larger in summer but
smaller in spring and autumn. However, these changes in the variance resulting
from enhanced greenhouse gas concentrations are statistically significant for
only two cases; the 71% increase in summer for CNA and the 41% decrease in
spring for NEU (Table 2.6). In winter the temperature variance changes have
different signs.

Note that it is possible that the variance ratio indicates a decrease in vari-
ance whereas the test statistic indicates an increase in variance (see e.g., CNA
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Table 2.6. Ratios of the sample variances of monthly near-surface temperature
in the anomaly simulation to those in the control simulation and results of
jackknife tests for equality of variances. Values in bold refer to statistically
significant differences (two-sided test at the 5% level).

Area Statistic DJF MAM JJA SON Year

CNA ratio 0.86 0.83 1.71 0.97 1.00

CNA T̃b −0.56 0.05 2.54 −0.26 1.01
SEU ratio 1.01 0.64 1.22 0.86 0.94

SEU T̃b 0.10 −1.41 0.96 −0.47 −0.43
NEU ratio 1.32 0.59 1.28 0.66 0.98

NEU T̃b 1.84 −−−5.18 0.74 −0.89 −0.75

in spring) or the other way around. However, this usually only happens when
the test statistic is close to zero (and thus far from the critical value). It gen-
erally requires that the arithmetic mean is much different from the geometric
mean which occurs if the variance shows large seasonal or spatial variation.

2.3.2 Precipitation

The distribution of monthly precipitation generally differs more from the nor-
mal distribution than that of monthly temperature. The largest departures
from normality are found in areas or seasons where completely dry months
frequently occur. If at a particular grid point the monthly mean precipitation
is zero for the whole period considered, the sample variance is clearly also zero
but the pseudovalues, since they involve ln(s2), are undefined. Similarly, when
only one of the monthly mean precipitation values in a time series is larger
than zero, one of the pseudovalues is undefined. Both situations are found in a
small number of the grid points in SEU in summer and autumn. Furthermore,
time series containing many zeros have a strong effect on the spatial kurtosis
estimate. To avoid problems related to such situations only those grid points
are considered for which the monthly mean precipitation time series contains
at least four values larger than zero.

It should further be noted that the precipitation in GCM simulations has
often been regarded as being representative of the average over the grid box
concerned (Reed, 1986; Gregory and Mitchell, 1995). The distribution of a
spatial average of monthly precipitation is less skewed and has a lower kurtosis
than that of monthly precipitation at a point.

Table 2.7 summarizes the sample statistics for precipitation in the same



28 Chapter 2

Table 2.7. Mean, variance and kurtosis of monthly precipitation for CNA,
SEU and NEU. Here C refers to the control simulation and A to the anomaly
simulation of the UKTR experiment.

Area Data DJF MAM JJA SON Year

Mean (mm day−1)
CNA C 1.16 3.00 3.07 1.52 2.19
CNA A 1.30 3.05 2.73 1.44 2.13
SEU C 2.98 2.31 2.01 1.93 2.30
SEU A 3.01 2.32 1.61 1.76 2.18
NEU C 1.34 1.72 2.34 2.24 1.91
NEU A 1.68 1.95 2.51 2.58 2.18

Variance (mm2 day−2)
CNA C 0.31 1.03 1.63 0.76 0.93
CNA A 0.34 1.47 1.79 0.92 1.13
SEU C 0.91 0.82 1.17 0.85 0.93
SEU A 1.37 0.76 1.11 0.81 1.01
NEU C 0.29 0.44 0.67 0.46 0.46
NEU A 0.47 0.48 0.92 0.68 0.64

Kurtosis
CNA C 0.62 −0.03 −0.11 0.47 0.24
CNA A 1.19 0.20 0.12 0.33 0.46
SEU C 0.29 −0.08 0.60 0.26 0.27
SEU A 0.16 −0.06 1.49 0.79 0.59
NEU C −0.19 −0.07 −0.03 −0.22 −0.13
NEU A −0.06 0.08 0.06 0.14 0.06

way as for temperature in Section 2.3.1. For NEU the monthly mean precipi-
tation in the anomaly simulation is for all seasons 5 to 25% higher than in the
control simulation. This increase in the mean is accompanied by an increase
in the variance. Table 2.8 shows that the changes in variance vary between
10% (spring) and 60% (winter), and are, except for spring, statistically sig-
nificant. For CNA the anomaly simulation shows an increase in mean winter
precipitation of about 10% and a decrease in mean summer precipitation of
about 10%; for SEU there is a 20% decrease of mean precipitation in summer
and an almost 10% decrease in autumn (Table 2.7). For these two regions the
changes in the mean are not accompanied by similar changes in the variance.
The largest changes in the variance are found in other seasons, namely a sta-
tistically significant increase of 44% in spring for CNA and an increase of 50%
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Table 2.8. Ratios of the sample variances of monthly precipitation in the
anomaly simulation to those in the control simulation and results of jackknife
tests for equality of variances. Values in bold refer to statistically significant
differences (two-sided test at the 5% level).

Area Statistic DJF MAM JJA SON Year

CNA ratio 1.09 1.44 1.09 1.22 1.21

CNA T̃b 1.10 2.25 0.50 1.15 2.36
SEU ratio 1.50 0.93 0.95 0.95 1.09

SEU T̃b 1.36 −1.85 −0.53 −0.48 0.04
NEU ratio 1.61 1.09 1.37 1.49 1.37

NEU T̃b 3.72 1.03 2.61 3.01 4.77

in winter for SEU (Table 2.8).
In the statistical tests above, a correction for correlation between pseu-

dovalues was applied using equation (2.15) for the normal distribution. The
kurtosis estimates in Table 2.7 support this correction for most cases. Excep-
tions are CNA in winter and SEU in summer and autumn. In particular for
the SEU precipitation, the positive kurtosis cannot be attributed to within-
season variations of the variance only. According to the simulation results in
Appendix B, a spatial average of γ̂2 in the range of 1 to 1.5 indicates that
γ2 ≈ 3, so that a correction for correlation between pseudovalues would not
be needed. For the cases mentioned above the correction only had a small
effect; the values of the test statistic Tb without correction are: 0.99 for CNA
in winter, −0.47 for SEU in summer, and −0.43 for SEU in autumn.

2.3.3 Comparison with other GCM simulations

The results for the UKTR experiment only partly agree with those of Rind
et al. (1989), Gordon and Hunt (1994) and Liang et al. (1995) for mixed-layer
models. In contrast to a coupled model, as used in the UKTR experiment,
a mixed-layer model cannot produce variability associated with dynamical
ocean processes such as the Atlantic thermohaline circulation and the El Niño
Southern Oscillation. Since such processes contribute to the interannual vari-
ability, they should be included in experiments that investigate the response
of atmospheric variability to enhanced greenhouse gas concentrations, as is
demonstrated by Meehl et al. (1994). They found that the changes of (inter-
annual) temperature variability in a mixed-layer version of their model differed
from those in a coupled version, particularly in the tropics.
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However, particular responses, that can be understood from physical rela-
tionships, seem quite robust. Examples are: reduced temperature variability
over areas where sea-ice retreats (Gordon and Hunt, 1994; Meehl et al., 1994;
Liang et al., 1995), enhanced summer temperature variability in areas of re-
duced soil moisture (Meehl et al., 1994; Liang et al., 1995), and enhanced
precipitation variability due the enhanced hydrological cycle and greater at-
mospheric moisture content in the extra-tropics (Rind et al., 1989; Liang et al.,
1995).

Liang et al. (1995), for example, found increased summer temperature
variability over CNA, which they ascribe to reduced soil moisture. In UKTR
there is an increased temperature variability over CNA in summer, which is
accompanied by a reduction in mean precipitation, and this generally leads to
reduced soil moisture in a warmer climate. With respect to enhanced precipi-
tation variability, all substantial changes in precipitation variance (larger than
10%), in the three areas considered, are increases. Increases in precipitation
variability over CNA in spring and summer similar to those in UKTR were
also reported by Liang et al. (1995).

2.4 Discussion

A test for equality of variances based on the jackknife has been described that
is suitable for correlated time series of monthly climate data on a spatial grid
(e.g., those produced by GCMs). In contrast to other resampling techniques
the method does not require computer-intensive simulation to derive the sta-
tistical significance of observed differences in variances. The null distribution
of the test statistic can be approximated by Student’s t-distribution with an
effective number of degrees of freedom. For a test on multivariate data this
approximation can be improved by a correction for correlation between the
pseudovalues in the jackknife procedure. The proposed correction does, how-
ever, not apply if there are strong departures from the normal distribution as is
for instance the case for monthly precipitation data containing a considerable
fraction of zeros.

Besides the reported non-normality of monthly precipitation during the dry
season in SEU, more serious problems were encountered with the application
of the jackknife procedure to monthly precipitation in South-east Asia (5◦–
40◦N, 60◦–101◦E). Even for the wet monsoon the distributions of the monthly
precipitation of several grid points in the area appeared to be very leptokur-
tic. The area-average kurtosis can be reduced by excluding the relatively dry
grid points from the analysis. Disregarding grid points with mean monthly
precipitation smaller than 0.5 mm day−1, yields a 18% increase in monthly
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precipitation variance in summer (June–August) and a 25% increase in the
monsoon season (June–September). Both increases are significant at the 5%
level. These results are in line with the increase in interannual variability of
the area-averaged south Asian or Indian monsoon precipitation reported by
Meehl and Washington (1993), and Bhaskaran et al. (1995).

Like the traditional F -test, the jackknife test in this chapter assumes that
the monthly values from different years are independent. If there is a positive
correlation between the values in successive years, then the jackknife variance
tends to underestimate the true variance, which results in a progressive test.

Tests for equality of variances are known to have little power for typical
sample sizes encountered in climate change experiments. In a jackknife test
the low power is due to variability of θ̂jack. The averaging of the pseudovalues
over calendar months and/or grid points in a region leads to a considerable
reduction in the standard error of θ̂jack. Because monthly data generally ex-
hibit no or only weak autocorrelation, averaging over three successive calendar
months reduces the standard error of θ̂jack by about 40%. In the application
to the monthly values in the UKTR experiment, spatial averaging over the
grid points in each of the three regions yields a reduction in standard error of
about 50% for temperature and 65% for precipitation. For temperature, the
total reduction in standard error is comparable with that in the Monte Carlo
experiment in Section 2.2.4. Despite these reductions in standard error quite
substantial differences in variances can pass the test. For instance, for the
monthly temperatures of NEU the changes in variance for the four seasons are
32%, −41%, 28% and −34%, respectively. Only the largest of these changes
(corresponding to a change in standard deviation of about 20%) is significant
at the 5% level. Furthermore, for precipitation the observed changes in the
variance of 37% (NEU, summer), 44% (CNA, spring) and 49% (NEU, au-
tumn) are statistically significant at the 5% level, but this is not the case for
the observed increase of 50% in the variance of monthly precipitation in SEU
during winter.

Despite the focus on monthly values, the presented jackknife procedure
can, of course, also be used to compare the variances of seasonal values. How-
ever, for nearly normally distributed data, a test on the seasonal values (e.g.,
winter temperatures) has only about the same power as a test on the values
for a particular calendar month (e.g., January temperatures). This is because
var(θ̂) ≈ 2/J for both the monthly and seasonal values. For leptokurtic data,
a seasonal mean or total will have much smaller kurtosis than the individual
monthly values. It is therefore possible that the proposed correction for corre-
lation between pseudovalues can be applied to the variances of seasonal values
but not to the variances of monthly values. Furthermore, var(θ̂) will be smaller
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for the seasonal values due to their reduced kurtosis. This is advantageous for
the power of a jackknife test on the seasonal variances.

Although there is strong evidence of an increase in the variance of monthly
precipitation over NEU in the anomaly simulation, the relative variability or
coefficient of variation (standard deviation divided by the mean) shows much
less change. In principle, a test for equality of variation coefficients can be
developed along the same lines as that for the variance in this paper. In case
of absence of zero values, a test on the relative variability can also be obtained
by applying the jackknife procedure to the variance of the logarithms of the
monthly precipitation amounts.
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Abstract

Nearest-neighbour resampling is used to generate multi-site sequences of daily
precipitation and temperature in the Rhine basin. The simulation is condi-
tional on the values of three continuous indices of the atmospheric circulation.
An advantage of nearest-neighbour resampling is that the spatial correlations
of the daily precipitation and temperature data are automatically preserved
in the simulated data. Comparison of different resampling models shows that
the simulation of the precipitation and temperature for a new day should not
only be conditioned on the circulation characteristics of that day but also on
the simulated precipitation and temperature for the previous day, in order to
achieve the appropriate level of persistence and variability in the generated
data.

With a hydrological application in mind, 980-year multi-site simulations
of daily precipitation and temperature were performed conditional on a simu-
lated time series of circulation indices that was obtained with a second resam-
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pling model. The distribution of the extreme 10-day area-average precipitation
amounts in these long-duration simulations was compared with the distribu-
tion of the historical 10-day area-averages. Again, the models in which the
precipitation and temperature of the previously simulated day were taken into
account performed best, but even these models somewhat underestimate the
quantiles of the distribution of the 10-day area-average precipitation. The
long-duration simulations demonstrate that nearest-neighbour resampling is
capable to produce much larger 10-day area-average precipitation amounts
than the historical maximum.

3.1 Introduction

A wide range of stochastic models is in use to simulate synthetic daily time se-
ries of precipitation. Some models are also able to simulate daily precipitation
simultaneously with other weather variables. A limited number of techniques
is available to generate weather variables simultaneously at multiple locations,
which is of particular interest for hydrological applications. For assessments
of the effects of anthropogenic climate change, there has been considerable
interest to condition stochastic daily precipitation models on the large-scale
atmospheric circulation. Quite often a classification of observed pressure fields
into weather classes has been used for this purpose. The parameters of the pre-
cipitation model are then determined for each weather class separately (e.g.,
Bárdossy and Plate, 1992; Wilson et al., 1992; Schubert, 1994; Corte-Real
et al., 1999; Fowler et al., 2000; Qian et al., 2002; Stehĺık and Bárdossy, 2002).
An alternative is to resample from the observed precipitation in the appro-
priate weather class (e.g., Hughes et al., 1993; Conway et al., 1996; Palutikof
et al., 2002). A somewhat different approach is to describe daily precipitation
by non-homogeneous hidden Markov models (e.g., Charles et al., 1999; Bellone
et al., 2000). The parameters of such a stochastic precipitation model also de-
pend on a discrete set of weather states, but these states are unobserved. The
sequence of weather states is modelled as a first-order Markov chain of which
the transition probabilities are determined by atmospheric predictor variables.
Wilby et al. (1998) used regression techniques to link wet-dry transition proba-
bilities and the means of a suite of weather variables to atmospheric circulation
characteristics.

Zorita et al. (1995) and Zorita and von Storch (1999) used the analog
method for the conditional simulation of multi-site daily precipitation. The
word analog refers to the historical day that is closest to the target day in terms
of atmospheric circulation characteristics. In this method the analog is sam-
pled rather than days in a specific weather class. An advantage of resampling
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methods is that no conceptual extensions are required to generate multivariate
and/or multi-site daily sequences. Neither do they require assumptions about
the underlying distributions and the spatial correlations. The analog method
can be seen as a special case of nearest-neighbour resampling. The earliest ap-
plications of nearest-neighbour resampling to weather data were on multivari-
ate single-site simulation, without conditioning on the atmospheric circulation
(Young, 1994; Rajagopalan and Lall, 1999). Using nearest-neighbour resam-
pling Brandsma and Buishand (1998) compared unconditional simulations of
daily temperature and precipitation with several simulations conditional on
the atmospheric circulation. For the conditional simulations, it was found that
the autocorrelation coefficients and extreme-value distributions of precipita-
tion were better reproduced if, apart from circulation characteristics of the
target day, the simulated precipitation and temperature of the previous day
were also taken into account. A multi-site extension of unconditional nearest-
neighbour simulation of daily precipitation and temperature was presented in
Buishand and Brandsma (2001).

This chapter compares a stochastic version of the analog method with
more general nearest-neighbour resampling techniques for conditional multi-
site simulation of daily precipitation and temperature in the German part of
the Rhine basin. This area was chosen with a specific application to rainfall-
runoff modelling in mind. Since in the downstream area of the river Rhine the
largest discharges occur in winter, the reproduction of precipitation statistics
is studied for the winter half-year (October–March). Temperature is generated
because rainfall-runoff models often use temperature to determine evapotran-
spiration, snow accumulation and snow melt.

The methodology and the data are presented in Section 3.2. Section 3.3
gives a description of the resampling models used and compares statistical
properties of simulated data with those of observed data. In Section 3.4,
finally, the results are summarized and conclusions are drawn.

3.2 Methodology

3.2.1 Nearest-neighbour resampling

Nearest-neighbour resampling was originally proposed by Young (1994) to
simulate daily minimum and maximum temperatures and precipitation. Inde-
pendently, Lall and Sharma (1996) discussed a nearest-neighbour bootstrap to
generate hydrological time series. Rajagopalan and Lall (1999) presented an
application to daily precipitation and five other weather variables. Basically
the same method was used by Buishand and Brandsma (2001) for multi-site
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generation of daily precipitation and temperature.
In the nearest-neighbour method weather variables like precipitation and

temperature are sampled simultaneously with replacement from the historical
data. To incorporate autocorrelation, resampling is conditioned on the days in
the historical record that have similar characteristics as those of the previously
simulated day. One of these nearest neighbours is randomly selected and the
observed values for the day subsequent to that nearest neighbour are adopted
as the simulated values for the next day t. A feature vector (or state vector)
Dt is used to find the nearest neighbours in the historical record. Dt was based
on the standardized weather variables generated for day t− 1 in Rajagopalan
and Lall (1999) and of summary statistics of precipitation and temperature in
Buishand and Brandsma (2001). Summary statistics are particularly needed
for multi-site simulations to avoid problems with the high dimensional data
space. As in earlier papers the k nearest neighbours of Dt were selected in
terms of a weighted Euclidean distance. For two q-dimensional vectors Dt and
Du the latter is defined as:

δ(Dt,Du) =





q
∑

j=1

wj(vtj − vuj)
2





1

2

, (3.1)

where vtj and vuj are the jth components of Dt and Du respectively and wj

scaling weights.
A discrete probability distribution or kernel is required to select one of the

k nearest neighbours. Lall and Sharma (1996) recommended a kernel that
gives higher weight to the closer neighbours. For this decreasing kernel the
probability pj that the jth closest neighbour is resampled is given by:

pj =
1/j
k
∑

i=1
1/i

, j = 1, ..., k . (3.2)

This probability kernel was also adopted in earlier applications of nearest-
neighbour resampling for the Rhine basin (Buishand and Brandsma, 2001).

For the simulation of weather variables conditional on the atmospheric cir-
culation (or CNNR: conditional nearest-neighbour resampling) the procedure
is slightly different. In that type of simulation one searches for days in the his-
torical record that have similar atmospheric circulation characteristics as those
of the conditioning day. Again one of these nearest neighbours is randomly
selected and the observed values of that nearest neighbour are adopted as the
simulated values for the conditioning day t. The feature vector Dt should
therefore at least consist of circulation characteristics of the conditioning day
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t. In addition, simulated weather variables and/or circulation characteristics
of day t − 1 and earlier days could be included in the feature vector.

Apart from creating a feature vector, the number k of nearest neighbours
and the weights wj have to be specified. The choice of k depends on the
type of probability kernel {pj}, the number n of daily values from which the
nearest neighbours are selected, and the dimension q of the feature vector.
Lall and Sharma (1996) recommended for the decreasing kernel (equation 3.2)
k = n1/2 provided that 1 ≤ q ≤ 6 and n ≥ 100. Young (1994) recommended
k = 3 using a uniform kernel, while q was 3 and n ≈ 1200. A sensitivity
analysis in Buishand and Brandsma (2001), with the decreasing kernel and
similar values for n and q as in our application, gave best results for k = 2 and
k = 5. In this study the decreasing kernel with k = 5 was adopted. To obtain
an equal contribution of all feature vector elements to the Euclidean distance,
the weights wj should be inversely proportional to the variance of the feature
vector elements. This is usually a good starting point and Buishand and
Brandsma (2001) showed that variation of the weights generally has little effect
on the statistical properties of the simulated data. In Wójcik and Buishand
(2003) an alternative approach is introduced that avoids specification of the
weights by using the Mahalanobis distance instead of the Euclidean distance.

3.2.2 The analog method

The analog method (e.g., Zorita et al., 1995; Zorita and von Storch, 1999) is
basically a special case of CNNR. In nearest-neighbour resampling, one of the
k nearest neighbours is randomly selected from the historical record, whereas
in the analog method, the closest one is always selected. The analog method
is therefore identical to CNNR with k = 1.

Zorita et al. (1995) and Zorita and von Storch (1999) based the search for
analog days on characteristics of a single conditioning day or a sequence of
conditioning days. In those papers the conditioning characteristics referred to
the atmospheric circulation only. Since in the analog method no randomness
is involved, this method is in essence deterministic. There is thus only one
realization of the simulated time series for each conditioning time series. Con-
sequently, for simulation conditional on the historical time series of circulation
indices, the conditioning day itself must be excluded, because otherwise the
historical time series of weather data would be generated.

In this thesis the five best analog days were extracted from the historical
record and one of these analogs was randomly selected using the decreasing
kernel (equation 3.2) with k = 5. This stochastic version is better comparable
with the CNNR models than the originally deterministic analog method.
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3.2.3 Data

As in Buishand and Brandsma (2001) daily precipitation and temperature data
from 25 German stations in the Rhine basin for the period 1961–1995 were used
(see Figure 3.1). For the 22 stations that lie below 500 m, the mean annual
precipitation ranges from 542 mm (Geisenheim) to 944 mm (Freiburg) and the
mean annual temperature lies between 8.2◦C (Coburg) and 10.9◦C (Freiburg).
The three remaining stations, at an altitude of about 800 m, have relatively
lower mean annual temperatures and higher mean annual precipitation, the

Berus
Saarbrücken

Karlsruhe

Rhine and tributaries

National boundaries

Climatological station

0 50 100 km

Freiburg

Freudenstadt

Stuttgart

Weissenburg

Nürnberg

Bamberg

Bad Kissingen

Würzburg

Oehringen

MannheimTrier

Deuselbach Geisenheim
Frankfurt

Kl Feldberg
Koblenz

Giessen

Essen

Kahler Asten

Coburg

Düsseldorf

Köln

Figure 3.1. Locations of the 25 German stations in the drainage basin of the
river Rhine used in this study.
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latter due to orographic enhancement. The lowest mean annual temperature
(5.0◦C) is observed for Kahler Asten and the largest mean annual precipitation
(1691 mm) for Freudenstadt.

For the same 35-year period three daily indices of the atmospheric cir-
culation were used: (i) strength of the westerly flow W ; (ii) strength of the
southerly flow S; and (iii) relative vorticity Z. As in Jones et al. (1993) these
circulation indices were derived from daily mean sea level pressure data from
the UK Meteorological Office on a 5◦ latitude by 10◦ longitude grid, except
that the grid was centered at the Rhine basin instead of the British Isles. In
a number of studies the same circulation indices were used to obtain an ob-
jective version of the Lamb classification (e.g., Jenkinson and Collinson, 1977;
Jones et al., 1993; Goodess and Palutikof, 1998; Linderson, 2001).

3.2.4 Standardization procedure

To reduce the seasonal variation in the feature vector elements, precipitation,
temperature and circulation indices were standardized. The daily tempera-
tures and circulation indices were standardized by subtracting an estimate md

of the mean and dividing by an estimate sd of the standard deviation for the
calendar day d of interest:

x̃t = (xt − md)/sd, t = 1, ..., 365J and d = (t − 1) mod 365 + 1 , (3.3)

where xt and x̃t are the original and standardized variables for day t, respec-
tively, and J is the total number of years in the record. The estimates md

and sd were obtained by smoothing the sample mean and standard deviation
of the successive calendar days in a similar way as in Brandsma and Buishand
(1998) and Wójcik and Buishand (2003).

Daily precipitation was standardized by dividing by a smooth estimate
md,wet of the mean wet-day precipitation amount:

x̃t = xt/md,wet, t = 1, ..., 365J and d = (t − 1) mod 365 + 1 , (3.4)

with wet days defined as days with 0.1 mm precipitation or more.
To facilitate the reproduction of seasonally varying weather characteris-

tics the search for nearest neighbours was restricted to days within a moving
window, centered on the calendar day of interest. The width of this win-
dow was 61 days as in Brandsma and Buishand (1998) and Buishand and
Brandsma (2001). Thus for the 35-year historical record the nearest neigh-
bours are selected from n = 2135 days. At the end of the resampling procedure
the simulated standardized variables are re-transformed to their original scale
using the inverse of equations (3.3) and (3.4).
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3.2.5 Summary statistics

For the 25 stations in Figure 3.1 precipitation P and temperature T obser-
vations were available for each day. Parsimony of feature vector elements
requires that the P and T fields are described by a small number of summary
statistics, like the three circulation indices were used to characterize the mean
sea level pressure field (e.g., the atmospheric circulation). Otherwise, consid-
erable differences between the k nearest neighbours may occur because of the
large dimension of Dt. Computer time also increases with the dimension of
Dt.

Two important summary statistics are the arithmetic means of the stan-
dardized values of the P and T fields:

P̃ =
1

25

25
∑

i=1

P̃i (3.5)

T̃ =
1

25

25
∑

i=1

T̃i , (3.6)

where P̃i and T̃i are the standardized P and T values, respectively, for the
ith station. Because of the relatively large spatial variation of the P field,
there is some need for a more complete summary of this field than just P̃ . An
additional statistic to summarize the P field is the fraction F of stations with
precipitation above some threshold as suggested in Buishand and Brandsma
(2001). Here F was used with a threshold of 0.1 mm. The statistic F helps
to distinguish between large-scale and convective precipitation. Buishand and
Brandsma (2001) also considered two alternatives to the P̃ and F combina-
tion: a vector consisting of the daily averages of the standardized values over
five different sub-regions and a vector consisting of the five leading principal
components obtained from the sample covariance matrix of the P̃i. With re-
spect to the reproduction of the standard deviation and the autocorrelation
coefficients of both precipitation and temperature these two alternatives did
not give better results than the simulations with the combination of P̃ and F
(Buishand and Brandsma, 2001).

3.3 Model identification and simulation results

3.3.1 Models used

Six resampling models were considered. Three analog-type models were dis-
tinguished: a first-order, a third-order and a fifth-order model. In the first-
order analog model (analog 1) the circulation indices of the conditioning day
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(day t) were used to find the analog days. In the third and fifth-order ana-
log models (analog 3 and analog 5) the search for analog days was based on
the circulation indices of respectively 3 and 5 consecutive conditioning days
(days t − 2, t − 1, t and t − 4, . . . , t respectively). In the higher-order ana-
log models thus also a part of the evolution of the atmospheric circulation is
taken into account. Zorita et al. (1995) refer to the fifth-order model as a
‘five-day-segment’ model. The remaining three resampling models are CNNR
models. The first of these models (CNNR 1) contains the circulation indices
of day t and simulated precipitation and temperature characteristics of day
t − 1 as feature vector elements. The second model (CNNR 2C) additionally
contains the circulation indices of day t − 1, yielding a second-order model in
terms of the atmospheric circulation. Model CNNR 2F , finally, uses in addi-
tion to CNNR 1 the fraction F of stations with precipitation of day t − 2 to
determine the nearest neighbours, resulting in a second-order model in terms
of precipitation. Figure 3.2 schematically presents the feature vectors of these
six models.

For a fair comparison of both types of models a stochastic version of the
analog method was used (see Section 3.2.2). Further, the selection of the con-
ditioning day was excluded in the CNNR models as in the analog models.
Allowing the selection of the conditioning day is considered to generate ‘arti-
ficial skill’ (Zorita et al., 1995). Consequently, the only difference between the
analog models and the CNNR models examined here is the composition of the
feature vector (see Figure 3.2).

The weights wj in equation (3.1) are in the CNNR models approximately
equal to the reciprocal of the variance of the feature vector elements. The
weights for P̃ , F and T̃ were rounded to 2, 5 and 1 respectively, and for
Z̃, W̃ and S̃ the weights are 1 as a result of the standardization. For the
analog models all weights equal 1 since the feature vector elements involve
only standardized circulation indices.

In Section 3.3.2, two types of conditional simulations are investigated: sim-
ulations conditional on the 1961–1995 time series of circulation indices and
simulations conditional on simulated time series of circulation indices. The
simulated time series of circulation indices were obtained with an uncondi-
tional nearest-neighbour resampling model. A description of that model is
given in Appendix C. Time series of simulated circulation indices are needed
to generate longer time series of P and T than the historical time series of
circulation indices (see Section 3.3.3). In the simulations conditional on sim-
ulated time series of circulation indices the conditioning day itself was not
excluded from being selected since no artificial skill can be inherited from a
simulated time series of circulation indices.
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Figure 3.2. Elements of the feature vector (solid boxes) for conditional simula-
tions of new variables (dashed boxes): (a) analog 1; (b) analog 3; (c) analog 5;
(d) CNNR 1; (e) CNNR 2C and (f) CNNR 2F . The vector C contains the
three circulation indices Z, W and S; asterisk indicates that the corresponding
variable was simulated in a previous time step; tilde refers to a standardized
value.

3.3.2 Model results

With all six models two 980-year simulations were performed, a simulation
consisting of 28 runs of 35 years conditional on the same 35-year record of
circulation indices, and a single 980-year simulation run conditional on 980
years of simulated circulation indices. For comparisons with the historical data
the latter was split into 28 independent 35-year records. Given the application
of rainfall-runoff modelling for the river Rhine, the presented statistics refer
to the winter half-year (October–March). Second-order moments (such as
standard deviations and autocorrelation coefficients) were first calculated for
each calendar month separately as in Buishand and Brandsma (2001) and then
averaged over the six calendar months, the 25 stations and the 28 periods of
35 years in order to reduce the influence of the seasonal cycle in the mean on
these statistics.
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a. Mean and second-order moments

Table 3.1 gives an overview of the reproduction of the means, the standard
deviations of the monthly and daily values, s

M
and s

D
respectively, and the

lag 1 and lag 2 autocorrelation coefficients of the daily values, r(1) and r(2)
respectively. The first part of the table refers to simulations conditional on
historical circulation indices, and the second part to simulations conditional on
simulated circulation indices. The table also gives the historical estimates and

Table 3.1. Differences in means and second-order moments between the 980-
year simulations and the historical data for the winter (October–March), aver-
aged over the 25 stations and the 28 (35-year) runs. For the mean precipitation
(monthly totals), the mean temperature and the mean lag 1 and lag 2 auto-
correlation coefficients, r(1) and r(2), the absolute differences are given, and
for the mean standard deviations of monthly and daily values (s

M
and s

D
) the

percentage differences are given. Bottom lines: average historical (1961–1995)
estimates and their standard error, se. Mean and standard deviations are in
mm for precipitation and in ◦C for temperature. se are in mm for precipita-
tion, in ◦C for temperature, in % for standard deviations and dimensionless for
the autocorrelation coefficients. Values in bold refer to statistically significant
differences.

mean s
M

s
D

r(1) r(2)
Model P T P T P T P T P T

Historical circulation indices (1961–1995)
CNNR1 1.0 0.27 −5.6 −−−19.9 −0.1 −−−6.8 −−−0.047 −−−0.096 −−−0.028 −−−0.069
CNNR2C −5.3 0.31 −8.8 −−−24.6 −4.6 −−−7.8 −−−0.048 −−−0.123 −−−0.026 −−−0.120
CNNR2F 0.2 0.29 −2.1 −−−22.0 0.0 −−−7.5 −−−0.042 −−−0.104 −−−0.012 −−−0.087

Analog 1 −1.7 0.02 −−−15.4 −−−42.4 −0.9 −1.4 −−−0.181 −−−0.493 −−−0.078 −−−0.397
Analog 3 −−−7.9 0.20 −−−14.8 −−−34.4 −−−5.4 −2.5 −−−0.156 −−−0.352 −−−0.057 −−−0.288
Analog 5 −−−12.1 0.21 −−−18.5 −−−28.5 −−−9.4 −2.2 −−−0.161 −−−0.326 −−−0.063 −−−0.248

Simulated circulation indices
CNNR1 −0.8 0.26 −8.7 −−−23.5 −1.2 −−−7.3 −−−0.049 −−−0.099 −−−0.027 −−−0.077
CNNR2C −6.1 0.24 −−−13.6 −−−27.6 −5.0 −−−7.2 −−−0.054 −−−0.118 −−−0.030 −−−0.118
CNNR2F −1.8 0.28 −7.6 −−−26.5 −2.0 −−−7.8 −−−0.048 −−−0.108 −−−0.016 −−−0.096

Analog 1 −2.9 0.04 −−−18.6 −−−42.2 −2.1 −1.3 −−−0.168 −−−0.453 −−−0.073 −−−0.364
Analog 3 −6.8 0.16 −−−17.7 −−−36.2 −4.4 −1.7 −−−0.147 −−−0.336 −−−0.062 −−−0.282
Analog 5 −−−9.3 0.20 −−−20.2 −−−33.9 −−−6.1 −1.9 −−−0.152 −−−0.325 −−−0.067 −−−0.256

Historical 65.0 3.54 35.9 2.2 4.2 4.2 0.287 0.825 0.148 0.639
se 3.8 0.17 4.8 6.2 2.6 2.5 0.009 0.007 0.010 0.015
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their standard errors. The standard errors of the autocorrelation coefficients
were obtained with the jackknife method of Buishand and Beersma (1993).
The standard errors of the standard deviations of the daily and the monthly
values were calculated in a similar way following Buishand and Beersma (1996)
and Beersma and Buishand (1999b; Chapter 2 of this thesis) respectively.
Differences larger than twice the standard error of the historical data are
referred to as statistically significant (this corresponds approximately to a
two-sided test at the 5% level).

For the three analog models the average winter precipitation is underes-
timated due to the selection effects discussed in Section 3.3.2.b. The under-
estimation increases with the order of the model and becomes significant for
the simulation with the analog 3 model based on historical circulation indices
and for both simulations with the analog 5 model. The largest underestima-
tion is 12.1%, whereas for the CNNR models the differences in monthly mean
precipitation are not more than 6.1%. The standard deviations s

M
and s

D

are generally underestimated. The underestimation of the monthly standard
deviations for precipitation and temperature in the analog models is about
twice as large as in the CNNR models. In the analog models the underestima-
tion of the daily standard deviation for precipitation is also somewhat larger.
But for temperature, the underestimation of the daily standard deviations is
at least two times smaller in the analog models. The biases in the lag 1 and
lag 2 autocorrelation coefficients for precipitation and temperature are in the
analog models about three times as large as in the CNNR models. But even
for the simulations with the latter models the autocorrelation coefficients are
significantly underestimated. The bias in the autocorrelation coefficients is the
main cause for the underestimation of the standard deviations of the monthly
values.

For the CNNR models the biases are generally somewhat larger for the
simulations based on simulated circulation indices than for those based on
historical indices. For the statistics in Table 3.1, the best performing analog
model on the whole is analog 3. Its performance is, however, still below that
of the weakest CNNR model (CNNR 2C).

Time series of the area-average winter precipitation totals and the area-
average winter temperatures for the simulations conditional on the historical
circulation indices are compared with the observed 1961–1995 winter area-
average precipitation and temperature in Figures 3.3 and 3.4 respectively. For
each simulation the coloured symbols represent the averages of the 28 runs in
each winter. For the simulations with the CNNR 1 and analog 1 models the
whiskers represent the range of the 28 runs. The skill score S in the figures is
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Figure 3.3. Observed and simulated area-average winter precipitation totals.
(top) CNNR models; (bottom) analog models. Black line: historical values;
coloured symbols: simulated values averaged over 28 runs; red whiskers: range
of values in 28 runs (CNNR 1 and analog 1 models only). Values in parentheses
are skill scores (see text).

defined as:
S = 1 −

∑

j

(yj − ŷj)
2/
∑

j

(yj − ȳ)2 , (3.7)

where the yj are the historical winter precipitation totals or temperature av-
erages, ȳ is the overall historical average and the ŷj are the simulated values
for each winter, averaged over the 28 runs. Note that S = 1 for a perfect
predictor, and S = 0 if ȳ is taken as predictor.
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Figure 3.4. Observed and simulated area-average winter temperatures. Details
as in Figure 3.3.

The temporal variation of the area-average winter precipitation is well
described by the CNNR and analog 1 models, with S ranging between 0.60 and
0.66. The higher-order analog models exhibit less skill due to the significant
underestimation of the mean precipitation amounts (see Table 3.1). This
underestimation is also visible in Figure 3.3. For most winters the whiskers
of the simulated precipitation amounts are considerably wider for the CNNR
models than for the analog models, as shown for the CNNR 1 and analog 1
models. The difference in whisker width between the CNNR and analog models
is even larger for the area-average winter temperature (Figure 3.4). The larger
width of the whiskers in the CNNR models is likely due to a larger variation
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in the potential analogs (see Section 3.3.2.b).
The simulations overestimate the average temperature of the coldest win-

ters (1963 and during the mid 1980s) and underestimate the temperature of
the warm winters (around 1990). This conditional bias is weakest for the ana-
log 5 model. As a result, this model has the highest skill score (S = 0.71). So
for the analog models, the highest order is favourable for the predictive skill of
the winter temperature, while the lowest order is favourable for the predictive
skill of the winter precipitation due to the large underestimation of the mean
precipitation in the higher-order models.

b. Selection effects

As a result of random sampling with replacement, some historical days will
appear more frequently in a simulation run than other days. In the standard
bootstrap such differences are purely random. Nearest-neighbour resampling
may, however, also lead to a systematic underselection of certain days and
an overselection of other days (Young, 1994). This explains for instance that
the mean and the daily standard deviation s

D
of the historical data are not

necessarily reproduced in the simulations.
The selection effects of the simulations in this chapter are studied in the

same way as in Buishand and Brandsma (2001). Let Kt be the number of
times that day t (t = 1, . . . , 365J) appears in a simulation run of J ∗ years. In
the case of random sampling, Kt has a binomial distribution which can be can
be approximated by a Poisson distribution with parameter ν = J ∗/J :

Pr(Kt = r) ≈ νre−ν

r!
. (3.8)

Note that the distribution of Kt does not depend on the use of a moving
window. For nearest-neighbour resampling the number of historical days that
is drawn r times can be compared with the number expected from the Poisson
distribution with parameter ν. The latter equals 365J × Pr(Kt = r).

In Table 3.2 the frequency distributions of r for the 980-year simulations
are compared with the frequencies for the Poisson distribution with ν = 28.
The frequency distributions are wider than the theoretical frequency distri-
bution for random sampling as a result of selection effects. In the CNNR
models the selection effect is slightly larger for the simulations based on his-
torical circulation indices than for those based on simulated indices. Of the
CNNR models CNNR 2C (second-order in the atmospheric circulation) has
the largest selection effect. In the analog models the selection effect increases
considerably with the order of the model. Thus, the more information of the
evolution of the atmospheric circulation is used, the larger the selection ef-
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Table 3.2. Number of historical days drawn r times in 980-year simulations
compared with the number expected for the standard bootstrap. The largest
number of times that a historical day is drawn is given in the last column.

r
Model 0 1-10 11-20 21-30 31-40 41-50 >50 rmax

Historical circulation indices (1961–1995)
CNNR 1 44 1096 2995 3857 2683 1220 880 152
CNNR 2C 155 1814 2830 2913 2301 1443 1319 131
CNNR 2F 37 1128 2949 3795 2671 1324 871 131

Analog 1 107 903 2787 3820 3004 1511 643 92
Analog 3 716 1993 2576 2413 1922 1378 1777 133
Analog 5 1078 2330 2498 2041 1528 1187 2113 179

Simulated circulation indices
CNNR 1 13 1021 2999 4002 2636 1270 834 144
CNNR 2C 17 1432 3127 3272 2429 1394 1104 120
CNNR 2F 12 1135 2952 3809 2698 1314 855 127

Analog 1 0 224 2187 5620 3792 843 109 65
Analog 3 6 1335 3162 3254 2464 1520 1034 94
Analog 5 20 2305 3256 2523 1771 1218 1682 154

Bootstrap 0 1 928 7890 3797 158 1 -

fects tend to grow. Further, the differences in the selection effects between
the simulations based on the historical circulation indices and those based on
simulated indices are much larger than in the CNNR models. This is mainly
due to the relatively large selection effect in the analog simulations conditional
on historical circulation indices. Recall that in that case each simulation con-
sists of 28 runs based on the same 35 years. In the analog models the nearest
neighbours (or analogs) are determined by the circulation characteristics of the
historical record only. A particular conditioning day therefore has in each of
the 28 runs the same nearest neighbourhood, i.e., the same potential analogs.
In the CNNR models the nearest neighbourhood of a particular conditioning
day varies among the 28 runs, since the precipitation and temperature char-
acteristics of the previously simulated day determine the potential analogs as
well. This larger variation in potential analogs is probably responsible for the
smaller selection effect.

Surprisingly, large differences in the selection effects do not necessarily lead
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to large differences in the standard deviations and autocorrelation coefficients.
In particular for the analog 1 model the selection effect for the simulation based
on historical indices is much larger than for the simulation based on simulated
indices, but the differences between the second-order moments (Table 3.1) are
relatively small. In the simulations with the largest selection effects, however,
the average monthly precipitation amount is significantly underestimated, in-
dicating an underselection of days with large rainfall and an overselection of
relatively dry days.

c. Temporal dependence of spatial patterns

A resampling technique automatically preserves the spatial patterns of the
daily precipitation and temperature fields, but it does not necessarily repro-
duce the dependence between the patterns of successive days. Two measures
of the temporal dependence between the spatial patterns were considered: the
pattern correlation of two days that lie l days apart (for precipitation, days
with no rainfall were excluded), and the length of the difference vector of two
days that are l days apart. The pattern correlation correlates the spatial fields
relative to their respective spatial means (centered statistic). The reproduc-
tion of the pattern correlation and the difference vector of the precipitation
and the temperature fields is presented in Table 3.3.

There is always an underestimation of the pattern correlation. The bi-
ases in the lag 1 precipitation pattern correlation are similar in both types
of models. For temperature the biases are somewhat larger, in particular for
the analog models. The biases in the lag 2 pattern correlation coefficients
are about half of those in the lag 1 coefficients. The simulations based on
simulated circulation indices have similar biases (not shown).

Most lagged difference vectors are overestimated. Overall, the overestima-
tion is worse for temperature than for precipitation, and worse for the analog
models than for the CNNR models. This overestimation is mainly due to the
underestimation of the autocorrelation coefficients (Table 3.1). The underes-
timation of the latter also contributes to the underestimation of the pattern
correlation. However, unlike the difference vector, the pattern correlation also
depends on lagged cross-correlations between the daily temperatures (or daily
precipitation) at different locations. From a first-order approximation of the
expected value of the pattern correlation, it can be shown that the effect of
the underestimation of the autocorrelation is partly compensated by biases
in the lagged cross-correlations. As a result the pattern correlation looks less
sensitive to biases in the temporal dependence than the difference vector.
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Table 3.3. Differences in the lag 1 and lag 2 pattern correlations, rp(1) and
rp(2) respectively, and the lengths of the lag 1 and lag 2 difference vectors,
d(1) and d(2), between the 980-year simulations and the historical data for
the winter (October–March), averaged over the 28 (35-year) runs. Absolute
differences are given for rp(1) and rp(2), and percentage differences for d(1)
and d(2). Bottom line: average historical (1961–1995) estimates. rp(1) and
rp(2) are dimensionless, and d(1) and d(2) are given in mm for precipitation
and in ◦C for temperature.

rp(1) rp(2) d(1) d(2)
Model P T P T P T P T

Historical circulation indices (1961–1995)
CNNR 1 −0.089 −0.128 −0.044 −0.065 6.2 18.4 3.2 3.4
CNNR 2C−0.083 −0.121 −0.041 −0.070 0.5 22.0 −2.3 8.1
CNNR 2F −0.087 −0.122 −0.040 −0.060 5.2 19.3 1.2 4.7

Analog 1 −0.100 −0.167 −0.040 −0.087 16.0 90.1 5.6 42.2
Analog 3 −0.089 −0.141 −0.039 −0.082 7.6 66.6 −1.2 30.6
Analog 5 −0.088 −0.145 −0.040 −0.082 3.7 61.9 −4.9 26.9

Historical 0.271 0.774 0.196 0.672 86.3 53.0 98.3 75.2

d. Dry spell counts and dry spell lengths

Table 3.4 presents the relative biases of the average number of dry days
(P = 0 mm); the average number of dry spells (i.e., series of consecutive
dry days); the average dry spell length DSL; the longest dry spell in a 35-year
period DSLmax 35; and the bias of the lag 1 wet-dry autocorrelation coeffi-
cient rwd(1). These statistics were again calculated for the winter half-year
(October–March). The number of dry days is nearly correct in the CNNR
and first-order analog models, but the third and fifth-order analog models
overestimate this by 4 to 6%. This overestimation partly explains the under-
estimation of the mean precipitation (see Table 3.1) and is due to the earlier
discussed selection effects. In both types of models the number of dry spells
is overestimated: in the CNNR models somewhat more than 10%, and in the
analog models more than 30%. As a result the average spell length is under-
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Table 3.4. Differences in the number of dry days, the number of dry spells,
the average dry spell length, DSL, the maximum dry spell length in 35 years,
DSLmax 35, and the lag 1 wet-dry autocorrelation coefficient, rwd(1), between
the 980-year simulations and the historical data in winter (October–March).
Absolute differences are given for rwd(1), and relative differences (%) for the
other statistics. Absolute and relative differences are averaged over the 25
stations and the 28 runs of 35 years. Bottom line: historical (1961–1995) esti-
mates; counts are per winter, lengths are in days and rwd(1) is dimensionless.

Model No. of No. of DSL DSLmax 35 rwd(1)
dry days dry spells

Historical circulation indices (1961–1995)
CNNR 1 −1.6 13.3 −13.1 −8.8 −0.082
CNNR 2C 1.1 12.5 −10.1 −4.7 −0.074
CNNR 2F −1.0 13.2 −12.4 −5.3 −0.081

Analog 1 1.1 38.1 −26.8 −28.1 −0.227
Analog 3 3.8 33.7 −22.3 −16.0 −0.198
Analog 5 5.8 35.4 −21.8 −15.6 −0.208

Historical 83.8 26.6 3.1 24.4 0.411

estimated: in the CNNR models slightly more than 10%, and in the analog
models slightly more than 20%. Apart from the analog 1 model, the relative
underestimation of DSLmax 35 is considerably smaller than that of the average
dry spell length.

Like the lag 1 autocorrelation coefficient of the daily precipitation amounts
in Table 3.1, the lag 1 wet-dry autocorrelation coefficient is significantly un-
derestimated in all simulations (the jackknife se of the lag 1 wet-dry autocor-
relation for the historical data is 0.010). The underestimation of both rwd(1)
and DSL can be understood from the relation (Buishand, 1978):

rwd(1) = 1 − 1/DSL − 1/WSL , (3.9)

with WSL the average wet spell length. If, as in Table 3.4, the number of
dry spells is overestimated then the number of wet spells is also overestimated
(since by definition a wet spell follows a dry spell and vice versa). As a
result both DSL and WSL are underestimated and consequently rwd(1) is
underestimated.
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In terms of spell counts and spell lengths there is very little difference
between the simulations based on historical circulation indices and those on
simulated circulation indices (not shown).

3.3.3 Long-duration simulations

Monte Carlo techniques enable us to produce synthetic time series of precipi-
tation and temperature that are much longer than the observed records. Using
such long-duration simulations as input into a rainfall-runoff model offers the
opportunity to get more reliable estimates of the probabilities of extreme river
discharges.

The 980-year simulations conditional on simulated circulation indices that
were split into 28 independent 35-year records earlier are now used as sin-
gle long-duration simulations. The distribution of the extreme 10-day area-
average precipitation amounts in these simulations is examined in this section.
An interval of 10 days was chosen because flooding of the river Rhine is often
caused by large rainfall in winter over periods of about 10 days. An analysis
of the January 1995 Rhine flood in Germany (Fink et al., 1996) demonstrated
that in parts of the basin the monthly totals were more than three times as
large as the climatological averages and that about 70 to 80% of these high
monthly totals fell within a period of only 10 days.

The largest 10-day area-average precipitation amounts (average of all 25
stations) in each winter (October–March) were extracted from the 980-year
simulations and the 35-year historical data. Figure 3.5 presents Gumbel plots
of these winter maxima (the horizontal scale in these plots is such that the
ordered maxima follow a straight line in the case of a Gumbel distribution).
The Gumbel plots show that much larger 10-day area-average amounts (up to
35%) are simulated than the historical (1961–1995) maximum. Such unprece-
dented rainfall events can be very useful for hydrological design. Figure 3.5
further shows that all models underestimate the 10-day area-average precipita-
tion amounts for return periods between 5 and 20 years. The underestimation
is largest for the analog models and the CNNR 2C model. The analog models
systematically underestimate the 10-day area-average precipitation amounts
for all return periods, indicating that these models are not very suitable for
applications where the extreme multi-day precipitation amounts are of inter-
est.
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Figure 3.5. Gumbel plots of the 10-day winter precipitation maxima for 980-
year simulations conditional on simulated circulation indices and for the his-
torical 1961–1995 data. Tr represents the return period in years.

3.4 Summary and conclusions

Multi-site simulation of daily precipitation and temperature conditional on
the atmospheric circulation has been studied for 25 stations in the German
part of the Rhine basin using CNNR and a stochastic version of the analog
method. To fully explore the differences between the CNNR and the analog
models the simulations were divided into simulations conditional on historical
time series of circulation indices and simulations conditional on simulated time
series of circulation indices. A second resampling model was used to generate
long-duration time series of circulation indices.

All conditional simulation models have a tendency to underestimate the
standard deviations and autocorrelation coefficients of daily precipitation and
temperature and the standard deviations of the monthly precipitation totals
and the monthly mean temperatures. In general, the underestimation is larger
for the analog models than for the CNNR models, with the exception of the
underestimation of the standard deviation of the daily temperatures, which is
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much smaller in the analog models. The number of days that is never or almost
never selected is relatively large for the analog models conditional on historical
circulation indices. The mean precipitation amounts are significantly under-
estimated in the simulations with the largest selection effects. All simulations
conditional on the historical circulation indices underestimate the average tem-
perature in the warmest winters and overestimate the average temperature in
cold winters. The reproduction of the temporal dependence of the spatial pat-
terns of precipitation and temperature by both types of models turned out
favourably for the CNNR models although the differences were not as large as
for the univariate autocorrelations. The biases in the dry spell counts and the
dry spell lengths are for the analog models often more than twice as large as
for the CNNR models. The CNNR models also reproduced the extreme-value
distribution of the 10-day area-average winter precipitation amounts better
than the analog models. Despite an underestimation of the quantiles of this
distribution, the highest 10-day area-averages were in most 980-year simula-
tions much larger than the highest observed 10-day area-average.

Since, the observed weather of historical days is resampled, the dependence
between daily precipitation at different sites and the dependence between daily
precipitation and temperature is automatically preserved. These dependencies
often have a complicated structure, which may not be adequately described
by parametric models. For many hydrological applications the spatial depen-
dency is of crucial importance. This makes multivariate resampling models
particularly suitable for hydrological purposes. The comparison between the
analog models and the CNNR models, however, demonstrates that besides the
circulation characteristics of the target day, also the precipitation and tem-
perature characteristics of the previously simulated day should be taken into
account.

A few potential limitations of the methodology can also be identified. The
method is rather data intensive and, resampling of multivariate data may
become problematic if data are missing (which is quite common in observa-
tional records). The method does not produce new daily precipitation and
temperature fields but merely reshuffles the historical days to form realistic
new sequences of those fields. As a result daily rainfall amounts cannot be
larger than those observed. Similarly, daily temperatures for a particular lo-
cation cannot be lower or higher than the observed minimum or maximum
value for that location. The latter limitation may seriously bias the results
of CNNR in climate change applications. To overcome this limitation, Lall
and Sharma (1996) suggested to evaluate the means of the required variables
first from the selected nearest neighbours and then to perturb these values by
a residual using nearest-neighbour resampling. For conditional simulation on



3.4 Summary and conclusions 55

atmospheric predictors this strategy may need extension to allow for predictor
values outside their range in the historical data.

It should further be noted that several studies of climate change simula-
tions with General Circulation Models (GCMs) have revealed that changes
in precipitation usually cannot be explained by changes in the atmospheric
circulation alone. Consequently it becomes recognized that the simulation of
precipitation should also be conditioned on (large-scale) predictors directly
related to the atmospheric moisture and the temperature (for an overview see
Giorgi et al., 2001). For similar reasons the simulation of temperature should
include predictors like the large-scale (2 m) temperature, geopotential height
or the thickness of an atmospheric layer (e.g., Huth et al., 2001; Benestad,
2002).
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Abstract

The Netherlands are situated at the downstream end of the river Rhine. A
large part of the country can be supplied with water from the river in the case
of precipitation deficits. For drought assessment it is therefore necessary to
consider the joint distribution of precipitation and discharge deficits. A trans-
formed bivariate normal distribution as well as a bivariate Gumbel distribution
are fitted to this data. In addition, nearest-neighbour resampling is used to
estimate joint probabilities of precipitation and discharge deficits. Both the
reproduction of the marginal distributions and the dependence structure are
explored. It is found that the transformed bivariate normal distribution un-
derestimates the probability that both the precipitation and discharge deficit
are extreme due to its asymptotic independence. Nearest-neighbour resam-
pling also underestimates this probability, mainly because the upper tails of
the marginal distributions are not properly reproduced by the simulations.
From the two fitted bivariate distributions a novel bivariate distribution is
constructed with transformed normal marginals and a logistic Gumbel depen-
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dence structure, which gives the best description of the upper tail of the joint
distribution. The use of a failure region based on economic damage rather
than on joint exceedances considerably reduces the differences between the
probabilities of drought from the various bivariate models.

4.1 Introduction

A large part of the Netherlands is situated in the delta of the river Rhine, the
largest river in northwestern Europe (drainage area 185 000 km2). The Rhine
rises in the Swiss Alps and flows via France and Germany to the Netherlands,
where it divides a number of times. The Rhine plays a major role in the
overall water balance of the Netherlands; the amount of Rhine water that
flows through the Netherlands is on average twice as large as the amount that
the country receives as precipitation (Middelkoop and van Haselen, 1999). As
a result, large parts of the country can be supplied with water from the river
in the case of precipitation deficits.

This chapter addresses the probability of drought in the Netherlands. For
droughts with a large economic impact, it is important to consider the joint
distribution of the precipitation deficit in the Netherlands and the discharge
deficit of the river Rhine. Two approaches are compared to estimate joint
probabilities: (i) fitting bivariate distributions to the historical data, and (ii)
time series simulation.

In the first approach a transformed bivariate normal distribution and a
limiting bivariate Gumbel distribution are used. Both bivariate distributions
have been applied in the water resources literature (Leytham, 1987; Kroll and
Stedinger, 1998; Yue et al., 1999; Yue, 2001; Shiau, 2003), but a thorough com-
parison is lacking. Apart from differences between the marginal distributions,
the dependence structure of a limiting bivariate Gumbel distribution is quite
different from that of the classical bivariate normal distribution, in particular
regarding the joint occurrence of large values. To assess the suitability of the
dependence structure of these bivariate distributions new diagnostics from the
statistical literature on multivariate extremes (Ledford and Tawn, 1996; Coles
et al., 1999) are used. The adequacy of the fit of the bivariate distributions
is further explored by comparing theoretical and empirical joint exceedance
probabilities.

In the second approach nearest-neighbour resampling is used to gener-
ate a long sequence (105 years) of precipitation and discharge deficits. This
resampling technique has successfully been applied to simulate time series
of river flows (Lall and Sharma, 1996) and weather variables (Young, 1994;
Rajagopalan and Lall, 1999; Buishand and Brandsma, 2001). In the nearest-
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neighbour resampling procedure the variables of interest (which in our case
include precipitation, evaporation and river discharge) are sampled simultane-
ously with replacement from the historical data. A convenient characteristic
of resampling is that no assumptions have to be made about the underlying
distributions of each of the variables and of the dependencies between those
variables.

The sensitivity of joint probabilities to the form of the marginal distri-
butions and the dependence structure is discussed. Besides the probability
of joint exceedances, attention is given to the probability associated with a
failure region based on economic damage.

In Section 4.2 the historical data are described, and the precipitation deficit
in the Netherlands and the discharge deficit of the Rhine are defined. Differ-
ent probability distributions for the precipitation deficit are compared in Sec-
tion 4.3. Section 4.4 presents probability distributions for the discharge deficit.
The joint distribution of the precipitation and discharge deficits is discussed
in Section 4.5. Return periods for joint exceedances estimated from the fitted
bivariate distributions and from nearest-neighbour resampling are given for a
number of extreme years in the historical record. In Section 4.6 the concept
of a failure region, based on economic damage, as an alternative for the classic
joint exceedance is discussed and illustrated with the same historical years.
Section 4.7 concludes with a summary and a discussion of the results.

4.2 Drought characteristics

Two variables which describe drought in the Netherlands are considered here;
the country-average precipitation deficit and the discharge deficit of the river
Rhine. The precipitation deficit is defined as the cumulative difference between
precipitation and grass reference evaporation, from April, 1 onward. When the
precipitation deficit becomes negative it is reset to zero. The annual maximum
precipitation deficit is the largest precipitation deficit that occurs during the
summer half-year (April–September). Both for precipitation and evaporation
daily values were available for the period 1906–2000, giving 95 independent
annual maximum precipitation deficits. For practical reasons and for efficiency
of the resampling procedure all daily data were converted into decades of days
prior to the analysis. Decades of days were obtained by dividing each calendar
month into three decades; the first two decades in a month always represent
10 days and the third decade represents the remaining days. Each year thus
contains 36 decades.

Average precipitation for the Netherlands was obtained by averaging the
precipitation sums from 13 stations spread over the country. The grass refer-
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Figure 4.1. Evaporation and precipitation in the Netherlands in the summer
half-year (April–September) for the period 1906–2000. Estimated reference
and Makkink evaporation are explained in the text.

ence evaporation was derived from temperature and sunshine duration at De
Bilt using the Makkink formula (e.g., de Bruin and Stricker, 2000). The global
radiation in that formula was estimated from an empirical relation between
global radiation and sunshine duration due to Frantzen and Raaff (1982).
Figure 4.1 presents time series of precipitation and estimated reference evapo-
ration for the summer half-years of the period 1906–2000. From 1958 onward
the values of the original Makkink evaporation are also given. It can be seen
that these values are close to the estimates used in this study. For most years
the reference evaporation is larger than precipitation, giving rise to a precipi-
tation deficit. A precipitation deficit also builds up during dry periods in wet
summer half-years. Figure 4.1 further shows that the driest years (1911, 1921,
1959 and 1976) have above normal reference evaporation.

The discharge deficit of the river Rhine was based on discharge measure-
ments at the German-Netherlands border (gauging station Lobith). Only
decades for which the discharge was below a threshold of 1800 m3 s−1 con-
tribute to the discharge deficit. For those decades the (nonnegative) difference
between the threshold and the discharge is added to the discharge deficit. The
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Figure 4.2. (top) Maximum precipitation deficit and (bottom) discharge deficit
in the summer half-year (April–September) for the period 1906–2000.

discharge deficit was also calculated for the summer half-year and was avail-
able for the same period (1906–2000) as the precipitation deficit. A threshold
of 1800 m3 s−1 roughly corresponds to the 20% quantile of the decade average
discharge during the summer half-year. In 8 years the discharge is never below
this threshold giving a zero discharge deficit. A lower threshold would result in
many more years with a zero discharge deficit. Figure 4.2 presents time series
of the maximum precipitation and discharge deficits for the period 1906–2000.
No visible trends are found in these deficits during the past century. As ex-
pected, there is a positive correlation between the precipitation and discharge
deficits.



62 Chapter 4

4.3 Probability distributions for the precipitation
deficit

Two distributions were fitted to the largest precipitation deficit in each year;
the Gumbel distribution and the lognormal distribution, where the Gumbel
distribution is given by

F (x) = Pr(X ≤ x) = exp
[

−e−(x−µ)/σ
]

. (4.1)

The parameters of the distributions were estimated by the maximum likeli-
hood (ML) method. In this section the fitted distributions are compared with
a simulated distribution based on nearest-neighbour resampling of historical
precipitation (P ), evaporation (E) and discharge (Q) data. Conditions are im-
posed on the resampling process to reproduce the temporal dependence and
the annual cycle of these variables as well as possible. A detailed description
of the resampling model is given in Appendix D. With the resampling model,
105 years (i.e., 36 × 105 decades) were simulated to empirically estimate the
probability distribution of the (annual maxima of the) precipitation deficit
and the discharge deficit. The simulated deficits are occasionally larger than
those in the historical record as a result of reshuffling of the historical decade
data (Appendix D).

Figure 4.3 presents a Gumbel probability plot of the maximum precipita-
tion deficits. The horizontal axis in this plot is chosen such that the Gumbel
distribution corresponds to a straight line. It can be seen that the fitted lognor-
mal distribution has a heavier upper tail than the fitted Gumbel distribution.
If one is interested in the exceedance probabilities of the largest historical val-
ues, one might argue to use the lognormal distribution since this distribution
performs best in this range of the data. The fitted distributions were sub-
jected to the Anderson-Darling (A-D) test (as by Stephens, 1986a) and the
‘probability plot correlation coefficient’ (ppcc) test (Vogel, 1986). These tests
were selected because they are known to be sensitive to deviations in the upper
tail. Both tests give for the lognormal distribution a significant result at the
5% level, but not at the 1% level, while the Gumbel distribution passes both
tests at the 5% level. Thus, although the lognormal distribution describes the
tail of the distribution better, these tests indicate that over the whole domain
the lognormal distribution does not properly fit the data while the Gumbel
distribution does.

The curvature in the plot for the simulated data from the resampling model
is more or less in agreement with that for the historical data, only the upper
tail of the simulated distribution seems to be somewhat too light. The sim-
ulated distribution suggests that the precipitation deficit is limited which is
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Figure 4.3. Ordered historical annual maximum precipitation deficits, the fit-
ted Gumbel and lognormal distributions, and the simulated distribution from
a resampling model. The parameters µ and σ for the lognormal distribution
refer to the mean and standard deviation of the underlying normal distribu-
tion.

true in fact. When there would be no precipitation at all during the summer
half-year, the precipitation deficit is completely determined by the reference
evaporation. Under present day climate conditions (in particular with respect
to temperature and global radiation), the largest precipitation deficit is esti-
mated to be 600 mm. For the fitted lognormal distribution (heaviest tail) a
precipitation deficit of 600 mm is exceeded on average once in 2800 years.

4.4 Probability distributions for the discharge deficit

Probability distributions for the discharge deficit were obtained in a similar
way as for the precipitation deficit. A Gumbel distribution was fitted to the
annual discharge deficits. A sqrt-normal distribution (which assumes that
the square root of the data are normally distributed) was also fitted. The
choice of this distribution was based on the ML estimate of the optimal power
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Figure 4.4. Ordered historical annual discharge deficits, the fitted Gumbel and
sqrt-normal distributions and the simulated distribution from a resampling
model. The parameters µ and σ for the sqrt-normal distribution refer to the
mean and standard deviation of the underlying normal distribution.

transformation in the Box-Cox family (Shumway et al., 1989).
To avoid a large influence of small values of the discharge deficit on the

estimated parameters the sample was censored at a low threshold of 0.03 ×
109 m3 in the fit of the sqrt-normal distribution and at 0.6×109 m3 in the case
of the Gumbel distribution. For data below the threshold only the information
that they are smaller than the threshold is then used rather than their actual
values. The parameters were estimated by the ML method, see e.g., Shumway
et al. (1989) for a transformed normal distribution and Leese (1973) for the
Gumbel distribution.

Figure 4.4 presents a Gumbel probability plot of the discharge deficits.
For values larger than 1.0 × 109 m3, the fitted Gumbel and sqrt-normal dis-
tributions are nearly indistinguishable. The simulated distribution from the
resampling model agrees well with the two fitted distributions for return pe-
riods up to about 100 years. For longer return periods they start to deviate.
The discharge deficit is also bounded. Applying the lowest observed discharge
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(725 m3 s−1) to the whole summer half-year leads to a discharge deficit of
17×109 m3. The largest historical discharge deficit (of 1921) amounts to 71%
of this practical upper limit, and the largest simulated discharge deficits in the
resampling model are about 85% of this limit.

Because of the censoring the goodness-of-fit tests used in the previous
section can not be applied. Both the Gumbel and the sqrt-normal distribution
pass the adapted ppcc test for censored data in Stephens (1986b) at the 5%
level.

4.5 Bivariate probability distributions

So far univariate probabilities have been considered. In the introduction it
was noted that from a drought impacts point of view it is more interesting to
look at joint exceedance probabilities. Drought events that have the largest
economic impact are those events that have both a large precipitation deficit
and a large discharge deficit. The latter makes compensation of the local water
shortage by water from elsewhere in the Rhine basin very difficult.

A logical way to proceed is to combine the univariate (marginal) probabil-
ity distributions into a bivariate probability distribution. In the case that the
maximum precipitation deficit is described by a lognormal distribution and
the discharge deficit by a sqrt-normal distribution it would be natural to con-
sider the bivariate normal distribution. The joint density of the standardized
transformed precipitation and discharge deficits is then given by:

φ2(x, y) =
1

2π
√

1 − ρ2
exp

[

− 1

2(1 − ρ2)
(x2 − 2ρxy + y2)

]

, (4.2)

where ρ is the correlation coefficient of the transformed values.
A family of bivariate extensions of the Gumbel distribution is provided

by the theory of multivariate extremes (e.g., Tawn, 1988; Coles, 2001). This
family can be represented as

F (x, y) = Pr(X ≤ x, Y ≤ y) = exp

[

−(e−x + e−y)A

(

e−x

e−x + e−y

)]

, (4.3)

where A(·) is the dependence function. A(w) = 1 implies that X and Y are
independent, whereas A(w) < 1 implies that X and Y are positively associated
(0 < w < 1). Perfect dependence, e.g., Pr(X = Y ) = 1, corresponds with
A(w) = max[w, (1 − w)]. Note that A(0) = A(1) = 1 both for independent
and dependent Gumbel variables.
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Several parametric models for A(w) have been proposed in the literature
(e.g., Kotz and Nadarajah, 2000). A popular one is the (symmetric) logistic
dependence model:

A(w) =
[

w1/α + (1 − w)1/α
]α

, 0 ≤ w ≤ 1 ; 0 ≤ α ≤ 1 (4.4)

which leads to
F (x, y) = exp

[

−(e−x/α + e−y/α)α
]

, (4.5)

where α characterizes the strength of the dependence between X and Y ; α = 1
corresponds with independence and α = 0 with perfect dependence. The
correlation between X and Y equals 1 − α2 (Tiago de Oliveira, 1980). Yue
(2001) used the logistic Gumbel model to describe the joint distribution of
storm peaks and amounts and Shiau (2003) applied this model to extreme
flood events (peaks and volumes).

The dependence structure of the bivariate normal distribution differs from
that of bivariate Gumbel distributions. A classical result for the bivariate
normal distribution with ρ < 1 is that its components are asymptotically
independent (Sibuya, 1960). For the standard bivariate normal distribution
in equation (4.2) asymptotic independence implies that:

lim
u→∞

Pr(Y > u | X > u) = 0. (4.6)

A loose interpretation of this is that the probability that Y is extreme given
that X is extreme tends to zero, or in other words, extreme values of X and
Y do not occur simultaneously. For the bivariate logistic Gumbel distribu-
tion in equation (4.5), however, Pr(Y > u | X > u) tends to 2 − 2α, and this
distribution is therefore asymptotically dependent if α < 1. Note that asymp-
totic dependence holds for all limiting bivariate extreme value distributions
(including the logistic Gumbel distribution).

In this section the dependence structure of the data is investigated first.
Then the observed joint exceedance probabilities are compared with the theo-
retical ones from the bivariate models, and with those from the data simulated
by nearest-neighbour resampling.

4.5.1 Dependence structure

Dependence measures for bivariate extremes have been discussed by Coles
et al. (1999). To remove the influence of the marginal distributions the vari-
ables X and Y are transformed to standard uniform variables, via U = FX(X)
and V = FY (Y ). The joint distribution of U and V is called a copula. It con-
tains all information about the association between X and Y . Copulas have
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been applied recently in bivariate hydrological frequency analysis by Favre
et al. (2004). For the data (xi, yi), i = 1, . . . , N the influence of the marginal
distributions can be removed in a similar way using the empirical distribution
functions:

ui = F̂X(xi) =
# xj ’s ≤ xi

N + 1

vi = F̂Y (yi) =
# yj ’s ≤ yi

N + 1
. (4.7)

Buishand (1984) introduced a measure of dependence to estimate the in-
terstation dependence in the extremes of daily precipitation. A slight modi-
fication of this dependence measure is the quantity χ(u) suggested by Coles
et al. (1999):

χ(u) = 2 − ln Pr(U < u, V < u)

ln Pr(U < u)
for 0 < u ≤ 1 . (4.8)

Independence corresponds with χ(u) = 0 and perfect dependence with χ(u) =
1. For the bivariate Gumbel distributions χ(u) = 2 − 2A(1/2), which reduces
to χ(u) = 2 − 2α for the logistic dependence model. Further, for sufficiently
large u,

χ(u) ∼ Pr(V > u | U > u). (4.9)

For asymptotically independent distributions like the bivariate normal distri-
bution χ(u) → 0 as u → 1. The measure χ(u) is not influenced by a monotonic
increasing transformation of the data such as the log and sqrt transformation
applied to the precipitation and discharge deficits to achieve normality.

An empirical estimate of χ(u) can be constructed by substituting empir-
ical estimates of the probabilities in the right-hand side of equation (4.8).
Figure 4.5 presents such estimates of χ(u) for the historical and simulated
data and the theoretical values for the fitted bivariate distributions. The pa-
rameters ρ and α in these distributions were estimated by the ML method,
taking into account the censoring of low discharge deficits (Appendix E). The
figure shows that χ(u) is almost constant for the historical precipitation and
discharge deficits. For the resampled data, the average level of χ(u) is slightly
lower, with a weak minimum near u = 0.5. For large u, the estimates of χ(u)
for the historical and the simulated data are more in line with the theoreti-
cal values for the bivariate Gumbel distribution than those for the bivariate
normal distribution. For the latter χ(u) gradually decreases, but for u near
1 it abruptly drops to zero. From a physical point of view, this behavior is
not very realistic since a severe drought typically extends over a large area
and will thus affect the precipitation in the Netherlands as well as in the
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Figure 4.5. Dependence measure χ(u) for the historical and simulated data
and for the fitted bivariate distributions. The value 0.667 for the parameter
α in the bivariate Gumbel model corresponds to a correlation coefficient of
0.555.

upstream Rhine catchment. The use of the multivariate normal distribution
to describe droughts over large geographic areas was already questioned by
Leytham (1987). He observed that this distribution underestimated the fre-
quency of simultaneous low precipitation amounts or low river flows at widely
separated sites.

The question whether the data are asymptotically dependent or not can be
investigated further by calculating for each year Ti = min (−1/ ln ui, −1/ ln vi).
For large z, the probability that Ti > z can be approximated by the Pareto
distribution (Ledford and Tawn, 1996):

Pr(Ti > z) ≈ cz−1/η , (4.10)

where c and η are the scale and shape parameters. For the bivariate Gumbel
distribution η = 1, whereas for asymptotically independent data η < 1; η =
(ρ + 1)/2 = 0.74 for the bivariate normal distribution. The parameter η can
be estimated from the k largest values of Ti using the ML method (Hill, 1975).
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A quantile plot suggests that k can be taken as large as 70. This results in
η̂ = 1.12 with a standard error of 0.13, which supports the bivariate Gumbel
distribution.

4.5.2 Symmetry of dependence

Both the bivariate normal distribution and the bivariate logistic Gumbel distri-
bution have a symmetric dependence structure. Here symmetry implies that
the dependence structure is such that the joint probabilities are unchanged
when X and Y are interchanged. For a limiting bivariate Gumbel distribution
this holds only if A(w) is symmetrical about w = 1/2. This can be explored
by estimating A(w) with a nonparametric method. Pickands (1981) observed
that Z(w) = min

[

e−X/(1 − w), e−Y /w
]

has an exponential distribution with
mean 1/A(w), for each w ∈ (0, 1). Transforming again the original variables
to standard uniform variables, the following nonparametric estimate of A(w)
is obtained (Hall and Tajvidi, 2000):

Â(w) = n

[

n
∑

i=1

Zi(w)

]−1

, (4.11)

where

Zi(w) = min

[

ln ui

(1 − w)ln u
,

ln vi

wln v

]

(0 ≤ w ≤ 1) ,

with (ui, vi) defined in equation (4.7) and ln u, ln v the arithmetic means
of {ln ui}, {ln vi} respectively. For discharge deficits equal zero (yi = 0),
the numerator of vi in equation (4.7) is based here on their average rank,
i.e., [(# yj ’s = 0) + 1]/2. Note that Â(0) = Â(1) = 1 (in agreement with
A(0) = A(1) = 1).

Figure 4.6 compares Â(w) for the historical and simulated data with A(w)
for the fitted logistic dependence model. Apart from the bump around w =
0.75, which is partly due to the zero discharge deficits, Â(w) is nearly sym-
metrical. The figure shows that the overall level of Â(w) agrees with A(w) for
the logistic dependence model with α = 0.667. The minimum of Â(w) for the
resampled data is somewhat larger than that of A(w) but this is consistent
with the lower average values of χ(u) for the resampled data in Figure 4.5.

4.5.3 Goodness-of-fit

In the previous subsections criteria were presented to discriminate between
different models for the dependence between two random variables. To test
the overall adequacy of a bivariate model, both the dependence structure and
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Figure 4.6. Nonparametric estimates of A(w) from the historical and simulated
data and A(w) for the fitted logistic dependence model.

the fits of the individual marginal distributions should be taken into account.
Here the goodness-of-fit of a bivariate model is assessed with joint exceedance
probabilities. This is similar to Yue et al. (1999) and Yue (2001) who tested
the validity of a bivariate model with empirical nonexceedance probabilities.
Exceedance probabilities are preferred here because of the interest in discrep-
ancies in the upper tail of the joint distribution.

For each data pair (xi, yi), a joint exceedance probability can be estimated
as:

p̂(xi, yi) =
# pairs (xj , yj) with xj ≥ xi and yj ≥ yi

N + 1
, (4.12)

and this can be compared with the theoretical value of Pr(X ≥ xi, Y ≥ yi)
for the fitted bivariate model or a similar empirical estimate for the resampled
data.

Besides the bivariate normal distribution and the bivariate Gumbel distri-
bution a novel bivariate distribution is considered, namely a bivariate normal
distribution with a logistic Gumbel dependence structure. The latter is a log-
ical combination of the other two bivariate distributions and it is constructed
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from the bivariate Gumbel model, using the transformations:

X̃ = Ĥ−1
X

[

ĜX(X)
]

Ỹ = Ĥ−1
Y

[

ĜY (Y )
]

, (4.13)

where ĜX and ĜY are the fitted Gumbel distributions, and ĤX , ĤY the fitted
lognormal and sqrt-normal distributions, respectively. Since these transfor-
mations are monotonic increasing, (X̃, Ỹ ) has the same logistic dependence
structure as (X, Y ). The transformations in equation (4.13) are similar to the
normal quantile transformation in Kelly and Krzysztofowicz (1997). The in-
verse of the normal quantile transform has been used to obtain variables having
marginal extreme value distributions and a multivariate normal dependence
structure (Hosking and Wallis, 1988; Bortot et al., 2000). Equation (4.13) is,
however, needed if a logistic Gumbel dependence structure is required.

Figure 4.7 shows joint probability plots for the three bivariate models and
for the simulated data from the resampling model. To emphasize the upper
tail, the exceedance probabilities are plotted on a logarithmic scale. In this

Figure 4.7. Joint probability plots for the fitted bivariate normal and Gum-
bel distributions, for the bivariate normal distribution with logistic Gumbel
dependence structure, and for the data simulated with the resampling model.
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tail region, the modeled probabilities tend to deviate systematically from the
empirical probabilities, partly because these empirical probabilities are biased.
The bias of p̂(xi, yi) depends on the degree of association of large values. From
each bivariate distribution 104 samples of 95 years were generated to explore
this bias. Figure 4.8 shows the bias for the three bivariate distributions. The
bias is identical for the bivariate Gumbel distribution and the bivariate normal
distribution with logistic Gumbel dependence and somewhat larger for the bi-
variate normal distribution. By comparing Figures 4.7 and 4.8 it is clear that
the observed differences between the modeled and empirical joint exceedance
probabilities in the upper tail region (in Figure 4.7) are larger than the sim-
ulated bias (in Figure 4.8), in particular for the bivariate normal distribution
and the resampling model. This lack of fit in the upper tail for the resampling

Figure 4.8. Bias of the empirical joint exceedance probabilities for the fitted
bivariate normal and Gumbel distributions and for the bivariate normal distri-
bution with logistic Gumbel dependence from a Monte Carlo experiment (104

simulations of 95 years). For each of the 95 empirical exceedance probabilities
the symbols refer to the median value of the simulated theoretical exceedance
probabilities and the lines denote a pointwise 95% interval for the theoretical
exceedance probabilities.
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Table 4.1. Mean return periods (yr) of joint exceedances of the observed
precipitation and discharge deficits in given years for different bivariate distri-
butions and the resampling model.

Year Precipitation Discharge Normal Gumbel Normal, Resampling
deficit deficit logistic
(mm) (109 m3) dependence

1921 321.6 12.1 824 318 281 757
1976 361.1 10.7 760 296 221 676
1959 351.7 5.1 143 139 90 116
1947 296.1 7.8 142 78 65 90
1949 226.7 9.2 111 72 68 68

model is mainly the result of light tails of the simulated marginal distributions
(see Figures 4.3 and 4.4), and for the bivariate normal distribution it is due
to its asymptotic independence (Figure 4.5). Although all four models have
a tendency to underestimate the joint exceedance probabilities in the upper
tail region, the bivariate normal distribution with logistic Gumbel dependence
performs best.

For 5 extreme years in the historical record the return periods of joint
exceedances of the observed precipitation and discharge deficit, i.e., T =
1/ Pr(X > xi, Y > yi) were determined. Table 4.1 compares the estimates
of T from the different bivariate models. The return periods for the most ex-
treme years (1921 en 1976) are more than 600 years for the bivariate normal
distribution and the resampling model. These return periods reduce to less
than 300 years if a bivariate normal distribution with logistic Gumbel depen-
dence structure is assumed. Apart from a large sensitivity to model choice, the
return periods are very uncertain due to sampling variability (see, for the uni-
variate case, Stedinger et al., 1993). Yet this does not entirely explain why the
estimates in Table 4.1 considerably exceed the length of the historical records
from which they were derived. An important point is that the probability that
two different variables exceed some high level simultaneously is smaller than
the marginal exceedance probabilities for each of the two variables. The mag-
nitude of this effect can be estimated from the same Monte Carlo experiment
that was used to determine the bias of p̂(xi, yi). For each 95-year sample from
the normal distribution with logistic dependence, the return periods of the
joint exceedances of the simulated precipitation and discharge deficits were
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determined. The median of the longest return period in the 104 simulations of
95 years is 320 years which is quite large compared to the size of the sample.
As a result of this effect all 5 years considered in Table 4.1 have return periods
longer than 60 years.

4.6 Failure regions

In practical applications, the joint probability that X and Y lie in a ‘failure
region’ different from the rectangle defined by (X > x, Y > y) might be of
interest. For example, structures often fail if a combination of the constituent
variables becomes extreme. This combination then marks the boundary of the
failure region. For the assessment of droughts in the Netherlands it is useful
to base the failure region on the economic damage D

E
.

The economic damage from 7 historical years (1949, 1959, 1967, 1976,
1985, 1995 and 1996 (T. Kroon, personal communication, 2004)) reveals that
D

E
can be approximated as:

D
E

= ax + by + c , (4.14)

with x the maximum precipitation deficit and y the discharge deficit. The
regression coefficients a, b and c were estimated by a least squares fit. Let
xi and yi be the observed precipitation and discharge deficits for the year of
interest. Events with a precipitation and discharge deficit in the region above
the line through (xi, yi) and with slope ∆ = −a/b should then be consid-
ered as more extreme in terms of economic damage. For the years 1976, 1959
and 1949, Figure 4.9 compares the boundary of this failure region with the
rectangle (X > xi, Y > yi). The slope of the bounding line indicates that
the economic damage is relatively more sensitive to the precipitation deficit.
Table 4.2 presents, for each of the historical years in Table 4.1, the return peri-
ods for the failure region based on equation (4.14). These return periods were
obtained empirically from 106 simulated pairs (xi, yi) from the corresponding
bivariate distribution and from the 105 simulated years in the case of nearest-
neighbour resampling. The estimated return periods in Table 4.2 are much
shorter than those in Table 4.1, in particular for 1921 and 1976. Using a fail-
ure region related to the economic damage gives the longest return period for
1976 while in Table 4.1 the longest return period is found for 1921. This is
a result of the relatively smaller contribution of the discharge deficit to the
economic damage (see Figure 4.9). In Table 4.1 the return periods are longest
for the bivariate normal distribution while in Table 4.2 the longest return
periods are found for the bivariate Gumbel distribution and the resampling
model. The shortest return periods are found in both tables for the bivariate
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Figure 4.9. Failure regions related to the economic damage (equation 4.14)
and rectangles (X > xi, Y > yi) for the historical years 1976, 1959 and 1949
(indicated as 76, 59 and 49).

normal distribution with logistic Gumbel dependence, but the difference from
the standard bivariate normal distribution is much smaller in Table 4.2. This
is in line with results of Tawn (1988) and Coles and Tawn (1994) that the
sensitivity of joint probabilities to assumptions about the dependence struc-
ture varies considerably with the type of failure region. For the best fitting
model (bivariate normal distribution with logistic dependence), the estimated
return period of 110 years for the most extreme year in terms of economic
damage, 1976, is close to the length of the historical record. In contrast to the
return periods in Table 4.1, the estimates in Table 4.2 can be considered as a
univariate exceedance probability, namely that for the economic damage D

E
.

Although the regression coefficients in equation (4.14) differ significantly
from zero at the 10% level, the slope ∆ is quite uncertain. To determine
the effect of this uncertainty on the estimated return periods, the latter were
recalculated with the 5th percentile ∆

L
and the 95th percentile ∆

U
of the

empirical distribution of the estimated slope in 104 bootstrap samples of size 7.
The resulting spread in the return periods is presented in Figure 4.10. For
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Table 4.2. Mean return periods (yr) of situations where the precipitation and
discharge deficits are more extreme than the observed deficits in the given
years in terms of economic damage (equation 4.14) for the different bivariate
distributions and the resampling model.

Year Precipitation Discharge Normal Gumbel Normal, Resampling
deficit deficit logistic
(mm) (109 m3) dependence

1921 321.6 12.1 99 113 79 98
1976 361.1 10.7 147 172 110 178
1959 351.7 5.1 66 75 55 67
1947 296.1 7.8 41 46 36 46
1949 226.7 9.2 17 19 17 24

1959, a year with a relatively small discharge deficit, a failure region with
slope ∆

L
leads to a longer return period and a region with slope ∆

U
shortens

the return period, while for the other years in Table 4.2 the return periods
change the other way round. Within the uncertainty of ∆, 1976 always has
the largest economic damage and thus the longest return period. However,
1959 becomes more extreme than 1921 if the failure region has slope ∆

L
and

it becomes less extreme than 1947 if the failure region has slope ∆
U

. So the
ranking of the drought events also depends on the slope of the failure region.

4.7 Discussion and conclusions

Different probability distributions have been fitted to the annual maximum
precipitation deficit in the Netherlands and the annual discharge deficit of
the river Rhine. The fitted distributions have been compared with an em-
pirical bivariate distribution obtained with a resampling model. It is found
that the degree of association between large values is too weak if the depen-
dence structure of a bivariate normal distribution is assumed. This results in
a strong underestimation of the probabilities of joint exceedances of extreme
values. The joint occurrence of large values is better described by the depen-
dence structure of a limiting Gumbel distribution. Its symmetric nature is
also in agreement with the data. This dependence function has therefore not
only been studied with Gumbel marginals but also with transformed normal
marginals. The latter describes the upper tail of the precipitation deficit dis-
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Figure 4.10. Spread in return periods due to the uncertainty of the failure
region slope ∆. The single horizontal bars correspond with ∆

L
, the double

horizontal bars with ∆
U

and the crosses (×) with the return periods in Ta-
ble 4.2.

tribution better, leading to shorter return periods between extreme bivariate
events than the Gumbel distribution. The assumption of Gumbel marginals
is, however, not rejected by the Anderson-Darling and the ppcc tests. For
the resampling model the dependence structure and its symmetry agree well
with the data. The resampling model is the only model which can (to some
extent) reproduce the curvature in the tail of the historical distribution of the
maximum precipitation deficit, although it underestimates the most extreme
quantiles of this distribution. The tail of the simulated distribution of the dis-
charge deficit seems too light as well, in particular near the most extreme event
(1921). This discrepancy seems to be related with differences in the strength
of the autocorrelation between the variables E − P and Q. Decade values
of E − P exhibit only weak autocorrelation whereas for discharge Q there is
still considerable autocorrelation at a lag of 10 decades (see Appendix D). A
much better simulation of the upper tails of the marginal distributions can be
achieved when E − P and Q are resampled individually rather than simulta-
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neously (see Section 5.4). This is, however, not of interest for the estimation
of the drought probabilities considered in this chapter.

The use of a failure region based on economic damage has been studied as
an alternative to ordinary joint exceedances. This failure region not only short-
ens the estimated return periods of historical drought events, it also reduces
the differences between the various bivariate models. For the most extreme
year in terms of economic damage, 1976, the return period is 172 years for the
bivariate Gumbel distribution, 110 years for the transformed normal distri-
bution with logistic Gumbel dependence and 178 years for nearest-neighbour
resampling. A detailed study of the uncertainty of these return periods was
beyond the scope of this chapter, but the uncertainty is dependent on lack of
fit in the upper tail of the joint distribution, the limited sample size, and the
uncertainty in the slope of the failure region. The size of the latter uncertainty
depends on the type of distribution and may vary considerably from year to
year (see Figure 4.10).
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Abstract

The distribution of the annual maximum precipitation deficit is studied for six
districts within the Netherlands. Gumbel probability plots of this precipitation
deficit show a common extraordinary curvature in the upper tail. A regional
frequency analysis yields a regional growth curve that can be approximated by
a spline consisting of two linear segments on the standard Gumbel scale and
a smooth transition between them. Alternatively, the application of a time
series model based on nearest-neighbour resampling is explored. To reproduce
the curvature of the precipitation deficit distributions it is necessary to include
a 4-month memory term in the resampling model. This memory term leads,
however, to a considerable increase of the standard error of large quantile
estimates.

Much attention is given to the use of the bootstrap and the jackknife to
determine the standard errors of quantile estimates based on nearest-neighbour
resampling. A simulation experiment with a first-order autoregressive time
series model shows that these standard errors can be biased, in particular for
the bootstrap. The relative standard errors of quantile estimates are large in
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the area of large curvature of the Gumbel probability plots. This holds both
for nearest-neighbour resampling and regional frequency analysis. When the
two methods are used for extrapolation, nearest-neighbour resampling clearly
outperforms the regional frequency analysis. The latter then shows a strong
increase in the relative standard error of quantile estimates with increasing
return period due to the large uncertainty of the parameters in the spline
model.

Using nearest-neighbour resampling and the bootstrap, confidence inter-
vals are constructed for the return periods of the largest observed precipita-
tion deficit for each of the six districts. Although these confidence intervals
are quite wide, they are on average a factor of two narrower than the interval
expected from the size of the sample only.

5.1 Introduction

The probability of drought events is a regularly recurring topic in drought
studies. Quite often there is particular interest in the frequency of occurrence
of the most extreme historic events. Since such events are by definition rare
it is not so easy to obtain accurate estimates of their frequency of occurrence.
Furthermore, one should keep in mind that the severity of a drought, and
thus its associated probability, also depends on the sector that suffers from
the drought. In addition, drought is usually not only controlled by lack of
precipitation but also by evaporation.

In the Netherlands a frequently used measure of the severity of drought
of a certain year is the maximum cumulative difference between potential
evaporation and precipitation in the summer half of that year. This measure
of drought is strongly related to moisture deficits for the vegetation during
the growing season. In the previous chapter (Beersma and Buishand, 2004)
it was used as a measure of drought for the country as a whole while in this
chapter it is used to investigate and quantify regional differences within the
Netherlands. In Section 4.3 it was already noted that a Gumbel probability
plot of the annual maximum country-average precipitation deficit contains an
extraordinary curvature at large deficits. For return periods beyond 20 years,
the distribution is much heavier tailed than the Gumbel distribution (which
would represent a straight line) while for very long return periods the tail is
becoming thinner again (see Figure 5.1). To guide the eye Figure 5.1 also
presents the distribution obtained with the time series simulation model that
is introduced in Section 5.4.

To study the regional differences in the Netherlands, the country is divided
into six geographic districts. It turns out that the extraordinary curvature
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Figure 5.1. Gumbel probability plot of the annual maximum country-average
precipitation deficit together with a plot of the annual maxima from a 100 000-
year sequence generated with the time series model in Section 5.4.1. The
numbers represent the year minus 1900; T refers to the return period.

in the upper tail of the distribution is a common characteristic for all six
districts (Section 5.2). This curvature poses the question how to estimate
large quantiles of the six distributions reliably and efficiently. One approach
is a regional frequency analysis (e.g., Hosking and Wallis, 1997). For the
precipitation deficits in the Netherlands this approach means that the six
probability distributions have a common shape which implies that the most
uncertain parameters of the six distributions can be taken equal for the six
districts. To derive these common parameters the records of the six districts
are combined. The resulting parameter estimates have a smaller uncertainty
compared to those from a single record, which leads to more accurate estimates
of extreme quantiles and exceedance frequencies. Time series simulation is
another approach to obtain more accurate estimates. In Beersma et al. (2004)
resampling of the original precipitation deficits was considered. A reduction
of the variance of quantile and frequency estimates is then expected from the
more efficient use of the available data (Buishand, 2006).
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In this chapter a comparison is made between time series simulation and
a regional frequency analysis. There is a focus on the accuracy of quantile
estimates given the limited sample size of the historic data. In Section 5.2
the geographic districts are defined and the historic data that were used to
calculate the precipitation deficits for these districts are described. The re-
gional frequency analysis is performed in Section 5.3 and time series simulation
based on nearest-neighbour resampling is presented in Section 5.4. Section 5.5
compares the accuracy of quantile estimates obtained with both methods for
different quantiles, and concludes with a discussion and a summary of the
results.

5.2 Historic data and choice of districts

The precipitation deficit in any period is the difference between precipita-
tion and potential evaporation in that period. Potential evaporation which is
routinely calculated for short grass is also known as the grass reference evap-
oration. Around early April the daily average potential evaporation becomes
larger than the daily average precipitation in the Netherlands. The deficit is
therefore accumulated from April 1 onward. After 30 September the average
cumulative precipitation deficit tends to decrease because global radiation and
thus potential evaporation are reduced. The annual maximum precipitation
deficit is the largest precipitation deficit that occurs during the summer half-
year (1 April – 30 September). This period largely coincides with the growing
season in the Netherlands. The vegetation will generally not grow optimally
during periods with a positive cumulative deficit. If there is no positive cu-
mulative deficit, precipitation surpluses will lead to runoff. Without retention
measures, these surpluses can not compensate for future positive deficits. The
cumulative precipitation deficit is therefore reset to zero when it becomes neg-
ative.

Both for precipitation and evaporation daily values were available for the
95-year period 1906–2000. The grass reference evaporation was derived from
temperature and sunshine duration at station De Bilt using the Makkink for-
mula (e.g., de Bruin and Stricker, 2000). The global radiation in that formula
was estimated from an empirical relation between global radiation and sun-
shine duration due to Frantzen and Raaff (1982). In Chapter 4 (Beersma
and Buishand, 2004) it was shown that this reference evaporation compares
very well with the original Makkink evaporation which is available from 1958
onwards only.

Daily precipitation for the 1906–2000 period was available for 18 stations
spread over the country. Thirteen of these stations were used to calculate
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Figure 5.2. Map of annual mean evaporation together with the position of the
18 precipitation stations and the six geographic districts used in this chapter.

the daily country-average precipitation for the Netherlands in Section 4.2 and
the country-average precipitation deficit in Figure 5.1. In this chapter, the
Netherlands is divided into six geographic districts; North West (NW), North
East (NE), Central West (CW), Central East (CE), South West (SW) and
finally South East (SE). For each district, time series of daily average precipi-
tation were obtained by averaging the precipitation amounts at three stations
in that district. Time series of daily reference evaporation for each district
were derived by adjusting the reference evaporation of station De Bilt using
the spatial differences in annual mean evaporation for the 1971–2000 normal
period. A map of the mean evaporation in the Netherlands including the
position of the 18 precipitation stations and the six districts is presented in
Figure 5.2. The evaporation adjustment factors that were used are: NE and
CE: −1.5%; SE: +3%; CW: +5%; NW: +6% and SW: +9%.

Analogous to Figure 5.1 Gumbel plots of the annual maximum precipita-
tion deficit for all six districts are presented in Figure 5.3. This figure clearly
shows the common curvature in the tail of the distributions. Physically one
can understand this behaviour. It is reasonable to assume that at a certain
level of the precipitation deficit a positive feedback develops in which, as a
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Figure 5.3. Gumbel probability plots of the annual maximum precipita-
tion deficit for the six districts together with plots of the annual maxima
from a 100 000-year sequence generated with the 2d-resampling model in Sec-
tion 5.4.1. The coloured numbers represent the year minus 1900 for each
district.

result of drying of the soil, cloudiness and the occurrence of precipitation are
reduced, and temperature and global radiation (and thus the potential evap-
oration) are increasing. Both the reduction of precipitation and the increase
of the potential evaporation enhance the precipitation deficit. It is also clear
that such a feedback cannot go on indefinitely since it is bounded by zero pre-
cipitation and maximum potential evaporation (the latter of which is mainly
bounded by global radiation). To determine the individual contributions of
precipitation and potential evaporation to the assumed feedback, the annual
maximum country-average precipitation deficits were also calculated for the
hypothetical case where the reference evaporation is fixed according to its
1906–2000 climatology as well as the hypothetical case where the country-
average precipitation is fixed according to its 1906–2000 climatology. In the
first case the drought related reference evaporation feedback is eliminated but
the precipitation feedback is still present while in the second case the precip-
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Figure 5.4. As Figure 5.1, together with the hypothetical case with fixed
climatological reference evaporation (red) and the hypothetical case with fixed
climatological precipitation (blue). See text for details.

itation feedback is eliminated but the evaporation feedback is still present.
Figure 5.4 presents the Gumbel plots for these two hypothetical cases. These
plots demonstrate that the annual maximum deficit is mainly controlled by
precipitation variability. The four largest values in the case with fixed evapora-
tion (red curve) show that it is most likely that a drought related precipitation
feedback is responsible for the curvature of the Gumbel probability plot of the
annual maximum precipitation deficit. The case with fixed precipitation (blue
curve) shows that the effect of a potential evaporation feedback, if present at
all, is much less pronounced than that of the precipitation feedback.

Besides similarities in the shape of the probability distribution of the an-
nual maximum precipitation deficit for the six districts there are also some
clear climatological differences between the coastal (western) and the inland
(eastern) districts. Evaporation is on average larger in the western districts
compared to the eastern districts (see Figure 5.2) while precipitation in the
summer half-year is on average somewhat larger in the eastern districts com-
pared to the western districts (not shown). As a result, the annual maximum
precipitation deficit is on average larger in the western part of the country
than in the eastern part. Table 5.1 summarizes the average annual maximum
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Table 5.1. Sample mean, standard deviation, coefficient of variation (CV)
and skewness of the annual maximum precipitation deficits in each of the six
districts. Mean and standard deviation are given in mm, CV and skewness
are dimensionless.

District Mean Std. deviation CV Skewness

North West (NW) 194.1 67.2 0.346 0.829
Central West (CW) 165.5 67.9 0.410 0.919
South West (SW) 186.9 73.2 0.392 1.044
North East (NE) 133.6 61.6 0.461 1.244
Central East (CE) 124.2 63.4 0.511 1.254
South East (SE) 151.7 70.4 0.464 1.134

Average over districts 159.3 67.3 0.431 1.071
Std. dev. between districts 28.1a 4.3a 0.059a 0.173

a Significant at the 5% level (see Appendix F)

precipitation deficit and a few other relevant statistics for each of the six dis-
tricts. The largest differences, in terms of these statistics, are those between
districts NW and CE. The NW district has the largest average precipitation
deficit and the smallest coefficient of variation (CV, i.e., the standard devia-
tion divided by the mean) and skewness, while district CE has the smallest
precipitation deficit and the largest CV and skewness. It should be noted,
however, that for a sample of size 95, the sample skewness is a biased and
very variable statistic. Wallis et al. (1974) indicate that there is a negative
bias of about 10%. The average skewness in Table 5.1 equals 1.07. After
bias correction, this average is quite close to the theoretical value of 1.14 for
the Gumbel distribution. Simulation shows that the differences between the
skewness estimates for the six districts are not significant at the 5% level (see
Appendix F). The differences between the means, standard deviations and
CVs are however, significant at the 5% level.

Finally, note that prior to the analyses all daily data were converted into
decades of days. Decades of days were obtained by dividing each calendar
month into three decades; the first two decades in a month always represent
10 days and the third decade represents the remaining days. Each year thus
contains 36 decades of days. The main reason for using decades of days instead
of the daily data is that it saves a factor of ten on the computer running time
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of the resampling procedure (in Section 5.4.1) without loss of performance of
the simulated precipitation deficits. The effect of the conversion into decades
of days on the annual maximum precipitation deficit is negligible.

5.3 Regional frequency analysis

5.3.1 Basic extreme-value distributions

First, it was investigated if a common and simple probability distribution ap-
plies to all six districts. Although the curvature in the Gumbel probability
plots (see Figure 5.3) suggests that the Gumbel distribution may not be appro-
priate, its skewness is close to the average bias-corrected skewness of the six
districts. The Gumbel distribution was therefore fitted for all six districts to-
gether with the 2-parameter lognormal and Generalized Extreme Value (GEV)
distributions, where the GEV distribution is defined by:

F (x) = Pr(X ≤ x) = exp

{

−
[

1 − k(x − µ)

σ

]1/k
}

, (5.1)

with µ, σ and k respectively its location, scale and shape parameter. For k = 0
the GEV distribution reduces to the Gumbel distribution:

F (x) = Pr(X ≤ x) = exp
[

−e−(x−µ)/σ
]

. (5.2)

The GEV distribution has a heavier upper tail than the Gumbel distribution if
k < 0. For k > 0 it has a relatively light upper tail with an upper bound. The
lognormal distribution assumes that the logarithm of the data are normally
distributed. The GEV distribution was fitted using probability-weighted mo-
ments (Hosking et al., 1985) while the Gumbel and lognormal distributions
were fitted by maximum likelihood (ML),

As in Chapter 4 (Beersma and Buishand, 2004) the fitted distributions
were subjected to the Anderson-Darling (A-D) goodness-of-fit test (e.g., Kotz
and Nadarajah, 2000). For the Gumbel and lognormal distributions the per-
centage points of the A-D statistic in Stephens (1986a) were used and for the
GEV distribution those in Ahmad et al. (1988). The A-D test is known to be
sensitive to deviations in the tails of the distribution. Despite this sensitivity
the A-D test gave favourable results for the Gumbel distribution compared to
the lognormal distribution. The lognormal distribution resulted in significant
values (at the 5% level) for the districts NW, NE and CW while for the Gum-
bel distribution this was only the case for district NW. The fitted lognormal
distributions have a heavier upper tail than the Gumbel distribution. This
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Figure 5.5. Gumbel probability plots of the annual maximum precipitation
deficit for two districts together with plots of the annual maxima from a
100 000-year sequence generated with the 2d-resampling model in Section 5.4.1
(solid), the fitted lognormal distributions (dotted) and the fitted GEV distri-
butions (dashed). The coloured numbers represent the year minus 1900.

is also expressed by their relatively large skewness which ranges between 1.17
and 1.81 compared to 1.14 for the Gumbel distribution. Apart from the NW
district, the GEV distributions are close to the Gumbel distribution, with the
shape parameter ranging between −0.035 and 0.032. For the NW district, the
GEV distribution has the largest shape parameter (k = 0.105) and there is a
considerable reduction in the value of the A-D statistic. This statistic remains,
however, significant at the 5% level. Figure 5.5 shows the lognormal and GEV
fits for the two districts that differ most, NW and CE. Note, in particular,
that due to their different shapes, the two fitted GEV distributions intersect
at a return period of about 500 years.

In summary, none of the three distributions provides an adequate fit to
the observed distribution for all six districts. For the NW district the GEV
distribution tends to underestimate the quantiles in the upper tail of the dis-
tribution (Figure 5.5), whereas the GEV fit is almost indistinguishable from
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the Gumbel fit for the other five districts.

5.3.2 Regional growth curve

A key assumption in regional frequency analysis is often that the distributions
of the annual maxima become identical after some standardization. Here it is
assumed that the distribution of the standardized annual maximum precipi-
tation deficit X∗ = (Xi − µi)/σi, with Xi the annual maximum precipitation
deficit for district i (i = 1, . . . , 6), is the same for all districts. Here µi is a
location parameter and σi is a scale parameter. A Gumbel plot of the standard-
ized maxima is usually denoted as the regional growth curve, a dimensionless
quantile function common to every site. The regional growth curve may form
the basis of a regional frequency analysis.

For each district standardized values were derived by replacing µi and σi

by the ML estimates of the location and scale parameter of the Gumbel distri-
bution, and these were ranked in increasing order as x∗

1 ≤ x∗
2 ≤ . . . ≤ x∗

95. The
regional growth curve in Figure 5.6 is obtained by averaging the x∗

j over the six
districts for each j (j = 1, . . . , 95). As expected from Figure 5.3, the regional
growth curve deviates from the straight line for the Gumbel distribution due
to its heavy upper tail.

Two Component Extreme Value (TCEV) distributions have been used in
the literature to describe data with a heavy upper tail. In its most simple
form the TCEV distribution function consists of the product of two Gumbel
distribution functions; a basic component which covers most of the data and
an outlier component which is more heavily tailed than the basic component
(e.g., Rossi et al., 1984; Fiorentino et al., 1987). Given the curvature of our
regional growth curve, the GEV distribution with a positive shape parameter
k seems a more appropriate choice for the outlier component.

However, attempts to fit the TCEV distribution with this outlier compo-
nent were not successful. A crucial point is that a rather large value of k
(k > 1) is needed to catch the amount of curvature of the growth curve. In
this situation, ML estimation meets a serious problem (Coles, 2001) due to a
singularity in the likelihood equation.

As an alternative, the regional growth curve can be approximated by linear
segments on the standard Gumbel scale (Reed et al., 1999). In our case one
linear segment was used for return periods up to about 15 years (which is
standard Gumbel due to the standardization) and a second one was used for
return periods of about 30 years onward. For return periods between 15 and
30 years a non-linear relationship is needed to obtain a smooth transition
between the two linear segments. This leads to a cubic regression spline with
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Figure 5.6. Gumbel probability plot of the standardized annual maximum
precipitation deficit together with the fitted regional 2-parameter spline. The
plusses represent the average standardized deficits of the six districts, and the
dotted lines the position of the two knots of the spline model.

two knots, m1 and m2. In formula the spline model is given by:

X∗ =























Y , Y ≤ m1

Y + a(Y − m1)2 + b(Y − m1)3 , m1 < Y ≤ m2

Y + a(m2 − m1)(2Y − m1 − m2)

+ b(m2 − m1)2(3Y − m1 − 2m2) , Y > m2

(5.3)

where Y is the standard Gumbel variable, i.e.,

Pr(Y ≤ y) = exp
[

−e−y
]

. (5.4)

Due to the cubic part the growth curve and its first derivative are continuous
everywhere. Given the knots m1 and m2, the two spline parameters a and b
were estimated by minimizing the sum of the squared differences:

SS =
6
∑

i=1

95
∑

j=1

(x∗
i,j − x∗

model,j)
2 , (5.5)
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Figure 5.7. Gumbel probability plot of the annual maximum precipitation
deficit for the six districts together with the corresponding rescaled fitted
regional spline. The coloured numbers represent the year minus 1900 for each
district.

with x∗
i,j the jth ordered standardized annual maximum precipitation deficit

for district i and x∗
model,j the standardized value from equation (5.3) with

Y = − ln[− ln(pj)] and pj the plotting position, pj = (j − 0.3)/95.4. The
knots m1 and m2 were found by fitting the spline iteratively. Figure 5.6 shows
the optimal spline, with m1 = 2.6 and m2 = 3.4, on the standard Gumbel
scale (corresponding with return periods of 14.0 and 30.5 years, respectively).
For each of the six districts, Figure 5.7 compares the Gumbel plot of the
annual maximum precipitation deficits with the rescaled fitted regional spline.
The latter fits generally well. Discrepancies are however found in some of the
upper tails, in particular a tendency to underestimate large quantiles of the
distribution for the CE district for which the skewness in Table 5.1 is rather
large and a similar tendency to overestimate large quantiles for the NW district
for which the skewness is rather small.

The improved correspondence in the upper tail between the regional spline
and the data compared to the Gumbel distribution is, however, not sufficient to
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conclude that the spline model should be preferred to the Gumbel distribution.
Compared to the Gumbel distribution the spline model has two additional
parameters which unfortunately leads to additional uncertainty (i.e., larger
standard errors, se). The spline model may therefore not necessarily be better
in terms of root-mean-square error, rmse = (se2 + bias2)1/2. To compare the
uncertainty of the quantile estimates from the two distributions a simulation
experiment was performed. In this experiment it was assumed that the fitted
spline model represents the true distribution. The results from the Monte
Carlo (MC) method were compared with those of the bootstrap and jackknife
methods. The most essential details of the three methods are:

• MC simulation: 10 000 samples from the fitted spline model were gen-
erated. As in the original data, each MC sample consists of six 95-
year sequences representing the annual maximum precipitation deficits
of the six districts. The standardized Gumbel variables Y in the spline
model (equation 5.3) were generated from the logistic multivariate Gum-
bel distribution (Stephenson, 2003). This distribution assumes that the
precipitation deficits of the six districts are equicorrelated. The correla-
tion coefficient of the multivariate Gumbel distribution was set equal to
the average correlation coefficient of the annual maximum precipitation
deficits (0.889). Both the Gumbel distribution and the spline model were
fitted to the data in each MC sample. For the spline the knots were the
same as in the fit to the observed data, i.e., m1 = 2.6 and m2 = 3.4 but
the two spline parameters were estimated for each sample individually.
For each MC sample the quantile estimates from the two fitted distribu-
tions were compared with the quantile estimates from the spline fitted
to the original data.

• Bootstrap: 10 000 samples were drawn (with replacement) from the orig-
inal data. Again, each bootstrap sample consists of six 95-year annual
maximum precipitation deficits for the six districts. In order to preserve
the correlation between the precipitation deficits of different districts,
the same historical years are drawn for each district. The Gumbel dis-
tribution and the spline model were fitted to the data in each bootstrap
sample in the same way as in the MC method. The comparison of the
estimated quantiles was also identical to that in the MC method.

• Jackknife: The general idea behind the jackknife method is that a statis-
tic of interest is recalculated repeatedly after omitting a part of the
original data (e.g., Beersma and Buishand, 1999b; Chapter 2 of this the-
sis). In our case estimated quantiles from the Gumbel distribution and
spline model were recalculated after omitting one year of historical data
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each time. So, for each fitted distribution we have in total 95 estimates,
θ̂−j , of the quantile of interest from (jackknife) samples in which the
annual maximum precipitation deficit for one year is omitted. These

95 estimates are then used to obtain a jackknife estimate, V̂
1/2
jack, of the

standard error of the quantile estimate, where

V̂jack =
J − 1

J

J
∑

j=1

(

θ̂−j − θ̂·

)2
(5.6)

with θ̂· = 1/J
∑J

j=1 θ̂−j and J = 95. The jackknife further provides an

alternative estimate of the quantile, θ̂jack = Jθ̂− (J −1)θ̂· where θ̂ is the
estimate from the complete sample.

Table 5.2 presents the relative bias, standard error and root-mean-square
error of the 98% quantile (corresponding to a return period of 50 yr) for the
fitted Gumbel distribution and the spline model based on MC and bootstrap
simulations of 10 000 samples each as well as the jackknife method. For the
MC simulation the same performance measures are also given for the second
largest value of each simulated 95-year sequence as an empirical estimate of the
98% quantile. The table shows that despite the smaller bias for the regional

Table 5.2. Bias, standard error and root-mean-square error (rmse) of the 98%
quantile of the annual maximum precipitation deficit for the fitted Gumbel
distribution and the spline model based on MC, bootstrap and jackknife sam-
ples. The results are expressed as a percentage of the 98% quantile under the
spline model and represent averages of the six districts.

Monte Carlo (MC) Bootstrap Jackknife

Gumbel bias −6.1 −6.8 −6.3
std. error 5.5 5.1 5.1
rmse 8.2 8.5 8.1

Spline bias −0.6 −3.0 1.6
std. error 8.5 8.4 9.3
rmse 8.5 8.9 9.4

Empirical bias 1.0 - -
std. error 8.3 - -
rmse 8.4 - -
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spline model the Gumbel distribution has slightly smaller root-mean-square
errors. In the case of the regional spline model the root-mean-square errors
are almost completely determined by the standard error while for the Gumbel
distribution the standard error contributes less than half to the root-mean-
square error. The bootstrap and jackknife standard errors agree quite well with
those from the MC simulation. Only for the spline the jackknife overestimates
the standard error by 10%. The MC simulation shows that the empirical
estimate of the 98% quantile performs equally well as the fitted regional spline
model.

Thus in terms of root-mean-square errors of estimates of the 98% quantile
the regional spline gives comparable results as the Gumbel distribution and
the empirical estimates. The root-mean-square errors for the regional spline
may in fact be larger because the optimization of the locations of the knots
m1 and m2 is not accounted for in the MC experiment and the bootstrap and
jackknife methods. The next section deals with time series simulation and how
quantile estimates based on time series simulation perform in this respect.

5.4 Time series simulation

5.4.1 Nearest-neighbour resampling

The previous section was restricted to the annual maxima of the precipitation
deficit. In this section the time series of decade values of the precipitation
deficit are considered. Synthetic sequences of this deficit were generated by
nearest-neighbour resampling. The nearest-neighbour algorithm used is closely
related to the one in Chapter 4 (Beersma and Buishand, 2004). In the nearest-
neighbour method the precipitation deficit is resampled with replacement from
the historical data. The simplest way to incorporate temporal correlation is
to condition resampling on the latest simulated value. This is done by search-
ing the historical precipitation deficits that are similar to that value. One of
these nearest neighbours or analogs is then randomly selected and its histor-
ical successor is the next simulated value. Since only a single characteristic,
i.e., the latest simulated precipitation deficit, is used to generate the next pre-
cipitation deficit, this type of resampling is referred to as 1d-resampling. To
incorporate longer-term variability in the simulated time series, the search for
nearest neighbours is not only based on the precipitation deficit simulated in
the previous (time) step but also on the average of the precipitation deficits
simulated during the preceding 4 months. The latter acts as a memory for the
simulation as in, e.g., Harrold et al. (2003a), Beersma and Buishand (2004;
see also Appendix D of this thesis), and Leander et al. (2005). This type of
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resampling, where basically two characteristics are used to find the nearest
neighbours is therefore referred to as 2d-resampling.

The nearest neighbours in the resampling procedure are selected in terms
of an Euclidean distance. For 2d-resampling the two contributions to the
Euclidean distance have weights inversely proportional to the variance of the
two characteristics. One of the k = 5 nearest neighbours is selected randomly
using the decreasing kernel introduced by Lall and Sharma (1996) and applied
by Buishand and Brandsma (2001) and Beersma and Buishand (2004). A
7-decade wide moving window, centered on the latest simulated decade, is
used to restrict the search for nearest neighbours to the season of interest.
Note that a resampling technique cannot produce smaller or larger decade
values than those found in the historical record. However, for periods longer
than a decade, such as the summer half-year, the precipitation deficit can be
larger than the largest historical deficit because of rearranging extreme decade
values from different parts of the historical record. Moreover, extreme annual
precipitation deficits are in fact due to new combinations of decades with large
or moderately large precipitation deficits rather than a single decade with an
unprecedented precipitation deficit because of the boundedness of precipitation
by zero and the light tail of the distribution of potential evaporation (which
is bounded by global radiation). This makes nearest-neighbour resampling
suitable for exploring the upper tail of the distribution of the annual maximum
precipitation deficits. This use of nearest-neighbour resampling requires that
the simulated series are much longer than the return periods of the quantiles
of interest. To meet this requirement time series of the decade precipitation
deficit of 100 000 years were generated with the resampling procedure.

5.4.2 Accuracy of quantile estimates

The annual maxima in the 100 000 year generated sequence of precipitation
deficits were compared with the historical annual maxima. The annual max-
ima of the resampled sequences were obtained from the 18 consecutive decade
precipitation deficits that constitute the summer-half year in the same way as
for the observed data. Figure 5.8 presents Gumbel plots of the annual maxima
from 2d- and 1d-resampling for the two districts that differ most. The Gum-
bel plots clearly demonstrate that the 4-month memory in the 2d-resampling
algorithm is needed to reproduce the heavy upper tail of the annual maximum
precipitation deficit distributions. Figure 5.3 (Section 5.2) presents for each
of the six districts Gumbel plots of the annual maximum precipitation deficit
from 100 000-year sequences generated with the 2d-resampling model.

Quantile estimates are derived ’empirically’ from the ordered annual max-
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Figure 5.8. Gumbel probability plots of the annual maximum precipitation
deficit for two districts together with plots of the annual maxima from 100 000-
year sequences generated with the 2d-resampling (solid) and the 1d-resampling
(dash-dot) models. The coloured numbers represent the year minus 1900.

imum precipitation deficits in the 100 000-year simulated series. In contrast
to the regional frequency analysis of the previous section there is no under-
lying parametric model from which Monte-Carlo samples can be drawn to
determine biases and standard errors. However, the bootstrap and jackknife
can still be used to obtain the standard error of quantile estimates based
on nearest-neighbour resampling. The combination of nearest-neighbour re-
sampling with a bootstrap or jackknife procedure is closely related to the
double-bootstrap and the jackknife-after-bootstrap methodologies (Efron and
Tibshirani, 1993; Davison and Hinkley, 1997). In the case of the bootstrap,
N different 95-year (bootstrap) samples are generated by choosing years ran-
domly with replacement from the historical record, and in the case of the
jackknife 95 samples of 94 years are considered in which a single historical
year is omitted. The resampling procedure then uses these (sub)samples of
the historical data to generate long time series from which the quantiles are
again empirically derived. For the jackknife thus 95 quantile estimates from



5.4 Time series simulation 97

the 95 jackknife samples are obtained while for the bootstrap N quantile esti-
mates from the corresponding bootstrap samples are derived. Standard errors
of quantile estimates, finally, are estimated in the same way as in Section 5.3.2.
Note that these bootstrap and jackknife procedures are computer intensive,
since instead of a single 100 000-year simulation with the nearest-neighbour re-
sampling model, N (bootstrap) or 95 (jackknife) 100 000-year simulations are
needed to determine the accuracy of the estimated quantiles. In the case of the
bootstrap it is possible to reduce the number of simulations by requiring that
all 95 historical years are equally represented. This variant of the bootstrap is
known as the balanced bootstrap (Efron and Tibshirani, 1993). To obtain a
comparable amount of simulated data for both procedures, N = 499 balanced
bootstrap samples were resampled for 100 000 years while the 95 jackknife
samples were resampled for 500 000 years. The bootstrap and jackknife stan-
dard errors of the 98% quantile obtained in this way are respectively 9.0 and
9.9%. These standard errors are slightly larger than those for the spline model
in Table 5.2, and again the jackknife standard error is slightly larger than the
bootstrap standard error. A statistical model that describes the distribution
and dependence of the precipitation deficits is needed to determine how reli-
able these bootstrap and jackknife standard error estimates are. In the next
subsection a systematic analysis of the combination of nearest-neighbour re-
sampling with the bootstrap and jackknife procedures is given using synthetic
data obtained with an autoregressive time series model.

5.4.3 Reliability of jackknife and bootstrap standard error es-
timates

In this section a first-order autoregressive, AR(1), process is introduced to
investigate: (i) the accuracy of quantile estimates of the distribution of the
annual maximum precipitation deficit based on resampling of different 95-year
sequences of decade precipitation deficits, and (ii) the ability of the bootstrap
and jackknife methods to estimate the accuracy of these quantile estimates
from a single 95-year sequence.

The AR(1) model preserves the lag 1 autocorrelation coefficient (r(1) =
0.128) of the observed decade precipitation deficits during the summer half-
year. In contrast to Sections 5.4.1 and 5.4.2, where precipitation deficits for
different districts were considered, a single precipitation deficit is generated
representing the country-average precipitation deficit. Details of the AR(1)
model are given in Appendix G. The annual maxima of the simulated pre-
cipitation deficits were obtained from the 18 consecutive decade precipitation
deficits that constitute the summer half-year in the same way as for the ob-
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Figure 5.9. Gumbel probability plot of the annual maximum country-average
precipitation deficit together with plots of the annual maxima of a 100 000-year
sequence simulation with the AR(1) model fitted to the observed decade pre-
cipitation deficits (green), the annual maxima of a single 95-year sub-sequence
of the 100 000-year AR(1) simulation (green crosses), the annual maxima of a
100 000-year sequence generated with the 1d-resampling model using the same
95-year sequence (red), and a GEV distribution fitted to this 95-year sequence
(blue). Error bars indicate 98% confidence intervals based on the 999 different
95-year sequences of the 100 000-year AR(1) simulation (red for 1d-resampling
and blue for the GEV distribution).

served and resampled data. Figure 5.9 presents a Gumbel probability plot
of the annual maximum of the country-average precipitation deficit together
with a plot of the annual maxima from a 100 000-year simulation with the
AR(1) time series model (represented by the green curve). Up to return peri-
ods of about 20 years there is a very good correspondence between the AR(1)
model and the observed precipitation deficits but the AR(1) model does not
reproduce the heavy upper tail of the observations. Despite this difference
the AR(1) model will be regarded to represent the true distribution of the
annual maximum precipitation deficit for the remainder of this section. Fig-
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ure 5.9 also shows Gumbel plots of the annual maxima of a single 95-year
sub-sequence of the 100 000-year AR(1) simulation (green crosses), a GEV
distribution fitted to this 95-year sequence (blue curve) and the annual max-
ima from a 100 000-year sequence generated with the 1d-resampling model
using the same 95-year sequence (red curve). Note that the distribution ob-
tained with the 1d-resampling model is much closer to the true distribution
than the (fitted) GEV distribution. This is generally true as is demonstrated
with the following experiment.

The first 94 905 years of the AR(1) simulation were split into 999 non-
overlapping 95-year sequences. For each 95-year sequence, the 98% quantile
of the annual maximum precipitation deficit was estimated by fitting a GEV
distribution to the 95 annual maxima of the sequence and by generating a
100 000-year sequence of decade precipitation deficits with the 1d-resampling
model. Fitting a GEV distribution results in a standard error of the 98% quan-
tile of 6.1% while generation of a 100 000-year series with the 1d-resampling
model results in a standard error of only 3.1%. For the 98% quantile, resam-
pling is thus almost twice as accurate as fitting a GEV distribution; in other
words resampling has a gain in accuracy of almost 50%. This gain depends on
the quantile of interest because for the GEV distribution the relative standard
error of the estimated quantile rapidly increases with increasing return period
simply because of the growing influence of the uncertain shape parameter on
the quantile. The gain of resampling varies from 20% for the 90% quantile
to more than 60% for the 99.5% quantile. The 98% confidence intervals in
Figure 5.9 also show these differences in accuracy of quantile estimates. The
reduction of the variance of quantile estimates as a result of resampling is
extensively described by Buishand (2006).

The 100 000-year AR(1) simulation was further used to test the reliability
of the bootstrap and jackknife procedures that were employed in Section 5.4.2
to estimate the accuracy of quantile estimates derived from the resampled ob-
servations. For each of the above 999 different 95-year AR(1) sequences the
bootstrap or jackknife procedure could be performed. However, to perform the
full experiment with N bootstrap samples and 95 jackknife samples for each of
the 999 different 95-year sequences is too expensive to run on most present day
computers taking into account that for each bootstrap and jackknife sample
series with a length of ∼100 000 years need to be generated with the resam-
pling model. The bootstrap experiment (with N = 199 balanced samples
and 100 000 years nearest-neighbour resampling) and the jackknife procedure
(with 95 samples and 200 000 years nearest-neighbour resampling) were there-
fore only performed for the first 20 of the 999 different 95-year sequences. The
average and the standard deviation of the bootstrap and jackknife estimates of
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Table 5.3. Relative standard errors (%) of the 98% quantile of the annual
maximum precipitation deficit in an AR(1) model for the country-average pre-
cipitation deficits. The quantile is estimated by nearest-neighbour resampling
of 95-year AR(1) sequences, and its standard error is based on the sample
standard deviation of the quantile estimate from the 999 different 95-year
AR(1) sequences (MC), the bootstrap or the jackknife. The values for the
bootstrap and the jackknife are the averages of 20 estimates from different 95-
year AR(1) sequences; the values in parentheses give the standard deviations
of these estimates.

True (MC) Bootstrap Jackknife

1d-resampling 3.1 5.0 (1.5) 3.6 (0.6)
2d-resampling 5.1 5.3 (1.4) 6.0 (1.6)

the relative standard error of the 98% quantile from resampling these 20 differ-
ent 95-year sequences are presented in Table 5.3 together with the true stan-
dard error obtained from resampling all 999 different 95-year sequences from
the full AR(1) simulation. The table shows that in the case of 1d-resampling
the bootstrap and the jackknife overestimate the standard error of the 98%
quantile, in particular the bootstrap for which the overestimation is as large as
60%. Including a 4-month memory in the resampling model (2d-resampling),
as was done for the precipitation deficit data of the six districts, leads to a
60% larger standard error. The difference in the standard error between the
1d- and 2d-resampling models depends, however, on the quantile of interest.
It increases from 20% for the 90% quantile to 90% for the 99.5% quantile.
In the case of 2d-resampling the bootstrap slightly outperforms the jackknife
but more important, the standard errors in Table 5.3 are almost a factor of
two smaller than the bootstrap and jackknife standard errors of respectively
9.0 and 9.9% found in Section 5.4.2 for nearest-neighbour resampling of the
observed precipitation deficits. The standard deviations of 1.4 to 1.6% of the
bootstrap and jackknife estimates in Table 5.3 indicate that this large dif-
ference is unlikely due to random variations of these estimates. Something
that presumably contributes to this difference is that the distribution of the
observed annual maximum precipitation deficits has a heavier upper tail than
that simulated with the AR(1) model. Despite this discrepancy, the AR(1)
simulation provides a good picture of the quality of the bootstrap and jack-
knife standard error estimates of estimated quantiles from nearest-neighbour
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resampling. In contrast with the results in Table 5.2, where the bootstrap and
jackknife were used in combination with parametric models, the bootstrap
and jackknife in combination with nearest-neighbour resampling give rather
uncertain and occasionally somewhat biased results.

5.5 Discussion and conclusions

Regional frequency analysis and time series simulation by means of nearest-
neighbour resampling were studied to estimate a large quantile of the distri-
bution of the annual maximum precipitation deficit. A regression spline was
used to describe the regional growth curve. Regional estimation of the com-
mon parameters of this spline only slightly reduces the uncertainty of large
quantile estimates because of the relatively small number of districts (six) and
the strong spatial correlation of the annual maximum precipitation deficits. To
reproduce the heavy upper tail of the distribution of the annual maximum pre-
cipitation deficits with nearest-neighbour resampling, a 2d-resampling model
was needed, i.e., a model with an additional 4-month memory to find the
nearest neighbours. A disadvantage of this memory term is that the standard
error of quantile estimates is considerably larger than for 1d-resampling. To
determine the standard error of quantile estimates in the case of resampling,
bootstrap or jackknife techniques are required. The combination of nearest-
neighbour resampling with these techniques is computationally expensive and
the results turn out to be rather uncertain and possibly somewhat biased.

Relative standard errors of the estimate of the 98% quantile were com-
pared in Sections 5.3 and 5.4. For other quantiles the results can be quite
different as is shown in Figure 5.10. The figure shows a strong increase of the
relative standard errors for the spline model in the region of the curvature
of the regional growth curve. After a local minimum near the 70-year event,
the standard error increases steadily up to 17% for the 1000-year event. This
increase is obviously related to the relatively large uncertainty of the parame-
ters a and b in the spline model. Apart from a larger amplitude, the standard
errors of quantile estimates obtained with 2d-resampling show a similar be-
haviour as those for the spline model up to the 100-year event, but for larger
quantiles the relative standard error slowly decreases to approximately 6% for
the 1000-year event, which is only slightly larger than the relative standard
error for the 10-year event. For very large quantiles 2d-resampling thus clearly
outperforms the spline model. In the region around the 30-year event, where
the standard errors are large, the empirical sample quantile performs equally
well as the spline model and 2d-resampling. For 2d-resampling, the bootstrap
provides a considerably smaller standard error of the estimated quantiles in
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Figure 5.10. Relative standard errors of the estimated quantiles of the annual
maximum precipitation deficit from a spline approximation to the regional
growth curve, from the sample quantiles under the assumption that the re-
gional spline represents the true distribution and from 2d-resampling. The
relative standard errors are averages over the six districts. The dotted lines
represent the position of the two knots of the spline model.

this region than the jackknife. Beyond this region the jackknife and bootstrap
standard error estimates are of comparable size.

Thus, for return periods between 20 and 100 years, the standard errors of
the estimated quantiles are relatively large, which seems to be related to the
‘uncertain’ curvature of the distribution of the annual maximum precipitation
deficits. Up to the 97% quantile (which corresponds roughly with a return
period of 30 years) the spline model turns out to be superior. But, for very
large quantiles, where sample quantiles are unavailable and extrapolation is
required, the uncertainty of quantile estimates obtained with 2d-resampling
becomes much smaller than the uncertainty of quantile estimates from the
spline model.

This discussion is concluded with a practical example of 2d-resampling
in combination with the bootstrap. Bootstrap confidence intervals are given
for the return period of the largest observed precipitation deficit for each of
the six districts, i.e., the 1959 drought for the CE and NE districts and the
1976 drought for the other districts. The return periods of these events were
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Figure 5.11. Confidence intervals for the return period of the largest precip-
itation deficit in each of the six districts obtained with the combination of
2d-resampling and the bootstrap procedure in Section 5.4.2. The boxes and
the whiskers represent the 50% and 90% confidence interval respectively. The
coloured plusses represent for each district the return period obtained from a
100 000-year sequence generated with the 2d-resampling model. For compari-
son the harmonic average of the six confidence intervals and the 50% and 90%
confidence bounds of the return period associated with the largest value in a
sample of size 95 (Stedinger et al., 1993) are given as well.

empirically derived from the 100 000-year sequences generated with the 2d-
resampling model for each of the 499 bootstrap samples in Section 5.4.2. The
bootstrap confidence bounds in Figure 5.11 are based on the percentiles of
these bootstrap estimates. Besides the 50% and 90% confidence bounds for
the largest precipitation deficit in each of the six districts and their harmonic
averages, the figure also presents the corresponding bounds of the return period
associated with the largest value in a sample of size 95 as given by Stedinger
et al. (1993). The confidence intervals are quite wide, e.g., the 90% confidence
interval for the 1976 drought in the NW district ranges between 42 and 735
years. The average 50% and 90% confidence intervals are narrower than the
corresponding intervals for the return period of the largest value in a sample
of size 95. Both intervals differ in particular regarding their upper limits. The
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width of the 2d-resampling bootstrap confidence interval is on average more
than a factor of two smaller (on a linear scale) than that of the interval ob-
tained without use of the information in the data.

Acknowledgments. We thank Prof. Bert Holtslag at Wageningen University
for valuable comments on a draft of this paper, and for the suggestion to
explore the nature of the drought related feedback in more detail. The work
was performed in the framework of the ‘Drought studies of the Netherlands’
in cooperation with the Institute for Inland Water Management and Waste
Water Treatment (RIZA), Lelystad under contracts RI-2726A and RI-4339.



105

Chapter 6

Summary and synthesis

6.1 Summary

Resampling techniques are used to determine statistical uncertainty and to
simulate very long hydro-meteorological time series that contain unprece-
dented extreme events. An advantage of a frequency analysis of the extremes
of such long time series is that the statistical uncertainty of the result (e.g., a
T -year event) is generally smaller than for a frequency analysis of the observed
extremes only. In addition, resampling techniques do not need various, more
or less false, assumptions about the statistical properties of the data.

By combining time series of resampled hydro-meteorological data with suit-
able hydrological models, this time series resampling approach can be used for
a wide range of studies regarding the effects of extreme hydro-meteorological
events such as extremely high or low river discharges, extremely high or low
ground-water levels or other extreme hydrological events. An additional ad-
vantage of this approach is that hydro-meteorological effects can be distin-
guished from human induced changes in the hydrological system such as canal-
ization, urbanization and deforestation.

The first application of resampling (Chapter 2) involves the statistical uncer-
tainty of variance estimates. The standard error (statistical uncertainty) of
the variance is determined with the jackknife, and is used to develop a test
for equality of variances of monthly values which can be useful for both model
validation and climate change assessment. Since extreme events are related
to the variance, it can even be used as a first indication in the detection of
changes in extreme events. The test is of great practical use because it has
a simple and straightforward multivariate extension, meaning that it can be
applied to an area, consisting of several locations without complications. As
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an example, the multivariate test is applied to precipitation and temperature
variances in the UKTR climate change simulation with the first Hadley Centre
(UK) coupled ocean-atmosphere General Circulation Model in three regions:
central North America, southern Europe and northern Europe. In particular,
a significant increase (at the 5% level) of the variance of monthly precipita-
tion over northern Europe is found in the climate change simulation for winter,
summer and autumn. Apart from these increases, a significant decrease of the
variance of the monthly near-surface temperature in spring is detected.

In Chapter 3 multi-site sequences of daily precipitation and temperature in the
German part of the Rhine basin are resampled conditional on the large-scale
atmospheric circulation. The atmospheric circulation then acts as a predic-
tor for precipitation and temperature, i.e., the circulation determines largely
whether a day will be wet or dry and whether a day will be relatively warm
or cold. In the case of a systematic change in circulation, e.g., due to anthro-
pogenic climate change, this will automatically lead to a change in (extreme)
precipitation and temperature. Conditional nearest-neighbour resampling is
therefore potentially useful for climate change applications. Different condi-
tional nearest-neighbour resampling models are compared with each other and
with the so-called analog method (Zorita et al., 1995; Zorita and von Storch,
1999). Despite the fact that the analog method is originally a deterministic
method and conditional nearest-neighbour resampling a stochastic one the two
methods are closely related. An important conclusion of the comparison of
conditional nearest-neighbour resampling and a stochastic version of the ana-
log method is that the simulation of precipitation and temperature for a new
day should not only be conditioned on the circulation characteristics of that
day (as happens by definition in the analog method) but also on the simulated
precipitation and temperature for the previous day, in order to achieve the
appropriate level of persistence and variability in the generated time series.

It should also be recognized that for climate change applications, which
was a motivation for conditional nearest-neighbour resampling, there are a
few limitations regarding its use. A serious one is that (future) changes in
precipitation may not result from changes in the atmospheric circulation alone
as is shown by several climate change simulations with general circulation
models (van Ulden and van Oldenborgh, 2006; van Ulden et al., 2007), and by
simulations of historical precipitation trends by means of conditional nearest-
neighbour resampling (Beersma and Buishand, 1999a).

In 980-year multi-site simulations of daily precipitation and temperature,
representative of the current climate, up to 35% larger 10-day area-average
precipitation amounts are produced than observed in the historical 35-year
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reference period. In combination with rainfall-runoff models, such unprece-
dented precipitation extremes can be very useful for determining extremely
rare river discharges and thus for planning and design of the hydrological in-
frastructure.

Chapter 4 deals with (extreme) drought. The joint probability of precipita-
tion deficits in the Netherlands and discharge deficits of the river Rhine is
the central theme in this chapter. These joint probabilities are estimated us-
ing nearest-neighbour resampling and compared with estimates obtained from
fitting bivariate probability distributions. The asymptotic dependence struc-
ture between precipitation and discharge deficits was found to play a crucial
role in estimating the joint exceedance probabilities. A clear advantage of
nearest-neighbour resampling is that it does not need assumptions about the
dependence structure since it is inherited from the data. In the framework of
fitting bivariate probability distributions, satisfactory results could be achieved
only by introducing a new bivariate distribution which is a mixture of a bi-
variate normal and a bivariate Gumbel distribution, i.e., a bivariate normal
distribution with a (logistic) Gumbel dependence structure. This bivariate
distribution gives a better estimate of the probability that the precipitation
and discharge deficits are both extreme than nearest-neighbour resampling.
This is due to the fact that the upper tails of both marginal (i.e., univariate)
distributions are not properly reproduced by the nearest-neighbour resampling
model.

Thus, nearest-neighbour resampling performs superior regarding the de-
pendence structure, but overall the novel bivariate distribution turns out to
be more suitable to estimate the joint exceedance probabilities of large pre-
cipitation and discharge deficits. Based on this bivariate distribution small
probabilities are found (once every 200–300 years) for the joint exceedance
of the precipitation deficit and the discharge deficit that occurred during the
driest historical years (1921 and 1976). When a failure region based on the
economic damage is used the probability of these droughts increases to about
once every 100 years. Besides, the differences between the probabilities of
drought obtained with the different methods are smaller with such a failure
region than with the ordinary joint exceedances of the corresponding precipi-
tation and discharge deficits.

Spatial variation in the probability distribution of precipitation deficits in the
Netherlands is the subject of Chapter 5. This spatial variation is addressed by
dividing the Netherlands into six districts. Apart from differences in the return
levels, the probability distributions for all of the six districts have a common
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extraordinary curvature in the upper tail. These distributions resemble neither
lognormal nor extreme value distributions. To reproduce both the differences
in return levels between the districts and the extraordinary curvature in the
tail two alternatives are considered: a regional frequency analysis and time
series simulation by nearest-neighbour resampling. The regional frequency
analysis yields a regional growth curve that can be approximated by a spline
on the Gumbel scale. To reproduce the common curvature in the upper tail
of the distribution the resampled data need additional long-term persistence.
This is achieved by introducing a 4-month memory term in the resampling
procedure. This memory term leads to an increase of the statistical uncertainty
(standard error) of large return levels of the precipitation deficit. But when the
two methods are used for extrapolation (larger return levels than observed),
nearest-neighbour resampling still outperforms the regional frequency analysis.
This is due to a strong increase in the relative standard error of return level
estimates with increasing return period as a result of the large uncertainty in
the parameters of the spline that approximates the regional growth curve. In
terms of statistical uncertainty nearest-neighbour resampling thus outperforms
a regional frequency analysis. And this is the type of results that demonstrates
the added value of resampling.

Using nearest-neighbour resampling and the bootstrap procedure, confi-
dence intervals are constructed for the return periods of the largest observed
precipitation deficit for each of the six districts. Depending on the district,
the largest precipitation deficit occurred in 1959 or 1976. Although these con-
fidence intervals are quite wide, they are on average a factor of two narrower
than the expected interval of the largest observation in a series of this length.

6.2 Synthesis

The length and the specific period of the data sample that is used for any
statistical analysis has an influence on the accuracy of the end-result. This
also holds for results obtained with resampling procedures. The statistical
uncertainty generally decreases if the length of the reference record that is
used for resampling increases. A related point is the representativity of the
reference period used for resampling. Without trends, one can generally say
that the longer the reference period, and the more natural variability may be
captured, the more representative the data.

In practice, we generally have not much more than one hundred years of
recorded instrumental hydro-meteorological data. The record length usually
decreases to only 30–50 years when the data are needed with sufficient tem-
poral (e.g., daily) resolution and sufficient spatial coverage. In Chapter 3 the
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resampling models make use of 35 years (1961–1995) of daily precipitation and
temperature for a number of stations in the German part of the Rhine basin.
In Chapters 4 and 5 daily precipitation and (potential) evaporation data for
95 years (1906–2000) are used which are supplemented in Chapter 4 with daily
discharges of the river Rhine at gauging station Lobith for the same 95-year
period.

The bootstrap and jackknife procedures that are presented and applied in
Chapter 5 make it possible to systematically investigate the statistical uncer-
tainty resulting from the reference period being used. In combination with
nearest-neighbour resampling the bootstrap is used to construct confidence
intervals for the return periods of the largest observed precipitation deficit in
each district. In general, it should be a challenge to supply extreme quan-
tiles, return levels or return periods from nearest-neighbour resampling with
such bootstrap or jackknife uncertainty analyses. This can and should make
users more aware of the (large) uncertainty involved in ‘extrapolating’ extreme
events from relatively small historical samples. In future work, it would be
interesting in this respect to perform similar uncertainty analyses based on
the, relatively short, 35-year reference period that is used in Chapter 3. One
should however be aware that such uncertainty analyses can become quite
computer intensive. Moreover, the results in Chapter 5 show that the result-
ing uncertainty estimates can be biased.

In Chapter 4 daily precipitation data for the 95-year reference period from
thirteen stations are used. For the analysis in Chapter 5 this set is augmented
with five stations. Since no long (homogeneous) series of daily evaporation
exist, such a long series is constructed from the Makkink formula for potential
evaporation using daily global radiation estimated from the daily sunshine du-
ration at station De Bilt. Sunshine duration and global radiation are closely
related since the latter mainly depends on the presence of clouds and the solar
elevation. This is confirmed by measurements of daily global radiation at De
Bilt which are available from 1958 onwards. For the period 1958–2000 there is
a good correspondence between the Makkink evaporation based on the mea-
sured global radiation and that based on the global radiation estimated from
the sunshine duration at De Bilt (Beersma and Buishand, 2004; Chapter 4 of
this thesis, page 60). For the regional analysis in Chapter 5 the single evapora-
tion series is scaled based on the spatial variation in the climatological mean
(1971–2000) of the Makkink evaporation. And although this scaling of the
evaporation series can be justified, since the spatial variability of precipitation
is much larger than that of evaporation, this situation is not desirable.

The lack of long (daily) evaporation series has a historical background. For
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several practical reasons KNMI decided in 1987 (CHO-TNO, 1988) to provide
routinely daily (potential) evaporation based on the Makkink formula rather
than the Penman open water evaporation which had been provided until then.
For De Bilt the Makkink evaporation series was extended back until 1958, i.e.,
the year in which the global radiation measurements started. For extension
further back in time (both useful for trend analysis and extreme value analy-
sis) there seems no other option than to use estimated global radiation from
sunshine duration as performed in Chapter 4 and used in Chapter 5.

Besides for De Bilt, daily sunshine duration is available from 1900 or
slightly earlier for four other principal climatological stations in the Nether-
lands (Beek, De Kooy, Eelde and Vlissingen). Some corrections for the homo-
geneity of these series might be necessary. With a reasonable effort it seems
possible to supplement the long series of estimated daily Makkink evapora-
tion for De Bilt with four similar series for different locations in the Nether-
lands. Apart from this, there is at least one known measurement site in the
Netherlands, i.e., station ‘Duivendaal-Haarweg’ from Wageningen University,
for which a much longer daily global radiation series exists than that for De
Bilt. For the growing season (April–September) this series already starts in
1928. From 1938 onwards the data are available throughout the year. Al-
though, the design of the solarimeter instrument changed a few times, the
site was relocated in 1980, and the series contains some periods with missing
data (de Bruin et al., 1995), it would be interesting to check its quality and
homogeneity. Due to its length this series is quite unique and could be very
useful for the type of analyses described in Chapters 4 and 5.

Very long time series simulated with nearest-neighbour resampling are station-
ary in nature, unless resampling is conditioned on a non-stationary predictor.
There is a good reason for the emphasis on ‘stationary’ in the previous sen-
tence. Although stationary time series are simulated we know that climate is
in fact not stationary, at least not in the long run. Stationarity largely depends
on the time scale that one considers. For practical reasons climatologists often
look at 30-year periods, for which they assume that the climate is stationary.
But even though the climate might seem stationary in a 30-year period this is
not necessarily so for a 100-year or longer period. And if the time scale is ex-
tended to that of the ice-ages climate is definitely not stationary. This brings
us to the issue of climate variability versus climate change. Two terms both
related to non-stationarity but with a very thin distinction in meaning. In the
IPCC view climate change refers to a persistent and statistically significant
change in the mean climate or its variability, while climate variability refers to
variations (either natural of anthropogenic) in the mean state (see glossary in
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IPCC, 2001). Other terminology refers to internal forcings, or fluctuations, of
the climate system as climate variability and to external forcings, e.g., due to
anthropogenic emission of greenhouse gases and aerosols, as climate change.
In reality both type of forcings act simultaneously and one effect might mask
the other which makes it difficult to distinguish, or even detect, them.

Climate is thus not stationary in the long run and, due to anthropogenic
climate change, probably not even in the near future. A relevant example of
the non-stationarity of climate in the recent history is the winter rainfall in
the Netherlands and over large parts of the Rhine basin which shows signif-
icant increasing trends over the 20th century (Rapp and Schönwiese, 1995;
Widmann and Schär, 1997; Schmidli et al., 2002; Klein Tank and Sluijter,
2003; Hundecha and Bárdossy, 2005). The causes of these trends are not fully
understood yet but they are assumed to be related to both natural variability
and global warming. Apart from the causes, these trends are often thought to
be the result of changes in the large scale atmospheric circulation. By condi-
tioning nearest-neighbour resampling of precipitation and temperature on the
observed atmospheric circulation for the period 1891–1995, in a similar way as
described in Chapter 3 for the sub-period 1961–1995, Beersma and Buishand
(1999a) showed that the (change in) atmospheric circulation can explain on
average only slightly more than 50% of the trends in mean winter rainfall over
the German part of the Rhine basin.

Should such trends in the observations be corrected if these observations
are used to generate long stationary time series by means of nearest-neighbour
resampling? Detrending of the observed data is only useful if a trend is caused
by a persistent change of climate. In that case the data should be detrended
towards ‘the time period in the observations for which the resampled data
should be representative’. For the resampling conditional on the 35 years of
historical circulation indices in Chapter 3, the trends in the winter precipita-
tion over the German part of the Rhine basin were not corrected because part
of these trends can be explained by long-term changes in these indices (see
above) and because the cause for the remaining trend is unknown. In the his-
torical time series of summer precipitation and evaporation in the Netherlands
that were used for nearest-neighbour resampling in Chapters 4 and 5 no trends
were detected. A trend in the observed data used for resampling that cannot
be explained adds (some unknown) uncertainty to the end-result. The uncer-
tainty obtained with jackknife and bootstrap procedures then underestimates
the true uncertainty.

Despite the intrinsic non-stationarity of climate, the need for long sta-
tionary hydro-meteorological time series remains. Such long time series are
certainly not meant as ‘predictions’ into the far future, rather they are repre-
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sentative of the ‘current’ or a particular historical state of the climate system.
The great length of the time series is needed to represent extreme events with
a very low probability of occurrence which in turn are needed for the design
of protective measures. In a period of (anthropogenic) climate change the
generated time series may be representative of relatively short periods only,
say a few decades, depending on the speed of the climate change.

Apart from the application of the variance test (in Chapter 2) and recognition
of the potential use of conditional nearest-neighbour resampling (Chapter 3)
in the context of climate change, future climate change was not considered
in this thesis. At the same time, the demand for information regarding the
future changes in extreme (hydro-meteorological) events due to anthropogenic
climate change is steadily increasing. And although resampling can definitely
be of help here, it is considered a subject on its own. Work on this topic for
the Meuse basin is in progress (Leander and Buishand, 2007).
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Estimation of correlation
between pseudovalues

The estimates of the correlation coefficients ρ in Tables 2.2 and 2.3 were ob-
tained from the Monte Carlo experiment as follows. Let θ∗j,m be the average
pseudovalue for year j in the mth simulation (j = 1, . . . , J ; m = 1, . . . , M),
taken over N independent sequences. A natural estimate of ρ is then:

ρ̂ =

2
M
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J
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i=1

i−1
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)(

θ∗j,m − θ∗
)

MJ(J − 1)v̂
, (A.1)

where

θ∗ =
1

JM

J
∑

j=1

M
∑

m=1

θ∗j,m and

v̂ =
1

JM

J
∑

j=1

M
∑

m=1

(

θ∗j,m − θ∗
)2

.

For computational purposes it is more convienient to obtain ρ̂ by (Koch, 1983):

ρ̂ = (Jv̂b − v̂)/[(J − 1)v̂] , (A.2)
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the mean of the pseudovalues in the mth simulation. Equation (A.2) can not
be used to estimate ρ from a single record, because the result ρ̂ = −1/(J − 1)
for M = 1 does not depend on the true value of ρ.
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Properties of kurtosis
estimates

In a Monte Carlo study, Pearson (1935) observed that kurtosis estimates can
be heavily biased. For the normal distribution, it can be shown (Cramér,
1946) that E(γ̂2) = −6/(J + 1). Table B.1 compares the mean of γ̂2 with the
true kurtosis γ2 for sample sizes encountered in Chapter 2. For leptokurtic

Table B.1. Mean (first row) and standard deviation (second row) of kurtosis
estimates for sequences of independent observations from various distributions
(5000 simulations).

γ̂2, Eq. (2.3) γ̂2, Eq. (2.16)
Distribution Kurtosis J = 5 J = 10 J = 30 J = 10, ns = 3

Uniform −1.2 −1.11 −1.01 −1.11 −0.97
0.53 0.54 0.26 0.33

Normal 0 −1.00 −0.54 −0.19 −0.21
0.50 0.76 0.71 0.69

χ2
12 1 −0.98 −0.42 0.26 0.17

0.53 0.95 1.35 1.21
χ2

4 3 −0.94 −0.16 1.12 0.89
0.56 1.21 2.12 1.86

Laplace 3 −0.87 0.08 1.41 1.15
0.54 1.13 1.86 1.67

Exponential 6 −0.88 0.19 2.27 1.88
0.62 1.46 2.94 2.56
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distributions (γ2 > 0) the true kurtosis is seriously underestimated. The
bias grows with increasing γ2. For J = 5, E(γ̂2) ≈ −1 for all distributions
considered in Table B.1, no matter their true kurtosis. This bias is partly
caused by the boundedness of γ̂2. Expressions for the bounds of standardized
sample moments are given in Dalén (1987). The upper bound of γ̂2 is 0.25,
5.11 and 25.03 for J = 5, 10 and 30, respectively. The sample kurtosis of a
sample of size 5 from a Laplace distribution is thus always smaller than the
true kurtosis.

The last column in Table B.1 gives the mean of the pooled estimate γ̂2 in
equation (2.16) for ns = 3 samples of size 10 from the same distribution. The
bias is roughly of the same order as that in a single sample of size 30. Note
that for this sample size, E(γ̂2) ≈ 1 for the two distributions with γ2 = 3.

Besides the bias, the large variability of kurtosis estimates is a point of
concern. For the leptokurtic distributions in Table B.1, the standard deviation
of γ̂2 increases with increasing J as a result of the growth of its upper bound.
It is only for larger samples than those in Table B.1 that var(γ̂2) becomes
proportional to 1/J . Further, the standard deviation of the pooled estimate
of 3 × 10 observations is somewhat smaller than that of a single sample of
size 30. Spatial averaging over grid points will strongly reduce the standard
deviation of γ̂2.
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Simulation of daily circulation
indices

C.1 Introduction

A typical feature of air pressure is that the day-to-day variability is relatively
small during periods of high pressure and generally large during periods of
low pressure. Such state-dependent behaviour cannot be reproduced by clas-
sical autoregressive (AR) processes. Al-Awadhi and Jollife (1998) therefore
studied the use of threshold autoregressive (TAR) models to describe time
series of surface pressure in the UK. Zwiers and von Storch (1990) applied
this class of models to time series of the Southern Oscillation index. It seems
reasonable to suspect that the statistical properties of the circulation indices
(which are based on air pressure maps) are also state dependent. In contrast
to the univariate applications of the TAR models mentioned above usually
more than one index is needed to characterize the atmospheric circulation.
Lall and Sharma (1996) showed that nearest-neighbour resampling is able to
reproduce the nonlinear behaviour of a TAR model. Because the extension of
nearest-neighbour resampling to the multivariate situation is straightforward,
this method was used to simulate time series of the daily circulation indices
Z, W and S.

C.2 Model construction

Three unconditional nearest-neighbour simulation models for generating Z,
W and S were examined. The different feature vectors Dt are schematically
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a) |
t-1

Z̃∗ W̃ ∗ S̃∗

|
t

Z̃ W̃ S̃

b) |
t-2

Z̃∗ S̃∗

|
t-1

Z̃∗ W̃ ∗ S̃∗

|
t

Z̃ W̃ S̃

c) |
t-3

Z̃∗ S̃∗

|
t-2

Z̃∗ S̃∗

|
t-1

Z̃∗ W̃ ∗ S̃∗

|
t

Z̃ W̃ S̃

Figure C.1. Elements of the feature vector (solid boxes) for unconditional sim-
ulation of circulation indices Z, W, S (dashed boxes): (a) CIRC 1; (b) CIRC 2
and (c) CIRC 3. Asterisk indicates that the circulation index was simulated
in a previous time step; tilde refers to a standardized value.

shown in Figure C.1. In the first-order model (CIRC 1) the feature vector
contains the three standardized circulation indices on day t − 1 with equal
weights wi. The feature vector of the second-order model (CIRC 2) contains
standardized circulation indices for day t − 1 and for day t − 2. The weights
for Z̃t−1, W̃t−1, S̃t−1, Z̃t−2, W̃t−2 and S̃t−2 are 1, 2, 1, 1, 0 and 1 respectively.
The weight for W̃t−2 was set to zero because the autocorrelation structure of
the W index closely resembles that of a first-order AR process. Finally, there
is a third-order model (CIRC 3) for which Z̃t−3 and S̃t−3 are included in the
feature vector both with unit weight (and the weight for W̃t−1 was set to 3).
All models made again use of the decreasing kernel in equation (3.2) with
k = 5, and the search for nearest neighbours was restricted to days within a
91-day moving window, centered on the calendar day of interest.

C.3 Model results

C.3.1 Autocorrelation of circulation indices

With the three models 980-year simulations were performed by resampling
from the historical circulation indices of the 35-year period 1961–1995. Ta-
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Table C.1. Differences between the lag 1 and lag 3 autocorrelation coeffi-
cients of daily circulation indices in 980-year simulations and the historical
data. Bottom lines: historical (1961–1995) estimates of r(1) and r(3) with
their standard errors, se. Z, W and S denote the relative vorticity, the west
component and the south component of the flow respectively. Values in bold
refer to statistically significant differences.

r(1) r(3)
Model Z W S Z W S

CIRC 1 −0.008 −0.008 −0.008 −−−0.091 0.008 −−−0.086
CIRC 2 −0.018 −0.008 −0.021 −0.014 0.017 −0.013
CIRC 3 −−−0.033 −0.010 −−−0.036 −0.015 0.011 −0.022

Historical 0.498 0.755 0.521 0.182 0.393 0.190
se 0.012 0.006 0.011 0.010 0.012 0.011

ble C.1 presents the differences between the lag 1 and lag 3 autocorrelation
coefficients of the simulated circulation indices and those of the historical
record. The historical estimates and their jackknife standard errors (Buis-
hand and Beersma, 1993) are also given.

In the first-order model, the lag 3 autocorrelation coefficients of the Z and
S indices are significantly underestimated. The other autocorrelation coeffi-
cients differ only slightly from the historical ones. For the second-order model
there are no significant differences. The third-order model is no improvement
compared to the second-order model because the lag 1 autocorrelation coeffi-
cients of Z and S are significantly underestimated.

C.3.2 Run lengths of circulation types

Additionally, the reproduction of the average run length of six typical circula-
tion types was examined. Days were classified as cyclonic, strong westerly and
southerly if the standardized values of respectively Z, W and S were larger
than 1.0, and as anticyclonic, easterly and northerly if Z̃, W̃ and S̃ were
smaller than −1.0. Table C.2 presents the percentage differences between the
average run lengths of the simulated indices and those of the historical indices.

The first-order model somewhat underestimates the average run lengths.
The underestimation of the run lengths in the second-order model is worse
but significant only for northerly flows. The third-order model significantly



120 Appendix C

Table C.2. Relative differences (%) between average run lengths of six typical
circulation types in the 980-year simulations and the historical data. Bottom
lines: historical (1961–1995) estimates of the average run lengths (days) with
their relative standard errors, se (%). Values in bold refer to statistically
significant differences.

Model Cyclonic Strong Southerly Anti- Easterly Northerly
westerly cyclonic

CIRC 1 −1.20 −1.00 −0.65 −0.39 −2.17 −1.35
CIRC 2 −2.77 −2.17 −2.62 −2.47 −2.00 −−−4.53
CIRC 3 −−−5.26 −4.25 −−−4.00 −−−4.71 −3.50 −−−6.87

Historical 1.74 2.14 1.69 1.62 2.70 1.81
se (%) 1.97 2.32 1.83 1.74 2.86 2.10

underestimates the average run lengths for the cyclonic and anticyclonic flows
as well as for the southerly and northerly flows. In the historical record the av-
erage run length for easterly flows is about 25% larger than for strong westerly
flows. All models are able to reproduce this asymmetry between the average
duration of strong westerly and easterly flows.

C.4 Conclusions

In conclusion, the third-order model (CIRC 3) performs worse both in terms
of lag 1 autocorrelation coefficients and run lengths of circulation types. The
second-order model performs better with respect to reproduction of the au-
tocorrelation coefficients and the first-order model produces the run length
statistics somewhat better. For the simulations conditional on simulated cir-
culation indices in Sections 3.3.2 and 3.3.3, the second-order model (CIRC 2)
was used to generate 980 years of daily circulation indices.
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Nearest-neighbour resampling

D.1 Introduction

In the nearest-neighbour method the variables of interest are sampled simul-
taneously with replacement from the historical data. To incorporate temporal
correlation, resampling is restricted to the historical values that have similar
characteristics as those of the last simulated decade. One of these nearest
neighbours or analogs is randomly selected and its historical successor is the
next simulated decade.

A feature vector (or state vector) Dt is used to find the nearest neighbours
in the historical data. Dt is formed from standardized (weather) variables
generated for decade t − 1 and earlier decades. The latter is necessary to
reproduce longer-term variability (e.g., Harrold et al., 2003a,b). The nearest
neighbours of Dt are selected in terms of a weighted Euclidean distance. For
two q-dimensional vectors Dt and Du this distance is defined as:

δ(Dt,Du) =





q
∑

j=1

wj(vtj − vuj)
2





1

2

(D.1)

where vtj and vuj are the jth components of Dt and Du respectively and the
wj ’s are scaling weights. To obtain an equal contribution of all feature vector
elements to the Euclidean distance, the weights wj are inversely proportional
to the variance of those elements. The weights are calculated separately for
each of the 36 calendar decades to account for the seasonal variation in the
variance. A decreasing kernel (Lall and Sharma, 1996) is used to select one of
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the k nearest neighbours:

pj =
1/j
k
∑

i=1
1/i

, j = 1, ..., k (D.2)

with pj the probability that the jth closest neighbour is resampled, and k = 5
(Buishand and Brandsma, 2001). To impose a realistic seasonal cycle upon
the simulated data the search for nearest neighbours was restricted to a 7
decade wide ‘moving window’, centered on the calendar decade to be sim-
ulated. This window prevents that ‘summer decades’ are simulated during
winter and ‘winter decades’ during summer (Buishand and Brandsma, 2001).
For the historical record of 95 years, the nearest neighbours are thus selected
from 7 × 95 = 665 decades.

A resampling technique cannot produce smaller or larger decade values
than those found in the historical record. However, for periods longer than
a decade, the precipitation or discharge deficit can be larger than the largest
historical deficit because of rearranging extreme decade values from different
parts of the historical record. In fact, this is the property that can make resam-
pling methods useful. In a number of simulation studies of daily precipitation
the generated extreme multi-day precipitation amounts were well beyond the
extreme historical amounts and followed a Gumbel distribution, even outside
the range of the historical data (Brandsma and Buishand, 1998; Wójcik and
Buishand, 2003).

D.2 Model identification

Since the objective of the resampling model is to simulate values of precipita-
tion P , evaporation E and discharge Q simultaneously, certain characteristics
of these variables should be included in the feature vector. Several simula-
tions were performed with different feature vectors. Best results, regarding
the upper tails of the distributions of both the precipitation deficit and the
discharge deficit (Figures 4.3 and 4.4) are obtained when the feature vector
contains the following three elements: (i) the standardized discharge (Q) of
the latest simulated decade, (ii) the average standardized discharge during
the previous 18 decades, and (iii) the average of the standardized difference
between precipitation and evaporation (E − P ) in the 13 decades prior to
the decade of interest. The discharge was standardized by dividing by the
mean discharge for the calendar decade of interest. The variable E − P was
standardized by subtracting the mean and dividing by the sample standard
deviation for the calendar decade of interest.
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Besides this model, which is used in Chapter 4, also models with Q, E and
P as individual feature vector elements, and models with different memory
lengths (ranging between 2 and 12 months) were investigated but all of them
gave poorer results.

D.3 Model results

To give an impression of the model performance, Table D.1 compares the
average values and the standard deviations of evaporation minus precipitation
(E − P ) and of the Rhine discharge (Q) for the summer half-year in the
simulated series with those in the historical series.

The averages and the standard deviations at various time scales in the
simulated data are generally within one standard error from those in the his-
torical data, pointing to a good correspondence between the simulated and
historical data.

Figure D.1 presents, also for the summer half-year, the autocorrelation
functions of E − P and Q for the historical and simulated data. As expected,
the autocorrelation is much larger for the Rhine discharge (Q) than for E−P .
For all lags the autocorrelation of Q is very well reproduced by the resampling
model. For E−P the lag 1 autocorrelation is somewhat underestimated while
the lag 2 autocorrelation is slightly overestimated. Overall, the autocorrelation
functions are well reproduced by the resampling model.

Table D.1. Averages and standard deviations of evaporation minus precipi-
tation (E − P ) and of the Rhine discharge (Q) in the historical records and
the simulated series for the summer half-year (April–September). E − P is
in mm decade−1, and Q is in m3 s−1. For the historical data the standard
errors are given between parentheses. The standard errors of the standard de-
viations were calculated following Buishand and Beersma (1996) and Beersma
and Buishand (1999b; Chapter 2 of this thesis).

Historical Simulated
E − P Q E − P Q

Average 4.1 (0.5) 2114 (50) 3.7 2117
σdecade 18.7 (0.4) 731 (33) 18.6 720
σmonth 11.7 (0.4) 657 (31) 11.2 652
σsummer 5.2 (0.5) 488 (33) 5.2 472
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Figure D.1. Autocorrelation functions of E − P and Q for the historical and
simulated data.
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Maximum likelihood
estimation of the dependence
parameters ρ and α

The estimation of the dependence parameters for the bivariate distributions, in
Chapter 4, was carried out after the estimation of the marginal distributions.
The likelihood is then based on the joint distribution of the standardized data,
i.e., equation (4.2) for the bivariate normal distribution and equation (4.5) for
the bivariate logistic Gumbel distribution. The standardized data are denoted
as (x1, y1), (x2, y2), . . . , (xN , yN ).

Censoring was necessary to estimate the parameters of the marginal dis-
tributions for the discharge deficit (Section 4.4). Let yn+1 < t, yn+2 <
t, . . . , yN < t correspond to the censored data. The likelihood for the pa-
rameter α in the logistic dependence model is then given by (Smith, 1994;
Ledford and Tawn, 1996; Coles, 2001):

L(α) =
n
∏

i=1

f(xi, yi)
N
∏

i=n+1

∂F

∂x

∣

∣

∣

∣

(xi,t)

, (E.1)

where f(x, y) = ∂2F
∂x∂y is the joint density:

f(x, y) = e−(x+y)/α
(

e−x/α + e−y/α
)α−2 [(

e−x/α + e−y/α
)α

+ 1/α − 1
]

× exp
[

−
(

e−x/α + e−y/α
)α]

. (E.2)
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For the bivariate normal distribution the likelihood (E.1) can be written:

L(ρ) =
n
∏

i=1

φ2(xi, yi)
N
∏

i=n+1

Pr(Y ≤ t | X = xi) φ(xi) , (E.3)

where φ(x) is the standard normal density. Because the conditional distribu-
tion of Y in equation (E.3) is normal with mean ρxi and variance 1 − ρ2, the
likelihood becomes:

L(ρ) =
n
∏

i=1

φ2(xi, yi)
N
∏

i=n+1

Φ

(

t − ρxi
√

1 − ρ2

)

φ(xi) , (E.4)

with Φ(x) =
∫ x
−∞

φ(x)dx the distribution function of a standard normal vari-
able.
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Significance of differences
between districts

The differences in mean, standard deviation, CV and skewness between the
six districts were tested using the standard deviations in the bottom row of
Table 5.1. The MC experiment in Section 5.3.2 was used to determine the
statistical significance of these values. In this experiment 10 000 samples from
the fitted spline model were generated. Each MC sample consists of six 95-
year sequences representing the standardized precipitation deficits of the six
districts. These standardized 95-year sequences were for each district rescaled
with their estimates of the location and scale parameter of the Gumbel dis-
tribution, respectively µi and σi, i = 1, . . . , 6 (see also the second paragraph
of Section 5.3.2). Since under the spline model all six districts have the same
skewness, the null hypothesis for a test for differences in skewness is fulfilled
automatically. A test for differences in the mean, standard deviation or CV
requires equal means, standard deviations or CVs under the null hypothe-
sis, which was achieved by adjusting the µi and σi to have a common (i.e.
the district-average) mean, standard deviation or CV. For each of the gener-
ated 10 000 MC samples and each of the statistics in Table 5.1 the standard
deviation between districts was calculated. The significance level was then ap-
proximated as the proportion of MC samples in which this statistic exceeded
the corresponding value in the bottom row of Table 5.1.

For the skewness the standard deviation between districts in Table 5.1 is
0.173. This value is exceeded in 12% of the 10 000 samples and is thus not
significant at the 5% level. For the mean, standard deviation and CV the
standard deviations between districts in Table 5.1 are respectively 28.1, 4.3
and 0.059. These values correspond respectively with significance levels of
< 0.1, 1.4 and < 0.1%.
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AR(1) simulation model

Prior to fitting a first-order autoregressive, AR(1), time series model to the
decade of days time series of the country-average precipitation deficits, these
deficits were standardized by subtracting the long-term decade-average and
subsequently dividing by the decade standard deviation. The AR(1) model
for the standardized values is given by:

yt = r(1)yt−1 + at , (G.1)

with yt the standardized precipitation deficit for the t-th decade of days during
the summer half-year, r(1) the lag 1 autocorrelation coefficient of the standard-
ized precipitation deficits and at uncorrelated random noise with E(at) = 0.
The at’s are known as random shocks or innovations. Since the yt’s are stan-
dardized, E(yt) = 0 and var(yt) = 1.

Estimates of the innovations at for the summer half-years of the period
1906–2000 were obtained by substituting the observed lag 1 autocorrelation
coefficient of 0.128 in equation (G.1). Figure G.1 presents a normal probability
plot of these estimates. The figure shows that the distribution of the inno-
vations from the observed data deviates from the normal distribution. With
a simple transformation of the normal distribution a much better correspon-
dence with the distribution of the observed innovations is achieved:

at =

{

0.095 + et − 0.08e2
t if et ≤ 0

0.095 + et − 0.11e2
t if et > 0

(G.2)

with et a standard normal variable. The transformed normal distribution
based on equation (G.2) is presented in Figure G.1 as well. The AR(1) model
for simulating time series of precipitation deficits used in Section 5.4.3 is ob-
tained by combining equations (G.1) and (G.2). The standardized precipi-
tation deficits simulated with this model are finally rescaled to their original
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Figure G.1. Normal probability plot of the AR(1) innovations of the stan-
dardized country-average precipitation deficit during the summer half-year
together with the standard normal distribution (dotted curve) and the trans-
formed normal distribution defined by equation (G.2) (solid curve).

level by inverting the standardization procedure (using the same decade av-
erages and decade standard deviations that were used in the standardization
procedure).
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Publications by the author
related to this thesis

In this chapter an overview is given of publications by the author that are
related to or relevant for this thesis. The references are followed by a short
(Dutch) summary or the original abstract and are presented in chronological
order.

Jules J. Beersma, 1992. GCM control run of UK Meterological Office com-
pared with the real climate in the NW European winter. KNMI publication:
WR-92-02, KNMI, De Bilt, 32 pp.
(Related to Chapter 2, Beersma and Buishand, 1999b).

Abstract A method is presented to compare the statistical properties of
surface air temperature, sea surface temperature, precipitation, global radia-
tion, 500 mbar height, sea level pressure, and wind from a GCM with those
of observations. As an illustration the control run of an 11-layer GCM from
the UK Met Office [Hadley Centre] for five successive winters (DJF) is com-
pared with observations for NW Europe. In this comparison large differences
are found in (monthly) mean values, standard deviations and autocorrelation
coefficients for various elements. In general, this GCM winter run creates too
low temperatures over land, too high temperatures over sea, large temperature
variability but small pressure variability and too small autocorrelation coeffi-
cients for time-lags of more than three days. Too many wet days are created
with too little precipitation. The 500 mbar circulation is veered with respect
to reality and shows a peculiar through over the North Sea. The wind at 100 m
is backed and the geostrophic wind is somewhat underestimated. No realis-
tic transition of the surface temperature from land to sea is observed. These
results suggest that care has to be taken in interpreting direct model output
on a regional scale such as NW Europe. Given the limitations of this study,
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the relatively short GCM run and difficulties related to comparing GCM grid
points with station observations, further work along these lines is desirable,
preferably on the basis of the output of more recent GCM versions.

T. Adri Buishand and Jules J. Beersma, 1993. Jackknife tests for differences
in autocorrelation between climate time series. J. Climate, 6, 2490–2495.
(Related to Chapter 2, Beersma and Buishand, 1999b).

Abstract Two tests for differences in the lag 1 autocorrelation coefficient
based on jackknife estimates are proposed. These tests are developed for the
pooled sample of all daily values in a certain calendar month (e.g., all January
data). Jackknife estimates of the autocorrelation coefficients and their stan-
dard errors from such a sample are obtained by omitting each year once and
recomputing the autocorrelation estimates. Monte Carlo results for several
distributions show that the critical values of the test statistics can be based
on the Student’s t-distribution. Regional analogs of these test statistics are
derived from the jackknife estimate of the mean lag 1 autocorrelation coeffi-
cient for the sites of interest. In a similar way one can get a single test statistic
for a season or the whole year. As an illustration it is shown that the lag 1 au-
tocorrelation coefficients of the simulated daily temperatures of the Canadian
Climate Centre second-generation general circulation model are significantly
below those of the observed temperatures at De Bilt for most seasons. Over
western Europe there is no statistical evidence of differences in autocorrelation
between the 1×CO2 and 2×CO2 runs of this model.

T. Adri Buishand and Jules J. Beersma, 1996. Statistical tests for comparison
of daily variability in observed and simulated climates. J. Climate, 9, 2538–
2550. (Corrigendum; J. Climate, 10, 818, 1997 ).
(Related to Chapter 2, Beersma and Buishand, 1999b).

Abstract Tests for differences in daily variability based on the jackknife are
presented. These tests properly account for the effect of autocorrelation in
the data and are reasonably robust against departures from normality. Three
measures for the daily variability are considered; process, within-month and
innovation variance. The jackknife statistic compares the logarithm of these
measures. The standard errors of this logarithm are obtained by recomputing
the variance estimates for all subsamples wherein one month is omitted from
the complete sample. A simple extension of the jackknife procedure is given to
obtain a powerful multivariate test in situations that the differences in variance
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have the same sign across the region considered or over the year.
As an illustration the tests are applied to near-surface temperatures over

Europe simulated by the coupled ECHAM/LSG model [from the Max-Planck-
institute for Meteorology in Hamburg, Germany]. It is shown that the control
run of the model significantly overestimates the process variance in winter and
spring, and the within-month variance in all seasons. Significant differences
are also found for the innovation variances of the daily temperatures, but the
sign of the differences varies over the year. In a perturbed run with enhanced
atmospheric greenhouse gas concentrations the daily temperature variability
over Europe significantly decreases in winter and spring compared with the
control run.

Jules J. Beersma and T. Adri Buishand, 1999. Rainfall generator for the
Rhine basin: Nearest-neighbour resampling of daily circulation indices and
conditional generation of weather variables. KNMI-publication 186-III, KNMI,
De Bilt, 34 pp.
(Related to Chapter 3, Beersma and Buishand, 2003).

Summary This study deals with multi-site conditional simulation of pre-
cipitation and temperature for 25 locations in the German part of the Rhine
basin. Nearest-neighbour resampling is also used to generate synthetic se-
quences of daily circulation indices that are needed for long-duration con-
ditional simulations. Conditional simulations are performed to reconstruct
precipitation statistics for the period 1891–1995. These simulations explain
on average slightly more than 50% of the trends in mean winter precipitation
at five stations for which monthly data during this century were available.
The sensitivity of simulated precipitation to changes in circulation indices is
studied by performing three simulations conditional on the 1961–1995 circu-
lation indices, in which in each simulation only one of the three circulation
indices is systematically changed. These simulations show that the simulated
precipitation is most sensitive to changes in the westerly flow index W , fol-
lowed by changes in the vorticity index Z. The mean precipitation is typically
much more sensitive to systematic changes in W and Z than the precipitation
extremes. This is because a large part in the change in the mean precipitation
is due to a change in the number of wet days, which has less influence on the
extremes.

Jules J. Beersma, T. Adri Buishand and Rafa l Wójcik, 2001. Rainfall gen-
erator for the Rhine basin; multi-site simulation of daily weather variables by
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nearest-neighbour resampling. In: Generation of hydrometeorological reference
conditions for the assessment of flood hazard in large river basins, P. Krahe
and D. Herpertz (Eds.). CHR-Report no. I-20, International Commission
for the Hydrology of the Rhine basin (CHR), Lelystad, The Netherlands, pp.
69–77.
(Related to Chapter 3, Beersma and Buishand, 2003).

Abstract Nearest-neighbour resampling is used here for the joint simula-
tion of daily rainfall and temperature at 36 stations in Germany, Luxemburg,
France and Switzerland all situated in the Rhine basin. The daily tempera-
tures are used to determine snow accumulation and melt in winter. A major
advantage of a non-parametric resampling technique is that it preserves both
the spatial association of daily rainfall over the drainage basin and the depen-
dence between daily rainfall and temperature without making assumptions
about the underlying joint distributions. Both unconditional simulation of
daily rainfall and temperature and conditional simulations of these variables
on the atmospheric flow are discussed. In particular the unconditional simu-
lations reproduce the standard deviations and autocorrelation coefficients and
properties of extreme 10-day rainfall and snowmelt well. The largest 10-day
rainfall amounts in 1000-year simulations are up to 40% larger than those in
the historical record (1961–1995).

Jules J. Beersma en T. Adri Buishand, 2002. Droog, droger, droogst - Bijdrage
van het KNMI aan de eerste fase van de Droogtestudie Nederland. KNMI
publicatie 199-I, ISBN 90-369-2221-6, KNMI, De Bilt, 42 pp.
(Related to Chapter 4, Beersma and Buishand, 2004).

Samenvatting In de zomer van 2000 heeft de commissie ‘Waterbeheer 21e

eeuw’ (WB21) advies uitgebracht over de organisatie en inrichting van het
waterbeheer in de 21e eeuw. De commissie gaf o.a. aan dat behalve te veel
water ook te weinig water een bedreiging vormt voor de (toekomstige) water-
huishouding van Nederland. In de ‘startovereenkomst Waterbeleid 21e eeuw’
wordt ten behoeve van de laagwaterproblematiek (extreme droge situaties) een
gezamenlijke verkenning van Rijk, provincies en waterschappen naar droogte
aangekondigd die later is omgedoopt tot de ‘Droogtestudie Nederland’.

De tot dan toe gebruikte schattingen van de kans op extreme droogte stam-
men uit de PAWN studie van 1985. Dit rapport voorziet in de behoefte van de
Droogtestudie om de kans op (extreme) droogte opnieuw te schatten mede op
basis van de meest recente historische gegevens. Naast droogte in Nederland
wordt in deze analyse ook naar droogte in termen van lage afvoeren van de
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Rijn gekeken in verband met het belang van de Rijnafvoer bij het voorzien in
de Nederlands waterbehoefte. Verder wordt voor het eerst ook uitvoerig geke-
ken naar de kans op het simultaan optreden van extreme droogte en extreme
lage afvoeren van de Rijn, een combinatie die de grootste economische schade
tot gevolg heeft.

De herhalingstijden van historische ‘schadejaren’ zijn bepaald op basis van
frequentie analyses van zowel historisch waargenomen extremen als van ex-
tremen uit lange gesimuleerde reeksen op basis van tijdreeks resampling. De
gesimuleerde reeksen blijken minder geschikt om de kans op simultane gebeur-
tenissen te schatten. Nader onderzoek zal moeten uitwijzen of de simulatie
van met name het neerslagtekort door middel van tijdreeks resampling ver-
beterd kan worden. Het gebruik van een getransformeerde twee-dimensionale
normale kansverdeling heeft als bezwaar dat de afhankelijkheid tussen extre-
me neerslag- en afvoertekorten wordt onderschat, waardoor ook de kans op
simultane extreme gebeurtenissen wordt onderschat. Op basis van een van
de (geschatte) economische schade afgeleid faalgebied en verschillende twee-
dimensionale normale verdelingen zijn de herhalingstijden voor de simultane
neerslag- en afvoertekorten van de schadejaren bepaald. Historisch gezien zijn
1976 en 1921 de droogste jaren gevolgd door 1959 en 1947. Voor 1976 is een
herhalingstijd van bijna 200 jaar gevonden.

Indien de aanvoer van de Rijn geen rol van betekenis speelt zijn de her-
halingstijden gebaseerd op een getransformeerde normale verdeling van het
neerslagtekort die op het oog de ‘beste’ fit voor de grootste neerslagtekorten
geeft. Het droogste jaar is dan wederom 1976 (met een herhalingstijd van
ongeveer 75 jaar) gevolgd door 1959, 1911 en 1921.

Jules J. Beersma, T. Adri Buishand en Hendrik Buiteveld, 2004. Droog, dro-
ger, droogst - KNMI/RIZA bijdrage aan de tweede fase van de Droogtestudie
Nederland. KNMI publicatie 199-II, ISBN 90-369-2260-7, KNMI, De Bilt, 52
pp.
(Related to Chapters 4 and 5, Beersma and Buishand, 2004, 2006).

Samenvatting Dit rapport vormt het vervolg op het gelijknamige rapport
uit 2002 en beschrijft de KNMI bijdrage aan de tweede fase van de Droogte-
studie Nederland, inclusief een bijdrage van RIZA die nauw bij het thema van
deze rapportage aansluit.

De statistiek voor het bepalen van de kans op het simultaan optreden van
extreme droogte in Nederland en extreem lage afvoeren van de Rijn is verder
uitgewerkt met als resultaat verbeterde schattingen van simultane overschrij-
dingskansen. Voor de droogte van 1976 leidt dit tot een herhalingstijd van
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ongeveer 110 jaar (190 jaar in het vorige rapport).
Daarnaast is een verbeterd resampling model ontwikkeld dat goed bruik-

baar is voor het schatten van de overschrijdingskansen van het (maximale)
neerslagtekort in Nederland. Voor de droogte van 1976 in termen van alleen
het neerslagtekort in Nederland wordt nu een herhalingstijd gevonden van on-
geveer 90 jaar (was 75 jaar). Datzelfde model is ook gebruikt voor het schatten
van de overschrijdingskansen van het neerslagtekort in een zestal regio’s bin-
nen Nederland. De regionale differentiatie laat zien dat er binnen Nederland
naast systematische verschillen ook verschillen van jaar tot jaar zijn. Zo is in
het westen van het land het maximale neerslagtekort meestal groter dan in
het oosten van het land. 1976 was het droogst in Zeeland en het minst droog
in oost Nederland. In de regio’s noordoost Nederland en oost Nederland was
1959 het droogste jaar, voor de overige regio’s was dat 1976.

De droogte van 2003 kreeg veel aandacht (in de media) vanwege een aantal
(bijna) problemen. Toch was de zomer van 2003 niet extreem droog. Kijken we
alleen naar het (maximale) neerslagtekort van 2003 dan vinden we gemiddeld
over Nederland een herhalingstijd van ongeveer 10 jaar. In noordwest Neder-
land was met een herhalingstijd van 13 jaar de droogte relatief het grootst
en in het Maasgebied met een herhalingstijd van 4 jaar relatief het kleinst.
Houden we ook rekening met de (lage) afvoer van de Rijn dan neemt gemid-
deld over Nederland de herhalingstijd iets toe; van ongeveer 10 tot ongeveer
12 jaar.

In dit rapport worden ook de klimaatscenario’s en toekomstscenario’s ge-
presenteerd waarmee in de tweede fase van de Droogtestudie is gewerkt. Voor
Nederland worden de standaard KNMI klimaatscenario’s toegepast terwijl
voor de stroomgebieden van de Rijn en de Maas klimaatscenario’s op basis
van de UKHI/IS92a projecties worden gebruikt. Voor het Controlist klimaat-
scenario (1◦C temperatuurtoename in 2050) is er voldoende overeenstemming
tussen beide typen klimaatscenario’s. Onder dat scenario neemt de gemiddelde
Rijnafvoer aan het einde van de zomer en in het begin van het najaar met ruim
5% af, terwijl de gemiddelde Maasafvoer dan nauwelijks verandert. Daarnaast
neemt onder het Controlist klimaatscenario het maximale neerslagtekort voor
alle schadejaren toe. Voor de meest extreme jaren (1959 en 1976) is de toena-
me iets kleiner (∼5%) dan de gemiddelde toename van 6.2%. Ondanks deze
systematische toename van het maximale neerslagtekort zijn de herhalings-
tijden voor de getransformeerde schadejaren vrijwel onveranderd. Dit komt
doordat de kansverdeling van de maximale neerslagtekorten opschuift en wel
zodanig dat de rangorde van de schadejaren niet verandert.
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In dit proefschrift zijn resampling technieken gebruikt voor het bepalen van
de statistische onzekerheid van kenmerken van extreme waarden, en om zeer
lange hydro-meteorologische tijdreeksen te simuleren met extreme waarden
die nog niet eerder zijn waargenomen. Een frequentieanalyse van de extremen
in zulke lange tijdreeksen heeft als voordeel dat de statistische onzekerheid
van het resultaat in het algemeen kleiner is dan bij een frequentieanalyse
van uitsluitend de waargenomen extremen. Een resampling techniek heeft
daarnaast als voordeel dat het niet nodig is om allerlei, min of meer onjuiste,
aannames te maken over de statistische eigenschappen van de data.

Door tijdreeksen van geresamplede hydro-meteorologische data te combine-
ren met geschikte hydrologische modellen, kan de tijdreeks resampling aanpak
toegepast worden op een breed scala aan studies met betrekking tot de gevol-
gen van extreme hydro-meteorologische gebeurtenissen, zoals extreem hoge of
lage rivierafvoeren, extreem hoge of lage grondwaterstanden of andere extreme
hydrologische gebeurtenissen. Een bijkomend voordeel van deze aanpak is dat
hydro-meteorologische effecten kunnen worden gescheiden van door de mens
veroorzaakte veranderingen in het hydrologische systeem, zoals kanalisering,
verstedelijking en ontbossing.

Het eerste hoofdstuk vormt de inleiding waarin de bredere context van het
proefschrift geschetst wordt. Tevens wordt in dit hoofdstuk een overzicht
gegeven van de historische ontwikkelingen van de resampling technieken waar-
van gebruik wordt gemaakt. Met een simpel voorbeeld op basis van het gooien
met een dobbelsteen wordt de kracht van resampling technieken gëıllustreerd.
Hoofdstuk 1 sluit af met een overzicht van de onderwerpen, en de daarbij
gebruikte resampling technieken, die in de volgende hoofdstukken aan bod ko-
men.

De eerste toepassing van resampling (Hoofdstuk 2) betreft de statistische on-
zekerheid van variantie schattingen. De ‘standard error’ (een maat voor de
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statistische onzekerheid) van de variantie wordt bepaald met behulp van de
‘jackknife’ en wordt gebruikt voor het opzetten van een toets die de gelijkheid
van varianties van maandwaarden kan vaststellen. Zo’n toets kan nuttig zijn
bij het valideren van modellen of bij het detecteren van klimaatverandering.
En omdat het veel of weinig optreden van extreme gebeurtenissen afhangt van
de variantie kan zo’n toets zelfs als een eerste indicatie gebruikt worden bij de
detectie van verschillen of veranderingen in de frequentie van extreme gebeur-
tenissen. Deze toets heeft een brede praktische toepasbaarheid mede omdat
hij een simpele en degelijke multivariate uitbreiding heeft. Hiermee wordt
bedoeld dat de toets zonder problemen kan worden toegepast op een gebied
waarvoor op verschillende locaties varianties bepaald zijn. Door de varianties
op de verschillende locaties in één (multivariate) toets te combineren neemt
het onderscheidend vermogen (zeg maar, de gevoeligheid) van de toets in het
algemeen sterk toe.

Ter illustratie is de multivariate toets toegepast op neerslag en temperatuur
varianties in een simulatie van klimaatverandering met het Engelse Hadley
Centre klimaatmodel. Voor verschillende gebieden en seizoenen zijn signifi-
cante verschillen (op het 5% niveau) tussen de varianties in twee verschillende
10-jaar periodes geconstateerd. Meest opvallend daarbij is de significante toe-
name van de variantie van maandwaarden van de neerslag over Noord-Europa
in drie van de vier seizoenen: zomer, herfst en winter.

In Hoofdstuk 3 worden, voorwaardelijk op de grootschalige atmosferische cir-
culatie, reeksen van dagwaarden van de neerslag en de temperatuur simultaan
gegenereerd voor verschillende locaties in het Duitse deel van het stroomge-
bied van de Rijn. In dit type voorwaardelijke tijdreeks resampling treedt de
atmosferische circulatie op als een predictor voor neerslag en temperatuur.
Met andere woorden, de atmosferische circulatie bepaalt in belangrijke mate
of een dag nat of droog is en of een dag relatief warm of koud is voor de tijd
van het jaar. In het geval er een systematische verandering optreedt in de
atmosferische circulatie, bijvoorbeeld als gevolg van antropogene klimaatver-
andering, zal dit automatisch tot een verandering in (extreme) neerslag en
temperatuur leiden.

Voorwaardelijke tijdreeks resampling is daarom mogelijk nuttig in toepas-
singen waar veranderingen in (extreme) neerslag en/of temperatuur van belang
zijn. Voorwaardelijke tijdreeks resampling is ook vergeleken met de nauw ver-
wante en al langer in gebruik zijnde analoge methode die tevens populair is
bij het maken van weersverwachtingen. Een belangrijke conclusie van die ver-
gelijking is dat de simulatie van neerslag en temperatuur voor een nieuwe dag
niet alleen gebaseerd moet worden op de circulatie karakteristieken van die
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dag maar ook op de gesimuleerde neerslag en temperatuur van de vorige dag.
Hiermee wordt de persistentie en variabiliteit in de gesimuleerde tijdreeksen
aanzienlijk verbeterd.

In gesimuleerde lange (980-jarige) tijdreeksen, van dagwaarden van de neer-
slag en de temperatuur voor verschillende locaties in het Duitse deel van het
stroomgebied van de Rijn, die representatief zijn voor het huidige klimaat, ko-
men tot 35% grotere 10-daagse gebiedsgemiddelde neerslagsommen voor dan
waargenomen in de 35-jarige historische referentie periode. In combinatie met
neerslag-afvoer modellen zijn zulke niet eerder waargenomen neerslagextre-
men zeer nuttig bij het bepalen van extreem zeldzame rivierafvoeren en bij
het plannen en ontwerpen van de hydrologische infrastructuur.

Hoofdstuk 4 handelt over (extreme) droogte in Nederland. Omdat grote delen
van Nederland tijdens droge periodes voorzien kunnen worden van water uit
de Rijn, dient bij de beoordeling van droogte rekening te worden gehouden
met het simultaan optreden van neerslagtekorten in Nederland en afvoerte-
korten van de Rijn. De kans op het simultaan optreden van (grote) neerslag-
en afvoertekorten is bepaald op basis van tijdreeks resampling en is vergele-
ken met schattingen verkregen uit het fitten van tweedimensionale (bivariate)
kansverdelingen.

De asymptotische afhankelijkheidsstructuur tussen neerslag- en afvoerte-
korten blijkt een cruciale rol te spelen bij het bepalen van simultane overschrij-
dingskansen. Een evident voordeel van tijdreeks resampling is dat geen aanna-
mes over de afhankelijkheidsstructuur gemaakt hoeven te worden omdat deze
afhankelijkheid automatisch van de historische data wordt overgenomen. Bij
het fitten van bivariate kansverdelingen konden alleen bevredigende resultaten
worden verkregen door een nieuwe bivariate kansverdeling te introduceren die
bestaat uit een mengsel van een bivariate normale en een bivariate Gumbel
verdeling. Meer precies, een bivariate normale verdeling met de afhankelijk-
heidsstructuur van een bivariate Gumbel verdeling. Deze nieuwe tweedimen-
sionale kansverdeling blijkt uiteindelijk het meest geschikt om de simultane
overschrijdingskansen van grote neerslag- en afvoertekorten te schatten.

Op basis van deze tweedimensionale kansverdeling worden kleine kansen
gevonden (eens in de 200 tot 300 jaar) voor een simultane overschrijding van
het neerslagtekort en het afvoertekort zoals voorgekomen in de meest droge
historische jaren (1921 en 1976). Bij een faalgebied op basis van de economi-
sche schade nemen de kansen op een dergelijke droogte toe tot ongeveer eens
in de 100 jaar. Daarnaast zijn de verschillen in de kans op droogte op basis
van de verschillende methodes bij zo’n faalgebied kleiner dan bij (standaard)
simultane overschrijdingen van het bijbehorende neerslag- en afvoertekort.



152 Samenvatting

Ruimtelijke variatie in de kansverdeling van het neerslagtekort in Nederland
is het onderwerp van Hoofdstuk 5. De ruimtelijke variatie wordt in kaart
gebracht door Nederland op te delen in zes regio’s. Naast verschillen in de
grootte van het neerslagtekort, hebben de kansverdelingen voor deze zes regio’s
een opmerkelijke maar gemeenschappelijke kromming in de rechter staart. De
kansverdelingen lijken daardoor noch op een lognormale noch op een extreme
waarden verdeling. Om zowel de verschillen in terugkeerniveau1 van de regio’s
als de opmerkelijke kromming in de staart van de verdelingen te reproduceren
zijn twee alternatieve methodes beschouwd: een regionale frequentieanalyse
en tijdreeks resampling.

De regionale frequentieanalyse levert een voor Nederland representatieve
‘growth curve’ op die benaderd kan worden met een differentieerbare (spline)
functie op de schaal van de standaard Gumbel variabele. De tijdreeks resam-
pling methode heeft een extra geheugenterm van vier maanden nodig om de
gemeenschappelijke kromming in de staart van de neerslagtekortverdelingen
te kunnen reproduceren. Door deze geheugenterm neemt de statistische on-
zekerheid (standard error) in schattingen van het terugkeerniveau ongewild
toe. Echter, wanneer de beide methodes worden gebruikt voor extrapolatie,
d.w.z. wanneer het terugkeerniveau groter is dan historisch waargenomen, dan
presteert tijdreeks resampling beter dan de regionale frequentieanalyse. Dit
komt door de sterke toename van de relatieve standard error van het terug-
keerniveau met toenemende herhalingstijd als gevolg van de grote onzekerheid
in de parameters van de functie die de ‘growth curve’ benadert. Dus in ter-
men van statistische onzekerheid is tijdreeks resampling te verkiezen boven de
regionale frequentieanalyse. Dit is het type resultaten waaruit de meerwaarde
van tijdreeks resampling blijkt.

Door tijdreeks resampling te combineren met de bootstrap procedure is,
voor elk van de zes regio’s een betrouwbaarheidsinterval afgeleid voor de herha-
lingstijd behorende bij het grootst waargenomen neerslagtekort. Afhankelijk
van de regio is dit het neerslagtekort van 1959 of 1976. Hoewel deze betrouw-
baarheidsintervallen tamelijk breed zijn, zijn ze gemiddeld een factor twee
smaller dan verwacht mag worden indien alleen rekening wordt gehouden met
de lengte van de waargenomen reeks.

In de synthese in Hoofdstuk 6 passeert een aantal onderwerpen de revue die
mede van invloed zijn op de onzekerheid van statistische analyses in het al-
gemeen en van statistische analyses op basis van tijdreeks resampling in het

1Het niveau van het neerslagtekort dat hoort bij een bepaalde herhalingstijd of terugkeer-
tijd.
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bijzonder. Zo wordt uitvoerig stilgestaan bij de lengte en de periode van de
waarnemingsreeksen die worden gebruikt, en bij de gevolgen van de mogelijke
aanwezigheid van (historische) trends in die reeksen.

In Hoofdstuk 6 wordt ook aandacht geschonken aan het gebrek aan met
name lange waarnemingsreeksen van de potentiële (Makkink) verdamping in
Nederland. De oorzaak hiervoor is dat de benodigde globale straling voor de
bepaling van de Makkink verdamping pas vanaf 1958 structureel door het
KNMI wordt gemeten. In Hoofdstuk 4 is voor station De Bilt een lange
reeks (1906–2000) van de Makkink verdamping geconstrueerd door van (goede)
schattingen van de globale straling op basis van de zonneschijnduur uit te
gaan. Voor vier andere klimatologische hoofdstations in Nederland zijn ook
lange zonneschijnduur reeksen beschikbaar en daarnaast bestaat er nog een
door Wageningen Universiteit gemeten reeks van de globale straling die al in
1928 begint. Voor beide geldt echter dat, voor de hier beoogde toepassing, de
kwaliteit en de homogeniteit van deze reeksen onderzocht zou moeten worden.

Nu duidelijk is gemaakt dat tijdreeks resampling zeer nuttig kan zijn bij
het modelleren en analyseren van (nog niet waargenomen) extreme hydro-
meteorologische gebeurtenissen, zou bij toepassing van deze methode ook
structureel een onzekerheidsanalyse op basis van jackknife of bootstrap pro-
cedures, zoals beschreven in Hoofdstuk 5, moeten plaatsvinden. Dit kan, en
moet, gebruikers bewuster maken van de (grote) onzekerheid die ‘extrapola-
tie’ van extreme gebeurtenissen uit relatief korte historische reeksen met zich
meebrengt.
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