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1  Introduction

In this report the behaviour of a very simple coupled atmosphere/ocean system
was investigated. The system consists of a chaotic atmosphere (the Lorenz "84
atmosphere model) coupled to a relatively slow ocean aa@mis%z: of having two stable
regimes {after Stommel’s two-box ocean model). Lots of numerical experiments are
done with complex ocean and atmosphere models and a lot of effort is put in trying

s in order to couple them realistically, Little is

to parameterize natural processe
known however, about the effect coupling bas on chaotic dvnamical systems. Thus
it seems useful to try to study the effect of coupling on a very stiaple chaotic system
without tryving too much to comply quantitatively with observed processes in reality.

Several questions can be raised
- Can certain techniques be constructed so as to efficiently find the new’ attractor
of the coupled system?
- Does the coupling to a slow ocean result in a correspondingly slow signal in the
& >
atmospheric variables?

- Does coupling to the ocean introduce essentially new dynamics’
It is especially the first question that was raised within the climate predictabil-
ity group at KNMI, because with more complex coupled models the amount of
computer-time is a serious limit on the analysis. And the transient to the attractor
an be a lengthy process. In addition the basic phenomena may be obscured by
many other effects. The subject of a chaotic system coupled to other svstems is
not very well investigated. The work presented here cannot give answers to the
ome new insight in the specific system

above raised questions. It can however give s
that is examined, and some of the results may be aplicable to other coupled vcean-
atmosphere or similar systems. The main question that is asked in this report is:
"Can we measure an effect on the atmosphere if it is coupled to an ocean model
that is driven entirely by this atmosphere?”

2 'The Models

In this section we shall discuss what models have been used, and what motivation
formed the basis of their choice. The models will be described in more detail in
the respective sub-sections. The region of interest does not so much cover physical
processes as it does model behaviour at a fundamental level. Therefore the models
are basically chosen for their relative simplicity and the atmosphere model also for

its chaotic behaviour.

The Atmosphere model was constructed by Lorenz in 1984 (Lorenz 1984), it
contains three variables (XY, 7 and can with appropriate parameters display chao-
tic behaviour. Some %H‘J%;’.‘:ﬁ tigations on this atmosphere model have been conducted



by Anastassiades {Anastassiades 1995}, He found a window it parameter space for
which this model probably behaves chaotically, as well as a way to make the complex
dynamics of the model more clearly visible, Loreny's model was constructed as a
means of demonstration rather than one with which to produce realistic atmospheric
hehaviour. As Lorenz stressed in the article in which he introduced the maodel,

“the model. . cannot vield much quantitative information. It may serve principally

in examining hypotheses and formulating new ones. 7. He had constructed it in a
somewhat ad hoe manner, and although there are ways to derive the Lorenz model,
from “realistic” guasi-geostrophic equations {see Saltzman 1989), it is due to this
truncation that it is uncertain what values the variables should be taking in reality.
The Lorenz model deals with one basic large scale atmospheric process. Namely that
e eddy-like structures on

of the interaction between the westerly current and large s
the northern hemisphere. Basically the westerly current is driven by the meridional
temiperature gradient. The eddies are perturbations on this homogeneous flow field.

They are forced by ¢ ,hf:z zonal ocean-continent temperature contrast, and by the
15, thereby

instability of the westerly current. The eddies transport heat polewards
reducing the meridional temperature contrast. And stabilizing the west m%@ current.
The three variables in this model and what thev represent are:

e X : the intensity of the symmetric globe-encircling westerly wind current
{and also the ;:zs,;?s%w.;i;‘x:’:? temperature gradient assumed to be in permanent
equilibrinm with it)

e ¥ ¢ the cosine phase of a chain of large superposed eddies
e 7 : the sine phase of a chain of large superposed eddies

According to the article of Lorenz, these eddies are to be identified with Rosshy
WAVES,

The ocean model is a slightly modified Stommel two-hox model {Stommel 18961 ).
This model was not zzxzisie to represent any real ocean but it is the simplest model
demonstrating the opposing forces of the thermo-haline circulation. The two-box
model is made to represent the large scale convection processes in either the north
atlantic or near the equator. Tt displays in iiself rather simple dynamics, however
for an appropriate set of parameters it has two stable regimes of flow. The ther-
mohaline flow develops either poleward or equatorward, depending on the initial
conditions (i.e. the deep water formation is either near the equator or in the polar
area). For other parameter settings it has only one stable solution, t \Em flow being
either poleward or equatorward depending on the parameters. [ will first give a
Lrief deseription of the two-box model followed by a description of the atmospheric
maodel.



2.1 The Ocean Model

We shall now discuss the simple ocean model that has been used. Consider two
reservolrs, each containing an equal and constant volume of water which is perfectly
mixed in each of the boxes. The two boxes are interconnected via a pipeline at the
bottom of both boxes. In general the densitiy of the water between the boxes will
differ. And thus there will be a pressure imbalance at the pipeline, and a flow will
cecur between the two boxes, The pipeline through which the water will flow has
a certain flow-resistance £. And at the top there is an overflow so that the volume

of water in each of the boxes is kepi constant. So when a certain amount of water
flows from one box to the other through the pipeline, the same amount flows back
via the overflow. For a schematic drawing of the system see figure 1.
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Figure 1: The Two-box model

The density of the water is supposed to be only dependent on its temperature
(T} and salt content {9}, And the relation is approximated by a linear relation

pe= ppll e 0T 4 35 )

The size and divection of the flow [ between the two boxes is linearly dependent on

o

the density {pressure) difference between the boxes.
ki w Ap e SN — T (2}
As can be seen from the above equation the strength and direction of the How is

governed by two opposing forces or density effects @ a higher temperature reduces

&



the density of the water, and a higher salinity increases the water density. In our
maodel one of the boxes is named the polar '§~;,;«; and represents the northern-half of
the ocean. This box is supplied with a quantity of "fresh water” or, because in this
model the volume s kept constant, with a negative salt Hux. This flux represents
precipitation in the polar areas. This is where we differ from Stommel’s model (see
below)., The polar box is also coupled to the {cold) atmosphere and will lose heat
linearly proportional to the temperature difference between the atmosphere and
the ocean. The other box is named equatorial box and represents the equatorial
area of our ocean model. This box loses water through evaporation, represented
by a positive salt lux and gains heat. ?'Es'é;wz‘xiéng on the relative strength of these
external forcings the flow can develop either poleward when temperature driven
or equatorward when driven by the salinity difference.  The model differs from
Stommel’s, because whereas Stommel used as foreing a relaxation relation towards
a preseribed salinity and temperature | we use a flux forcing for the salinity and
only a relaxation relation for the temperature. This is done so that the coupling
to the atmosphere can be conducted later on. The two equations describing the
evolution of the veean model are put here in terms of difference in temperature and
salinity hetween the two boxes, since it is only the difference in these values between
the boxes that drives the flow. Note that the exchange of properties of the water
between the two hoxes is insensitive to the direction of the flow, reflected heve by

the absolute value of the How in the equations.

S = {4}
= (5}

Where T is the temperature difference between the polar and the equatorial box
and 5 is the salinity difference between the two. And the parameters arve :

k. o the coellicient for heat exchange hetween the ocean and the atmosphere,

T o the temaperature difference hetween the polar and equatorial air,

the internal diffusion of the ocean {through the overflow, between box boun-

dayies).

&+ the equivalent salt-flux of the water transport {equals the precipitation at the
pole plus the evaporation at the equator},

In this model no water is absorbed by the atmosphere so the evaporation equals
the precipitation. The flow is determined by the last equation. The parameters w

and £ combine the effects of the density dependence {of both salinity {via ) and

>
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ternperature {via o) and the flow resistance in the pipeline, as follows © w = o/k
and £ ; The flow is considered positive when in poleward divection. For an

equilibrium solution holds + T,, = 5., = 0, this leads to

i 4
S, e {7
Jeg = Wi ;fg{; - ic";}
Let @ be defined as « ${f,,) = Wl = 5.y, with Ty and S, given in equation (6-7).
An equilibrium solution for the thermohaline flow can be written as
A graphical solution of the above equations, see figure 2, gives us some insight in

the possible equilibria. The displayed curve is (EJ as a function of f. The intersection
between the curve and the straight line indicates a possible solution, there are two
curves in display each corresponding with a certain set of parameters. It can be
shown that there is a range of parameters for which there exist two stable regimes of
flow : a sluggish flow which is salinity driven and equatorward {this is the negative
divection) and a faster temperature driven flow poleward. The final direction of the
flow is then dependent on the initial state of the orean. There is also an unstable
solution consisting of a slow poleward flow, but since it is unstable it will not show
up in computer simulations. For other sets of parameters there is either the salinity
driven flow or the temperature driven flow (not displayed here).
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Figure 2: Solutions of the ihermohaline How {$) for two sets of parameters



2.2 The Atmosphere Model

The atmosphere model consists of the following three differential enuations

Z = XY +NZ -7 (12)

Where the dotted terms represent the derivatives with respect o The term
AV and X2 in equations {11) and (12) represent the gain of energy ui ?:hié eddies, at

the expense of the westerly corrent : the terms ~Y7 and — 22 in equation {10) {the
pddies transport heat polewards and thereby reduce the north-south 'i-i’%zzsgﬂsmf;z,zra,
anomaly ). The variables have been scaled so that the coefficients for the damping
of the waves are unity, thereby delining the timescale. Where one unit of time
corresponds with five x’éfﬁa vs. The eddies can :z%m he z'impif' cod by g} ¢ Wm%e-s;é v ocurrent

unity the waves are é;&pi<.a,:fa-zd more %‘,}ms; .éagey @.ﬁ;gsh%y, 'Hm hz;égaz terms i.-&kf?. care z,:z{
damping processes, both mechanical and thermal; the damping time for the eddies
has been chosen as the time unit. Again note that if ¢ is less than unity the westerly
current darmps less rapidly than the eddies. The driving factors {or thermal forcing)
for both westerly current and the eddies lie in the terms oF and (7. They represent
the symmetric north-south temperature forcing and the asymmetric continent-ocean
temperature forcing respectively, If westerly current and the eddies were uncoupled
they are the values toward which X and ¥ would be driven. These two parameters
bring energy into the system and the total energy is, obviously, not conserved, One
can imagine the atmosphere system as one in which energy ii{;}'aw in through af
and & and out of the system due to dissipative processes like damping of the waves
through —Y and —Z, and damping of the westerly curvent through —aX. Thus the

total energy in the svstem iy limited, because if we lock at the time derivative of

the total energy : (X? 4+ Y72 4+ Z2%);
5,0 ;

T S SN A YA 3 WY Frawid S T gy D EAAYA 2 oy : s P
{{'i :% T E e }} ,j“}f oo Wv; l(?i\ fx& e % } % ﬁj? - {) } @ /} {ﬂ}: 2 e ‘{{ ’ }} i 3 ~'§ }

We can see that by putting the right hand side of equation {13) to zero we define a
ellipsoid surface I, in phase space. The derivative of the total atmos; oy
18 zero on £ and negative outside it. If now there is 2 finite sphere S, centered on
(0,0,0), and completely enclosing 7, all points in parameter space outside of S will
eventually penetrate S and vemain inside. This is also the finite volume to which all
250 %kﬁémv»‘ from equation (13} that the total energy
+ Y74+ Z% is bounded, because F and ¢ are bounded.

attractors are confined. So it

stored in the variables « (X¥



By equating the left-hand sides of equations (10) - (12) we can determine the steady
states and find that X, ¥ and 2 obey:

(1— X)G

P 22X {1 B XY

~F
5 e
4 -

a(F — X)(1 = 2X + (1 4+ )XY~ G? = 0 (14)
Special cases
WF=0and & =0 then : X =1, 3’ E IR
W FEFADen =0 then . X=FY=02=40

‘Wb»w if < 1 gives a stable solution becanse - ¥
and F' > 1 gives an unstable solution becanse XV m} (0 causing ¥ to grow, which
in turn causes Z to grow. And the solution will f’s%}e‘éy {\ 1«-:%')‘

From {10}~ (12) we also find that for V', a volume of infinitesimal proportions,
holds :

v
VSR V. E) = V(e +2 - 2X)
f? i

Where the right hand side of (15) is negative only when X < 1+ Za. Thus it is
not assured that small volumes will always shrink to zero. Later on when regarding
Lyapunov-exponents with the coupled model this becomes obvious immediately from

e,
o5t
v’

the results.

g - b .
2.3 The coupled equations
The ocean and atmosphere models are now coupled. A sketch of the coupled system
can be found in figire 2.3, The explanation of the coupling terms and associated
parameters follows the equations below, The atmospheric equations become :

X = =¥2- 77— aX +a(Fy + FT) (16)
?mzk? %?w§wm“é&ﬁwﬁﬁ (17)

And the pceanic equations
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Figure 3: The coupled svstem

Deriving the parameter x-'&imét:; from physical quantitative reasoning proved to be
2ction 2. The ocean however, does divectly represent physical quan-
sonding quantitative

impossible, see se
taties. So we would iiki«z o see the forcing of the ocean in corves
terms. [ will first discuss the forcing of the ocean by the atmosphere. How one should
parameterize the forcing of the atmosphere by the ocean is less obvious, so another

approach was taken to solve this.

2.3.1 Atmospheric forcing

The atmosphere forces the ocean through a relaxation of the ocean temperatire
towards the temperature of the atmosphere, in this case the difference betweer pole
and equator air temperature. And also through an effective water flux difference of
the ocean through the atmosphere. The parameter sizes are chosen rather arbitrarily,
since it is hard to do anything but qualitative modelling of these processes. As a
starting point for the way in which the models should be coupled Roebbers reasoning
was followed (Roebber 1995). Below follows a discussion of the various processes -

11



The strength of the westerly current velates directly to the meridional terpera-
ture gradient, Roebber supposes that the relation is linear, and therefore he defines
the restoring {atmospheric} temperature difference (7, by © 7, = X {¢). The size
of = is determined by empirical considerations i.e. its average value corresponds with
the scale found in nature. | have chosen o put v at the value of 30 so, since the av-
erage of X is approximately 1, the atmospheric north-south temperature difference
is put at 30 degrees. The effect of precipitation, here in the form of an equivalent

salt Hux, s defined ag

t [Quon] + Qe (22)

kIR

as proposed by Roebber. Where (Jup.rp 18 the freshwater flux from the rivers
and [y {QH are the mean and transient components respectively of the total
atmospheric meridional water vapor transport by the eddies. Since the main interest
went out towards coupled hehaviour between the ocean and the atmosphere 1 will
amit the first {constant) term (s, Therefore in the ocean evolution eguation
above, the term 6 is replaced by ¢ &y + 6, {(V7 + 77}, Where dg represents the mean

component of the total atmospheric water vapor transport. It is assumed here that
the water vapor transport is directly g)z‘s‘)pnmf}xsszi to the eddy activity (V24 Z%) just
as the heat transport in equation (24). Thus & (Y* + 7%} represents the transient
component of the total atmospheric water vapor i,r;ms;;mi
The size of the parameters determines both the rvelative scale of the oceanic
processes, and the timescale on which these processes ovcur. The time-scale of the
atmosphere was maintained (one unit equals five days). All parameters were scaled
by comparison of the size {quantities displaved with accent, helow) of the above
processes with an estimate of the size of the diffusion hetween pole and equator of
the ocean: ;iftﬂ {estimated at @ 5.3 % 10%( ?32.3;’/«:"% ). So the relative sizes of the oceanic
parameters are correct, Then we express the timescale involved with this process in
terms of the ai‘3‘1‘.3::}91'}%‘;{%'1{* i:in' escale. Roebber had estimated the diffusive timescale
of the ocean boxes af 500-1000 vears. So the diffusion coeflicient &, {which contains
the relative size of the process with respect to the whole of the ccean mass, defining
the timescale of the process) in the coupled equations was given the value of 1/750
cars in the atmospheric timescale © 1/{730%73). Similarly the diffusive timescale
sen the ocean and the atmosphere was estimated at 75 vears,
where scaled

{)f heat exchange betw
thus &, equals + 1/{75%73). All the other processes {parameter values)

with respect to this z’mw« ale

internal diffusion © &, = 1/{7T50x73)
temperature relaxation © &, = 1/{76 % 73}

water flux difference between pole and equator @ § = 24,
Fow

temperature forcing @ w =

salinity forcing © € = fw?;‘ﬁ
The values have been based on those in Roebbers article, although he used a three

]



box ocean model. Tsimply divided the volume of the {third) deep ocean box between
of a three-box model are

both two {surface) boxes. It can be shown that the dynamic
essentially the same as those of a two-box model {see : Lendering 1992). However,
by chosing Roebber's “realistic scaling”, the ocean has only one regime of flow. It

for the thermo-—haline Tlow
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Figure 4 Solutions of the thermohaline flow ; Roebbers scaling.

are in table 1.

2.3.2  Oceanic forcing

The ocean, in its turn, forces the atmosphere via the parameters F\ and G.. The
way this is modelled here follows Roebber qualitatively but not quantitatively. Also

seriodic (seasonal) terms that Roebber added have been neslected. The coupling
; bl fsed

via £y oand Gy s chosen in such a way that the atmospheric parameters are in the
siades there is

“chaotic window” (see Anastassiades 1995}, According to L. Anasts

a probable window in (F (7 )-space for which the atmosphere model displays chaotic
SO 1

85 and hy 1.0 < SR
When this "window” in parameter space is investigated in more detail, it shows that

behaviour. The window borders are set by 80 < F
it is in fact broken up by regions that give rise
(Fy -+ FyT5 Which thus takes into aceount

Lo periodic behaviour., We replace
Fin the atmospheric equations by
the oceanic temperature anomaly (77} contribution to the meridional termperature



¢ (.25 b 4.4
Fooios-107° 10, 0.0
Fy 180 Gai 1.0

k. 1070 e | L1810
do OTE YIS, 10961077
w o 0A3-1070 o1
T 1300 v 300

Table 1:

?(7

The used parameters

jw - ,?”ss

where 7., 18 an

: The parameter ¢ is replaced by {(y
average temperature anomaly, According to Roebber the zonal gradient in diabatic
heating () should increase with increased high latitude ocean temperature’. And
since the ovean temperature anomaly equals the temperature in the equatorial box
7). The zonal gradient is taken
The parameters used are

minus the temperature in the polar box (7= T4 ~
inversely proportional to the ocean temperature anomaly.
Note : is 0y /8.

in tabhle 1. here &,

2.3.3 The energy transfer

Note that the coupling is without energy conservation, as is the uncoupled atmo-
sphere model by itsell. Thus energy flowing into the ocvean from the atmosphere
(via k(vX - T) and 6,(Y? + Z7)} does not cause reduction of the total energy
present in the atmospheric In fact the
in X causes an increase in T via the {(v.X — ;
increase in T causes an increase in X via the term oF) 7 in equation {24).
same way the energy put into the atmosphere (via oF\T) does not result in
the total oceanic energy. The feedback is very xm{zii however, compared to diffusive
processes in the atmosphere. The boundedness of the total energy can be proven
[will give an outline of the " physical

o

ack 15 positive as an ipcrease
Also an
In the
loss of

- variables,

term ky, T} in equation (27}

rigorously for the given parameters, but below |
Both models have a constant driving term that approximately cancels the
ate of positive flow, is driven entirely

reason’”

internal diffusive processes. The ocean in its st
by the atmosphere. Thus energy fed into it by
ternal diffusion. In the atmosphere the feedback from the ocean is much smaller
than the forcing of the constant terms {(because Fy is small}. Thus the coupling as
it is is equivalent to choosing a (slightly) higher constant forcing and does not cause
Iy or Fyowould im much %;sgga?z however, the positive feedback would

the atmosphere is balanced by in-

instability.
give rise to instability.

“this is eoivalent to assuming that at high latisude the ocean water temperature is higher than

the temperature on the continent



3 Analysis

3.1 Numerical Integration

In order to integrate the atmosphere model o {ourth-order Hunge Kutta scheme has
been applied, with a time step of 1077 {corresponding to 1.2 hours), where a time step
of one corresponds o five davs. The scheme is popular for numerical simulations,
becanse it combines both g}'a)(';f{ stability and accurate results. The ocean however
i much less dynamic, Leo 1015 much slower than the atmosphere and can safely be
integrated by the much simpler and thus faster (in terms of computer processing
time) Forward Euler scheme. For the ocean also a timestep of 1077 has been chosen.

3.2 Fourier analysis

The graphical program package PV-WAVE supports the possibility of making fourier
frans imzm of offered data sets. This was used to make power specira of the raw
output., The sp
nature u%’ the signal. Reasoning that if the power spectrum of say the westerly
flow displays power continuously along a range of frequencies, its hehaviour must
be fully chaotic, while if the spectrum displays sharp peaks in power at certain
frequencies it must therefore be {quasi-) periodic or chaotic but with a small regime
of possible frequencies. T found this option easy to use, and rather attractive because
no problems occurred with long evolution times as with other means of labelling

ctrum can give some crude measure of the intensity of the chaotic

chaos such as fractal dimensions.

3.3 Lyapunov exponents

Another usefud tool to analyse chaotic svstems is the study of ?vva,;:zz,zmw exponents
and the Kaplan-Yorke dimension {which is derived from these). The Lvapunov ex-
ponents identify the growing or shrinking directions in parameter space and the rate
of growth/shrinkage. As is well known two closely neighboring trajectories tend to
diverge from each other exponentionally when the behaviour is chaotic. The ex-
ponential factor is a Lyapunov exponent and is also a measure of how chaotic the
systern is. The Lyapunov exponents are usually ordered by putting the largest in
front, and then working down to the smallest { E%{%g;}‘iiﬁi‘ﬂ-?} Lyapunov exponent. The
first Lvapunov exponent should thus be positive in the v%;zm tic case or else there
would be no diverging trajectories {or chaotic behaviour at that), There should also
be negative Lyvapunov exponents since else the system m:f:zzée.i not remain confined
o its atiractor and wander off to infinity. In an autonomous system of differential
equations there is at least also one zero exponent. The maximum number of Lva-
punov exponents is, of course, the number of free variables ont of wich the svstem
i constructed, This maximum number also defines the maximum of the attractor

_
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dimension e the attractor dimension is less than or equal to the dimension of
the phase space spanned by all the variables. For illustration it might be uselul fo
discuss the possible situations for just the three dimensional atmospheric system.
Suppose that the system %m&; such a parameter set that there s just one asvmp-
totically stable equilibrium solution {a point in phase space). Then all three of the
Lvapunov exponents will be negative, otherwise it would not be a stable equilibrium

Because if the solution is stable an infinitesimal g)iﬁ*s‘mr?;;u;w;;4, n any direction, wzii
always end on the stable point in phase space. Thus there is ‘shrinkage’ in all di-
rections. For a stable limit-cycle the combination of exponents would be one zero
{in the direction of circumference}, or the cyele would grow or shrink in time. And
two should be negative exponents (corresponding with shrinkage near the cycle in
the directions perpendicular to it} If the trajectories in parameter space lie on
a stable toroidal surface the combination is two zero exponents and one negative.
Finally for a chaotic svstem the combination of exponents is one positive, one zero
and one negative. The corresponding attractor dimensions are :© zero for a fixed
point ; one for a Hmit-cvele ; two for a torus ; and smaller than three for a strange
attractor. A way to define the attractor dimension is by calculating the so-called
Kaplan-Yorke dimension. It can easily be calculated from the Lyapunov exponents

via the following formula

(23)

> A, are the ordered lyapunov exponents and j is the integer

defined by the foll xsmng conditions

and

In our coupled model experiments it will be shown that the Kaplan-Yorke dimension
of the strange attractor ranges between 4.0 and 4.5, perhaps that other mvestiga-
tions will show that the attractor dimension can be higher or lower. ound only one
positive Lvapunov exponent in the case of a strange attractor. And it proved worth-
while to keep track of this exponent during my investigations. The algorithm with
which the Lyapunov exponents where determined was derived from Wolf el al. 1984,
This paper also contains a FORTRAN program to determine {while integrating) the
Lyapunov spectrum for the Lovenz 1963 model. For a plot of the time-dependent
hehaviour of the Lvapunov exponents and the ?s,fs-zg'%eﬁzw-‘a’;;z‘iw dimension in the case
of fully chaotic behaviour see figure 5 {for the set « (F, G ) = {35, 1.0 = 1077,
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3.4 Projections

In order to visualize the shape of the attractor, proje ‘aémm were made of the four
Tactive variables” namely XY, 2 and T The variable 5 displavs virtually no ac-
tivity and as will be shown later did not contribute much dynamics of the system,
The projections were made on the YV, Z-plane and on the X, 7T-plane respectively.
This is nothing more than a way of displaying the observed data, but it proved to be
very clarifving when trying to maintain a picture of the attractor shape and range.
The plots were made by using 10,000 points, each being separated from the other

by approximately 2.5 days.

4 Experiments

In this section both the experiments and the results that follow will be discussed.
The effect of coupling on the atmospheric model was investigated at first by simply
varving the coupling strength from ocean to atmosphere. This was performed by
varving the parameters Fy and (. The experiment was started by putting Fy and
7y equal to zero, thereby removing the oceanic forcing on the atmosphere. Fy and
(¢ are called the feedback parameters. When they are non-zero, they are responsible
{for the forcing on the atmosphere by itsell via the ocean. Since the ocean is driven
entirely by the atmosphere and constants. The state of the atmosphere is chaotic,
and its behaviour is described in the respective section helow. The forcing on the
ocean by the atmosphere is refained. As monitoring pavameters the strength of the
westerly current for the atmosphere X and the pole-equator temperature difference
for the ocean T were chosen, since the coupling depends most strongly on these.

Then the feedback was introduced via either Fy (at the value 1.2 % 1077 :} or {4 {at
the value 1.0%1077). And when coupling was thus introduced, the migw of the other

parameter (either G, or F|) was varied. So the value of F| was being put (arbitrarily)
iz

at 1.2 107% when (¢, was mz‘m‘_& And Gy was put to L0+ 1077 when F) was varied.
The area in wich | varied Fy and 4 is spanned by © 0 < F} < 8.0 % 1072 and
P Gy« 8.0 1077 In the investigated vange, there are stable stationary solutions
and periodic solutions and there is chaotic behaviour. In the sections below the
respective behaviour will be discussed in this order and also the behaviour when the
system underwent transitions between regimes. The transitions between the various
because here the

regimes prov ed to be the most interesting part of parameter space,

ot of coupling can be observed. For an overview

system is most sensitive and the effe
of behaviour versus varving Fi or varving {7; see figure 6.
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4.1 Equilibrium solutions

The equilibrium solutions can be found divectly from the coupled equations them-

selves, via

Vo o=0 = XY -bXZ -V w i.?v;,f(’?;w- - T (25)
7 =0 = XY+ XZ-F (26)

To=0 = k(X ’Y"‘} (27)
,C": mm )l == (5() 4 s% {Snj + { E‘Q‘}

This is a tricky set of equations to solve, but luckily there are a few numerical pack-
ages available that can approximate the solutions quite accurately. In the parameter
range that was investigated there was a certain combination of {F, &) for which
there ocourred a transition from chactic behaviour towards a stable equilibrium so-
This stable equilibrium selution

lution when (¢ was increased {see section 4.4.23,
can also be found by the use of an equation solving routine in MAPLI. For lower
alues of Gy, where the behaviour was intermittent in the numerical simulations,
stable equilibria could also be found with MAPLE. This transition is discussed in

more detail in section 4.4.2

4.2 Periodic Behaviour

There are limit-cycle solutions for different values of both Fy and & and there
are many variations in which the limit-cvcles appear within this coupled model.
However their shapes are very similar and also the scenarios by wich the variable
values are varying periodically, are alike. T will try to analyse the processes involved
by discussing a simple limit-cvele for the (Fy, Gy ) set (1.2x107%,0.3%1072). The cycle
is displaved in the form of itwo projections in figure 7. One projection is performed
on the {¥, Zplane. The other projection is performed on (X, ”Z“‘;wg'}fm:ﬁfé, Note the
small variation in 7. The salinity displays minute variation {less than 11077 {unit))
and can thus be considered constant at 1.328 < 1077 {unit).

We know from the equations that there is energy transfer from X to ¥V and £
at the expense of N, This can he retraced in the experimentsl data. Let us first
look at the time dependent relation between X and the energy F, contained by
the atmospheric waves © (V¥ + Z%). Both are displayed in figure 8. We see tha
X grows as a result of ?w terms Fy and Fi7T. Via the energy exchange hetween
the westerly current and the waves, also the energy stored in the waves starts (o

grow. The increase in wave-energy causes a decrease in X because of the negative
terms associated with wave-energy (see equation {10}; the westerly current strength
decreases as energy is transformed into the waves. The wave-energy contimies to
rise and the westerly current strength continues to fall. Until the energy stored in
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Figure 70 The limit cycle displayed in two planes in parameter space, for (F},G)) =
(1.2,0.3) = 1077,

the waves reaches its maximum and starts to decline also. This because there is a
decrease in the energy supplied by X and because the diffusive terms take energy
out of the system. When the wave amplitude has reached a small encugh value, X
gets the opportunity to rise again. It also starts giving off energy to the waves until
they climb out of their minimum. And the cycle repeats. Note that the cvcle has
a period of approximately 1.5 months. If one looks again at figure 7 and imagine
that the cycle is in counterclockwise direction. One can see ¥ and Z moving on
a closed curve with a radius varying according to the energy that is fed by X and
the constant term Gy and the ocean dependent term G47. Thus it’s always lagging
behind the latest development in X. This is a very crude description, as can be seen
the cycle displays more structure (the S-like shape around Y = 1.3) which originates
from phase lock effects from parameter Gy, There are also dissipative and constant
terms wich might be vesponsible for this, but it was the interplay between X and
Y, Z which 1 wanted to analvse,
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This interplay differs from the interaction between X and the ceean temperature

7', where there is no energy conservation as such { see the {"rm;)}mi model deseription
contained by ¥V oand Z, the ocean temper-
ature anomaly is lagging behind the westerly current %mi the dynamics involved
appear 1o be very simple as shown by the-limit cycle in figure 7. This limit ~cyele
The same data as time dependent signal

above). Just as the atmospheric energy

in counterclockwise manner.
As we know from the equations, the oceanic temperature

1s traversed i
can be seen in Hgure 9.
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Figure 90 X and T as a function of time, for (F,,G) = (1.2,0.3) « 10~2
strength, it behaves like a time

And the scenario is like a lazy dog

Note also the small ampli-

trail of the westerly current
integrated value of X (with diffusion of course).

(1) slowly trudging behind its master ('), see figure 7.
:a,;d{-f in the oceanic signal, as said before the ocean is a slow systern and signals with
a short time-scale like that of the atmosphere cause little reaction. This sepmingly
passive behaviour of the ocean was checked by forcing the atmosphere with the time
averaged value of the ocean-temperature as a constant in time. This resulted in
The coupling from the atmosphere to the ocean

anomaly follows the

the same limit-cvele behaviour,
was maintained for comparison and it showed that the produced signal was exactly
the same. The time-dependent behaviour looks exactly like figure § above. For an
example of a power spectrum of X in both the case with and without feedback see
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figure 10. Thus in the periodic case the oceanic dynamics arve probably unimportant.
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Figure 10: The frequency spectrum of X {(in cycles per month) during periodic
_behaviour, both with and without feedback for (Fy,G) = (1.2,0.3) % 1072,

So apparently it is the parameter X that forces ¥V, 2.7 above their minimal values.
And it is the parameter Fy that acts as the main forcing on X since the variation
in Fy7 due to T is very small (less than 1.7 107% compared to 8.0). However when
transitions between regimes occur we shall see that the ocean playvs a vital part.



5.3

4.3 Chaotic Behaviour

In this paragraph I will discuss the typical chaotic behaviour that occurred in certain
anic {forcing ). Also in the chaotic

areas i parameter space {see paragraph 2.3.2 Oce
regitne the scenario described in the periodic case probably still holds, in that the
ocean is still a slave of the atmosphere. This can be illustrated by figure 11, Here
we see the long-time scale chaotic behaviour for the (Fy, Gy J-set © {(1.2,0.75) » 1077,

In this plot, in both the atmospheric and the oceanic signal, the high bequency
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Figure 11: The filtered signals of X and 7 as a function of time, for (F Gy o=
(1.2,0.3) % 1072

signals have been filtered out. Because now that there is chaotic behaviour, the
atmospheric signal also contains a signal with a long time scale, We have already
seen in the periodic case that the short thme-scale behaviour of the atmosphere
resulted in a very small response in the oceanic varisbles. This is to be experted
since the ocean has, due to its "inertia”, an averaging character. Thus we only
see a clear oceanic response on the signals with a long time scale. But as can be
observed from the figure also in this long time-scale behaviour the response of the

ocean resembles the behaviour in the periodic regime. Tt follows the long time scale
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trend of the atmosphere. The ccean in its turn forces the atmosphere, one would
¢ in the power of low frequency signal in the atmospheric

thus expect an incre
data. This effect however was not observed however (see figure 12). Apparently the
atmosphere is little influenced by the ccean. First T will deseribe the behaviour in the
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Figure 12: The low frequency part of the power spectrum of X in both the coupled
and the uncoupled case.

case without feedback, or with partial feedback through only one of the parameters
Fi, Gy In this case (Fy, Gy ) was set to (0,0), resulting in a system where the ocean
is forced by the atmosphere but not vice versa,

4.3.1  The system without feedback

The system behaved fully chaotic, and the power spectrum of the parameter X was
dense. For the Kaplan-Yorke dimension the value 4.43 was found and for the first
Lyapunov exponent : 0.240. So the attractor dimension is relatively high, it showed
however that this was a typical value, also for the fully coupled case, indicating fully
developed chaos. The scenario in the case of periodic behaviour, also contributed
to my choice of monitoring variables. 1t was decided to use the variable X as the
monitoring variable for the atmosphere. And the variable 7 as a monitor for the
ocean. A picture of both the oceanic T-signal and the atmospheric X-signal can be
found in figure 13 with the power spectrum of the X-signal below them. The signal
was then fourier-transformed and a {requency spectrum was plotted. Tt showed that

18,

the signal showed power at a large vange of frequencies (see section : 4.3.1 ).

As can be seen in figure 13 the spectrum of X has three dominant frequencies.
But there is also some power in the low frequency signal. It is the low frequency
atmospheric signal that has the greatest response from the ocean. The spectrum
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of the oceanic signal is displayed in figure 13 at the bottom. T used the halfovear

averages of the signals, because when one wants to observe the signals on longer

timescales the hall-year averages give a much clearer view on what is going an. So a
plot of the avernged signals can be found in §i£§ii§"£‘. P4, Beside the signal isell it 15 also
illustrative to observe the power spectrum of this signal. Below both signals is the
spectrum of the averaged atmospheric signal. The cutoff at 100 eyeles per century
is caused by the half-year averaging. This picture is characteristic of the chaotic
signals found for other values in the (F}, &) set. However there is a change in the
spectrum, a rise in the power in varving frequency bands, for different moments and
<.';%.§ff<m-fz;é. parameter sets (see the following section).
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AX AT

(0.0012 | 00038
0.0015 1 0.0044
0.0019 1 0.0083

{ By iy } A

(0,0) 1077 || 1.0154
(1.2,0) = 1077 § 1.0306
(0,1.0) = 3,{3“}' 08770

ot ¢

Table 2: The averaged values and differences between feedback and no feedback

4.3.2 Introducing the feedback

We will now introduce the feedback, first by making & nonzero {while ¥y = 0.
Then by making Fy nonzero {while &y = (). When feedback was introduced by
making G, nonzero a change (‘sm“urs‘*e{i in the averaged signal.

In the case of (F, G} = (0, 1.0) » 1077 the average of X is lower, though it also
displays more e:xt;sgmaz ‘-a.% ues. That the average 13 made lower is not very strange,
fectively damps X. The

since by feeding power to Y (see equation {24}), one eof
power spectrum of the averaged X-signal in this case displays an increase in power
around 100 cyeles/century (c/c). This effect is not caused by the feedback itsell,
but by an effectively increased 7y, This was proven by forcing the atmosphere
with the averaged value of T' {aquired from the run with feedback) as a constant in
time, thereby removing the feedback. One sees the same shift in power towards the
100 ¢/c. The averaged value however differs from the system with feedback. The
averaged 7 is slightly {(but noticably) higher in the case without feedback then in
the case with feedback. The averaged values for X, 7T and the differences between
these values for both the case with and without f{-ﬁ{-%{i?;asi : are displayved in table 2 (for
(Fy,Gy) = {0,0) see below). The Kaplan-Yorke dimension has the slightly increased
value of 4.44.

By introducing the feedback through the parameter Fy using the set (F,,G) =
(1.2,0) = 1077 one sees an increase of the average of X, also not surprising, since
the term {(Fy + Fy T divectly forces X (see equation (24)). The increase in power in
the signal of the averaged X is now at around 50 ¢/c. This effect also occurred in
the system without feedback, the atmosphere being forced with a constant averaged
T-value in time. But again the averaged values of the two monitoring variables in
the case with feedback are lower then those in the case without feedback. Both are
displayed in table 4.3.2. The Kaplan-Yorke dimension has the value : 4.46, so there
has been some increase,

For comparison also the difference between the averaged values of X and T
between two runs with (F G = (0,0} is displaved. Remarkable in both cases in
which {eedback was xmmdzz( ol E;&ii such a small change in the parameters, can
ge in ?,}féi"}.é‘fﬁf%{}us: Compare for Fy = 1.2 % 107%, with the

gtill cause a visible chan

constant parameter Fy @ 8.0, the parameters differ a {actor thousand.
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After introducing the feedback through either £ or (4; the other parameter is
increased. The Kaplan-Yorke dimension varies with changing feedback strength. In
bioth the experiments with increasing ¢ and increasing F, inereasing the coupling
strength generally results in a decrease in the first Lyapunov exponent. Which in
curn causes a decrease in the Kaplan-Yorke dimension. This effect continues until
we come close to a trapsition, in which the coupled system moves (o a pwéof’ii{t

attractor. In these transitional regions in parameter space the parameter sensitivity
can be enormous. Another notable feature of these transitional regimes is the large
decrease in the positive Lyvapunov exponent. There are many regime transitions in
the small area that is investigated, but there are probably only two scenarios for

these transitions:

The transition from chaotic to either periodic behaviour or a stable point
solution, via intermittency.

2. The transition from periodic behaviour to chaotic behaviour, via bifurcation.

The description of the systems behaviour close to the transition point can be found

in the respective paragraph below

4.4 Transitions between regimes
4.4.1 The transition from chaotic to periodic behaviour

The transition from chaotic behaviour to periodic behaviour is of the intermittent
tvpe, where the behaviour in the intermittent intervals is like the behaviour of
the periodic signal when the coupled model has finally reached the stable periodic
attractor. The transition occurred around Fy = 2.17 % 1077 when F) was increased.
When we look at the case Fy = 2,15 % 1077 intermittency has already set in, the
intermittent intervals lasting about 15 vears. During these intermitient intervals
the averaged atmospheric signal is lower than during chaotic behaviour. So in the
"periodie” vears also the ocean temperature anomaly drops in value {see figure 15).
The Kaplan-Yorke dimension has dropped to a value of 4.25, the first Lvapunov
exponent is about 0.169. When F, is incre (3. S0 (’%z‘ﬂ-w also the length of these
intermittent periods. For F\ ={2.164 ; 2,168 ; 2.169 )*10772 the periodic times last
for {201 32 ; 45) vears respectively. By this increase in the intermittent intervals the
ocean temperature anomaly pets the opportunity to relax to lower values. However
the coupled system does not vet have the opportunity to settle on the periodic
attractor. It will return o chaotic behaviour when the oceanie signal comes near
to some minimal value, This is in contrast with the onset of the periodic interval

swhich takes place at apparently indiserininate values of T For the above mentioned
valyes of Fy the values for the Exz’zp}zmwﬁ“m'%<~ iz;*zmmw are: (4.20; 416 1) (the Hrst
Lyvapunov exponent has values | {0,153, 001355 0). For the last Fy value periodicity

z”

T
s



2 )
frequency {os}

Figure 150 The averaged intermittent signal as a function of time, for (¥, G) =
(2.15, 1.0) x 1072,

sets in and stayvs, atter about 1150 vears. The time-run is shown in figure 16 {note
the different time-scale). On variation of the initial condition for the last F value it
showed that this intermittent state can last for largely varving timespans. It ranged
from about less than a year to more than 32.000 vears {the experiment was stopped
after 32.000 vears).

Further experiments where conducted. When those initial conditions which gave
intermittent behaviour for more than 32.000 vears where shightly perturbed {as small
as possible within the accuracy of the program {16 digits)), i.e. a slightly different
initial condition was chosen, the intermitient behavionr lasted never more than a few
hundred vears. We can conclude that the initial conditions from which intermittent
behaviour lasts more then 32.000 vears are defined as very small areas or points in

phase space. For this situation one might speculate in the following way © In the
phase space of the coupled model there is one periodic attractor that has become
stable for our specific (Fy, Gy -set. In the attraction-basin of this periedic atiractor
arve thin tubes for which the system does not collapse towards the periodic atiractor.
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haviour takes place after 1300 vears. This is for {Fi, G) = {2,169, 1.0V % 10"

But in which intermittent behaviour takes place. A small *perturbation however
will eventually move the system out of these tubes and on to the periodic attractor.
Another remarkable phenomenon occurs when the integration scheme of the ocean
is changed. Usually it makes little difference whether the ocean is integrated via
the usual Forward Euler scheme, or the more complicated Runge-Kutta 4-th order
scheme. But in the sensitive regime that we have entered here, it does. By changing
the integration scheme to the R.K. 4-th order, the intermittent intervals last longer.
In the previous sketched image it would mean that we stay longer in the intermittent
tubes by the more accurate integration scheme.

Although the previous results seem to sug
whether the ocean dynamics are an essential part of the coupled svstem. It could be
that the ocean only acts as a atmosphere parameter modifier, and only its mean value
is of importance o the atmospheric behaviour. The intermittent behaviour then
being dictated by the atmosphere, and the ocean is just following the atmospheric
signal. To investigate this the following experiment was conducted - In the ‘chaotic’

st otherwise, it is still not certain

intervals of the intermitient behaviour {F, = 2,184, not too close to the iransition
wck, the ccean temperature
Then the atimosphere

towards periodic behaviour) of the system with feedb

AN

anomaly varies between the extreme values : 553 <
or various values in this range (the system

was forced with a ronstant T-value in time

© e 4 o 42 ¢ ) .
“or a round-off ervor as a result of the limited accuracy of the computer
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is now without feedback). For each of those values the atmosphere displaved limit-
cvele behaviour, where the chaotic transient behaviour lasts longer for higher value of
T. Thus by removing the feedback, we have also eliminated intermittent behaviour,
As mentioned before, afier an intermittent interval the atmosphere behaves as if
fully chaotic the transition seems to occur when the ocean variable 77 has reached
& certain {minimal) value. During the periodic behaviour the average of T i about
5.46. When the ai‘p;,:;s.;;}? ere was forced with this value, g8 a constant in time, it
displaved only chaotic behaviour. Thus in the intermittent case the feedback is
an essential 3;&;0{%&%;? for the behaviour. Where, through the feedback, the ocean
induces a bifurcation in the atmosphere when it has reached the minimal value,
When we look at the oceanic signal in more detail, during an intermittent in-
terval, we see that there is some curvature in the mean value {(see §'xg21 re é:’}, The
iransition to chaotic behaviour takes place at 21 vears. This curvature of the signal

N ooy Furmotion of tirree o B ws 7

Birvyes G ymnes

T me g fuooiion of tirme

tirme In wears

Figure 17: The signal during an intermittent interval for (F},G1) = (2.169,1.0) =
02

shows a resemblence to what is known as “type 1 intermitiency” (Schuster 1984,
where the intervals where the signal appears periodic are under influence by what is
then called the "ghost of the limit cvele”. Aptly named so, because the signal during
an intermittent interval resembles the stable periodic behaviour. Note that another
way of looking at this transition to a periodic attractor could be the inverse route
to chaos. One would then start at the periodic attractor, decrease the value of F!
and reach chaotic behaviour. Therefore the intermittent intervals, still resembling
the periodic behaviour, would then be associated with the above mentioned ‘ghost’.
To further investigate the type of intermittency found here, one could determine the
distribution of lengths of the intermittent intervals as a function of parameter Fy.




4.4.2 The transition from chaotic behaviour to a stable equilibrium so-
lution

As we saw earlier we could find within our (£}, -vange a vegion for which the
coupled system moves to a stable point attractor in phase space {the equilibrium
solution). Below is a description of the transition from chaotical behaviour to the
stable equilibrivm. This transition is induced by increasing the parameter . But
before the critical value for ) is reached for which the system moves to a stable
equilibrium, the behaviour is of the intermittent type. Where during an intermitient
iz;r-esz‘mi the system moves close to a stable point attractor (see figure 18). The

ntermittent intervals become longer with increasing G, until, for a critical value
§u1 7+, the system reaches a stable point attractor. When we come close to the
s:»:iiai;skk p{";mt regime in (Fy, & )-space, we can already notice the drop in the value of
the Kaplan-Yorke dimension : Dygy = 4,13, The intermittent behaviour sets in for a
value of Gy for which a stable point solution is possible {as found with the MAPLE
package}, this solution is never reached however. But when the numerical experiment
was started with initial conditions in close proximity to the stable equilibrivm, the
svstem moved towards, and staved on the stable equilibrium. So although the stable
attractor was not reached when starting from distant initial conditions. In analogy
with the previcous section : during the intermittent behaviour there was already a
stable equilibrium solut :ifm It might be interesting to investigate the domain of
attraction, and see if it is indeed limited to a region cloge to the stable equilibrium
solution. Note that the %:«z% le solution that is approached in figure 18 gives a low
alue for U and thus also a low value for 77 (Just as in the case with "periodic”
intermittency).

When looking at the intermittent behaviour on & longer time-scale, it seems as if
there are two possible regimes of chaotic behaviour (see figure 19}, The two regimes
differ in the mean value of the variables and the systenm is swite hmsz between those
two means. This is cansed by a different frequency of ocurrence of the intermitient
intervals. During such an interval the mean value of both X and T is much lower.
Thus the regime méh the lower mean would correspond with intermittent behaviouy
with s high frequency of intermittent intervals. The high-mean value corresponds
to approximately 12 intermittent intervals per ten vears, the low-mean value oceurs
when there are about 19 intermittent intervals per ten years. This behaviour has
led to the following conjecture ¢ By increasing 'y we bring the coupled system into
another region in phase-space that's somewhat closer to a stable point attractor,
And thus does the coupled system eventually move to this stable point solution. For
the lower values of (7, for which the svstem was intermittent, the stable solution
was also a possibility, (}133}»’ it lies in a region in phase-space that’s rarely or never

visited,
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Figure 19: The averaged intermittent signal, for (F3, (o) o= (1.2, 1.460) 107
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4.4.3 The transition from periodic to chaotic behaviour

We now come to the discussion of the last type of regime transition that has been
found. The transition will be llustrated by the case in which the system changed
from periodic to chaotic behaviour by increasing the parameter Fi. This process
proves to be subtle in the sense that the chaotic hehaviour close in {(F, Gy space to
the periodic regime closely resembles the periodic behaviour. The transition from
periodic behaviour to chaotic behaviour takes place probably via period doubling
hifurcations. In the projections in figure 20 we see successively : period doubling,
below that the transition to chaos {(noisy periodicity) and finally, fully developed
chaos. The respective Fi-values are above the projections. At F) 260 % 1077
we start off from an alveady quite intricate Hmit-cyele. For Fy = 265 = 1077 the
cycle has undergone a period doubling bifurcation @ the limit-cycle appears to have
“split” (the period has doubled). The chaotical behaviour sets in somewhat before
Fyo= 270 % 1077, and seems to be constrained by an area in phase space that is

close to the previous limit-cycle. In this noisy periodic behaviour the first (posi-
2}, As one would expect since

tive} Lyapunov exponent is very small {1, = 0.0:
the behaviour and power spectrum still closely resembles the periodic behaviour.
For a plot of the power spectra for F, = 265 = 1077 and F, = 2.70 = 1077, see

%
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figure 21. The Kaplan-Yorke dimension has the small value of 4.03. Also for the
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Figure 21: The power spectra for periadic behaviour : Fy = 2.65%1 072 and for noisy
-ty

periodic behaviour © F) = 2.70% 1072 (G4 = 1.0 = 1077).

other areas in (F), () )-space we found that close to the regime transition there is a
remarkable drop in the first Lyapunov exponent. The power spectrum also indicates
the limited variance in the atmospheric signal. For F) = 2.80 % 1077 the system is
fully chaotic again, displaying a wider range of possible frequencies. Also the plot in
Y Z-plane shows that more freedom is allowed. For the first Lyapunov exponent and
the Kaplan-Yorke dimension holds <L = 0.266; Dy = 4.38. Thus we can assume
that the systern has again reached the fully chaotic regime. Note that the same type
of behaviour takes place when we make the transition by varying parameter G,
Another remarkable feature of the system is the asymmetry between the transition
behaviour in both directions. The transition behaviour from chaotic to perodic be-
haviour is markedly different from the behaviour from periedic to chaotic behaviour
{in both cases either the parameter F, or & was increased).
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5 Conclusions

The experiments seem to indicate a scenario in which the ocean is usually passive
and follows the atmosphere. This puppet-like behaviour of the ocean is responsible
for the high value of the Kaplan-Yorke dimension, in terms of attractor dimension it
acts as a copy of the atmaosphere {the two variables higher the attractor dimension of
the atmosphere by two). This behaviour mimics that of more complicated coupled
atmosphere ocean models. A small change in the parameters or initial conditions
can cause a drastic change in the atmosphere model’s behaviour. The ocean, in its
turn dependent on the atmosphere-forcing, can cause these small parameter changes
through the feedback. One would thus expect the effect of feedback 1o be rather
obvious. From the experiments however, it proved difficult to distinguish between
the complex behaviour and sensitive parameter dependence of the atmosphere and
the effects that are introduced by introducing the coupling. But when close to a
bifurcation point, where the atmospheric behaviour is very sensitive to parameter
changes, the ocean can play an important role.

Another notable feature of the oceanic response, is that its signal displavs power
in a frequency-range {1-5 cyeles per century) that is not dominant in the atmo-
spheric signal that’s forcing the ocean. Thus one would expect an increase in this
frequency range of the atmospheric signal when feedback is introduced. Since now
the atmosphere is forced by a signal that varies on a specific (long) time-scale. This
effect was not yet obvious in the experimental data. Also care should be taken when
chosing the integration scheme. Although the ocean displays mainly behaviour on
the long time-scale, one should take an integration scheme that is as accurate as
that for the atmosphere (see section 4.4.1). Note that the atmospheric dependence
on the integration scheme of the ocean, during intermittent behaviour, alse forms
evidence for the subtle effect of feedback.

It also showed that in the ocean model used, salinity is a variable which can
be “frozen’ in time without noticably influencing the dynamics. This only for each
parameter set separately, as soon as either of the feedback parameters Fy and G is
changed then also does the mean salinity. And the mean salinity has an influence
on the atmosphere model via the thermohaline flow effect on the ocean temperature
anomaly. In one specific case the atmosphere was forced from a chaotic regime into
a periodic regime by fixing the salinity difference at another mean {0.123 109
unit) than it would adopt naturally for the chosen parameter set (0,130 1072 unit},
Concluding : coupling can be a crucial factor although not always immediately
obvious, to determine its effect specific experiments need to be devised,

Another interesting aspect which is probably strongly linked to feedback effects
is the following : On the intermittent transition from fﬁmm to a stable equilibrium
e, see figure 19, In

there were two basic regimes visible with a long duration/timesca
one of those regimes the average of the strength of the wesierly current was smaller
than in the other, resulting from a difference in the z‘m,_;zasmsiy of the intermittent




intervals. This difference may be the result of feedback effects. Because as we have
seen the feedback via the ocean does probably not cause a visible change in the
atmospheric attractor-shape. But it may be that by constantly pushing the atmo-

sphere, on a long {oceanic) timescale, otherwise seldomly reached regions in phase

space are visited more frequently. In the above mentioned intermitient behaviour,

the region around the stable stationary attractor.

There arve still many experiments which could lead to a better understanding of
the system.
A few suggestions :
New investigations :
- Tt would be useful to keep itrack of the eigenvalues of the coupled systemn when
close to one of the bifurcations observed.
- Force the ocean model with white noise and then monitor its response.

One expects the ocean to act as a kind of low-pass filter.
- Histogram of an atmospheric variable : in the feedback/no feedback case.

To see if the effect of feedback can be observed during fully chaotic behaviour.
- Is it possible to classify the bifurcation type for the transition from periodic to
chaotic behaviour (for example with a Poincare plot}?
- Another way to investigate the effect of the feedback is by calculating the corre-

lation between the atmospheric and oceanic signal {statistical approach). And this

for varying parameters ) and G5,

- In the intermittent case, does the coupled system reach the stable attractor if we
wait long encugh? This does not seem to be the case when we look at the data ¢
there seems to be a repelling factor that pushes the system away from this attractor,
New Models ;
New investigations might also include new models out of which the system is con-

structed :

- A different, more active ocean model.

- A different, physically better justifiable atmosphere model (this however does not
contribute 1o the field of interest sketched herg).
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