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Abstract. We use a generalized linear model to statistically analyze the3

probability of daily precipitation occurrence, dependent on precipitation persistence,4

annual cycle, and soil moisture. By applying this method to the global ERA-405

re-analysis dataset, we reveil patterns of the precipitation occurrence variability as6

explained by each of the three variables and their interactions. These global patterns7

show: (1) known monsoon regions dominate the annual cycle component; (2) known8

regions of orographic uplifting dominate the persistence component; (3) the soil moisture9

component shows structure across all continents, but is most pronounced in the tropics10

and subtropics, and least pronounced in polar regions. In a surprisingly large part of11

the land surface, soil moisture influence on precipitation occurrence is of the same order12

of magnitude as the influence of the annual cycle.13
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Introduction14

The dynamic role of terrestrial water in the hydrological cycle has been demonstrated15

in many regional and global climate studies. Especially, soil moisture plays a key role16

in land surface mass and energy balances, and relationships between soil moisture and17

rainfall affect regional climate and its variability.18

Concepts of feedbacks between soil moisture and precipitation have been developed,19

that usually fall into one of the following two categories: feedbacks may consist of local20

recycling of present water [Brubaker et al., 1993; Eltahir and Bras , 1996; Trenberth,21

1999], or soil moisture may promote or hinder precipitation by altering boundary22

conditions [Entekhabi et al., 1996; Findell and Eltahir , 1999; Ek and Holtslag , 2005;23

Schär et al., 1999].24

Validation of the role of soil moisture in both categories of concepts is problematic,25

both in modeling contexts and in situ [Pan et al., 1996; Betts , 2004]. One of many26

issues hampering the straightforward analysis of relations between soil moisture and27

precipitation in the output of an Atmospheric General Circulation Model (AGCM)28

is the typical mixed, non-Gaussian probability distribution function of precipitation29

(with many zero’s). Modeling precipitation characteristics is complex. Precipitation30

occurrence and precipitation amount are the most important characteristics that are31

mimicked by statistical precipitation models. These two variables are estimated either32

simultaneously [Dunn, 2004; Durban and Glasbey , 2001], or separately [Srikanthan33

et al., 2005; Harrold et al., 2003a, b]. For a review of statistical rainfall models, we refer34
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to Srikanthan and McMahon [2001].35

Analyses of relations between soil moisture and precipitation have mainly36

concentrated on precipitation amount. Among those, the GLACE project [Koster et al.,37

2004, 2006; Guo et al., 2006] is the most comprehensive. Other analyses are published38

in [Koster and Suarez , 1996; Koster et al., 2000; Dirmeyer , 2000, 2005; Savenije, 1995].39

Relations between soil moisture and rainfall probability—also known as precipitation40

occurrence or wet-day frequency—have rarely been investigated.41

The purpose of our study is to identify relationships between soil moisture content42

and subsequent rainfall occurrence. We assume that while these relationships may exist43

throughout the world, the strength of the relations may vary as the underlying physical44

processes may vary spatially. Therefore, we focus on the strength of the relations, and45

their patterns. Global patterns of these relationships may then be compared with the46

patterns of land surface-atmosphere interaction strength as published by Koster et al.47

[2004, 2006], who focused their analysis on precipitation amount.48

A generalized linear model (GLM) is used to statistically analyze the probability49

of daily precipitation occurrence, dependent on precipitation persistence, annual cycle,50

and soil moisture, and interactions between these variables. As the GLM is applied at51

each location of the ERA-40 dataset [Uppala et al., 2005], patterns arise of relations52

between these three variables and precipitation occurrence. Analysis of global patterns53

offers an extension of validation opportunities, as spatial climate patterns have been54

well-studied for a long time. The precipitation persistence and the annual cycle in this55

context can be seen as nuisance variables, in the sense that each is an approximation56



5

for several global and local variables that act on the same timescale. The annual57

cycle variable, approximated by calendar months, represents sun intensity, sea surface58

temperature, snow cover, day length, surface temperature, among other variables. More59

precisely, it represents seasonal variability of all these variables together; interannual60

variability and variability within months is not accounted for. The persistence variable61

is primarily used to discern dry from wet episodes, and as such represents the presence62

of large-scale weather systems. It can also be seen as an autocorrelation parameter,63

accounting for system persistence and lagged cross-correlation of surface-atmosphere64

interactions. However, the patterns of the annual cycle and persistence offer a convenient65

benchmark since they can be visually validated: in the annual cycle patterns we expect66

to see monsoon regions, and the persistence patterns should show regions of orographic67

uplifting and regions where ocean winds enter the continents (the westerlies in the68

higher latitudes, both N and S hemisphere). If the resulting patterns resemble these69

expected patterns, we can have some confidence that the patterns of soil moistures’70

influence on precipitation occurrence are reasonable as well, provided that the statistical71

influence of the variables are of the same order of magnitude.72

The rest of this paper is structured as follows. Section [ref to data] introduces the73

ERA-40 dataset and describes the data preparation. Section [ref to methods] explains74

the statistical methodology, including the meaning of test results in this context. Section75

[ref to results] presents and discusses results in the form of statistics and patterns.76

Finally, in section [ref to conclusions] we end with the conclusions.77
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Data78

We used land surface water balance data from the ERA-40 global meteorological79

re-analysis, produced by the European Center for Medium-Range Weather Forecasts80

(ECMWF) [Uppala et al., 2005]. The land surface parametrization of ERA-40 [Viterbo81

and Beljaars , 1995; Van den Hurk et al., 2000] models the soil-atmosphere and82

soil-vegetation interactions and delivers a daily surface water and energy balance at83

each grid cell, during the entire period of 1957 to 2002. As differences in observation84

systems strongly influence biases in the hydrological cycle [Hagemann et al., 2005; Betts85

et al., 2005], we selected the satellite period (september 1978 - august 2002, 8766 days)86

to conduct our analysis. Grid cells with a land cover of less than 50% were excluded87

from the dataset, leaving 10407 grid cells for analysis.88

Precipitation data from ERA-40 were retrieved and processed to obtain daily89

sums. To minimize spin-up biases, the 36-hour and 12 hour forecasts, started daily90

at 12 UTC, for four types of precipitation (convective snowfall, large-scale snowfall,91

convective rainfall, large-scale rainfall) were retrieved and subtracted from each other to92

obtain daily summed values over the 24-hour period from 00 to +24 hours UTC. Daily93

precipitation depth equals the sum of these four values. To transform the precipitation94

depth series into the precipitation occurrence series, a threshold of 0.1 mm/day was95

chosen to determine whether a day is wet or dry (following New et al. [1999, 2002];96

Buishand et al. [2004]). A poor choice of threshold can possibly cause a lack of skill of97

the GLM, and also a trade-off might be expected with regard to the under-representation98
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of sub-grid scale convective processes at the grid scale (threshold too high) and the99

over-representation of both numerical noise and biases induced by the model’s constant100

drizzle (threshold too low). In order to assess the robustness of our method to the choice101

of precipitation threshold, several additional analyses were conducted, using thresholds102

from 0.05 mm/day up to 1.0 mm/day. The differences between the sets of results are103

very small, both in terms of proportion of explained deviance, and in terms of patterns.104

However, thresholds higher than 0.5 mm/day generate lower wet-day variability than105

thresholds lower than 0.3 mm/day, indicating that subgrid-scale convective processes are106

underrepresented with these higher thresholds. Consequently, in the subsequent sections107

we present only the results for the precipitation occurrence threshold of 0.1 mm/day.108

Volumetric moisture content data were retrieved from the 36-hour forecasts (i.e. at109

+24 hours UTC). The volumetric moisture content of the upper meter of soil, obtained110

from the upper three layers in the ERA-40 dataset, forms the soil moisture variable111

used in this study. These are chosen because these three layers interact directly with112

vegetation in the ERA-40 land surface parametrization scheme [Viterbo and Beljaars ,113

1995; Van den Hurk et al., 2000].114

The time series data at each grid cell consists of 8766 records with four variables:115

precipitation occurrence (Pbin) as a binomial factor; precipitation occurrence on the116

previous day, used as an approximation of system persistence, as a binomial factor;117

annual cycle of seasonality, approximated by using calender months as a categorical118

factor; previous day volumetric soil moisture content as a continuous variable.119
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Methods120

In this section, we describe the methodology of our analysis. We use previous121

day soil moisture and previous day precipitation occurrence to explain precipitation122

occurrence. This is done because in this way the obvious relationship of precipitation123

causing soil to get moist, is filtered out. This also implies that the results will only show124

a part of the influence of soil moisture on precipitation: processes that act within a day125

are not represented in our analysis.126

All analyses were conducted in a widely used environment for statistical computing127

[R Development Core Team, 2006]. For estimation of each covariates’ influence on the128

precipitation occurrence, a generalized linear model (GLM) with a logit link function129

logit Pbin,k = log

(

pr(Pbin,k = 1 | xk)

1 − pr(Pbin,k = 1 | xk)

)

= xT

k
β (1)

is used, where xk is the data vector at time k (i.e. the value of all covariates, including130

interactions, and using dummy variables for the annual cycle), and β is the vector of131

corresponding coefficients (one for soil moisture, one for system persistence, eleven132

for the annual cycle, and 34 for interactions). In comparison with the classic linear133

regression model pr(Pbin,k = 1 | xk) = xT

k
β, the logit function models the transition of134

probabilities in outcome of a dependent variable, given the change in the independent135

covariates. The outcome is confined to the domain of probabilities [0, 1]. Additivity136

of the effects in the right hand side of the equation is preserved, which allows analysis137

of variance, and consequently enables us to quantify the effects of the covariates on138

precipitation occurrence. Grunwald and Jones [2000] used a similar GLM within the139
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context of Markov chain modeling of precipitation, and Buishand et al. [2004] used this140

approach in the context of statistical downscaling of AGCM output.141

The coefficients in β are estimated by standard GLM methods [McCullagh and142

Nelder , 1989]. Rewriting equation 1 to obtain the estimated probability of precipitation143

occurrence is straightforward:144

pr(Pbin,k | xk) =
exp(xT

k β)

1 + exp(xT

k
β)

=
eβ0 · eβ1x1k · e... · eβjxjk

1 + eβ0 · eβ1x1k · e... · eβjxjk

(2)

where xjk is the value of covariate xj at time k. As a measure of explained variation by145

the total model and each covariate, we use the deviance function, defined as146

D = 2
n

∑

i=1

{

yilog

(

yi

π̂i

)

+ (mi − yi) · log

(

mi − yi

mi − π̂i

)}

(3)

where n is the total number of categories i that emerge from the use of binary147

and categorical covariates (i.e. one category for each dummy variable) and mi148

the number of days in each category (for instance all days in February), π̂i the149

estimated rainfall occurrence and yi the observed precipitation occurrence. Note that150

π̂i =
∑mi

1
{pr(Pbin,k | xk ∈ i)}.151

Deviance behaves similarly to sums of squares (R2) in linear regression. Deviance152

attributed to the covariates is additive with respect to the total explained deviance,153

and can be interpreted similarly to explained variance in linear regression. We did not154

use the deviance as a goodness-of-fit statistic, but instead focussed on the components155

of explained deviance by their spatial patterns, and the links of these patterns to156
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well-known phenomena.157

As the common interpretation of rainfall occurrence probability as “wet-day158

frequency” presumes variation in wet and dry days, high proportions of explained159

deviance cannot be expected. Consider, for example, three consecutive days with160

estimated rainfall occurrence probability of 0.33, and one out of these days turns out161

to be “wet”. This estimation, although “perfect” in the frequentist interpretation, errs162

at each of these days, and has a mean absolute error equal to 0.44. Another, partial163

explanation for the apparent lack of fit is the interannual variability of atmospheric164

processes and variables (for example sea surface temperature), which is not accounted165

for in our GLM.166

We used methods of spatial data analysis and presentation as provided within the167

framework of statistical computing [Pebesma and Bivand , 2005].168

Results and discussion169 Figure 1.

– Figure 1 around here –170

In this section we present the main results of our analyses. The scaled null171

deviances of precipitation occurrence (i.e. total variation of precipitation occurrence)172

at each grid point in the ERA-40 dataset are shown in Figure 1(top); proportions of173

the null deviance explained by the GLM at each grid point are shown in the bottom174

graph in Figure 1. The null deviance map is patterned with high values all around175

the world. Low variation in precipitation occurrence is expected and observed both176

in regions with lower precipitation occurrence (deserts, altiplanos), and in regions177
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with high precipitation occurrence (tropical rain forests). Regions of low null deviance178

associated with low rainfall occurrence are the major deserts of Africa, Australia and179

Asia. Tropical Africa, Indonesia, the Amazon and the western coast of South-America180

are regions with low deviance associated with high rainfall occurrence.181

The proportion of explained deviance by the GLM has a mean of 0.22. Apart182

from outliers in the desert regions (a maximum value of 0.87 in the western Sahara)183

the model generally explains up to 50 % of the null deviance. Regions of low explained184

deviance are all mid- and high-latitudes, the wet tropical regions, and the deserts.185

Regions with higher explained deviance are the Mexican west coast, the west coast of186

South-America, the southeastern fringe of the Amazon basin, most of the Sahel region,187

southern sub-tropical Africa, the Himalayas, Burma, and northern Australia.188

– Figure 2 around here –189 Figure 2.

Figure 2 shows for all variables the deviance explained, both in absolute and in190

relative sense. The individual contributions of the variables are shown as well as the191

sum of all interactions between variables. At first glance, annual cycle and soil moisture192

stand out, while the influence of the interactions is negligible. The deviance explained by193

the annual cycle shows that the known monsoon regions stand out: the annual cycle in194

the Sahel, southern sub-tropical Africa and in eastern Asia influences the precipitation195

occurrence more than it does elsewhere in the world. In some very dry regions, where196

precipitation occurrence is exceptionally low, high values of proportions of null deviance197

explained by the annual cycle are found.198

– Figure 3 around here –199 Figure 3.
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Figure 2 also shows that persistence explains a relatively small part of the200

null-deviance, on average nine percent. To enhance the persistence pattern, we have201

plotted them at a separate scale in Figure 3. The figure shows a visible covariation with202

orography, which can be explained by orographic lifting of moist air that is (apparently)203

advected in separated multi-day episodes. Regions of strong covariance are not only204

the Andes, Rocky Mountains, Himalaya region, but also the Great Rift Valley in205

Africa. Also, temperate regions such as western Europe and Scandinavia show increased206

persistence. Here precipitation is expected throughout the year due to ocean winds207

(i.e. the westerlies) entering the continent. In some regions, for example the Arabian208

peninsula and central Australia, the apparent influence of persistence may be spurious,209

due to a small null deviance of precipitation occurrence.210

The pattern of high influence of soil moisture in Figure 2 is similar to the pattern211

of high annual cycle influence. In the Sahel region, the band of soil moisture influence212

has its maximum more to the South compared to the pattern of the annual cycle’s213

influence. Some of the “hot spots” in the patterns of soil moisture-precipitation feedback214

in our study are similar to the ensemble average coupling strength in the Global215

Land-Atmosphere Coupling Experiment [Koster et al., 2004, 2006], such as the Sahel216

and Northern India. There are also differences such as central USA (not in our study)217

and the fringes of the Amazon (not in Koster et al. [2006]). However, there are several218

explanations for these differences. We are considering a different variable than Koster219

et al. [2006]—precipitation occurrence instead of amount. Also we are comparing one220

model approach (with re-analysis) with the average of 8 to 12 models by Koster et al.221
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[2006], where differences between models in the latter proved to be large as well. At222

present, we cannot say if our findings are consistent, complementary or contradictory223

to the results of Koster et al. [2006]. We also looked into the possibility (suggested224

by a reviewer) that our results may be dependent on mass balance deficits that exist225

in ERA-40. Deficits in the surface mass balance were added as independent variable226

in our GLM, and had near-zero explained deviance; they do not influence our results.227

Mass balance deficits in the atmospheric column were not assessed systematically.228

ERA-40 is not the only dataset that we could have used; NCEP/NCAR [Kalnay et al.,229

1996] and JRA-25 [Onogi et al., 2005] analyses—as well as many climate model output230

datasets—provide soil moisture and precipitation fields with daily values that are231

required for the GLM approach presented here. As several datasets are available to232

repeat our experiment, a possible next step is to assess the variability and commonality233

between the patterns resulting from these different data sources. Furthermore, a234

simultaneous analysis of land surface relations to both precipitation occurrence and235

amount—possibly by using Tweedie distributions, following Dunn [2004]—would shed236

more light on the issue of amount versus probability of precipitation.237

– Figure 4 around here –238 Figure 4.

To assess spatial consistency of the GLM approach, three transects in the global239

dataset of GLM results are shown in Figure 4. Proportions of explained deviance are240

plotted against distance along the transects, and against soil moisture variance.241

In the upper graph of Figure 4, showing the transect across the USA, the proportion242

of explained deviance of the three covariates express a marked difference between the243
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western part and the eastern part of the transect. Soil moisture starts high in the west244

of the USA, maintaining a modest level at the Rocky Mountains, and gets very low245

in the mid-to-east part of the transect. Persistence, covarying with orography around246

the world, is strongest in the west, but still explains eight percent of the null deviance247

throughout in the eastern half of the transect. The influence of the annual cycle starts248

low, varies in the Rocky Mountains, stays low in the middle part of the transect and249

rises to eight percent at the east coast. Two factors seem to be responsible for these250

features. Firstly the dominant pattern of atmospheric circulation, bringing moist air251

from the west, interacting with a seasonal moist air pathway from the southeast and252

bending north and eastward over land. Secondly, the orography in the west (the Rocky253

Mountains) seems to restrict moisture availability in the rest of the transect, raising the254

threshold of rainfall event causation by local processes.255

The middle graph shows the transect across the Sahara and Sahel. An extraordinary256

feature is the high proportion of deviance explained by the annual cycle from the257

Sahara to the dryer parts of the Sahel. The graph on the right shows the origin of these258

results: The highest scores of the annual cycle (circled in the right graph) are confined259

to regions where both soil moisture variance and variation in precipitation occurrence260

(see Figure 1) are low. This is an artifact of our formulation of the GLM, as the annual261

cycle variable in the GLM consists of eleven coefficients that are to be estimated,262

regardless how small the variability in precipitation occurrence is. The high values of263

relative explained deviance of annual cycle and soil moisture across the Sahel, lowering264

as the transect reaches the rain forest region of the Congo Basin, and constantly low265
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persistence values indicate a strong land surface-atmosphere interaction in the Sahel.266

In the Amazon transect, all three covariates show an active pattern. Explained267

proportions of deviance are low, as expected, at the equator (1000 km along the268

transect), and higher on both sides of the equator. A distinct low is observed around269

2000 km along the transect. This pattern is consistent with the monsoonal circulation270

in South America [Zhou and Lau, 1998]. More southeast along the transect, the values271

climb as the transect enters the subtropical rain forests of the Brazilian Highlands,272

indicating a strong land surface-atmosphere interaction. Near the end of the transect,273

the lowering soil moisture and annual cycle values, accompanied by climbing persistence274

values indicate the proximity of the ocean and temperate eastern winds.275

All three right-side graphs in Figure 4 show that the proportion of explained276

deviance by soil moisture is positively correlated to soil moisture variance, which is277

no surprise. However, in the bottom two graphs, the same goes for the proportion of278

explained deviance explained by the annual cycle, especially if the spurious results in279

the Sahara transect are discounted. This could indicate that our formulation of the280

GLM is not sufficiently able to distinguish between the influence of these two obviously281

covarying variables, thus overestimating the effect of one variable at the expense of282

the other’s. However, in the transects there is little evidence (in the form of vertically283

symmetric curves) that this trade-off is spatially consistent.284

- Figure 5 around here-285 Figure 5.

To explore the relative magnitude of explained deviances by the three variables286

we have plotted the logarithm of the ratio between the deviances in Figure 5. A value287
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of 0 means that the two variables are equally important, 1 means that the explained288

deviance of the first variable is 10 times larger than the second, and a value of −1 the289

reverse. Figure 5 shows that the annual cycle has the largest influence on average, with290

strong dominace over other variables in the monsoon influenced climate zones: Sahel,291

South-subtropical Africa, N. Australia, Southeast Asia (see also Figure 2).292

Compared to the other covariates, persistence explanation is more constant293

throughout the world. Persistence is dominant over soil moisture and annual cycle in294

the polar regions, and also in all regions where the total explained deviance of the model295

is low.296

Soil moisture shows the smallest effects in both polar regions, where snow cover297

suppresses soil moisture variability and limits interaction between soil moisture and298

atmospheric processes. In the large deserts (Sahara, Australia) effects are also small299

because soil moisture hardly has natural variation. However, in other parts of the world300

the relative importance of soil moisture is considerable. The influence of soil moisture is301

in the same order of magnitude of the annual cycle’s influence in 65 percent of the grid302

cells, which is a surprisingly large part of the land surface, and in 24 percent of the grid303

cells soil moisture influences precipitation occurrence stronger than the annual cycle.304

Soil moisture thus has a considerable influence on rainfall occurrence in large parts of305

the land surface.306
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Conclusions307

Global patterns of relations between soil moisture and rainfall occurrence were308

examined. Soil moisture influences subsequent precipitation in a surprisingly large part309

of the land surface. This influence is of the same order of magnitude as the influence of310

either the annual cycle or precipitation persistence in a large part of the Earths’ land311

surface. “Hot spots” of relative importance of soil moisture are the subtropical regions,312

notably the outer fringes of the monsoon influenced land surface: the southern Sahel,313

south Central Africa, the Amazon basin and northern India. The GLM in this paper314

does not generally explain much of the null deviance of precipitation occurrence in315

ERA-40. Further investigation may explain whether or not this is typical for the GLM316

approach used here, typical for the ERA-40 dataset, or typical for the chaotic nature of317

the hydroclimate.318

Previous research has mainly focused on patterns of relationships between soil319

moisture and rainfall amount, whereas in this study precipitation occurrence was320

analyzed. At present, it is unknown to what extent the latter findings are consistent,321

complementary or contradictory to the former. Even taking into account that climate322

models are focused more on precipitation amount, it would be interesting to examine323

both occurrence and amount of precipitation simultaneously in a comparative study324

using multiple models.325
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Figure Captions422
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Figure 1. Patterns of null deviance of precipitation occurrence in the ERA-40 dataset

(top) and patterns of the proportion of null deviance explained by the model (bottom).

The null deviance values are scaled so that the global maximum value is 1, to allow a

common color ramp for both graphs.
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Figure 2. Deviance (left) and proportion of null deviance (right) explained by the com-

ponents. Note that the color ramp on the right is stretched differently, to emphasize

patterns in the moderate values. Deviance explained by interactions between the com-

ponents of the GLM (bottom row) are aggregated values for all interactions between

variables together.
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Figure 3. Proportion of deviance in ERA-40 explained by persistence.

Figure 4. Transects of model results: the first transect crosses the USA from the west

coast to east coast; the second transect crosses the Sahara and the Sahel, from Tunesia in

the North to the Congo river basin in the South; the third crosses the Amazon basin, from

Venezuela in the north west to the Brazilian Highlands in the southeast. Proportions

of explained deviance are plotted against distance along the transect (on the left), and

against soil moisture variance (on the right).
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Figure 5. Relative order of magnitudes of each covariates’ proportion of explained

deviance compared to each of the other variables’ proportion of explained deviance,

computed by taking the logarithm of the fraction of each combination of covariates.

Values outside the range [-2, 2] are clipped. For covariates to be in the same order of

magnitude, the computed relative order of magnitude must be in the range [-1, 1].


