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Preface

This report contains an overview of the work performed in the first 19 months of the
EUMETSAT QuikSCAT fellowship, carried out at the Royal Netherlands
Meteorological Institute (KNMI) in De Bilt (The Netherlands) within the research
group of the Satellite Data Division of the Observations and Modeling Department.
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1 Introduction

The SeaWinds on QuikSCAT mission (from NASA) is a “quick recovery” mission to
fill the gap created by the loss of data from the NASA Scatterometer (NSCAT), when
the ADEOS-1 satellite lost power in June 1997. QuikSCAT was launched from
Vandenberg Air Force Base (USA) in June 19, 1999. A similar version of the
SeaWinds instrument will fly on the Japanese ADEOS-II satellite currently scheduled
for launch in late 2001.

The SeaWinds instrument is an active microwave radar designed to measure the
electromagnetic backscatter from the wind roughened ocean surface. The instrument
is a conically scanning pencil-beam scatterometer, which in comparison with the
NSCAT fan-beam scatterometer has the following advantages: higher signal-to-noise
ratio, smaller in size, and superior coverage. On the other hand, the new measurement
geometry provides a variable mix of polarizations and azimuth looks that require
renewed data characterisation efforts as employed in this fellowship.

The SeaWinds instrument uses a rotating 1-meter dish antenna with two spot beams,
an H-pol beam and a V-pol beam at incidence angles of 46º and 54º respectively, that
sweep in a circular pattern. The antenna radiates microwave pulses at a frequency of
13.4 GHz (Ku-Band) across a 1800-km-wide swath centered on the spacecraft’s nadir
subtrack, making approximately 1.1 million 25-km ocean surface wind vector
measurements and covering 90% of the Earth’s surface every day. These
measurements will help to determine atmospheric forcing, ocean response and air-sea
interaction mechanisms on various spatial and temporal scales.

The SeaWinds swath is divided into equidistant across-track wind vector cells (WVC)
numbered from left to right when looking along the satellite’s propagation direction.
The nominal WVC size is 25 km x 25 km, and all backscatter measurements centered
in a WVC are used to derive the WVC wind solutions. Due to the conical scanning, a
WVC is generally viewed when looking forward (fore) and a second time when
looking aft. As such, up to four measurement classes (called “beam” here) emerge: H-
pol fore, H-pol aft, V-pol fore, and V-pol aft, in each WVC. Due to the smaller swath
(1400 km) viewed in H-pol at 46º degrees incidence, the outer swath WVCs have only
V-pol fore and aft backscatter measurements. For more detailed information on the
QuikSCAT instrument and data we refer to [[Spencer et al. (1994), JPL (1999),
Leidner et al. (2000)]].

In this report we describe our work on QuikSCAT product validation in chapter 2,
inversion of the backscatter data to winds in chapter 3, and in chapters 4 and 5 a new
procedure to quality control (QC) SeaWinds data in HDF and BUFR formats
respectively, in particular to screen out rain-contaminated points. Our QC method is
based on a methodology that was used to screen ERS (Stoffelen and Anderson, 1997)
and NSCAT backscatter measurements (Figa and Stoffelen, 2000). The methodology
checks whether the consistency of the backscatter measurements at a particular WVC
is compatible with the consistency as predicted by the Geophysical Model Function
(GMF). Incompatible measurement sets are assumed to be anomalous and result in
invalid wind retrieval. To validate the QC and rain screening procedure, we collocated
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QuiksCAT data with ECMWF winds and with a SSM/I rain poduct. We seeked for a
statistical scheme resulting in a proper rejection threshold and verified the settings of
the scheme in many cases of which we show a few here.
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2 Product Validation

During the pre-launch period, a full validation of the different simulated QuikSCAT
sample data products was performed. In particular, the work focused on the Level 2A
and 2B HDF (Hierarchical Data Format) Science product and on the near-real time
BUFR (Binary Universal Format Representation)product. The Level 2A contains the
radar backscatter or sigma0 (�º) related information and the level 2B the surface wind
related information, while the BUFR product is containing both �º and wind
information.

The main difference between the HDF and the BUFR product is related to the spatial
resolution of �º. In each WVC, the �º of a particular beam (fore-inner, fore-outer, aft-
inner, aft-outer) in the BUFR product is an average of all �ºs of that particular beam
in the HDF product which fall in the same WVC.

The SeaWinds �ºs can be either “eggs” or slices. In a particular WVC, an “egg” �º is
the radar backscatter from the whole pulse or footprint whose centre falls in that
WVC. The “egg” can be subdivided in individual range-resolution elements or slices;
the slices of a particular “egg” whose centre fall in the same WVC are weight-
averaged (the weighting factor is directly dependent on the noise of each slice
“measurement”) to become a composite �º. The antenna footprint or “egg” is an
ellipse approximately 25-km in azimuth by 37-km in the look (or range) direction.
The slices are 25-km in azimuth by a variable range resolution of approximately 2 to
10 km (the nominal width is 6 km).

The HDF real data are given (up to now) in “egg” resolution. Therefore, although the
size of the WVC is 25 km, the actual resolution of the winds retrieved from the “egg”
�ºs is approximately 40 km. Composites enhance the wind resolution mainly in range
direction down to 25 km, and have little effect on azimuth resolution.

Real BUFR data have been released to the Science Working Team (SWT) recently.
The BUFR real �ºs are finally weighted average of composites.

During the pre-launch period, two different versions of sample data were released by
JPL and NOAA in HDF and BUFR format respectively. The “old” version was
containing “egg” �º and the “new” one was based on slice �º. The most significant
results of the QuikSCAT product validation on these sample files are explained in the
following sections.
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2.1 Azimuth averaging

In order to check inconsistencies in the way the azimuth information is computed
across the swath for any beam, we look at the relative azimuth distribution for all
node numbers (or WVC numbers). Figure 1 shows the mean azimuth separation
between fore and aft beams by node for a few revolutions of HDF data (plot a) and
the Standard Deviation (STD) of the azimuth separation for each node (plot b). The
plots show a very consistent azimuth separation distribution going from small
separation at the edges of both swaths, i.e., the outer (nodes 1-2 and 75-76) and the
inner swath (nodes 9-10 and 67-68), and increasing gradually to a separation of
almost 180º at nadir (nodes 38 and 39). The STD plot also shows consistent results
with small values all across the swath, except at the edges of both the inner and the
outer swaths, where the STD increases as the number of measured �ºs significantly
decreases. (These nodes are set to accommodate occasional measurements that lie
outside of the pre-defined 1800-km swath for the outer beam and 1400-km swath for
the inner beam).

If we look at the same STD plot (Figure 2) but for BUFR (the mean azimuth
separation plot is not shown because it is very similar to Figure 1a), we see a large
peak around node 46 for the inner swath and node 48 for the outer swath. This peak,
which does not appear in the HDF product, clearly shows some problem in the way
the �º azimuths are averaged from HDF to BUFR. After taking a closer look to the
azimuths at those particular nodes, we discovered that there was an error while
averaging the azimuths close to 0º. In those particular areas, the azimuths can be
either close to 360º or close to 0º. The software was not taking into account this
periodicity and just averaged azimuths, leading to averaged azimuth values very
different from 360º or 0º, the problem depending on the ratio of the number of
azimuth values close to 360º and the number of azimuths close to 0º.

The problem was reported to JPL and corrected straightaway.
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        a)

        b)

Figure 1 a) Mean fore-aft azimuth separation by node for one revolution of HDF data; the outer
beam separation is in solid line and the inner beam separation in dotted line; b) Standard
Deviation of the azimuth separation.
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2.2 Wind Direction Convention

The �º sample data were generated applying the NSCAT-2 model function to NWP
winds (from NCEP 1º spatial resolution and 12-hour forecast, which are included in
the product), including additional realistic measurement noise (Kp) generated by a
random selection from a noise distribution with width Kp . Then, these simulated
measurements of �º (�ºm) were inverted (using JPL’s objective function as described
in the “QuikSCAT Science Data Product User’s Manual”) into winds. In order to
check for any inconsistency in the simulation process we simulate �º (�ºsim) from the
JPL retrieved winds, applying the NSCAT-2 model function. Figure 3 shows the
mean �ºm and the mean �ºsim by node for the fore-inner beam (the results for the other
beams are very similar) in one orbit (or revolution) of data. The results are very
consistent although there is a systematic bias in the �ºsim. The reason is that the �ºm
were corrected for atmospheric attenuation prior to retrieving the JPL winds, while
the �ºsim were computed without “uncorrecting” for atmospheric attenuation.
Therefore, �ºsim is systematically higher than �ºm.

Figure 4a is showing the same plot as Figure 3 but for the new version of sample data.
The results are very different compared to the old version of sample data, showing no
systematic bias at all. Figure 4b shows the same as Figure 4a but changing the JPL
wind direction by 180º prior to compute the �ºsim. The systematic bias of �ºsim is now
clearly discernible again, suggesting that JPL did change the wind direction

Figure 2 same as Figure 1b but for BUFR data
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conventions in the product but forgot to report it in the User’s Guide. This problem
was confirmed by JPL and is corrected already.

The final wind direction conventions for both products is the following:

- HDF: both NWP and retrieved winds are in oceanographic or flow vector
convention (0º meaning wind blowing towards North with positive angles increasing
in the clockwise direction).

- BUFR: both NWP and retrieved winds are in meteorological convention or flags (0º
meaning wind blowing from North with positive angles increasing in the clockwise
direction).

2.3 Flags

All the flags present in the BUFR and HDF product were checked for inconsistencies.
We found no meaningful information in the wvc_quality_flag (this flag indicates the
quality of wind retrieval within a given WVC) of the BUFR product. After reporting
the problem to JPL, it turned out that this flag was containing less information and in
a different way than the same flag of the HDF product. In order to avoid confusion,
they set this flag in BUFR in the same way as in HDF.

Figure 3 Mean ��m (solid) and ��sim (dotted) versus node number for the old sample data. The number of
�� used is in dash-dotted line.



  a)                                                                                        b)

     
Figure 4 a) same as Figure 3 but for new sample data; b) same as plot a) but changing the wind direction 180�
prior to computing��sim
8

2.4 Other Problems
Every variable contained in the data product is defined between a range of values. The
best way to look for bugs in the processing software is to look for out of range values
and distribution of values in the variables. Here there is a summary of the most
significant bugs we found:

a) A few null Kp_� values per orbit were found in both HDF and BUFR, as well as
some null Kp_� values in HDF.

b) The Kp_� values of the new sample data were all out of range and the mean Kp_�
value was twice as high as the mean Kp_� value of the old sample data.

[Note: Kp_�, Kp_�, and Kp_� are the coefficients used to compute the measurement
noise (Kp)]

c) A few values per orbit of the wind_speed_err (estimated error in the retrieved
speed) were above 50 m/s; in the same way, some values of wind_dir_err (estimated
error in the retrieved wind direction) were above 180º.

d) �º<–70 dB were also found.

All these problems were reported to JPL. We have performed this kind of validation
on the real HDF data and none of these problems are present. The �º range has been
extended to [20,–300] dB in the real data. Note that there is no physical lower limit of
�º.
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The same validation has been recently performed on the real BUFR data. There still
are some out of range values in wind_speed_err and wind_dir_err variables as well
as a few null Kp_� values per orbit. As before, we have already reported these
problems to JPL.
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3 Inversion

The inversion software (mimicing JPL’s inversion and based on ERS scatterometer
processing software) that Julia Figa (NSCAT EUMETSAT fellowship 97-99)
developed for NSCAT has been adapted for QuikSCAT. In order to test the quality of
this inversion software, the �ºm (originally generated from the NWP winds) have been
processed, using our inversion software, and compared to the JPL winds (retrieved
winds in the product).

Figure 5 shows the two-dimensional histogram of KNMI winds (our inverted winds
using the same atmospheric attenuation correction used by JPL prior to the inversion)
versus the JPL winds. Plots a) and b) show the comparison of the first rank solution
inverted wind speeds and directions, respectively. In these plots, the good agreement
between the KNMI and the NWP winds is clearly discernible showing a good
performance of the KNMI inversion. The high value of the wind direction STD
(49.18º) is due to a small amount of KNMI solutions which are approximately 180º
apart from the JPL solution and which increase the STD. This is an expected result as
both implementations are not exactly the same and sometimes the wind direction
solutions are ranked in a slightly different order (typically 1st rank and 2nd rank
solutions are permuted in KNMI with respect to JPL or vice versa). The bottom plots
show the same as the upper plots but for the KNMI solution closest to the JPL 1st rank
solution. We note that in this case no more solutions are 180º apart, leading to a
significant decrease of the STD down to an acceptable value of 5.54º.

In contrast with NSCAT, QuikSCAT has an antenna geometry which is dependent on
node number or cross-track location, due to its circular scans on the ocean. The skill
of the wind retrieval algorithm depends very much on the number of measurements
and their polarization and azimuth diversity, where “azimuth diversity” is defined as
the spread of the azimuth looks among the measurements in the WVC. As we see in
Figure 1a, the nadir region (area close to and centered in nodes 38-39) has fore and aft
looks of both beams (H-pol and V-pol) nearly 180º apart. At the edges of the swath
(areas close to node 1 and 76) the outer V-pol beam fore and aft looks are nearly in
the same direction and no inner beam information is available. In both areas, the skill
of the wind retrieval algorithm is expected to decrease with respect to the rest of the
swath (called the sweet or NSCAT-like parts of the swath) where there are four
measurements (fore-inner, fore-outer, aft-inner and aft-outer) with enough azimuth
diversity.
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In order to illustrate this problem, we have run some simulations for the different
parts of the swath and compared them to the “true” winds. The simulation process is
the following: we choose the NWP winds as the “true winds” and using the NSCAT-2
model function we simulate the measured backscatter.. Then, we add some noise
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Figure 5 Two-dimensional histograms of KNMI wind solutions versus 1st rank JPL wind solutions in
the NSCAT-like parts of the swath. Left plots are for wind speeds and right plots for wind directions.
The y-axis for the upper plots represents the 1st rank KNMI solutions while for the bottom plots
represents the KNMI solution closest to the 1st rank JPL solution. The width of the bins is 0.5 m/s in
speed and 5�  in direction. N is the number of points; mx is the mean value of the x-axis; my is the
mean value of the y-axis; m(y-x) is the bias; s(y-x) is the standard deviation of the x and y difference;
and corr_xy the Pierson correlation of x and y.
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(using the Kp information available in the data product) to the simulated �ºm, and we
invert the noisy �ºm (with the KNMI inversion scheme) into winds.

Figure 6 shows the two-dimensional histograms of KNMI winds (closest solution to
NWP wind) versus the NWP winds for wind speed and wind direction for different
parts of the swath: NSCAT-like (plots a and b), nadir swath (plots c and d) and outer
swath (plots e and f). The results from this simple simulation show a higher standard
deviation of speeds and directions in the outer and nadir parts compared to the
NSCAT-like parts of the swath. No significant bias is seen in any part of the swath.

We are planning to work on the QuikSCAT inversion problem in the near future.
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Figure 6 Two-dimensional histogram of KNMI-retrieved wind (closest solution to NCEP)
versus NCEP winds in the different parts of the swath: the NSCAT-like (plots a and b), the
Nadir (plots c and d) and the outer (plots e and f) regions. The left column is for wind speed
the right one for wind direction. The width of the bins is 0.5 m/s in speed and5�  in direction.
N is the number of points; mx is the mean value of x; my is the mean value of y; m(y-x) is the
bias; s(y-x) is the standard deviation of the x and y difference; and corr_xy the Pierson
correlation of x and y.
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4 Quality Control

The forecast of extreme weather events is not always satisfactory, while its
consequences can have large human and economic impact. The lack of observations
over the oceans, where many weather disturbances develop, is one of the main
problems of Numerical Weather Prediction (NWP) for predicting their intensity and
position. A space-borne scatterometer with extended coverage like SeaWinds is able
to provide accurate winds over the ocean surface and can potentially contribute to
improve the situation for tropical and extratropical cyclone prediction [Isaksen and
Stoffelen (2000) and Stoffelen and Beukering (1997)]. The impact of observations on
weather forecast often critically depends on the Quality Control (QC) applied. For
example, Rohn et al. (1999) show a positive impact of cloud motion winds on the
ECMWF model after QC, while the impact is negative without QC. Besides its
importance for NWP, in applications such as nowcasting and short-range forecasting,
the confidence of meteorologists in the QuikSCAT data is boosted by a better QC.
Therefore, in order to successfully assimilate QuikSCAT data into NWP models, a
comprehensive QC needs to be done in advance.

Stoffelen and Anderson (1997) and Figa and Stoffelen (2000) use a method to detect
and reject WVCs with poor quality wind information using a Maximum-Likelihood-
Estimator-based (MLE) parameter for ERS and NSCAT respectively. Here we adapt
this method for QuikSCAT.

The Maximum Likelihood Estimator (MLE) is defined as [adopted from JPL (1999)]:

� �
� ��

�

�

�

N

i
o
s

o
s

o
mi

kpN
MLE

1

2
1

�

��

(1)

where N is the number of measurements, �mi
o are the backscatter measurements, �s

o is
the backscatter simulated through the Geophysical Model Function (GMF) for
different wind speed and direction trial values, and Kp(�s

o) is the measurement error
variance.

Stoffelen and Anderson (1997) interpret the MLE as a measure of the distance
between a set of �mi

o and the solution �s
o lying on the GMF surface in a transformed

measurement space where each axis of the measurement space is scaled by kp(�s
o).

The MLE therefore indicates how well the backscatter measurements used in the
retrieval of a particular wind vector fit the GMF, which is derived for fair weather
wind conditions. A large inconsistency with the GMF results in a large MLE, which
indicates geophysical conditions other than those modeled by the GMF, such as for
example rain, confused sea state, or ice, and as such the MLE provides a good
indication for the quality of the retrieved winds.
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Rain Effects

Rain is known to both attenuate and backscatter the microwave signal. Van de Hulst
(1957) explains these effects. Rain drops are small compared to radar wavelengths
and cause Rayleigh scattering (inversely proportional to wavelength to the fourth
power). Large drops are relatively more important in the scattering and smaller
wavelengths more sensitive. For example, Boukabara et al. (1999) show the variation
of the signal measured by a satellite microwave radiometer with the rain rate. As the
rain rate increases, the spaceborne instrument sees less and less of the radiation
emitted by the surface, and increasingly sees the radiation emitted by the rainy layer
that becomes optically thick due to volumetric Rayleigh scattering. A dense rain cloud
results in a radar cross section corresponding to a 15-20 m/s wind.

Comparing Ku-band (13.4 GHz) to C-band (5 GHz) scatterometers, the higher
frequency of the former makes both effects (rain attenuation and scattering) about 50
times stronger. In particular, as SeaWinds operates at high incidence angles and
therefore the radiation must travel a long path through the atmosphere, the problem of
rain becomes acute.

In addition to these effects, there is a “splashing” effect. The roughness of the sea
surface is increased because of splashing due to rain drops. This increases the
measured �o, which in turn will affect the quality of wind speed (positive bias due to
�

o increase) and direction (loss of anisotropy in the backscatter signal) retrievals.

4.1 Quality Control in HDF

In this Section, we define and characterize a parameter based on the MLE to quality
control the QuikSCAT data. Since the first QuikSCAT data available are provided by
JPL in HDF format (late September 1999), we will first investigate the Quality
Control procedure with this data format.

4.1.1 Methodology

The method consists in normalizing the MLE with respect to the wind and the node
number (or cross-track location). For a given wind and node number, we compute the
expected MLE. Then we define the normalized residual as:

Rn = MLE / <MLE> (2)

where MLE is the maximum likelihood estimator of a particular wind solution (given
by the inversion) and <MLE> is the expected MLE for that particular WVC (node
number) and wind solution.
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We hypothesize that the MLE is very much altered in the case of rain and therefore
very different from the expected MLE. A set of �ºm coming from a “rainy” WVC (or
a WVC where some geophysical phenomena other than wind is “hiding” the wind-
related information) is expected to be inconsistent with any set of �ºm that is
simulated from the GMF, since basic properties of the backscatter measurements such
as HH–to-VV polarization ratio (Wentz et al., 1999) and the isotropy of scattering at
the ocean surface are expected to be different. In other words, the set of backscatter
measurements coming from a “rainy” WVC is expected to be further away from the
GMF than a set of measurements coming from a “windy” WVC (which should lie
very close to the GMF). Therefore, the MLE is much higher than <MLE> and the
normalized residual is high. In contrast, the MLE of a “windy” WVC is closer to the
<MLE> and consequently we have Rn values of the order of 1.

In order to compute the expected MLE for a given wind and node number we study
the dependencies of the MLE with respect to the wind speed, wind direction and node
number over 60 revolutions of real data.

Figure 7 shows the mean MLE of the JPL-selected solution versus JPL-selected wind
direction together with the wind direction distribution of both the NCEP model and
the JPL retrieved solutions (the selected solution after ambiguity removal) for nodes
16 (plot a) and 25 (plot b). The JPL direction distribution shows some significant
differences (peaks and troughs) as compared to the NCEP distribution, which may be
associated to some deficiencies in the inversion and the NSCAT-2 model function.

  a)                                                                               b)

Figure 7 Mean JPL-selected MLE versus JPL-selected wind direction (solid black line) and wind
direction distribution of JPL-selected winds (solid purple line) and NCEP winds (solid green line) for
nodes 16 (plot a) and 25 (plot b). The direction binning is 10� and the vertical dashed lines
correspond to the azimuth of inner (red) and outer (purple) beams with respect to the cross-track
flight satellite direction.
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We note that the mean MLE is following these relative peaks and troughs of the JPL
wind direction distribution with respect to NCEP. This is an expected result as
measurement sets far away from the GMF solution surface in measurement space
(Stoffelen, 1998), i.e., with large MLE, are systematically assigned to certain wind
directions (the shape of the GMF solution surface makes certain wind directions to be
favoured in such cases). However, these peaks are due to an inversion problem and
not to a realistic MLE dependency on wind direction. In other words, the mean MLE
peaks are not always showing a real MLE dependency on wind direction but just
some artificial accumulation of wind direction solutions due to some deficiencies in
the inversion. Therefore, we discard the wind direction dependency when computing
the <MLE>.

As such, <MLE> is computed as a function of wind speed and node number. The
method to compute <MLE> is as follows:

� We compute the mean MLE of the JPL-selected solution with respect to the JPL-
selected wind speed and the node number for the 60 revolutions of HDF data.
Figure 8a shows a 3D plot of this mean MLE. The surface is a bit noisy, which is
mainly due to geophysical effects such as rain, which we want to discard. At high
wind speeds additional noise is present due to the small amount of data we get at
these speeds and node numbers.

� In order to filter the noise on the surface, we set up an iterative process which
consists in rejecting the MLEs which are at least two times higher than the mean
MLE for that particular wind speed and node number, and we compute again the
mean MLE surface. Then, we start the rejection process again in an iterative mode
until it converges (no more rejections). The process converges very rapidly after
two iterations and the number of data rejected in each speed and node bin is very
small (up to 7% in some high-speed bins). This gives faith in the noise filtering
method as it shows that only the tail of the MLE distribution is cut in each bin,
corresponding to geophysical anomalies. The resulting surface is shown in Figure
8b. The peaks have disappeared in general and at high speeds the surface is much
smoothed. In order to show the consistency of this filtering procedure, we show
the contour plots of both mean MLE surfaces (before and after filtering) in Figure
9. It is clearly discernible that the shape of the surface remains the same and only
the noise has been removed.

� In order to extrapolate to high wind speeds, we fit in a very simple way a two
dimensional function to the filtered surface (see Appendix A). The function is
only fit in the inner swath (nodes 12 to 65) and extrapolated for the outer swath
(nodes 1 to 11 and 66 to 76) (see discussion below). The result of the fitting is
shown in Figure 10. The 3D surface is the expected MLE and compares well to
the computed mean MLE in the inner part of the swath.



 a)

 b)

Figure 8 Mean JPL-selected MLE (plot a) and “filtered” meanJPL-selected MLE (plot b) versus JPL-
selected wind speed and node number. The speed binning is 1 m/s and the node binning is 1
18
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As said before, large departures from fair weather conditions result in a large MLE
value. In turn, this MLE, larger than its corresponding expected MLE, results in a
large Rn. Therefore, large Rn is indicating bad quality of the retrieved winds for any
given WVC.

However, this correlation between the MLE and its expected value is expected to
work well when there are more than two measurements and enough azimuth diversity
in the �º measurements of each WVC, i.e., when the inversion problem is
overdetermined. In the outer parts of the swath, where there are only one or two
beams (fore and/or aft VV), the wind vector is not overdetermined and generally
multiple wind speed and direction combinations exist that exactly fit the
measurements. Then the MLE is going to be zero or very close to zero in most of the
cases, regardless of the quality of the data. Only for the exceptional case when the
MLE is substantially larger than our extrapolated <MLE> we can infer that the data
are of bad quality in these parts of the swath. This means that our QC procedure is
generally not going to work well in the outer regions. Nevertheless, to provide a gross
check and in order to arrive at a simple function fit to the <MLE> surface, we have
extrapolated the inner swath function to the outer regions.

Once Rn is defined, we have to characterize it. The way to characterize Rn is to test it
against a variety of geophysical conditions such as rain, confused sea state (in wind
fronts, centre of lows, coastal regions) or just pure wind cases. As the method is
expected to work fine in the inner swath, especially in its sweet parts (nodes 12 to 28
and 49 to 65), we are going to focus our research on these regions.

 a)                                                                                                  b)

Figure 9 Contour plots of Figure 9a (plot a) and 9b (plot b).
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4.1.2 Collocations

In order to characterize QC by Rn, we collocate a set of 180 orbits of QuikSCAT
HDF data with ECMWF winds and SSM/I rain data. The HDF data correspond to the
preliminary science data product produced by JPL using the NSCAT-2 GMF.

We use the analyses 3-hour and 6-hour forecast ECMWF winds on a 62.5-km grid
and we interpolate them both spatially and temporally to the QuikSCAT data
acquisition location and time respectively.

The collocation criteria for SSM/I rain data are less than 30 minutes time and 0.25º
spatial distance from the QuikSCAT measurement.

The SSM/I instruments are on board DMSP (Defense Meteorological Satellite
Program) satellites. We have used DMSP F-13 and F-14 satellites (the most recent
ones). Most of the collocations with F-13 were found at low latitudes (tropics) while
collocations with F-14 were found at mid and high latitudes.

Figure 10 Expected MLE versus wind speed and node number. The speed binning is 1 m/s and the
node binning is 1.
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4.1.3 Rn characterization

In this section, we study the correlation between Rn and the quality of QuikSCAT
winds. Collocated ECMWF winds and SSM/I rain are used as characterization and
validation tools. Note that both the ECMWF winds and SSM/I rain data contain
uncertainties and obey different space and time representations than the QuikSCAT
winds.

Characterizing Rn results in a QC procedure by finding a threshold value of Rn which
separates the good quality from the low quality retrieved winds.

As said in section 4.1.1, the Rn is defined from the MLE of the JPL-selected solution.
Therefore, if we identify a low quality wind selected solution we will assume that all
wind solutions in that particular WVC are of low quality. This means that the QC is
performed on a node-by-node basis. Nodes that are accepted may have wind solutions
with MLE above the threshold. These solutions are kept but will be down-weighted in
the data assimilation procedure (Stoffelen et al., 1999).

We characterize Rn in the sweet parts of the swath, where it is most meaningful.
However, as we show in the validation, the threshold is applicable for the entire inner
swath.

Rn as a quality indicator

The first step in the characterization of this QC procedure is to confirm the correlation
between Rn and the quality of the data. The vector RMS difference between the JPL-
selected and ECMWF winds (RMS-ECMWF) is used as a quality indicator.

Figure 11 shows a contour plot of a two-dimensional histogram of RMS-ECMWF
against Rn. We set an arbitrary threshold at RMS=5 m/s which is roughly separating
the “good” from the “bad” quality cases. Plot a), which represents the whole
collocated data set, shows a clear correlation between RMS-ECMWF and Rn. Most of
low Rn cases, represented by the two darkest grey-filled contours (remember that the
plots are in logarithmic scale), are of good quality. The RMS-ECMWF increases as
Rn increases, which means that, as expected, the quality of the data is decreasing
while Rn increases, i.e., Rn is a good quality indicator.

Plots b) c) and d) show a different histogram distribution with respect to wind speed.
The RMS-ECMWF is increasing more rapidly with Rn at higher wind speeds. The
quality of the data is poor for lower values of Rn as the retrieved wind speed
increases. This suggests a Rn threshold dependent on the retrieved wind speed with a
threshold value smaller at high wind speeds than at low speeds.
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Quality Control of rain

As said before, the Ku-band signal is known to be distorted in the presence of rain. In
order to study this distortion effect, SSM/I collocations are used as a rain indicator.

Figure 12 shows both the mean retrieved wind speed (plot a) and the mean ECMWF
wind speed (plot b) versus the rain rate. The retrieved wind speed is increasing with
the rain rate while the ECMWF wind speed shows obviously no significant
dependence on the rain. As the rain rate increases, the density and size of the droplets
increases and the probability of having a homogeneous rainy WVC (no patches with
absence of rain) increases. Therefore, the wind information contained in a particular
WVC is increasingly hidden and the backscatter signal is becoming more and more

          a)                                                                                  b)

          c)                                                                                  d)

Figure 11 Two-dimensional histograms of RMS-ECMWF versus Rn, for all data (plot a), JPL-selected speeds
under 10 m/s (plot b), speeds between 10 and 15 m/s (plot c) and speeds over 15 m/s (plot d). The contouring is
in logarithmic scale (two steps corresponding to a factor of 10 in number density) filled from white
(unpopulated areas) to black (most populated areas).
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“rain-related” instead of “wind-related”. From these plots, one may infer that the
“rainy” WVCs produce high winds in the retrieval process.

Figure 13 shows the two-dimensional histogram of RMS-ECMWF versus the
retrieved wind speed for rain-free (plot a) and for different rain rate intervals (plots b
and c). The upper plot shows a generally horizontal orientation of the contour lines
while the bottom plots show mainly a vertical orientation, suggesting a decline of the
data quality (higher mean RMS-ECMWF) in the presence of rain. At rain rates higher
than 6 mm/hr most of the data are above the RMS threshold of 5 m/s, indicating no
useful wind information in them. However, when the rain is lower than 6 mm/hr there
is still a significant portion of the retrieved winds with low RMS and therefore
containing significant wind information in their backscatter signal. We want to define
a threshold capable of removing those “rainy” WVCs with rain rates over 6 mm/hr
and those with lower rain rates but no significant wind information (high RMS-
ECMWF values) in them.

Rn threshold

Up to now, we have achieved three major conclusions:

a) The Rn seems a good quality indicator

b) When it is rainy, the retrieved wind speed is in general too large by an amount
which is proportional to rain rate

c) For SSM/I rain rates above 6 mm/hr the WVCs contain no valuable wind
information.

  a)                                                                                b)

Figure 12 Mean JPL-selected wind speed (plot a) and Mean ECMWF wind speed (plot b) versus rain
rate at intervals of 3 mm/hr (except for the rain-free mean speed value, included at 0 mm/hr)
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Figure 14 summarizes all these points. The left plots correspond to two-dimensional
histograms of Rn versus JPL retrieved wind speeds for different rain rate intervals.
The right plots are the same histograms of Rn but versus ECMWF wind speed. In the
absence of rain (upper plots), we clearly discern the significant difference between the
retrieved and ECMWF wind speeds at Rn values larger than 4 (see speed shift in the
contour line), denoting a poor quality of the retrieved solutions. Thus, in case of no
rain high Rn is seemingly associated with systematically wrong winds. This wind
speed difference at Rn values larger than 4 becomes significantly larger (2-3 m/s) in
the mid plots while for low Rn (darkest contour) there is no significant difference.
This is denoting that although at mid and high winds the wind retrieval is not very
much affected by low rain rates, at low winds the sensitivity to rain is so important
that even at low rain rates the quality of the retrievals is poor. This is an expected
result as for low winds you get lower backscatter than for high winds and therefore
the backscattering from the rain droplets becomes more significant. Comparing the

                                              a)

  b)                                                                                     c)

Figure 13 Two-dimensional histograms of RMS-ECMWF versus JPL-selected wind speed for rain-free
(plot a), for rain rates from 0 to 6 mm/hr (plot b) and for rain rates above 6 mm/hr (plot c). The contouring
is in logarithmic scale (two steps corresponding to a factor of 10 in number density) filled from white
(unpopulated areas) to black (most populated areas).
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contours from the left and the right plots, there is a positive shift of the left ones with
respect to the right ones (indicating a positive bias of the retrieved speeds with respect
to ECMWF speeds) as the rain rate increases. This shift is becoming excessively large
and unacceptable (more than 10 m/s) for rain rates over 6 mm/hr (bottom plots),
denoting again the poor quality of the retrieved solutions.

In the definition of a Rn threshold we would like to achieve the following goals:

� Maximum low-quality data rejection, including rain;

� Minimum good-quality data rejection.

As said before, the Rn threshold may be dependent on the retrieved wind speed.
Figures 14a and 14b (no rain) suggest that the threshold should include and follow the
contour lines that are very similar in both plots (showing good quality data).
Obviously, this threshold should become constant at a certain wind speed. Otherwise,
we would start rejecting more and more data for increasing wind speed, until the
threshold reaches zero at a certain wind speed from where on all higher retrieved
speeds would be rejected. Figures 14a and 14b do not suggest poor quality of all high
wind speeds. The constant threshold value has to be a compromise between the
amount of high-wind data we want to keep and the amount of “rainy” data we want to
reject.

From Figure 11, it is obvious that for higher winds we should be more critical with
the Rn threshold. Therefore and in order to reject most of the “rainy” data (see Figure
14e), we define a minimum threshold value of 2 for speeds higher than 15 m/s. From
Figures 14a and 14b, we define a parabolic threshold with a maximum value of 4 at 5
m/s, which reaches a value of 2 at 15 m/s (see Rn threshold in black solid lines in
Figure 14). Therefore, the defined threshold function is:
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v is the retrieved wind speed and y the Rn threshold value.

Note that we have tested different thresholds including: 1) different parabolas with
maxima and minima at different Rn/Speed locations; 2) a constant value for all wind
speeds; and 3) a constant value for all speeds but with a step (change in value) at
different wind speed locations. None of them have given better results than the one
defined above according to our statistics and the two previously mentioned goals.
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  a)                                                                                    b)

  c)                                                                                    d)

  e)                                                                                     f)

Figure 14 Two-dimensional histograms of Rn versus JPL-retrieved wind speed (left plots) and versus
ECMWF speeds (right plots) for rain-free data (plots a and b), for rain rate from 0 to 6 mm/hr (plots c and
d), and for rain rate above 6 mm/hr (plots e and f). The contouring is in logarithmic scale (two steps
corresponding to a factor of 10 in number density) filled from white (unpopulated areas) to black (most
populated areas).
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4.1.4 Threshold validation

We test the defined threshold against the ECMWF and SSM/I collocations. The test
consists of looking at the Rn of the selected solution of any WVC. If the Rn is lower
or equal to the threshold, the WVC is accepted; otherwise, the WVC is rejected. The
results for the sweet parts of the swath are shown in tables 1, 2 and 3.

Table 1 shows the percentage of accepted and rejected WVCs from all the WVCs,
segregated by wind speed intervals. 5.6% of data are rejected and the rejection rate is
increasing with wind speed. This is an expected result. As “rainy” cells result in
higher retrieved wind speeds (the larger the rain rate the larger the speed bias) and we
want to get rid of those cells, the amount of rejections should increase with wind
speed. However, in order to reject rain we have defined a threshold which is
decreasing with wind speed (up to 15 m/s where it remains constant) and therefore we
might reject an increasing amount of “good” solutions as well.

Table 2 shows the total and the percentage of the accepted and rejected solutions for
above and below a RMS-ECMWF threshold of 5 m/s. For the total, accepted and
rejected classes, the different mean RMS-ECMWF value is also shown. On the one
hand, there is a very small portion of rejected data (2.9 %) with RMS values below 5
m/s, indicating that most of the “good” quality solutions have been accepted. On the
other hand, there is a significant percentage of rejected data (35.2%) with RMS values
over 5 m/s, showing that the Rn threshold is effective in rejecting poor quality data.
The difference between the mean RMS of rejected and accepted data is 4 m/s,
showing again the effectiveness of the Rn threshold.

Table 3 shows the percentage of the accepted and rejected solutions divided by rain
rate intervals. When there is no rain, the percentage of rejections is 3.4%. If we
compare this result with the total portion of rejections given in table 1 (5.6%) we can
conclude that in more than 2% of the cases we are rejecting “rainy” cells. When the
rain is over 6 mm/hr, most of the “rainy cells” are rejected (87.3%), denoting a very
good behaviour of the Rn threshold. When the rain is lower or equal to 6 mm/hr, the
percentage of rejections decrease significantly (29.4%) compared to higher rain rates.
As said in the previous section, at these rain rates we are still getting “fair” quality
winds (with enough wind information) which we may want to keep, but still there is a
significant portion of low winds (see discussion of Figure 14) of low quality which
are rejected. In this sense, we achieve a good compromise in the screening of cases in
the absence of rain (3.4% of rejections) and in cases of SSM/I rain over 6 mm/hr
(87.3% of rejections).

Figure 15 shows the two-dimensional histograms of RMS-ECMWF versus retrieved
wind speed for different rain intervals. The left plots correspond to the accepted
solutions and the right plots to the rejected solutions. It is clear when comparing the
contour lines of the left with the right plots that the latter show a much more vertical
orientation with the maximum (darkest contour) significantly higher than the former
(accepted solutions). This is a way to show the mean RMS difference between the
accepted and the rejected solutions presented in table 2. For rain rates over 6 mm/hr
(see bottom plots) most of the solutions are rejected.
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Comparing the distributions of Figures 13a and 13b (prior to QC) with the
distributions of Figures 15a and 15c (accepted solutions), it is discernible that either
for no rain or for rain rate lower than 6 mm/hr, the distributions have become flatter
(less vertically oriented) after QC. This indicates a general decrease of the mean RMS
and therefore a good performance of the method.

Tables 4, 5 and 6 are the same as tables 1, 2 and 3 but for the nadir swath. In the nadir
swath, there is not always enough azimuth diversity in the �º beams. In particular,
WVCs very close to the nadir have fore and aft beams 180º apart, which is almost the
same as having only one of the two beams. As said in Section 4.1.1, when there is not
enough azimuth diversity this QC procedure may not work well. Therefore, we expect
a lower skill of the QC in the nadir swath compared to the sweet swaths. And this is
what we see in the results shown in the tables mentioned above.

Comparing table 4 with table 1, we see a larger percentage of rejections in the nadir
swath, which increases with wind speed. At speeds higher than 15 m/s, 23.8% of the
data are rejected. This represents almost 5% more rejections than in the sweet spots.

Comparing table 5 with table 2, there is a slightly larger percentage of rejections at
RMS-ECMWF < 5m/s and a smaller percentage of rejections at RMS-ECMWF >
5m/s in the nadir swath, indicating a slight decrease in the performance of the QC
procedure. Although the mean RMS-ECMWF of the accepted solutions is slightly
higher in the nadir swath, the mean RMS-ECMWF difference between accepted and
rejected solutions is the same (4 m/s), showing a comparable result in both regions.

Comparing table 6 with table 3, when rain is over 6 mm/hr there are slightly less
rejections in the nadir swath. This shows again a slightly worse performance in the
nadir swath, especially if we consider that overall (see tables 1 and 4) this region
suffers more rejections (especially at high winds, where the rain is “located”).
However, the percentage of rejections for rain under 6 mm/hr is about 6% higher in
the nadir swath. Most of these rejections have an RMS-ECMWF over 5 m/s. This
result is unexpectedly positive, as even if the overall portion of rejections with RMS-
ECMWF > 5 m/s (see tables 2 and 5) is about 6% smaller in the nadir swath, the
portion of rejections when the rain is below 6 mm/hr is around 6% higher for the nadir
swath.

In general, the skill of the QC procedure is good in both regions of the swath,
although it is slightly better in the sweet region.

We have also tested a QC based on the MLE of the first rank instead of the selected
solution. It shows similar results although the QC based on the selected solution is
marginally better. A possible explanation for this small difference is that there is more
correlation between a geophysical disturbance and the MLE of the selected solution
rather than with the MLE of the first-rank solution. In other words, there is some
correlation between the data quality and the number of the wind solutions and their
corresponding MLE values. Ambiguity removal then picks the geophysically most
consistent solution. Therefore, we recommend to use the QC based on the selected
solution.
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TABLE 1
Total V<10 10�V�15 V>15

Num. Points (n/a) 4826841 3796408 859747 170686

Accepted (%) 94.4 95.8 91 81

Rejected (%) 5.6 4.2 9 19

TABLE 2
RMS<5 RMS>5 Mean RMS (m/s)

Total (n/a) 4429905 396970 2.46

Accepted (%) 97.1 64.8 2.24

Rejected (%) 2.9 35.2 6.24

TABLE 3
RR=0 0<RR�6 RR>6

Num. Points (n/a) 1027124 88311 3664

Accepted (%) 96.6 70.6 12.7

Rejected (%) 3.4 29.4 87.3

TABLE 4
Total V<10 10�V�15 V>15

Num. Points (n/a) 2812095 2186477 511131 114487

Accepted (%) 93.7 95.9 88.5 76.2

Rejected (%) 6.3 4.1 11.5 23.8

TABLE 5
RMS<5 RMS>5 Mean RMS (m/s)

Total (n/a) 2483112 329113 2.81

Accepted (%) 96.8 70.6 2.55

Rejected (%) 3.2 29.4 6.62

TABLE 6
RR=0 0<RR�6 RR>6

Num. Points (n/a) 572894 47529 2526

Accepted (%) 96 64.5 14.8

Rejected (%) 4 35.5 85.2

Note : RMS is refered as the vector RMS difference between JPL-retrieved winds and ECMWF
winds in m/s; V is the JPL-retrieved wind speed in m/s; and RR is the SSM/I rain rate in mm/hr.
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  a)                                                                         b)

  c)                                                                         d)

  e)                                                                         f)

Figure 15 Two-dimensional histograms of RMS-ECMWF versus JPL-retrieved wind speed for the accepted (left
plots) and rejected WVCs (right plots). Plots a and b correspond to rain-free data, plots c and d to rain rate from
0 to 6 mm/hr and plots e and f to rain rate above 6 mm/hr. The contour areas are in logarithmic scale (steps of
0.5) filled from white (unpopulated areas) to black (most populated areas).
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4.1.5 Cases

In this section, we show a few wind field examples where the QC procedure has been
applied. Figures 16, 17 and 18 show triple collocated QuikSCAT-ECMWF-SSM/I
data. The arrows in plot a) correspond to the QuikSCAT JPL-selected wind solutions
and the colors represent the accepted (green) and the rejected (red) solutions by the
Rn threshold (QC). The squares correspond to the collocated SSM/I rain data, where
the size of the squares annotates rain rate. The arrows in plot b) correspond to the
collocated ECMWF winds. The violet solid lines divide the different regions of the
swath (outer, sweet and nadir).

In Figure 16, there is a case of significant rain (up to 25 mm/hr) over the entire plot,
especially in the mid-left and upper-right parts. It is clearly discernible that most of
the areas with rain rate above 6 mm/hr (mid-large squares) are rejected by the QC.

At about 12º latitude, there is a “band” of rejections going from the centre to the right
side of the plot. This area is dividing a mid and high wind speed area (south part)
from a low speed one (north part), suggesting the presence of a wind front. The QC is
performing well as in the frontal area, confused sea state is expected (due to high
temporal wind variability) and therefore poor quality wind solutions exist. The wind
field in plot b (ECMWF wind field) does not at all reflect the spatial detail seen in
plot a, showing a potential positive impact of assimilation of QuikSCAT winds into
the ECMWF model.

Although the low wind speed region shows some erratic flow patterns, most of the
wind solutions have been accepted by the QC. This region is mostly located in the
nadir part of the swath. As said before, in the nadir regions there is a lack of azimuth
diversity in the �º beams. This is going to affect the skill of the wind retrieval, in
particular at low wind speeds where the GMF is less sensitive to wind direction
changes. Our QC will not detect these points since they do not exhibit large Rn.
However, we think that improved inversion schemes could produce solution patterns
that are more consistent. This will be investigated in the future.

In Figure 17a, the presence of a wind front is clearly discernible in the middle of the
plot, where again a confused sea state and therefore poor quality winds are expected.
WVCs along the front line are rejected by QC. This is also the case for the centre of
the low at the bottom of the plot, where there is probably extreme temporal and spatial
sea state variability or rain. At the left side of the wind front we see a region of
significant rain (above 6 mm/hr) which has been successfully detected by the QC. In
the outer swath region (right side of the plot), there are very few rejections as
expected (see section 4.1.1). In general, the QC does not detect much of the poor
quality data in the outer regions. However, in this case, the flow looks consistent and
therefore the QC apparently seems to work.

The ECMWF forecast (plot b) does not accurately place the centre of the low and the
associated wind front is not so pronounced as in the QuikSCAT plot. This example
illustrates again the potential positive impact of assimilating QuikSCAT winds into
ECMWF after using our QC.



Figure 18 is a clear pure wind case. No fronts were predicted by ECMWF (plot b) and
almost no rain was observed by SSM/I. Most of the wind solutions have been
accepted by the QC. Indeed, QuikSCAT winds show a meteorologically consistent
pattern, indicating again a good performance of this QC.

     a)                                             

Figure 16 Collocated QuikSCAT-ECMW
green color correspond to accepted WV
rain rates from 0 mm/hr (no square) t
violet lines separate different regions 
region, the middle to the nadir region a
1999 at 14 hours UTC
CASE : 02/09/99 1400 UTC

                                   b)

F-SSM/I data. Plot a shows QuikSCAT wind arrows (JPL-selected winds), where
Cs and red color to rejected WVCs. The size of the squares represent the different
o 25 mm/hr (the largest ones). Plot b shows the collocated ECMWF winds. The
of the swath. In this case, the left side of the plot corresponds to the sweet-left
nd the right side to the sweet-right region. The acquisition date was September 2
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     a)                                          

Figure 17 Same as Figure 16 but fo
separate the nadir (left side), the swe

     a)                                          

Figure 18 Same as Figure 16 but for
separate the nadir (left side), the swe
CASE : 28/08/99 0500 UTC

                                   b)

r different date (August 28 1999 at 5 hours UTC) and location. The violet lines
et-left (middle) and the outer-left (right side) regions.
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CASE : 28/08/99 1000 UTC

                                   b)

 different date (August 28 1999 at 10 hours UTC) and location. The violet lines
et-right (middle) and the outer-right (right side) regions.
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4.2 Quality Control in BUFR

As shown in Section 4.1, there is a potential positive impact of assimilating
QuikSCAT winds into NWP models, such as ECMWF, after using our QC. Since
March 2000, the QuikSCAT Near Real Time (NRT) BUFR product is available. As
this product is the one used for assimilation purposes, we also want to set a QC for the
BUFR product.

4.2.1 Data Repetition

First of all, we would like to make a few comments about a common problem in the
QuikSCAT BUFR data. It appears that certain rows of data are repeated in the data
stream. For a given row that repeats, the data values may be identical or different,
depending on whether additional �º values are present in one of the row records or
not. The row of lower quality is the one with fewer �º values. In all cases, the higher
quality data is expected to be furthest from the edge of the data pass. A parameter
called time_to_edge, which indicates the time difference to the nearest edge of the
data pass, has been set in the product. Therefore, in order to avoid repetitions and
keep the higher quality data, we first have to detect the repeated rows and then keep
the one with the largest value of time_to_edge (Leidner et al., 2000).

The above procedure always requires reading the data an extra time and this may be
computationally very inefficient when used in operational assimilation. In order to
avoid this inefficiency problem, we have made an exhaustive analysis over a set of 6-
hour QuikSCAT BUFR data files available at the ECMWF MARS archive. Here are
the key points of this analysis :

a) there is no more than one repetition;

b) when a row is repeated, the one of highest quality can be either before or after
the one of lower quality;

c) there is 10% (approx) of repetitions per file;

d) if we only look at WVC with 4 �º, there is only 1% of repetitions;

e) the retrieved winds of repeated WVCs with 4 �º are almost identical.

Therefore, if we always keep WVCs with 4 �º and we reject repetitions when they
occur (no matter if the repeated or second one is of higher quality as in this case the
winds are almost identical), the data files do not need to be read in advance as with
the other procedure.

This procedure can only be used in the inner swath as in the outer swath we have a
maximum of 2 �º per WVC. Since for now we are only interested in the inner swath
(see Section 4.1.1) and the amount of WVCs which contain less than 4 �º and wind-
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derived information is only 1% of the total in this part of the swath, the procedure is
not expected to distort the results in the QC.

Furthermore, we can apply the same concept in the outer swath but keeping WVC
with 2 �º and rejecting repetitions and extend this method to any operational use of
the BUFR data.

4.2.2 Differences with the QC procedure in HDF

As for HDF, the QC in BUFR is based on Rn. In order to compute and characterize
Rn in BUFR, we have applied the same procedure than for HDF. However, a few
differences were found which we think are important to report.

The expected MLE is also computed from 60 orbits of real data (BUFR in this case).
From the mean MLE surface versus wind speed and node number, the noise is filtered
using the same iterative process as for HDF. However, the MLEs rejected are three
(or more) times higher than the mean MLE instead of two times as for HDF. This is
done to keep consistency in the filtering procedure in terms of rejecting a small
amount of data and conserving the shape of the original function (see discussion in
section 4.1.1).

Figure 19a shows the filtered mean MLE versus wind speed and node number for
BUFR. Comparing this surface with the one for HDF (Figure 8b), both are very
similar although the BUFR surface looks more irregular for speeds higher than 7 m/s.
These irregularities make the two dimensional function fit (see Appendix B) to the
BUFR surface less accurate. As said in section 4.1.1, the function fit is required for
extrapolation purposes. Figure 19b shows the function fit (or expected MLE surface).
It is clearly discernible that the irregularities seen in Figure 19a are filtered out in the
fit, but the main shape of both surfaces remains the same and therefore the accuracy
of the resulting Rn is not expected to decrease significantly.

Both surfaces in Figure 19 are for speeds lower than 20 m/s and for the inner nodes.
The two dimensional function fit is used in the same way as in HDF to extrapolate the
expected MLE surface for winds higher than 20 m/s and the outer nodes.

Figure 20 shows the contour plot of a two-dimensional histogram of RMS-ECMWF
against Rn for two weeks of BUFR data. As in Figure 11 (same plot but for HDF), the
RMS-ECMWF increases as Rn increases, or in other words, the quality of data is
decreasing with increasing Rn. From plots b), c) and d) we can also say that the RMS-
ECMWF is increasing more rapidly with Rn at higher wind speeds. However, when
comparing both Figures, it is clearly discernible that the RMS-ECMWF in HDF is
increasing more rapidly with respect to Rn for all wind speeds, suggesting a better
behaviour of the HDF Rn as a quality control indicator.
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Nevertheless, we have looked at the same plots as in Figures 12 and 13 but for BUFR
(not shown) and they are very similar to HDF. Therefore, the rain rate is also

      a)

       b)

Figure 19 “Filtered” mean MLE (plot a) and Expected MLE versus wind speed and node number for
the inner swath nodes. The speed binning is 1 m/s and the node binning is 1.



37

proportionally increasing the retrieved wind speed and above 6 mm/hr produces
undesirable “rainy” WVCs. Moreover, the same plot as in Figure 14 but for BUFR
(not shown) is also very similar to HDF, suggesting that the optimal BUFR Rn
threshold may be the same as that used for HDF.

Note that, as for HDF, we have tested different thresholds. The one which has given
better results is the one used in HDF.

   a)                                                                  b)

   c)                                                                  d)

Figure 20 Same as Figure 11 but for BUFR data.
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4.2.3 Threshold Validation

In the same way as in HDF (see section 4.1.4), we test the defined threshold against
ECMWF and SSM/I collocations. The results for the sweet parts of the swath are
shown in tables 7,8 and 9, and the results for the nadir parts are shown in tables 10, 11
and 12. Tables 7-12 are in the same format as tables 1-6 (see section 4.1.4)
respectively.

In general, the results show that the BUFR QC works slightly worse than the HDF
(see discussion on the Rn behaviour in the previous section).

Comparing table 7 to table 1, we appreciate a larger percentage of rejections in BUFR
at all speeds. From tables 8 and 2, we see that this excess of rejections is mostly
concentrated below the RMS value of 5 m/s, which in turn makes the mean RMS-
ECMWF smaller. The mean RMS-ECMWF difference between accepted and rejected
solutions is about 3 m/s in BUFR while in HDF it is 4 m/s. This indicates a better
performance of the HDF QC. Moreover, from tables 9 and 3, the amount of “rainy”
WVCs rejected is slightly lower for BUFR, perhaps as a result of the slightly poorer
performance.

Comparing the BUFR QC in the nadir (tables 10-12) with the HDF QC in the same
region (tables 4-6), we can draw similar conclusions than for the sweet parts of the
swath, except that in this case the total number of rejections in BUFR is comparable
to HDF. The reason why the number of rejections in the nadir swath is not higher for
BUFR is the fact that the <MLE> in BUFR is misfit towards higher values (compared
to the filtered mean MLE values) in the nadir parts (see Figures 19a and 19b). This in
turn decreases the value of Rn and therefore decreases the number of rejections.

In general, the BUFR QC works fine, although its performance is slightly worse than
the HDF QC. This is due to the fact that the properties of the Rn as a quality control
indicator are somehow smeared in BUFR compared to HDF, as it is further explained
in the next section.
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TABLE 7
Total V<10 10�V�15 V>15

Num. Points (n/a) 3005557 2261475 617140 126942

Accepted (%) 93.3 94.9 90.5 79.2

Rejected (%) 6.7 5.1 9.5 20.8

TABLE 8
RMS<5 RMS>5 Mean RMS (m/s)

Total (n/a) 2805852 203084 2.26

Accepted (%) 95.5 63.8 2.07

Rejected (%) 4.5 36.2 4.92

TABLE 9
RR=0 0<RR�6 RR>6

Num. Points (n/a) 647292 56939 2904

Accepted (%) 95.3 72.7 16.1

Rejected (%) 4.7 27.3 83.9

TABLE 10
Total V<10 10�V�15 V>15

Num. Points (n/a) 1744647 1290254 372353 82040

Accepted (%) 93.9 95.9 90.3 79.1

Rejected (%) 6.1 4.1 9.7 20.9

TABLE 11
RMS<5 RMS>5 Mean RMS (m/s)

Total (n/a) 1585453 160703 2.48

Accepted (%) 96.1 72.3 2.29

Rejected (%) 3.9 27.7 5.49

TABLE 12
RR=0 0<RR�6 RR>6

Num. Points (n/a) 360953 28150 1536

Accepted (%) 95.9 70.7 19.4

Rejected (%) 4.1 29.3 80.6

Note : RMS is refered as the vector RMS difference between JPL-retrieved winds and ECMWF
winds in m/s; V is the JPL-retrieved wind speed in m/s; and RR is the SSM/I rain rate in mm/hr.
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4.2.4 Collocations HDF/BUFR

In order to study this smearing effect in the BUFR Rn, we perform some collocations
between the HDF and the BUFR product.

Figure 21 shows the contour plot of the two-dimensional histogram of the BUFR
MLE versus the HDF MLE. As the Rn is just a normalized MLE, the smearing effect
in the BUFR Rn is expected to be seen in the BUFR MLE as well. The plot confirms
this. The distribution shows only small apparent correlation between both MLEs.

In order to investigate whether this anomalous behaviour of the BUFR Rn and MLE is
affecting the quality of the retrieved winds, we perform some triple collocations of
HDF, BUFR, and ECMWF winds.

Figure 22 shows the two-dimensional histograms of BUFR winds versus HDF winds
(upper plots), BUFR versus ECMWF (mid plots) and HDF versus ECMWF (bottom
plots). The left plots correspond to the histograms of wind speeds and the right plots
to the histograms of wind directions. Both BUFR and HDF retrieved winds
correspond to the 1st rank solution.
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Figure 21 Contour plot of the two-dimensional histogram of the BUFR MLE versus the HDF MLE.
The contour lines are in logarithmic scale (each step is half an order of magnitude).
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Figure 22 Two-dimensional histogram of BUFR winds versus HDF winds (plots a and b),BUFR winds versus
ECMWF winds (plots c and d) and HDF winds versus ECMWF winds (plots e and f). The left plots correspond
to wind speeds (bins of 0.4 m/s) and the right plots to wind directions (bins of 2.5�).
41



42

From the upper plots it is discernible that the BUFR and HDF retrieved winds are not
identical, although very similar. Plot a) shows almost no bias in speeds and a very
small STD (0.58 m/s). Plot b shows a typical effect of comparing 1st rank solutions,
which is the secondary distribution around 180�. This is due to the fact that 1st and 2nd

rank solutions (usually with very similar wind speeds but wind directions 180�apart)
can have very similar MLE values and therefore be switched from one data product to
the other. This effect is leading to very high STD values. Still, we can see from the
correlation factor (0.87) that the retrieved directions are similar.

Looking at the mid and the bottom plots, we can see almost no difference between
HDF and BUFR when compared to ECMWF winds. Plots c) and e) show almost
identical wind speed distributions with almost the same bias and STD. Plots d) and f)
show very similar wind direction distributions with almost the same correlation factor.

Therefore, we can conclude that the smearing effect in the BUFR Rn is not affecting
the quality of the retrieved winds.

4.2.5 MLE Simulation

The �º averaging prior to the wind inversion reduces the number of �º observations
used in the wind retrieval for the BUFR product as compared to HDF. We believe that
the smearing of the BUFR MLE compared to the HDF MLE is mainly due to this
lower number of observations that are used in the inversion. When the number of
observations N is low, the distribution of the MLE will vary considerably if we vary
N.

In this section, we use the JPL selected winds of the BUFR files as truth to simulate
two sets of measurements. The first set simulates the BUFR product and the second
one the HDF product.

Number of ����º

In order to adequately simulate both products we have to use a realistic number of �º
per WVC. From section 4.2.1, it is obvious that using 4 �º per WVC, one for each
beam, to simulate the BUFR set is realistic. In the case of the HDF simulation, we
produce a variable number of measurements depending on the WVC number and
beam. The more observations of a particular WVC that we simulate, the larger the
measurement noise that we assume, such that the information content is the same in
each simulated HDF and BUFR WVC.

Figure 23 shows the histogram of the number of measurements per WVC and beam
for one day of HDF data. Plot a corresponds to WVC number 12 and plot b to WVC
number 38. It is clearly discernible from the different distributions of plots a and b
that the number of measurements in HDF varies from one WVC to another.
Moreover, these distributions are broad, indicating that the number of measurements
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is considerably varying in each WVC as well. To simplify the simulation, we have
chosen the number of �º corresponding to the peak of each distribution as the fixed
value which will represent the number of �º for each particular WVC and beam.

MLE scaling

Once we have simulated both sets of measurements, we invert them to derive the
MLE.

Figure 24a shows the mean MLE surface as a function of wind speed and WVC
number for the HDF simulation. The surface show some steps in the cross-track axis
which correspond to the different number of �º used in the simulation (the number
increases with the distance to nadir). These steps are not seen in Figure 8b (same
surface but for HDF real data). This is due to the fact that the MLE has to be scaled
with the number of �º used in the inversion in order to get a normalized MLE along
the cross-track axis. Figure 24b shows the same surface as Figure 24a but scaled with
the number of �º. The steps, although very much reduced, are still visible in the
surface. This slight increase of the surface with increasing distance to nadir is also
seen in Figure 8b. The increase in Figure 24b is stepwise and not monotonic as for
real data (Figure 8b) because of the approximation in the number of �º made in the
simulation of HDF data. The reason for this increase lies in the inversion. As the
inversion is a non-linear process, the scaling (linear correction) is not sufficient to
compensate the increase in the MLE due to the increase in the number of �º.
Nevertheless, the mean MLE surfaces show that this effect is minor.

Figure 24c shows the mean MLE surface versus wind speed and WVC number for the
BUFR simulation. As the number of �º is kept constant for all WVC, no increase in
MLE is produced with increasing distance to nadir. As for the HDF case, the MLE
behaviour across track compares well with the real case in BUFR (Figure 19a).

        a)                                                                b)

Figure 23 Normalized histogram of the number of sigma0 for WVC number 12 (plot a) and 38 (plot
b). The solid line correspond to the inner swath beams (fore and aft) and the dotted line to the outer
swath beams.
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                      a)

                     b)

                      c)

Figure 24 Mean MLE versus wind speed and node number. Plots a and b are for HDF simulated data
(without and with scaling respectively) and plot c is for BUFR simulated data. . The speed binning is 1
m/s and the node binning is 1
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If we compare the mean MLE behaviour as a function of wind speed between the real
cases (Figures 8b and 19a) and the simulated cases (Figures 24b and 24c
respectively), we see a large discrepancy at low speeds. In the real cases the MLE
increases with decreasing speeds while in the simulated cases the MLE decreases with
decreasing speeds.

The reason for this MLE increase in the real case is that the observation error (Kp) is
underestimated for low wind speeds. From equation 1, an underestimation in the Kp
(denominator term) will in turn produce an increase in the MLE. Figa and Stoffelen
(2000) provide a physically-based model for the NSCAT backscatter observation
error. They find that for low wind speed, the largest uncertainty lies in the spatial
variability of the geophysical target. Since the different beam and polarization
measurements in a WVC do not sample exactly the same area, the geophysical
collocation error variability becomes substantial at low backscatter levels.

However, in the simulated case, the Kp is considered as a true value and therefore we
would expect no increase or decrease in the MLE value at low wind speeds. This is
not the case. The problem lies in the inversion and the fact that we assume that the
measurement noise is proportional to the true value. The latter leads to a Kp which is
proportional to �s

o (simulated �o from the GMF) in the denominator of equation 1.
Stoffelen (1998) explains in page III-29 how proportional errors cause positive bias in
the solution (after inversion). This positive bias will in turn produce a decrease in the
MLE. Figure 25 illustrates the problem in the case of a two beam measurement
system (QuikSCAT has four beams, but for simplicity we draw a 2D case). The solid
curves represent the solution space. The diamond represents the pair of “true”
measurements which are the starting point in the simulation process. The solid circle
around the diamond represents the “true” measurement noise (Kpt). Using this Kpt we

Figure 25 schematic illustration of the problem in a 2D measurement space

Sigma0 (beam 1)

Si
gm

a0
 (b

ea
m

 2
)



46

simulate the measurement pair (triangle inside the solid circle). The dashed circle
represents its corresponding estimated noise (Kpm). After inversion, we get a
positively biased solution (star) which has its proportional noise (Kps) represented by
the dotted circle. As Kps increases significantly, the MLE decreases (Kps is the
denominator of equation 1) and this effect is more acute as we approach the origin
corresponding to lower speeds.

Direct MLE comparison

Figure 26 shows the contour plot of the two-dimensional histogram of the simulated
BUFR MLE versus the simulated HDF MLE. Although the distribution differs
somewhat from the real case (Figure 21), it is clearly discernible that we have
successfully reproduced the smearing effect by simply assuming a different number of
measurements (more �º in HDF than BUFR).

The remaining difference between the simulated and the real distributions may be
produced for many reasons. Here we address some of them :

� The simulation of the number of �º per WVC and beam in HDF is just a
rough approximation. In the real data a WVC can contain a variable number
of �º (see Figure 23) and in the simulation we have fixed this number.
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Figure 26 Contour plot of the two-dimensional histogram of the simulated BUFR MLE versus the
simulated HDF MLE. The contour lines are in logarithmic scale (each step is half an order of
magnitude).
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� The different behaviour of the real and simulated MLEs at low speeds as
discussed above (see Figures 8b, 19a, 24b and 24c), and due to ignoring wind
variability, i.e. all �º in the WVC were produced from the WVC mean �º by
assuming only Kp noise.

� In the real data, the HDF �º is an “egg” and the BUFR �º a weighted average
of a composite (see chapter 2); in the simulation we have treated HDF as a
weighted average of composites and therefore some differences in the
simulated HDF measurement noise compared with the real HDF noise are
expected.

There may be other reasons that could cause minor differences in the distributions.
Nevertheless, it is clear from the results that having a different number of
measurements (HDF versus BUFR) will produce uncorrelated MLE values (see
Figure 21 or 26).

This smearing is however not causing a significant difference in the skill of BUFR
QC with respect to HDF.

4.3 Quality Control with new GMF

Since May 2000, JPL wind retrievals are produced using a new GMF called QSCAT-
1. This is the first empirically derived GMF from QuikSCAT measurements, as the
one used up to now, NSCAT-2, was derived from NSCAT data.

If we invert winds using a different GMF, we will get different MLE values. Although
these differences are not expected to be significant, it may well be that Quality
Control is affected and therefore it needs to be revised.

Assuming no major changes, we first test Rn using the <MLE> surface computed
with the NSCAT-2 GMF. The test is performed for two weeks of QuikSCAT HDF
data.

4.3.1 Rn Characterization

As in the previous sections, we have collocated QuikSCAT data with ECMWF winds
and SSM/I rain data and looked at the same kind of plots as in Figures 11 to 14 in
order to characterize and validate Rn. The plots show very similar features as in
section 4.1.3. The only difference is a slight increase in the Rn values.

Figure 27 shows the contour plot of a two-dimensional histogram of RMS-ECMWF
against Rn. As in Figure 11 (same plot but for the NSCAT-2 GMF), the RMS-
ECMWF increases (quality of data decreases) as Rn increases and the RMS-ECMWF



is increasing more rapidly with Rn at higher wind speeds (see plots b, c and d).
However, when comparing both Figures, it is discernible that the distributions (see
contour lines) in Figure 27 are slightly shifted towards higher Rn values compared to
Figure 11. The shift is more significant at mid and high wind speeds (see plots c and d
in both Figures).

As we have used the same <MLE> surface to compute the Rn, this shift means that in
general MLE values coming out from the inversion are slightly higher using the
QSCAT-1 GMF than using the NSCAT-2 GMF. This is an indication that the
NSCAT-2 GMF better fits the backscatter measurements than the QSCAT-1 GMF.

Therefore, if we keep the same Rn threshold as in Section 4.1, we would expect to
have more rejections in this case.
   a)                                                                         b)

   c)                                                                         d)

Figure 27 Same as Figure 11 but for the QSCAT-1 GMF.
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4.3.2 Threshold Validation

We test the same Rn threshold as defined in section 4.1.4 against ECMWF and SSM/I
collocations. The results for the sweet parts of the swath are shown in tables 13, 14
and 15, and the results for the nadir part are shown in tables 16, 17 and 18. Tables 13-
18 are in the same format as tables 1-6 (see section 4.1.4) respectively.

Comparing table 13 to table 1, we appreciate a larger percentage of rejections in the
former at all speeds, and more in particular at mid and high winds. From tables 14 and
2, we see a considerable amount of this excess of rejections concentrated below the
RMS value of 5 m/s, which in turn makes the mean RMS-ECMWF slightly smaller.
The mean RMS-ECMWF difference between accepted and rejected solutions is
slightly smaller in table 14 (3.6 m/s) compared to table 2 (4 m/s). This indicates a
somewhat better performance of the HDF QC using the NSCAT-2 GMF. However,
this excess in rejections is positively contributing to rain detection. From tables 15
and 3, the amount of “rainy” WVCs rejected is higher in the former, especially at rain
rates below 6 mm/hr where there is 9.7% more of rejections.

Comparing the HDF QC using the QSCAT-1 GMF in the nadir (tables 16-18) with
the HDF QC using the NSCAT-2 GMF (tables 4-6), we can draw the same
conclusions than for the sweet parts of the swath. In terms of quantitative results, the
only significant differences with respect to the sweet parts are the following: the
excess of rejections is 1.6 % in total while in the sweet parts is 1.3% (see tables 1, 13
and 16); and the excess of rejections for rain rates below 6 mm/hr is 6.6% compared
to the 9.7% in the sweet parts (see tables 3, 15 and 18).

In general, the results show that with the QSCAT-1 GMF the QC rejects more data
than with the NSCAT-2 GMF. However, this gives a positive impact on rain
detection, especially for rain rates below 6 mm/hr. Therefore, we believe that using
the same QC procedure (i.e. same <MLE> surface and Rn threshold) as in Section 4.1
for the new GMF (QSCAT-1) is appropriate and there is no need to tune the QC
procedure to the new data.
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TABLE 13
Total V<10 10�V�15 V>15

Num. Points (n/a) 5170647 3922963 982175 265509

Accepted (%) 93.0 95.2 88.9 77.1

Rejected (%) 7.0 4.8 11.1 22.9

TABLE 14
RMS<5 RMS>5 Mean RMS (m/s)

Total (n/a) 4726341 444378 2.49

Accepted (%) 95.9 62.1 2.24

Rejected (%) 4.1 37.9 5.83

TABLE 15
RR=0 0<RR�6 RR>6

Num. Points (n/a) 1188320 89416 4742

Accepted (%) 95.7 60.9 9.0

Rejected (%) 4.3 39.1 91.0

TABLE 16
Total V<10 10�V�15 V>15

Num. Points (n/a) 3006927 2295287 555318 156322

Accepted (%) 92.1 95.0 85.9 71.1

Rejected (%) 7.9 5.0 14.1 28.9

TABLE 17
RMS<5 RMS>5 Mean RMS (m/s)

Total (n/a) 2634399 372757 2.85

Accepted (%) 95.5 68.0 2.56

Rejected (%) 4.5 32.0 6.23

TABLE 18
RR=0 0<RR�6 RR>6

Num. Points (n/a) 670388 48638 3370

Accepted (%) 95.0 57.9 12.9

Rejected (%) 5.0 42.1 87.1

Note : RMS is referred as the vector RMS difference between JPL-retrieved winds and ECMWF
winds in m/s; V is the JPL-retrieved wind speed in m/s; and RR is the SSM/I rain rate in mm/hr.
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4.4 KNMI QC versus JPL rain flag

Since May 2000, the QuikSCAT data products have a unique rain flag based on the
combination of two parameters, the mp_rain_probability and the nof_rain_index
developed by Huddleston and Stiles (2000) and Mears et al. (2000) respectively.

In this section, we test the JPL rain flag against our QC.

4.4.1 JPL Rain Flag Description

In January 2000, JPL incorporated in the QuikSCAT products two different rain flags
based the mp_rain_probability and the nof_rain_index respectively. However, since
May 2000, JPL merged both techniques into a single rain flag. This rain flag is
actually based on the mp_rain_probability and the nof_rain_index is incorporated as
an additional parameter in the mp_rain_probability procedure, called MUDH
(Multidimensional Histogram) rain algorithm.

Briefly, mp_rain_probability is the probability of encountering a columnar rain rate
that is greater than 2km*mm/hr. This probability value is read directly from a table
based on eight input parameters including nof_rain_index and the average brightness
temperature. The space spanned by these parameters can detect whether the set of �º
used in wind retrieval contain a noteworthy component created by some physical
phenomenon other than wind over the ocean’s surface, assuming that the most likely
phenomenon is rain.

The nof_rain_index is based upon a simplified version of the standard GMF to
determine a MLE and a wind speed for each WVC. The MLE is based upon the sum
of the squared differences between the set of �º that were used to retrieve winds and
the corresponding model function �º that would generate the ambiguity with the
greatest MLE. The wind speed is based upon a modified �º which is specifically
calculated to be less sensitive to rain. The simplified MLE is normalized by a tabular
empirical estimate for the 95th percentile of the squared difference distribution. These
tabular values are indexed by beam polarization, cross-track location in the
measurement swath and wind speed. The normalized MLE is then divided by the
number of �º in the WVC, multiplied by thirty, and rounded to the nearest integer
value.

The nof_rain_index is most effective for wind speeds under 10 m/s and not very
effective for wind speeds greater than 15 m/s.

The final rain flag deduced from the MUDH rain algorithm is also incorporated in the
QuikSCAT products and can be found in the wvc_quality_flag variable.
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4.4.2 Comparison

The JPL rain flag separates “rain” (rain rate above 2mm/hr) from “no rain” (rain rate
below 2 mm/hr) cases and the KNMI QC separates cases of low quality to be rejected
(above Rn threshold) from those of good quality to be accepted (below Rn threshold).

Both the JPL rain flag and the KNMI QC are meant to separate the usable data from
the non-usable data. Therefore, the user should use only “no rain” data according to
JPL rain flag and reject the “rain” data. In the same way, the user should accept or
reject data according to KNMI QC, and therefore a study of the difference in
behaviour of both procedures is of interest.

In order to make a consistent comparison we have processed two weeks of HDF data
and classified the results in four different categories: A) “JPL Rain Flag - No Rain”
and “KNMI QC - Accepted”; B) “JPL Rain Flag - Rain” and “KNMI QC -
Accepted”; C) “JPL Rain Flag - No Rain” and “KNMI QC - Rejected”; and D) “JPL
Rain Flag - Rain” and “KNMI QC - Rejected”. In line with the previous paragraph,
categories A and D show similarities and categories B and C show discrepancies
between the two procedures.

In tables 19-21 we present the results of collocating 2 weeks of QuikSCAT HDF data
(sweet parts of the swath only) with ECMWF winds and SSM/I rain data. In total,
there are about 5.2 million collocations with ECMWF and 1.1 million collocations
with SSM/I. Following JPL’s definition (see previous section), we refer to rain data
when SSM/I rain rate (RR) value is above 2 mm/hr, and to rain-free data when SSM/I
rain rate value is below 2 mm/hr.

Table 19 shows by category the percentage of total data, the QuikSCAT mean speed,
the ECMWF mean speed, the mean bias (QuikSCAT-ECMWF), the mean RMS-
ECMWF, the percentage of data with rain (RR>2 mm/hr), and the percentage of all
rain points (RR>2 mm/hr).

Results in table 19 show a very good agreement between both procedures as 94% of
the data corresponds to categories A and D (91.1% in A and 2.9% in D). Moreover,
category A shows good quality (0.5 m/s bias and 2.2 m/s RMS) rain-free (only 0.1%
of data a rain contaminated) data while category D shows very low quality (5.1 m/s
bias and 8.2 m/s RMS) and rain-contaminated (31.9% of data are rain contaminated)
data.

Categories B and C contain 6% of the data and correspond to the differences in
behaviour of both procedures.

Comparing both categories in terms of SSM/I rain detection, category B contains
13.9% of all the rain data while category C is only containing 2.4%. Therefore, JPL
rain flag is more efficient since only 7.6% (5.2% in A and 2.4% in C) of all rain data
is not rejected, while the KNMI QC is accepting 19.1% (5.2% in A and 13.9% in B).



In terms of quality of the data, both categories contain data of low quality, with
similar bias (2.4 m/s in B and 1.7 m/s in C) and RMS (4.8 m/s in B and 4.1 m/s in C)
values. The KNMI QC is more efficient in rejecting more low quality data than the
JPL rain flag as there is a 4% of data in category C while only a 2% in category B.
However, the JPL rain flag seems to work reasonably well as a Quality Control flag as
categories B and D show that only 27% of that data (13.6% in B and 31.9% in D) are
rain contaminated data and therefore the rest are rain-free but still low quality data.

Tables 20 and 21 a
respectively. Table 2

Table 20 shows very
rain-free data, catego
(2.2 m/s in B and 4.4
the JPL rain flag as a

Table 21 shows clea
larger bias and RMS
contains 5.2% of rain
RMS). These data ar

The results clearly 
significant amount o
JPL rain flag to the K

JPL Rain Flag
No Rain

KNMI QC
Accepted

Number o  data (%):          
QuikSCA  Mean Speed (m
ECMWF ean Speed (m/s
Bias-ECM F (m/s):          
RMS-EC WF (m/s):        
Rain > 2 m/hr (%1):         
Rain > 2 m/hr (%2):         

KNMI QC
Rejected

Number o
QuikSCA
ECMWF
Bias-ECM
RMS-EC
Rain > 2 
Rain > 2 

1 : % of data in this catego
2 : % of all rain points (RR
f
T

 M
W

M
m
m

53

re similar to table 19 but only for rai
0 contains about 1.1 million data and ta

 similar results to table 19. The most s
ries B and D contain low quality data, 
 m/s in D) and RMS (4.4 m/s in B and 7
 Quality Control flag as well.

rly the effect of rain in the quality of the
 values compared to tables 19 and 20.
y data, which are clearly of low quality

e detected neither by the JPL rain flag n

show that category B contains low 
f rainy data. Therefore, it seems a goo
NMI QC in order to improve the Qual

data (%):          
 Mean Speed (m

 ean Speed (m/s
F (m/s):          

MWF (m/s):        
m /hr (%1):         
m /hr (%2):         

ry with rain (RR

>2mm/hr)
f 
T
M
W

f 
T
M
W

m
m

f
T

 M

M
m
m

TABLE 19

JPL Rain Flag
Rain

         91.1
/s):  7.6
):      7.1
         0.5
         2.2
        0.1
        5.2

Number o data (%):                   2.0
QuikSCA  Mean Speed (m/s):  14.2
ECMWF ean Speed (m/s):      11.8
Bias-ECM F (m/s):                   2.4
RMS-ECMWF (m/s):                 4.8
Rain > 2 mm/hr (%1):                 13.6
Rain > 2 mm/hr (%2):                 13.9

         4.0
/s):  9.1
):      7.4
         1.7
         4.1
        1.0
        2.4

Number o  data (%):                   2.9
QuikSCA  Mean Speed (m/s):  12.3
ECMWF ean Speed (m/s):      7.2
Bias-ECMWF (m/s):                   5.1
RMS-EC WF (m/s):                 8.2
Rain > 2 m/hr (%1):                 31.9
Rain > 2 m/hr (%2):                 78.5

> 2 mm/hr)
n-free data and rain data
ble 21 about 17000 data.

ignificant result is that for
as seen from the high bias
 m/s in D). This confirms

 data. All categories have
 In particular, category A
 (2.4 m/s bias and 5.5 m/s
or by the KNMI QC.

quality data, including a
d idea to incorporate the
ity Control of QuikSCAT



data. However, according to the results in these three tables, ECMWF winds in
category B are in general 3-5 m/s higher than in the rest of the categories. This means
that category B corresponds to dynamically active situations. Therefore, it could well
be that this category systematically corresponds to frontal or low-pressure system
areas where the discrepancy between ECMWF and QuikSCAT is indeed of valuable
interest and therefore we want this data to be kept and not rejected.

In order to determine the convenience of incorporating the JPL rain flag in the KNMI
QC, some meteorological cases need to be examined.
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4.4.3 Cases

In this section, we show a few wind field examples where both the KNMI QC and the
JPL rain flag have been applied. Figures 28 and 29 show QuikSCAT winds collocated
with ECMWF winds. The arrows in plot a) correspond to the QuikSCAT JPL-selected
wind solutions and the colors represent categories A (green), B (yellow), C (purple)
and D (red). The arrows in plot b) correspond to the collocated ECMWF winds. Plot
c) is the same as plot a), but arrows corresponding to categories C and D are
substituted by dots.

In Figure 28, the presence of a low-pressure system to the Northwest of Ireland is
clearly discernible in the mid-left part of the plot. A wind front is also visible going
from East to Southwest of the low. The KNMI QC has rejected many data in the
vicinity of the low and along the front line where confused sea state is expected (see
red and blue arrows). There are also some rejections at the right side of the front
probably due to rain (see inconsistent flow of red arrows in the mid-right part of the
plot) and in low wind areas (blue arrows at the bottom-right area of the plot).
However, category-B winds (yellow arrows) are mainly focused in the most
dynamical area as anticipated in the previous section.

If we zoom into this area (plot c) and show only categories A and B (accepted winds
after KNMI QC), we see that most of the yellow arrows show a spatially consistent
flow which we would like to keep. However, there are still a few undesirable yellow
arrows in the right side of the plot (most likely rain contaminated) and along the front
line (most likely low quality winds).

In Figure 29, we see a low-pressure system Northeast of Florida. The red arrows in
the centre and bottom of plot a) clearly show the presence of a wind front with
associated rain bands. If we look at the same plot but only for the accepted data after
KNMI QC (plot c), we still see some inconsistent yellow arrows, which are most
likely rain contaminated and therefore undesirable.

From these meteorological cases, we can conclude that category B winds are
primarily located in dynamically active areas and in many cases they show very
consistent wind flows. However, there are also several rain-contaminated cases and
some confused sea state cases which lead to low quality winds in category B.

From plot c of both Figures, it is clearly discernible that rejecting category B winds is
not reducing much the synoptic-scale information content on the meteorological
situations and therefore can still be of very valuable use to meteorologists or NWP
models.

In conclusion, the JPL rain flag and the KNMI QC are complementary and their
combined use is recommended.



     a)                                       

                                      c)

Figure 28 QuikSCAT wind fields (p
different categories: green is categ
30 2000 at 19 hours UTC.
CASE : 30/08/00 1900 UTC
                                   b)

lots a and c) and collocated ECMWF winds (plot b). The colors represent the
ory A, yellow is B, purple is C, and red is D. The acquisition date was August
56
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CASE : 29/08/00 2300 UTC
     a)                                                                          b)

                                      c)

Figure 29 Same as Figure 28 but for different date (August 29 2000 at 23 hours UTC) and location.
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5 Conclusions and Future Work

The KNMI inversion scheme for QuikSCAT adapted from ERS and NSCAT
processing software with help from ECMWF seems to provide good results.
However, further refinement of the scheme is anticipated. The software was used to
validate the simulated sample HDF and BUFR products and the real HDF and BUFR
QuikSCAT data. Some unwanted features in the data have been reported to JPL and
corrected by them.

The QC by normalized residual (Rn) is in line with the QC investigated for NSCAT
(Figa and Stoffelen, 2000) and the QC applied in case of the ERS scatterometer
(Stoffelen, 1998) which is, in contradiction to NSCAT and SeaWinds, not sensitive to
volumetric rain absorption. As such, QC rejection for ERS is only activated in case of
confused sea state, ice occurrence, etc, whereas in the case of QuikSCAT and NSCAT
also rain is eliminated.

Collocations of QuikSCAT data with ECMWF winds and SSM/I rain were used to
characterize and validate the QC by (Rn) both for HDF and BUFR formats.

The results show a good correlation between the RMS-ECMWF (vector RMS
difference between ECMWF and QuikSCAT winds) and the Rn. The data quality, as
measured by the inverse of RMS-ECMWF, decreases with increasing Rn, and the
decrease rate is increasing with the retrieved wind speed (data quality becomes poor
at lower Rn values when retrieved speeds are higher).

The presence of rain artificially increases the retrieved winds, proportionally to the
rain rate. For rain rates over 6 mm/hr, the backscatter measurements contain
insufficient wind information but rather rain information, leading to poor quality
retrieved winds of typically 15-20 m/s.

We define a Rn threshold dependent on wind speed, which is optimized to separate
the good quality cases from the poor quality ones (including rain) in the inner swath
(WVC number 12 to 65). For HDF, the results show a RMS-ECMWF difference
between accepted and rejected data of 4 m/s, most of the “rainy” cells rejected, and
more than 97% of good quality data (low RMS-ECMWF) accepted.

The QC procedure works well in the entire inner swath although the skill is slightly
better in the sweet regions than in the nadir region.

The effectiveness of this QC procedure is illustrated with a few typical examples.
Cases with meteorologically inconsistent spatial wind patterns are generally removed,
while important information on the dynamical structures is kept. Patterns that are
meteorologically consistent are kept in general.

The BUFR and HDF MLEs appear to be nearly uncorrelated. The consequent
different behaviour of the BUFR Rn compared to the HDF Rn is not significantly
affecting the skill of the QC procedure nor the quality of the retrieved winds.
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As a result from simulating both the HDF and the BUFR products, we show that the
MLE decorrelation between the two products is mainly caused by the fact that the
BUFR product contains a fewer number of observations per WVC than HDF.

The QC procedure derived for the NSCAT-2 GMF is tested with the new GMF
(QSCAT-1). The results show a slight increase of Rn at all speeds, indicating that the
former GMF better fits the observed QuikSCAT backscatter measurements. The
larger Rn leads to more rejections in general compared to the NSCAT-2 GMF. This
excess in rejections however produces a positive impact in rain detection, especially
at rain rates below 6 mm/hr. The same QC procedure (i.e. same <MLE> surface and
Rn threshold) can therefore be used with the new QuikSCAT data (produced with the
QSCAT-1 GMF).

The JPL rain flag is tested against our (KNMI) QC. It turns out that both procedures
are complementary. The KNMI QC detects a 4% of low-quality and almost rain-free
data, which are not detected by the JPL rain flag. On the other hand, the JPL rain flag
detects a 2% of low-quality and partially rain-contaminated data, which are not
detected by the KNMI QC. Therefore, the JPL rain flag will be incorporated in the
KNMI QC procedure.

As seen in chapter 3, the wind retrieval skill decreases in the outer and nadir regions
of the swath in comparison to the NSCAT-like or sweet swath. We plan to work on
the inversion problem in these parts of the swath to improve the current wind retrieval
and assimilation skills.

The further idea is to use the Rn as a probability factor for the solutions at a particular
WVC, that is, a larger probability will be assigned to the low-Rn wind solutions than
to the high-Rn solutions. This probability factor should help to decide whether to
accept or to reject a particular wind solution and therefore improve the ambiguity
removal. Quantitative tests are being developed in the context of the NWP Science
Application Facility project to exploit this Rn-to-probability relationship. In
particular, Stoffelen et al. (2000) have worked on the definition of a cost function
based on Rn for the assimilation of QuikSCAT data into NWP models.

We plan to extend our QC and cost function to work at lower resolutions (50 and 100
km) to increase data quality for a reliable use in NWP data assimilation and for
presentation to meteorologists for nowcasting and short-range forecasting purposes.
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Appendix A

In order to fit a 2D function to the filtered mean MLE surface, we first fit a function
for the MLE dependence on wind speed at a certain node. Then we assume that the
shape of this function is nearly constant over all nodes of the inner swath and we
compute the variation of its mean value over the node number domain.

Figure 30a shows the fit of the filtered mean MLE versus wind speed for node
number 25 with a Gaussian + 2nd order polynomial function. The dotted line
represents the extrapolated values for wind speeds higher than 20 m/s. It is clearly
discernible that the fit is very accurate for that particular node.

Figure 30b shows the averaged MLE over all wind speeds and normalized with the
speed dependent function (fit on Figure 30a) versus the node number in the inner
swath. The fit is a 2nd order polynomial function (node dependent function). The
dotted line shows the extrapolation over the outer swath.

The fact that we have found a 2D function which fits reasonably well to the computed
mean MLE makes our assumption of considering the shape of the speed dependent
function constant over the node domain valid.

a)                                                                                        b)

Figure 30 a) Filtered mean MLE versus wind speed for node number 25 (stars), where the solid line shows
the function fit and the dotted line the extrapolation for wind speeds higher than 20 m/s; b) averaged MLE
over all wind speeds and normalized with the speed dependent function (fit on Figure 18a) versus the node
number in the inner swath (stars), where the solid line represents the function fit and the dashed line the
extrapolation for the outer swath.
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The 2D function which fits the filtered mean MLE surface is simply the product of the
speed and the node dependent functions. The expression is the following:
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where f is the wind speed dependent function, f’ is the node dependent function, v is
the wind speed and n the node number.

The coefficient values are the following :

A0 = 0.78519; A1 = 1.47396; A2 = 2.91577

A3 = 0.31881; A4 = -4.2426E-3; A5 = 6.9633E-5

B0 = 1.37840; B1 = -0.02713; B2 = 3.4853E-4
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Appendix B

Looking at the filtered mean MLE surface (see Figure 19a), it is clearly discernible
that assuming a constant shape of the MLE dependence on wind speed over all nodes
of the inner swath (as in Appendix A) is not valid anymore.

In this case, we fit a Gaussian + 2nd order polynomial function to the filtered mean
MLE for each node of the inner swath separately. Then, we fit a 2nd order polynomial
function to the evolution of each coefficient of the previous function with respect to
the node number. Therefore, the 2D function which fits the filtered mean MLE
surface is the following:
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where <MLE> is the expected MLE, v is the wind speed and n the node number.

The coefficient values are the following:

A00 = 0.55000; A01 = 0.00000; A02 = 0.00000

A10 = 1.50000; A11 = 0.00000; A12 = 0.00000

A20 = 2.75000; A11 = 0.00000; A12 = 0.00000

A30 = 0.21210; A21 =-0.00249; A22 = 3.02E-5

A40 =-0.00741; A31 = 0.00031; A32 =-4.08E-6

A50 = 0.00012; A41 =-4.75E-6; A42 = 6.24E-8
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6 Acronyms

ADEOS Advanced Earth Observation Satellite
AER Atmospheric Environmental Research Inc.
BUFR Binary Universal Format Representation
DMSP Defense Meteorological Satellite Program
ECMWF European Centre for Medium-range Weather Forecasts
ERS European Remote Sensing Satellite
EUMETSAT European Meteorological Satellite Organization
GMF Geophysical Model Function
HDF Hierarchical Data Format
H-pol Horizontal polarization measurement
JPL Jet Propulsion Laboratories
KNMI Royal Netherlands Meteorological Institute
MLE Maximum Likelihood Estimator
NASA National Air and Space Administration (USA)
NCEP National Centre for Atmospheric Prediction (USA)
NOAA National Oceanographic and Atmospheric Administration (USA)
NSCAT NASA Scatterometer
NWP Numerical Weather Prediction
RMS Root-Mean-Squared
SAF Satellite Application Facility
SSM/I Special Sensor Microwave Imager
STD Standard Deviation
SWT Science Working Team
V-pol Vertical polarization measurement
WVC Wind Vector Cell
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