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Searching for stationary stable solutions of
Euler’s equation

Roger Salden

Royal Netherlands Meteorological Institute, Wilhelminalaan 10, P.O. Box 201, 3730 AK De Bilt,,

The Netherlands.

Abstract

In this paper an attempt of finding new stationary stable solutions
of the Euler equation is presented. We will look into solutions of
the sinh-Poisson cquation, which lead to stationary stable solutions
of the Fuler equation. New solutions can be generated by applying
a Bicklund transformation method on known soluttons of the sine-
Gordon equation which is related to the sinh-Poisson equation. This
method is applied to a circular symmetric solution. Unfortunately
we’re not ahle to present any new circular symmetric solutions.

1 TIntroduction

1.1  2-D Tdeal fluid

Before starting to investigate the sink-fPoisson equation, it is first pointed
out in what way we arrive at this equation from the Fuler equation. The
latter equation deseribes the motion of a two-dimensional (2-D) ideal fluid:

7] |
((f)—j+a-vw:0 (1)

The incompressibility of the fluid leads to the introduction of the stream-
function v. The velocity field @ can then be written as ' = (—giy, 5;7:*[—’) I can

casily be scen that the vorticity field w, defined by w = V x4, is connected

Lo ¢ by w = A,



With the introduction of the Jacobian {also known as canonical Poisson

hracket),

{a, b} = by — a,b,
where a, denotes the partial derivative of @ with respect to x, (1) can be
written in the form 5
ow
— 4+ {ihw} =0 2)
5 Tl (
A very interesting property of a 2-1) ideal fluid is that the fluid motion con-
serves infinitely many quantities. A quantity £'(z, 1) is a conserved quantity
co Bt . . ., . . .
if [——éz—l = 0 in the direction of the Hluid motion. According to (2) we have:

! (o
é whdid = /ﬂwn—!(‘(7 n {'f;’-’,w})(l,’.fr': 0

which gives us infinitely many conserved qguantities.
As mentioned before, we are looking for stationary sotutions of {2). In

other words, the problem 1s to solve
(. A} = 0 3)

If 4 satisfies the relation Ay = F(i), with T" an arbitrary continnously
differentiable functional, then (3) is satisfied and thereby 3 is a stationary

solution of (2).
The question now is which functional 1'(z) will lead to physically inter-

esting stationary solutions of (2). Here comes in some statistical mechanical

theory.

1.2 Physical links with sinh-Paisson equation

In [1,2,3], the continuous Kuler equations are approximated by a system
consisting of a large finite number of identical point vortices. Classical me-
chanical techniques can be applied on this finite Hamiltonian system. The
system has only a limited (finite) munber of conserved gnantities, so the fluid
motion does not stay on the "isovortical shieet™ preseribed by the initial con-
ditions of the continuous system. The standard statistical analysis for finite

systems led 1o a w — 3 relation given by
o ?

w = sinh ¥ (1)



or, writien entirely in terms of i
At = sinhy (5)

As mentioned before, the system described by Fuler equations has iu-
finitely many conserved quantities. In [1,6] the statistical mechanics for this
system is developed. The approach made here takes into account all the con-
stants of motion. In [], two levels to describe the system are distinguished.
At a microscopic level all vorticity fields having the appropriate initial con-
ditions are considered. For the statistical description of the system averages
of those vorticity fields are considered. The small scales of the fields are
averaged out. This level of the description is the macroscopic level. (We
concentrate on the vorticity fields, but in general all physical quantities can
be treated in the same way).

Associated with the two levels an entropy functional S = kgloglV is
defined, where S is the entropy of a macrostate, kg is the Boltzmann constant
and W is the volume in phase space of all microstates sharing the same
macrostate.

It was shown by R. Robert in [5] that most of the (microscopic) vorticity
ficlds having the same constants of motion as initial condition, are close to a
certain macrostate. This is the macrostate that can be reached by maximiz-
ing the entropy. It means that the macrostate with maxtmum entropy has a
large probability of being observed, i.c. the most probable state.

It is not obvious that the w — 9 relation given by (4) is found for the
continuous systermn. This relation namely is strongly dependent on the way
in which the system is discretized and on the initial vaties ol the equations.
The macrostate for a certain initial condition corresponds to the w—1b relation
as given above. For more information on the statistical aspects of the sinh-

Poisson equation we refer to [4,6].

Other proofs of the importance of (4) have been found recently with the
aid of large computers. An example is given below.

In [1,4,6] the statistical mechanics of a Hamiltonian (inviscid) system is
considered. In [7] the viscous system described by the following equations is
considered:

dwt + 2, 4
,)—f+u-Vw = VW (6)
i



where w = wt —w™ is satislying the relation w = V x @, w¥ and w™ are the
absolute values ol the positive and negative vorticity respectively, 1 1s the
viscosity and assuming periodic boundary conditions. Contrary to {1) which
has infinitely many conserved quantities in terms of analytical functionals of
the vorticily, (6) only possesses two really conserved quantitics and one al-
most conserved quantity. Total positive vorticity and total negative vorticity
are conserved, and the energy of the system decays slowly.

The evolution of the system is simulated in a computer experiment. The
main result of this simulation is that an initially ’small scale’ vortex distri-
bution evolves by like-sign vortex capture to a state in which one posive and
onc negative vorlex remain. When this final situation is reached (after a few
hundred eddy turnover times} the w — 4 relation is locally described to good

approximation by:
cw = sinh(|7 ) (7)

where ¢ and 3 in (7) are proper constants adapted to the initial conditions.

The big question is why the viscous fluid system relaxes to an w —
relation that coincides with the one obtained from a simple, discrelized,
inviscid model. There is no obvious reason for this. It is also not clear if
other initial values lead to the same w — 1 correspoundence.

Finally [ would like to present an example that ts extensively discussed in
[8,9].
Fuler’s equation describing a 2-1) ideal fluid flow can be modified in snch
a way that encrgy is no longer conserved but all the vorticity invariants are.
This can be done by adapting the velocity field slightly, such that energy
changes monotonically in the direction of the flow. All vorticity invariants
are preserved because the change of the vorticity field is accomplished by
advection only, we say then that the flow stays on the same "isovortical
sheet™.

In 2-D ideal fluid, for a given vorticity distribution there is an upper
hound for the kinetic-energy. Because the energy changes monotonically the
system will evolve towards a stale in which the energy is maximal. If this
maximal encrgy state is an isolated state, a stable state is reached. Arnol’d
in [10,11] showed {under certain conditions) that if a stationary point has an

extremnun of energy, the flow is Lyapunov stable.



It is shown in [9] that the steady states of the Fuler equation and of the
modilied dynamical system coincide but in the latter the stationary stable
states have extremal energy (which states can easily be found).

In a numerical simulation this technique was applied to a random initial
condition. A stationary state was reached and that showed a non-linear w —1
relation which looks quite like the relation described by (4).

In principle there are infinitely many w —4) relations that lead to stationary
stable solutions of Euler’s equation. The importance of a w—1 relation given
by (4) lies in the fact that this relation may be relevant to viscous systems.
Morcover the most probable state and extremal kinetic energy states lead us
to solutions of the sinh-Poisson equation. FEnough reasons to have a closer

look at the sinh-Poisson equation.

2 The sine-Gordon equation

2.1 From sinh-Poisson equation to sine-Gordon equation

The equation we're intercsted in, the sinh-Poisson equation, is not an equa-
tion thal is intensively studied. Iowever, there is a way in which we can
get information on the sinh-Poisson equation by studying another equation,
the famous sine-Gordon equation. In this procedure a so called Backlund
transformation is involved.

Roughly said, a Backlund transformation is a transformation BT that maps a
solution v(z,1) of equation Ey(v,z,t) = 0 into a solution u(z’,¢’) ol equation
Fy(u, 2’ 1") = 0, where E; and [, are partial differential equations (p.d.e. ).
The two equations £, = 0 and F; = 0 don’t have to be different equations.
It is possible to define a Backlund from an equation to itself, in order to find
new solutions of that equation. To make things somewhat clearer, T'll give

an example below:

Example: let v(z, ) be a solution of the equation £, =0,
the Modificd-Korteweg-de-Vries (M.K.d.V.) equation given by:

2
vy — Gty  Upge = 0



and let equation £l = 0 be the Korfeweg-de-Vries (h.d V.) equation given

by:

+

w4 Gruny + gy =0

Now consider the transformation hetween u{r, i} and v(x,f)

The Biacklund transformation between the two given equations can now be
defined as follows:

a _ :

(——— + 20)(v, — 600, + vppr) = wg + Ourey, + tUpry

dx
This Bicklund transformation transforms the solution »(xr, ) of the ALK.d. V.
equation into a solution wu(x, ) of the K.d. V. equation. In this way the
Backlund transformation gives the possibility of generating a new solution of

an cquation.

In an article by Leibbrandt [12], it is shown that there is a connection given
by a Backlund transformation between the sinh-Poisson cquation given in (5)

and the elliptic sine-Gordon equation:

Ay = sinth (8)

where 19 is a function of (x,1).
Solutions of (8) are used to construct solutions of the sinh-Poisson cqua-

tion by a Backlund transformation. Let u(x,f) be a solution of (8). Then a
solution ©(x, 1) of (5) can be generated by the Backlund translormation:

L — 1 Cou v )(.t“ (f))

(0 + iﬁﬂ(fT) = sin( 5

Here y is a transformation parameter which enables ns to generate a family

of new solutions.

So instead of studyin the sinfi-Porsson o nation we can concentrate on

’ . : |

the clfiptic .ﬁ'?"F?(f-(;r()T‘dO?I cquation. The equation 8) can be i‘['FLI]S[OT'Tﬂ(‘(] mto
|

the sine-Gordon soliton equation by the transformation:

{ ——s 1t
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which gives (8) the form:

»? o* .
(83:2 — ﬁﬁ)d) = sin (10)

This is the most familiar form of the sine-Gordon equation. But having in
mind what we want to do with the equation later on we once more bring (10)

into another form. By setting:

(z + 2t)
(x — 2t)

{ =
7?:

By | ==

we arrive at the sine-Gordon equation in the form:
Py = sin Y

[t is this form of the equation that we are going to study further on.

2.2 The Painlevé property

In the following part we want to explain what it means for an ordinary differ-
ential equation (o.d.c.) and a partial differential equation (p.d.c.) to possess
the Painlevé property. This property is defined for both types of equations
in a slightly different way. If an equation possesses the Painlevée property,
this tells us something about the singularities of its solutions. In this way
information on the integrability of the equation under consideration is gath-
cred. Second order o.d.c. that possess the Painlevé property for example, are
all integrable.

The notion of the Painlevé property for p.d.c. is less clear. The general
thought is thal in case one is dealing with a p.d.e. , the concepts of Painleve
property and integrability are closely related. The requirement that a p.d.c.
have the Painlevé property has been proposed as a necessary condition for
an equation to be integrable. If this condition is also sufficient is not known.
For more information one is refered to [19]. Furthermore there is a close
relationship between the set of p.d.e. on which Béacklund transformations
can be applied and those p.d.e. that are integrable. A precise description
is given in [18,19,21). This gives us confidence that it is possible to find a
Bicklund transformation from an equation to itself whenever that p.d.e. has



the Painlevé property. Before defining the Painlevé property for a (p.d.e.},
we will first define this property for an o.d.e. where it all started from. A
detailed mathematical description of the Painlevé property for an o.d.e. and
general information on o.cd.e. can be found in [17], a more global description
of the Painlevé property for o.d.e. is given in [18,19]. We follow the latter

two.

Let us consider the following linear o.d.e. :

dtw d*
(L)

L ps > (N —
Tom i(z) Jon1 +o o+ Puz)w =0

Because the equation is lincar in 1w, all the singularities of a certain solution
of (11) must be singularities of the coefficient functions Pi(z). These sin-
gularities are fixed singularities because they are independent of the initial
values of the problem. In the case of a nonlincar equation not all the singu-
laritics need o be fixed. Singularities of a solution dependent on the initial
values of the equation are called movable singularities. A movable singularity
of a solution of an o.d.c. that is not a pole of the equation is an cssential

singularily or a branch point.

At the beginning of this century, Painlevé and coworkers classified all sce-

ond order o.d.e. of the following type:

d*w , dw
e Flz,w,—)
d

dz
where F is a function rational in €% algebraic in w and locally analyvtical in

[#

z. They showed that of all possible equations of this form, there are only
fifty equations with the property of having no movable essential singularities
and no movable branch points. What it meant for an o.d.e. not o have any
movable singularities was first pointed ont by 8.Kowalevski. In two articles

[22,23] she showed that the absence of movable singularitics accounted for

the integrability of an o.d.c.

The property having no movable singularitics is called the Painleve prop-
erty. Of the fifty cquations mentioned above, forty-four were already known
at that time. The remaining six could not be solved in terms of known func-

tions and therefore define new functions, the so called Painlevé transeendents.

o ]



Thusfar we have been talking about the Painlevé property for o.de. .
but now we have arrived at the point where we can introduce the Painlevé
property for p.d.c as defined by Weiss et al. In a sequence of articles [141,15,
16], J.Weiss defines the Painlevé property for partial dilferential equations.
e checks in those articles for varions p.d.e. whether they have this property
or not. The method suggested in [14] by Weiss et al. , enables us to check
integrability and determine Backlund transformations of the given equation
and can in this way generale new solutions of the equation.

The Painlevé property for p.d.e. and the property for o.d.e. have a large
amonnt of similarities. In the definitions of both properties the singular
points play an important role. Theorems that are valid for o.d.e. with respect
to the Painlevé property can in general not he passed over direetly to p.d.e.,

nevertheless they are often rather alike.

Consider an arbitrary p.d.e. and let u = u(z1,22,...,2,) be a solution of
this equation. Lets call the manifold on which the singularities of the solution
are situated the singular manifold. The singnlar manifold can be represented

by the following expression:
d)(w"],z:'z,- - 7211) =0

where ¢ is an analytical function of (z1,22,..., %) in a neighborhood of
the singular manifold. So the function ¢ determines the position of the
singularities of a particular solution.
Weiss ot al. define the Painlevé property for a p.d.e. as follows: a p.d.e. has
the Painlevé property when the solutions of the equation are single valued
near the movable singular manifolds.
Tn other words, the solution u = u(zy, 2a,. .., 2) can be expanded in the
series: - |
U1y 22y Zn) = 7Y U (12)
=1
where u; = (21, 22, . .., Z2) has to be an analytical function in the neighbor-
hood of the singular manifold, the equations for the functions u; must have
sell-consistent solutions and @ has to be a negative integer. This expansion

can he considered as a Laurent expansion around the singular manifold.



This definition deserves further explication. What does the expansion in
terms of ¢ mean 7
If we would be dealing with some ordinary differential equation having a
solution g(z) with a singularity in @ = xy, then ¢ would siply have had the
form ¢ = = — xy. So expanding the solution in terms of that ¢ would have
given a Laurent expansion in (x — xg) in the neighbourhood of zy:

[ew)
) = o\ AoV e — o}
g(x) = (& — xp) Z g () — )
3=0
Thus ¢(z1,22,...,2,) can simply be regarded as a new coordinate. The
Laurent expansion around the singular point ry can be generalized to an
expansion around the singular manifold given by ¢(z1,79,...,2z,) = 0. This
gives us the expansion (12).

Let us continue with the case in which {zy, 29, ..., 22) = (21, 22). Substi-
tution of the expansion given in (12) gives us equations for the coefficient
functions u:(z;, z9), and by comparing the leading orders in ¢ on both sides

7 1»~2 ) J g 4

ol the equation, the value of & can be determined. It will become clear in a
few moments, that for certain values of j the equation for the corresponding

; 1 g
w;(z1, z2) will be aso called "empty condition™, a condition on the coeflicient
functions w;(z, zg) that is satisfied identically and does not put any restric-
tions on the coeflicients, which allows us to introduce an arbitrary function
for u:(z1,20). The corresponding values of 7 are called resonances. The

EARSN ]

resonance at | = —1 corresponds to the arbitrariness of ¢).

The empty conditions on the cocflicient functions in many cases allow us
to cut the series (12) at resonant values of 7. In these cases we obtain a finite

expansion of « in terms of ¢:
u(zy, ) = (ﬁ(zh22)('('”0(31,32)‘|‘“1(31,32)¢(31«.32)+-- .+’flk(31,32)ﬁ5k(31,32))

Before the expansion series in ¢ was truncated, the function ¢ was arbi-
trary {as long as it satisfied the conditions mentioned in the definition of
the Painlevé property). After the truncation this is no longer the case. The
fiinction ¢ has fo satisly certain equations imposed by the restrictions on the
coefficient functions u,{ =, z2).

The expansion of w(z, ), together with the introduction of arbitrary
coeflicient functions at the resonant values will provide the ingredients nee-

essary to define a Backlund transformation.

10



2.3 Applications to the sine-Gordon equation

Our next intention is to find some special solutions of the sine-Gordon equa-
tion. We want to expand these solutions into a Laurent series the way we
have outlined in the previous section. The truncated series will provide a
Backlund transformation from the sine-Gordon cquation to itself, and possi-

bly new solutions of this equation.

In the following part we consider the sine-(Gordon equation in the form:
Ugy = SINU (13)

A trivial solution of this equation is given by:
vw="kr k=0,1,2,...

Another, cylindrical symmetric, solution can be found in quite an casy way.

By introducing the coordinate transform:

r=2vEn (11)

= arcta.n(—vf(gﬁl))

and concentrating for the moment on finding a #-independent solution of (13)

we write this equation in a cylindrical symmetric form:

1 d
;E;(rur) =sinu

Substitution of the expression u(r) = 2iInw(r) gives:

dzw_l
drt 4

1 dw b dw

- — ___)2

rdr w dr

and this is a special forin of the I11¢-Painlevé equation., i.e. the solution
is one of the so called Painlevé transcendents. (Note: in [13] the "Wenss

techniques” are applied to the sinh-Gordon equation

(w* —w)

wey = sinhu

direetly. Becanse far more is known about the sine-Gordon equation than
about the sinh-Gordon equation we decided to continue with the former).

11



To be able to use the method suggested by Weiss ¢t al. we have fo write
the sine-Gordon equation in a slightly modified forne, in order to get rid of

the (non-algebraic) nonlinearity in (13}, we introduce:
‘(f, T]) — (\iu
to write (13) in the form:
P )
Ve, — VeV, = S(V'S - V) (15)

Analogous to the previous part, we wrile:

K

V(&) = (& n) S Vil6, )¢ (€,m) (16)

7=0

The values of o can be found by substituting the expression V = V4¢® into

(15). If o is an integer and (16) is a valid expansion around the singular

manifold ¢ = 0, then the solution V(£,7) is single valued around ¢ = 0.
Comparing the leading order terms on both sides of (15) gives us:

Iy y : 2o — ‘l s 3o
(Violo = D)ged, — Viabdeo, )" = SV’

which leads us to the conclusion that @ = —2. The expansion for a solution

V(&,n) can be rewritien as:
V(E ) =67 D VilEm)d (Em) (17)

From the recursion relations given in [11] or by direcet substitntion of (17)

into (15) and comparing powers of of ¢, we find:

;=10 Vo = 1oy (18)
j faung I I'/] — —"1@6({7; (19)
J=2 SRV e, BéE (Vi £ hg) ¢
(=8 @ — B¢y df — 1066, V1)(Vi 4 4dgy) =0 (20)
By (19) the compatibility condition (20) at j = 2 is satisfied identically.

Therefore, an arbitrary function V,(€, ) can be introduced at the resonance

j=



In this way we have shown that (17} is a proper single valued expansion
around the manifold ¢ = 0, which gives (15) the Painlevé property.

We now require the system to satisfy:
Va=Vy=Ve=V=0 (21)

By this requirement all V; = 0 for j > 3, which can casily be deduced from

the recursion relations in [14], giving (17) the forn:

V=¢"1%+¢"Vi+V (22)
or, using (18) and (19):
pY:
= —4 In¢-+ V. 20
! peoy MOV (23)

The restrictions given by (21) on the expansion (17), lead us to a system of
four equations in (V4, ¢) which can be found explicitly by using the recursion
relations given in [14] or by direct substitution of (22) into (15):

F=3 (1820 — 402y + Bedyben)Va + 4050cVae + 4GPy V2 =
S‘r{)é&qsnﬂqsfn + 8¢€fﬂ’?¢f¢ﬂ - 8¢£nn¢€n¢n - 8¢I’E£n¢rm¢£ (24)
j =1 (*891%7 + 4‘?55(7557171 + 4‘§6n¢55n + 2¢5££¢5,J,})V2 - 3‘?"{@6??1’/22 +
Qéf‘ﬁnv?&n - (4 é&n‘f’n + 2¢?i??¢£)%£ - (49’5&?(‘65 + 2475669'511)1/2?7 =

~8eeunPen + 8deendem — Pe by {(25)
7=5 —2¢qVa+ 3ep Vi — 2¢e0Vaen + 20¢n Vo + 206y Vay = by (26)
= Ve ~ViVin = 08 V) )

As can be seen from the equation (27), this leads to the conclusion that Vi
has to satisfy the sine-Gorden equation in the form (15). Hence, the trans-
formation given by (23) defines a Backlund transformation. What remains

is the overdetermined system of four equations (24)...(27) in (Va, ¢).

13



In order to reduce the overdetermined system (21), Weiss introduces in

[15] the expressions:

¢5” ’) :
- 0,0, -1 0 28
2 ¢{¢n 1382 7 (f’t)f 1+g,,) (28)
where (2, and §}; are given by:
- 2
0, = ¢Erin N qsfm?&n . ;_956_;1 (29)
d’tj éf(f’n 2 4‘55
q, - Pen  fuler i?ﬁzﬂ_ (30)

an qs{gbfj 2 qﬁn
and he manages Lo write the overdetermined system  (24)...(27) as combi-

nations of expressions given in (28).
Now, if the three expressions in (28) all equal zero, (21)...(27) are immedi-
ately satisfied, and vice versa. We have established an equivalence between

the overdetermined system (24)...(27) and the equations:

2
qsé n

V, — = =0 31
’ ¢£¢n ( )
1
() ‘
qsc ()&-Ql + d“r; ) =0 (}})

After some calculations starting from (29) and (30), it can be shown that €

and 2y satisfy the relation:

d 7]
—, = ¢,—8 3
4660{!2] gbr,’(.)n 2 (;1)

Using this relation, equation (33) can be further simplified. Combining (33)

and (31) we conclude that:

gt = 6,500 =0 (35)
Using {32) this eventually leads to:
0, =a (36)
(, = 3 (37)

where o and 3 are constants satisfving o7 = ]—‘

14



We have now arrived at the point where we can use the Backlund transfor-
mation given by (23). We have to take the conditions on V; and ¢ imposed
by (31)...(37) into account, to transform the known solutions of the sine-

Gordon equation mentioned at the beginning of section 2.3. First we consider

the trivial solution u = k7 of (13).
As easily can be scen, V3 = 1 is a solution of (15), corresponding to this

solution of (13). Using the solution V4 = 1 in (31), we find the equation:
% _
gﬁgqﬁn

Two solitions of this equation are:

C(E+n)’ o~ (E+n)

but substitution of these solutions into (17) leads to V7 = 1, which is not a
new solution of the sine-Gordon equation.

We still have another solution available, namely the [1I%Painlevé tran-
scendent, which is a circular symmetric solution. Qur hope is that we can find
a new circular symmetric solution Vi(r) using the 111°-Painlevé transcendent
as the V(r) in the Backlund transformation (23).

First we made use of a function ¢ = ¢(r) relating V(r) to Vo{r) in the
Bicklund transformation. We wrote (29) and (30) in cylindrical coordinates
given by (11) and tried to solve the resulting system. The problems that

occurred are outlined in the following calculation:

e b 3L 1
= =g+ = 5 ) = 1t (38)
. 2 _ l djr'rr 3¢3r . 1 1y .
R R T )

which leads with the use of (32) to:
!
G(r) = —
(="

On the other hand we have, using (33) and (35):
d 7
—0,==0,=0

g T oy :



which gives:
d(i(r)
dr
leading to a contradiction on G(r). This contradiction can have several
causes. One could be that there is only one circular symmetric solution of
the sine-Gordon cquation, so the Bicklund transformation simply cannot
generale any others. However, this fact should not lead to a contradiction,
but could at the most be the reason no new solutions can be found. Another
thing that could have caused the contradiction is that the form of the function
é being ¢(r) is too restrictive. We examined this argument by introducing a
fiunction ¢ = ¢(r,#) in the Bickhind transformation.
If it would be possible to find a function ¢(r,0) which does not lead to
a 0-dependent expression for V(r) when substituting (r,#) coordinates into
(17) then we would still be in business. We proceeded then to check this

=10

possibility as follows.
With the use of the coordinate transform given by (14}, it can be shown
alter some calculation that (23) can be written with respect to these new

coordinates in the form:

4
Vir) = 4@’52? s r% ~A4¢., l —¢9 o %d’go% + Va(r) (10)

The question now is, under what conditions can a f-dependent function

$(r,0) exist that leads to a #-independent equation (10).
To make life a little bit casier, we made the [ollowing restriction:

¢(r.0) = f(r)g(8) (11)
and substituted this expression into (40). This led to:

2 4. . dgr A4 .
L f 4 [ .14'9 2 Joo +Vy(r)
77y 1 29t 12 g

To get rid of the 8 dependence,

2
g Gog -
[4 A (:]

g* g

has to he satisfied, where () s a constant.
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The general solution of this second order ordinary differential equation is
given by:
(}(()) — (,%(71 07064+
with €, %y and (5 constants. However, this solution for @(r,#) should be
compatible with {31) being:
ki3
¢E§6rp

After some calenlation it can be shown that this is only the case whenever

Vs =

'y = 0. This gives g(8) the form:
q(a) — ECQEH»CJ (12)

Without loss of generality we can set ¢z = 1m and ¢3 = 0 in (12), which
gives us for ¢(r, 0):
o(r,0) = f(r)e™ (13)
A function ¢ of the form (43) should enable us to transform a [unction
V(r) into Va(r). Now we repeat the method we used in casc of the circular
symmelric @¢(r) (compare with (38) and (39)) and write the equations (29)
and (30) for ©; and Q; in terms of the function #(r, 0} given by (13). This
leads us to rather complicated equations for €y and 2z which can however
be represented in the compact form:
1
), = E_;U_ZGI(T)
] Bl
522 = @(rg(!)
here ((r) and (y(r) are expressions in f(r) and derivatives of f(r).
Using the transformation (14} to get expressions for £ and 7 in terms of
and 0 and using (36) and (37). the expressions for £ and 1, can be writlen

as:
1 200 v i
Ql = 27 C (r](?') = ¥ (‘I)
T ; -
), = —c =4 (15)
92
The rdependence of Qp and ©; does not. necessarity give problems. but the

f-dependence is unavoidable, making it impossible for @ and €3, to be con-

stant. Again we are led to a contradiction.

17



Assuming that {11} is valid, it can be concluded that it is impossible to
find a function &(r,0) compatible with (32) and (33).

‘The only thing that remains to be done now is (o use an arbitrary function
H(r, ) (not of the restricted form given in {11)) in the Backlund transforma-
tion (23). This would lead to a nonlincar differential equation in ¢(r, 8) with
a structure as complicated as the sine-Gordon equation itsell. Therefore we

omit this general substitution.

3 Concluding remarks

We have seen that a circular symmetric solution V{r) cannot gencrate a new
circular symmetric solution Va(r) of the sinc-Gordon equation if a ¢ = P(r)
or a ¢ = ¢(r,0) of the form (41) is used in the Backlund transformation (23)
relating the solution V(r) to ¥5(r). The only circular symmetric solution of
the sine-Gordon equation we were able to find is the 771°-Painleve transcen-
dent (see [24]). The only reason for this failure we arc able to give s that
the restriction imposed on the function ¢{r,0) by (11} is oo strong to be
suitable in the Bicklund transformation (23) and prevents the generation of
a new cireular symmetric solution. The method presented by Weiss et al. n
[14] might still be uselull to generate new solutions of a partial differential
equation, however, when applied to the sine-Gordon equation, it does not

reduce the complexity of the problem.
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