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Abstract

A method is presented to derive time series of daily precipitation and temperature in a
possible future climate at a certain location from the observed time series of these variables.
The method considers the relation between daily precipitation and temperature. From this
relation a temperature dependent factor Fis obtained which gives the relative change in daily
precipitation due to a given temperature perturbation. Multiplication of the observed daily
amounts with this factor yields a consistent scenario for daily precipitation and temperature.
The number of rain days does not change in this method.

The observed precipitation-temperature refation for rain days at De Bilt (The Netherlands) is
examined. This relation is described by a non-linear regression model using spline functions
to reproduce the non-monotenous change of the mean amount with temperature. The
standard deviation of the daily amounts increases with temperature, but the coefficient of
variation is almost constant. This supports the use of a factor to transform the observed
amounts toward a possible future climate. For a temperature increase the factor F derived
from the model is generally greater than 1. Fis, however, less than 1 when the daily mean

temperature is around 12°C.

The effect of a constant temperature increase of 3°C on the mean precipitation amounts at
De Bilt was studied with different versions of the model. During winter the monthly mean
precipitation amounts increase by about 20% when seasonal variation in the precipitation-
temperature relation is ignored. For a seasonally varying model the increase in mean winter
precipitation amounts to 27%. The changes in the monthly means are much smaller for the
other seasons. The increase in annual mean precipitation ranges between 7 and 9% for the
various models fitted to the observed precipitation-temperature relation. This is consistent with
the change in global mean precipitation predicted by present day general circulation models in
case of a temperature increase of 3°C.
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1 Introduction

There is a general concemn about the global warming resulting from the increase of
greenhouse gases in the atmosphere. General Circulation Models (GCMs) predict that
besides this warming there are also considerable changes in precipitation. The increase of
3-15% in global mean precipitation predicted by these medels for the 2xCQ,-case is usually
attributed to the temperature effect on atmospheric moisture. In generai, the greater the
warming, the greater the enhancement of the hydrological cycle (Houghton et al., 1990).

Although the various GCMs give already quite different estimates for the increase in global
mean precipitation, the range in their predictions is even much larger for the change in
precipitation over a particular region. Furthermore, the actual regional precipitation climate is
poorly reproduced in these models. The use of GCM predicted precipitation series for specific
grid peints is therefore not recommended. On the other hand local time series of daily
precipitation are often required in climate change impact studies.

In this report the empirical relation between daily precipitation and air temperature is used for
modelling the change in precipitation amount at the local scale. Given a certain temperature
perturbation this relation provides a temperature dependent factor F by which observed daily
precipitation amounts are multiplied to yield a time series for a possible future climate. The
precipitation scenario derived this way assumes no change in the number and sequence of
rain days. The scenario therefore precludes a systematic change in the atmospheric
circulation. The time series analysed is the historical record of De Bilt in the Netherlands for
the period 1906-1981. Unless stated otherwise a rain day is defined as a day receiving at
least 0.1 mm of precipitation.

In Section 2 a statistical model for the relation between precipitation and daily mean air
temperature is presented. The multiplication factor £ for this model is derived in Section 3. As
an example, a temperature perturbation of +3°C is considered. The monthly and annual mean
amounts in the resulting precipitation scenario are compared with the observed means. in
Section 4 the model is extended by incorporating the seasonal variation in the precipitation-
temperature relation. The last two sections deal with the sensitivity of the resuits to the
criterion for a rain day (Section 5) and the use of the daily maximum temperature as predictor
instead of daity mean temperature (Section 6).



2 Statistical model for the relation between precipitation amount on
rain days and daily mean temperature

The relation between daily precipitation and air temperature in the Netherlands has been
discussed by Konnen (1983). Figure 1 presents mean precipitation at De Bilt for various
values of the daily mean air temperature 7. It is seen from the figure that the precipitation-
temperature relation is rather complicated. At low temperatures, where precipitation is mainly
caused by widespread frontal rain, the mean increases with temperature. The mechanism
behind this is the earlier mentioned change in the maximum moisture content of the air. At
very high temperatures there is also an increase only now convective precipitation (showers)
prevaits. In the interval from 14°C to 18°C the observed mean precipitation decreases with
temperature because then fronts become less active with increasing temperature while the
activity of showers is still low.
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Figure 1 Mean precipitation amounts at temperature intervals of 2°C for rain days at

De Bilt {1906-1981). The figure is based on 15,897 rain days (57% of the total
number of days). The number of rain days in a temperature interval is as high
as 2104 for T=6°C and decreases to about 10 at the extreme temperatures.
The probability of rain is 70% for T between 4 and 8°C and only 30% or less
for T<-4°C and T 220°C. The smooth curves are based on fitted regression
models. The error bars indicate the standard deviations of the means

(Appendix C).



Originally Kénnen (1983} considered the daily maximum temperature T__ instead of the daily
mean temperature. Mean temperature is, however, more frequently used in hydrological and
crop growth models than maximum temperature. Publications on changes in temperature from
GCM simulations also mainly deal with daily mean temperature. For these reasons in this
report the emphasis is on daily mean temperature. The use of maximum temperature is

discussed further in Section 6.

The observed relation between precipitation and temperature with local extremes around
T=14°C and T=18°C can be described by a statistical model of the form:

R = explg(T)] + ¢

where A is the precipitation amount on a rain day with mean temperature T, g(7) is a non-
linear function of T and ¢ is a random error term with mean zero. The first term in the right
hand side (systematic part) represents the theoretical mean amount on a rain day with
temperature T

E(R) = exp|g(T)| @

The function g(T) is necessary to describe the non-monotonous change of mean precipitation
with temperature as discussed above. In the absence of an abrupt transition between
widespread rainfall and convective precipitation g(T} should also be a continucus function.
The use1 of the exponential function in equation (1) avoids negative values for the mean
amount.

(1)

In this stuay the function g(T) consists of piecewise polynomials (spline functions) that are
flexible enough to obtain a satisfactory description of the relation between R and T. In the first
model, Model 1, this function is taken as:

gT) =a + bT T<m,

1

giT) =a « bT + C(T*m1)2 + d(Tﬂ"I‘?‘)3 T>m, (3)

The solid line in Figure 1 is based on this model. The function and its derivative are
continuous over the full temperature range. The knot m, has been fixed a priori at T=7°C. The
linear form of g(T) for T<m., is approximately consistent with the relation between saturated
vapour pressure e, and temperature (Clausius Clapeyron relation). The cubic polynomial for

The true mean amount is in fact alse larger than the threshold 6 defining a rain day. Formally the mean
precipitation amount should be treated as a conditional mean, here the mean of A given that A>0.1 mm (or
more precisely B>0.05 mm. because daily rainfall has been recorded in units of 0.1 mm). In the literature on
time series analysis of daily rainfali data probability distributions are usually fitted to the shifted amounts R=R-5
{Buishand, 1977, Stern and Coe, 1984). From a physical point of view it is, however, more elegant to mode! the
mean of A by an exponential function rather than the mean of A. The use of the expcnential function in the
regression equation ensures that 1:(A) 1s well above the 0.1 mm threshold in the observed range of
temperatures,



T>m, is necessary to reproduce the local maximum (near T=14°C} and the local minimum
(near T=18°C). A consequence of this cubic polynomial is that g(T} very rapidly increases at
high temperatures. A less sharp rise can be achieved by introducing a second knot m.>m,
after which g(T) is taken again linear in T (Model 2). Continuity of g(7) and its derivative
require that for T>m,;

gT) = a + bT + c(m-m)2T-m,-m) + d(m,-m)3T-2m,-m)  T>m, (4)

Note that the additional knot does not lead to more unknown coefficients. The dashed line in
Figure 1 is based on this second model; the knots m, and m, are fixed a priori at 7=7°C and

T=21°C.

In the statistical literature regression models with spline functions are known as regression
splines (Smith, 1979, Wahba, 1989). These functions can be introduced in the regression
without difficulties. It simply implies that the model contains a number of temperature
dependent explanatory variables defined by the various terms in the right-hand sides of
equations (3) and (4), whereas A is the dependent variabie. There are, however, two factors
that complicate parameter estimation. First, equation (1) is non-finear in the regression
coefficients a,b,¢ and d because of the exponential function, and second, the standard
deviation o A) of A increases with temperature as is shown in Figure 2.
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Figure 2 Standard deviation o(A) and coefficient of variation v(R) of daily precipitation R

at temperature intervals of 2°C at De Bilt (1906-1981). The dashed line shows
the mean of v(F).



From the figure it is also seen that the coefficient of variation v(R)=c(R)/E(R} remains
constant. A popular method to get rid of the non-linearity in a situation like this is to fit the
function g(T) to the logarithms of the daily precipitation amounts. The method is, however,
sensitive to roundings of small precipitation amounts and the mean of A then depends on the
distribution of the error term in the regression model (Appendix D). Therefore, it was decided
not to use this method but instead to fit the model directly to the mean precipitation amounts
in Figure 1 by an iteratively reweighted least squares procedure (Appendix C). The use of
temperature classes makes it possible to test for tack-of-fit. The results of the test in Appendix
C reveal that the two lowest temperature classes should be discarded for parameter
estimation. Long lasting snow events are responsible for the large mean precipitation amounts
in these classes. The models also do not capture the relative extremes in Figure 1 very well,
but this does not lead to a significant value of the test-statistic for lack-of-fit.

In Table 1 the estimated parameters for both Model 1 and Model 2 are presented. All
parameter estimates are large compared to their standard errors. The largest relative
standard errors (10-15%) are found for the estimates c and d of ¢ and d, respectively. Figure
3 presents 95% and 99% confidence regions for these parameters, based on the quasi-
likelihood function (Appendix C). The elliptic form of this region is in accordance with
asymptotic theory. The oblique orientation of the axes is a resuit of the strong (negative)
correlation between ¢ and d Because of the elongated shape of the confidence region there
is quite a large range of acceptable values of ¢ and d. The consequences of the uncertainty
in ¢ and d are discussed in the next section.

Table 1 Estimated coefficients in equations (3) and (4) with their standard error (se).
Model 1 Model 2
Coefficient Estimate se Estimate se
a 0.7649 0.0260 0.7639 C.026t
b 0.0829 0.0043 0.0832 0.0044
¢ -0.0144 0.0016 -0.0147 0.0017
o 6.76-4 11E-4 7.0E4 1264

It is interesting to compare the change in mean precipitation for 7<m, with that in the
saturated vapour pressure e.. According to the Clausius Clapeyron relation, for this
temperature range, the latter can be approximated by:

e =~ 6107exp[17.57 T/(2418 +T)| =~ 6.107exp[0.073T|  (mbay) (5)
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Figure 3 95% and 99% confidence regions for the parameters ¢ and d in Model 1,

based on the quasi-likelihood function (For details see Appendix C).

There Is a reasonable correspondence between the estimate of b in Table 1 with the
coefficient 0.073 in equation (5), which means that the relative changes in mean precipitation
and e_ are of the same order of magnitude (about 8% for a temperature increase of 1°C).
Equation (5) holds for the saturated vapour pressure over water; for the saturated vapour
pressure over ice the coefficient in the exponent of equation (5) becomes 0.082, which is also
consistent with the estimate of b in Table 1.



3 Precipitation scenario based on a temperature perturbation

In the previous section a mode! was fitted to the mean precipitation amounts at various
temperatures. This model can be used to generate a time series of daily precipitation
amounts for a possible future climate. In this study it is assumed that in the future climate g(7)
and the coefficient of variation remain the same. Because the latter is independent of
temperature, the relative changes in the mean and standard deviation of the daily amounts
are equal when daily temperature changes from Tto T*. A rainfall sequence for the perturbed
climate can then be obtained by multiplying all daily values in an observed record by a
temperature dependent factor F.

The factor is easily obtained by comparing the theoretical mean amount E(R} in equation (2)
with the mean E(R*) for the perturbed climate. The latter is given by:

E(R) = exp|g(T")]
and F becomes:
F=explg(T) - o(T)] (7)

The factor F is completely determined by the temperatures Tand T* Substitution of the
function g{T} from equations (3) and (4) provides the value of F for any combination of T and
T* For instance, in case of a warming climate and choosing Model 1 for g(7} this factor
becomes:

F = exp|b(T*-T)] T.T<m,

(6)

rem<rs @

1
|
I
J

F=explb(T"=T) + c(T"-m) + d(T*-m,

F= exp{b(T‘—T) vel(T-mP - (T-my*] + d{(T*-m)* - (Tfm1)3|j T.T>m,
For Model 2 the factor is given in Appendix A.

As an example Table 2 presents the factor F for various values of T when there is a constant
increase in mean temperature of 3°C. A value of 2.5 or 3°C is often chosen as

the global average temperature increase after a doubling of the CO, concentration

(Houghton et al., 1990, 1992). This value may be subject to change when resutts of more
advanced GCMs become available. The current GCMSs indicate that at high latitudes the
temperature increase in winter is larger than in summer (Houghton et al., 1990). Such a
seasonal difference on a regional scale or more local anomalies can also be taken into
account. For the Netherlands one could for instance consider the seasonal changes in
temperature over a part of Europe as given in Section 6.



Adding a constant to the daily temperatures as in Table 2, implies that the autocorrelation and
the standard deviation in the temperature record remain unchanged. So far model
experiments with doubled CO, give no clear indication of a systematic change in the variability
of temperature on daily to interannual time-scales (Houghton et al., 1992). Recent analysis of
daily temperatures in the Canadian Climate Centre (CCC) second-generation GCM
(McFarlane et al., 1992; Boer et al., 1992) with newly developed test-statistics shows that
there are no significant differences between the autocorrelation coefficients in the 1xCQO, and
2xCQ, cases for the grid points surrounding the Netherlands (Buishand and Beersma, 1993).
This agrees with results in Rind et al. (1989) for a transient climate experiment.

Table 2 Multiplication factor F {with its standard error se) for varicus values of T when
there is a constant increase in temperature of 3°C on every day { T=T+3°C).

Maodel 1 Model 2
T ™ F se F se
-12 9 128 02 1.28 02
10 -7 1.28 02 1.28 02
-8 -5 1.28 02 1.28 02
-6 -3 1.28 02 1.28 02
-4 . 1.28 02 128 2
-2 1 1.28 02 1.28 02
¢ 3 1,28 02 128 02
2 5 1.28 02 1.28 02
4 7 1.28 02 1.28 02
6 9 122 01 1.22 01
8 1 108 01 1.08 01
10 13 49 02 99 02
12 15 95 02 95 02
14 17 96 02 96 02
16 19 1,02 03 1.02 03
18 21 113 06 114 07
20 23 1.32 12 1.26 10
22 25 151 21 1.28 1
24 27 207 38 1.28 11

Note that there is a temperature interval in which Fis less than 1 and that F becomes very
large (more than a doubling of precipitation) at extremely high temperatures in Model 1. The
value of F does not change with Tif T<m,.

The standard error se in Table 2 quantifies the effect of sampling variability on the estimate of
F as the result of the use of a finite number of cbservations (a 76 year time series). Because
the correlation between daily precipitation amounts and temperature is very low (correlation
coefficient in the order of 0.1) quite large samples are needed to keep this standard error
within reasonable limits. Due to the great uncertainty in the parameters ¢ and d large values
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of se are found at high temperatures. The rapid increase of the standard error in Model 1 at
these temperatures is caused by the fact that the cubic term in equation (8) dominates the
quadratic term. Details about the calculation of the standard error se are given in Appendix B.
The standard error se refers to random errors. it is also likely that there are systematic errors
because a regression model is no more than a tractable approximation to a complex reai
world relationship. The lack-of-fit test discussed in Appendix C shows no lack-of-fit for Models
1 and 2, but this test is unabie to detect all systematic errors. Even guite large systematic
errors near the ends of the cbserved temperature range can pass the test, because of the
limited number of rain days at these temperatures. The differences in F between Models 1
and 2 give some indication about the magnitude of these errors. A further insight into the
sensitivity of F to the form of the functional refation between R and T can be obtained by
changing the values of the knots m. and m.. Taking m =8°C instead of 7°C in Model 1 only
results in a substantial increase in £ at extremely high temperatures (e.g. at 7=24°C F
becomes 2.46 instead of 2.07). This is mainly due to the change in the coefficient d from
6.7E-4 to 8.6E-4. Since, for warm days, a scenario for a warmer world requires some
extrapolation of the precipitation-temperature relation, the possibility of large systematic errors
in the mean precipitation at high temperatures is of some concern. The consequences for
monthly, seasonal or annual averages can, however, be neglected because there are only
few rain days at high temperatures.

The daily amounts in the 1806-1981 record of De Bilt were multiplied by the temperature
dependent factor F presented in Table 2. Figure 4 compares the monthly means of the new
records with the observed means. Both Model 1 and Model 2 were considered to obtain a
time series for the perturbed climate. The factor was also applied to the few rain days at very
low temperatures, which were discarded in model calibration.

In September there is a sfight decrease in the mean precipitation amount but in the other
months the higher temperatures in the perturbed climate give rise to an increase in mean
precipitation compared to the observations at De Bilt. In winter the increase amounts to 20 %,
whereas in summer it is only 4%. These relative changes are in good agreement with those
proposed by Builtot et al. (1988) for stations in Belgium and by Cole et al. (1991) for the UK.
As expected Model 1 and Model 2 have almost the same annual cycle. In contrast to the
minor differences in monthly means the differences in daily precipitation between the two
models are quite substantial on warm days in summer.

The annual average increase in precipitation from 780 mm to 850 mm (9%) is considerably
less than that expected from the Clausius Clapeyron refation (about 18% for a 3°C
temperature increase which would give 920 mm). However, the smaller increase in the
proposed scenario compares well with present day GCM simulations. The increase in global
mean precipitation in these simulations is typically less than half that given by the Clausius
Clapeyron relation (Mitchell, 1891).

11
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Figure 4 Monthly mean precipitation in a perturbed climate (7*=T7+3°C) from time series

based on Model 1 and 2 compared to the climate of De Bilt (1905-1981).

Based on 17 GCMs, the Intergovernmental Panel on Climate Change indicates that
precipitation increases with about 8% when there is a temperature increase of 3°C (Houghton
et al., 1990). When mean temperature is increased by 2°C instead of 3°C, the use of the
factor Fin equation (8) yields a change in mean annual precipitation of 6%.

The major advantage of the method presented here to generate daily precipitation sequences
for a possible future climate is that changes in daily precipitation are consistent with the
temperature dependence of the two main precipitation mechanisms (frontal and convective
precipitation) in the Netherlands. As a result it is possible that small changes in monthly mean
precipitation during summer are accompanied by considerable increases in precipitation
amounts on some specific days. The latter is necessary because a temperature increase
feads to heavier summer showers when stability and relative humidity remain unchanged as is
assumed in many scenarios for a double CO, climate.
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4 Seasonal variation in the precipitation - temperature relation

Up till now it has been assumed that the relationship between precipitation and temperature is
constant over the year. The absence of seasonal variation implies that the mean precipitation
in the various temperature classes in Figure 1 remains the same throughout the year. This
can be verified by comparing the expected mean precipitation amounts in each month to the
observed means. The former are easily obtained by replacing all cbserved daily amounts by
the average in their temperature class (circles in Figure 1). It is not necessary to select a
function g(T) for this verification. From Figure 5 it is seen that the constant precipitation -
temperature relation leads to an overestimate of the monthly mean precipitation amounts in
spring (with a difference up to about 20% in April} and to relatively small monthty means in
January, July, August and December.
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Figure 5 Expected monthty mean amounts for a constant precipitation-temperature

relation (Expected 1) and for separate relations in three-month seasons
(Expected 2) compared to the cbserved means at De Bilt (1906-1981).
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Figure 5 also shows the expected monthly means for the case where all observed daily
amounts are replaced by the seasonal average in their temperature class. These monthly
means assume a separate reiation between precipitation and temperature for each of the four
seasons: winter (December, January, February), spring {March, April, May), summer (June,
July, August), and autumn (September, October, November). The expected monthly mean
precipitation is now much closer to the observations. The differences are always less than
10%. The seasonal dependence of the relation between precipitation and temperature is

significant at the 5% level (Appendix C).

The seaschal dependence can be incorporated in the regression analysis by taking separate
Values aw.rmer’ aspnng' asummer' aaurumn and bwmrer’ bspnng' bsummer' baummn for the parametefs a and b in
equations {3) and (4). There is no indication of lack-of-fit for this 10 parameter model and the
seasonal dependence in a and b is significant at the 5% level (Appendix C). Table 3 presents
the estimated parameters with their standard errors. The estimate of a for the summer season
is considerably larger than the estimates for winter, spring and autumn (about twice its
standard error). The parameter b is relatively high in winter. The estimate of b, ., differs

about five times its standard error from those for the three other seasons.

Table 3 Estimated regression coefficients with their standard error (se)
in Model 1 with seasonal variation.

Coefficient Estimate se
a, 0.7663 0.0283
Qg 0.7064 0.0550
a, 1.1857 0.2235
o 0.7733 0.0518
B 0.1016 0.0056
b 0.0752 0.0075
b n 0.0672 0.0175
B 0.0794 0.0080

¢ 00167 0.0020
d 8.0E-4 1.3E-4

A consequence of a seasonally dependent b is that the factor F in equation (8) also varies
over the year. in Table 4 this factor is considered when there is a constant increase in mean
temperature of 3°C. Fis only shown for the range of observed temperatures in each season.

The values of F from the seasonally varying model are rather different from those from the
constant model in Table 2. Especially for the summer season the temperature intervai where
Fis less than 1 is wider with lower values of F (down to 0.88). For T<7°C in winter F is higher
than for the constant precipitation-temperature relation (1.36 compared to 1.28). Spring and
autumn have quite similar values of F which are in between those for winter and summer.

14



Table 4 Multiplication factor F (with its standard error se) for various values of T when
there is a constant increase in temperature of 3°C using Model 1 with
seasonally varying parameters.

Winter Spring Summer Autumn
T T* F se F se F se F s
-12 -8 1.36 02
-10 -7 1.36 Q2
-8 -5 1.36 02
-6 -3 1.36 a2
-4 -1 1.36 .02 1.25 .03
-2 1 1.36 02 1.25 .03 1.27 .03
c 3 1.36 02 +.25 Q3 1.27 .03
2 5 1.36 .02 1.25 03 1.27 .03
4 7 1.38 02 1.25 .03 1.27 .03
6 9 1.28 .02 1.18 02 1.15 .08 1.20 02
8 11 111 .03 1.03 .02 1.00 05 1.04 .02
10 13 1.01 04 .83 02 91 04 94 a2
12 15 97 .04 80 03 88 03 9N 02
14 17 92 .03 .89 03 83 .03
18 19 89 .05 97 .03 1.00 .05
18 21 114 .09 1.1 .06 1.15 .09
20 23 1.38 18 1.35 13 1.40 16
22 25 1.79 .30 1.74 25 1.81 .30
24 27 239 48

A consequence of the seasonally varying factors in Table 4 is that the summer months in the
climate scenario become dryer and winter months wetter than in the scenario of Figure 4.
Precipitation in winter months increases 27% (was 20%) whereas the period of decreased
precipitation {up to 5%) lasts from May to October (was September only). For the summer
season it is not possible to obtain very accurate estimates of a and b (Table 3) because of
the limited number of rain days at low temperatures. The standard error of F is therefore
relatively large at the lower end of the temperature range in summer.

The abrupt changes in the factor F at the transition of seasons would be avoided by fitting
continuous periodic functions to the parameters a and b. Fourier series are popular in the
literature (Buishand, 1977, Stern and Coe, 1984). An alternative is the sharply peaked
oscillation in Batschelet (1981) which may describe the peaks in a and b. The approach
leads, however, to a more complicated model and was therefore not considered in this
preliminary study.

15



5 Sensitivity to the definition of a rain day

The resuits in the previous sections refer to days with a precipitation amount of at least 0.1
mm over the 0-0 UT interval. In this section two other definitions of a rain day are considered.
The first refers to the height of the threshold, while the second deals with the choice of the

starting point of the 24-hour interval.

A problem with the 0.1 mm threshold is that fog and dew are sometimes measured as small
precipitation amounts (usually 0.1 or 0.2 mm). Therefore a rain day is often defined as a day
with a precipitation amount of at least 0.3 mm. Table 5 gives the factor F based on Model 1
with this criterion for a rain day. Again the two lowest temperature classes were discarded for
parameter estimation.

Table 5 Multiplication factor F (with its standard error se)
for various values of T when there is a constant
increase in temperature of 3°C, but the rain day
threshold is chosen to be 0.3 mm instead of 0.1 mm.

Model 1
T T F se
-12 -8 1.20 01
-10 -7 1.20 .01
-8 -5 1.20 01
-6 -3 1.20 0
-4 -1 1.20 01
-2 1 1.20 01
0 3 1.20 01
2 5 1.20 01
4 7 1.20 01
6 9 1.16 01
8 i 1.07 01
10 13 1.01 .01
12 15 .99 .01
14 17 1.00 02
16 19 1.05 .03
18 21 114 .06
20 23 1.28 A1
22 25 1.50 .18
24 27 1.80 30
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The height of the threshold defining a rain day has a substantial effect on the parameter
estimates (Appendix C) which explains the differences between the values of Fin Table 2
and Table 5. There is now only one temperature class left where F drops below 1 (at
T=12°C), because the relative extremes are less clear than in Figure 1. For the 0.3 mm
threshold at low temperatures F is lower than for the 0.1 mm threshold because of a lower
value of the coefficient b in equation (3). The decrease of the fraction of rain days with
precipitation amounts of 0.1 and 0.2 mm with increasing temperature as shown in Table 6 is
responsible for the higher value of b for the 0.1 mm threshold. From weather classification
data it follows that only a small part (less than 1%) of this decrease can be attributed to days
with fog that are misclassified as rain days.

Table 6 Fraction of rain days (threshold 0.1 mm)} at various
temperatures with precipitation amounts < 0.3 mm.

T Fraction

-8 0.41

-6 0.42

-4 0.38

2 0.39

0 0.30

2 0.21

4 0.19

6 0.16

8 C.14

A probiem with the 0.3 mm threshold is that the coefficient of variation v(R) increases slowly
with temperature (Appendix C and D). Strictly speaking, the factor £ in Table 5 then only
represents the relative change in the mean. The relative change in the standard deviation
a(R) is, however, rather close to that in the mean. The factor can therefore still be used to
generate a precipitation scenario. Figure 6 shows the monthly mean precipitation amounts for
the perturbed climate obtained with the factor Fin Table 5. F was also applied to the
observed precipitation amounts of 0.1 and 0.2 mm which were excluded in the calibration of
the regression model. The monthly means in the resulting precipitation scenario are almost
identical to those obtained in Section 3 for the 0.1 mm threshoid.

When the precipitation threshold of 0.3 mm is selected the annual mean increases from 780
mm to 850 mm (about 9%). This value is identical to that obtained for the 0.1 mm threshold.
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Figure 6 Monthly mean precipitation in a perturbed climate (7=T+3°C) from time series

based on Modet 1 compared to the actual climate of De Bilt {(1906-1981). The
precipitation thresholds for a rain day used in model calibration are 0.3 mm
and 0.1 mm, respectively.

Long records of daily precipitation amounts over the 0-0 UT interval are generally derived
from the registrations of self-recording raingauges (pluviographs). Such records are only
availabie at a limited number of principal climatological stations. In the Netherlands most
rainfall stations are only equipped with a standard raingauge and the precipitation amounts
then refer to the totals over the 8-8 UT interval. The relation between precipitation sampled at
8 UT and mean temperature at the previous day (in the 0-0 UT interval} can also be
described by the regression models in Section 2. From the results in Appendix C it is seen
that the choice of a different time interval for the precipitation amounts does not affect the
quality of the fit and the coefficient of variation v(R}. The estimates of the regression
coefficients b, ¢ and d are, however, closer to zero for the 8-8 UT amounts, reflecting the fact
that the mean increases less rapidly with temperature. Table 7 gives the factor F derived from
Model 1 for rain days with a precipitation threshold of 0.1 mm. Again the two lowest
temperature classes were discarded in the regression analysis.
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Table 7 Multiplication factor F (with its standard error se) for
various values of T when there is a constant increase in
temperature of 3°C, but precipitation is sampled at 8 UT
over the past 24 hours instead of the 0-0 UT interval.

Model 1
T T F se
-12 -§ 1.23 02
-10 -7 1.23 02
-8 -5 1.23 02
-5 -3 1.23 02
-4 -1 1.23 02
2 1 1.23 02
0 3 1.23 02
2 5 1.23 .02
4 7 123 .02
8 g 1.18 01
8 1 1.08 01
10 13 1.02 .01
12 15 89 02
14 17 .99 02
16 19 1.03 .03
18 21 1.10 05
20 23 122 .09
22 25 1.39 45
24 27 1.65 25

The values of Fin Table 7 for precipitation between 8-8 UT lead to somewhat higher monthly
mean precipitation amounts in summer and somewhat lower values in winter compared to
Figures 4 and 6. This is because the values of F at low and very high temperatures are
smaller than those in Table 2, while F does not drop below 0.99 in the interval from 10°C to
14°C. Again the annual mean changes by 9% from 780 mm to 850 mm.

It can be concluded that the multiplication factor F is to some extent sensitive to the interval
over which precipitation is sampled and to the threshold above which a day is classified as a
rain day. This means that somewhat different precipitation scenarios are obtained when only
the quantities over the interval 8-8 UT are available or the threshold of 0.3 mm is chosen for a

rain day.
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6 The use of maximum temperature as predictor

It was noted in Section 2 that originally Konnen (1983) considered the daily maximum
temperature T_ instead of the daily mean temperature T. T is in fact a better indicator of
convective precipitation than T. Because of this, and because of the larger diurnal variation in
temperature on days with convective precipitation, the relative minimum in the reiation
between mean precipitation and T is more pronounced than in Figure 1. The results in
Appendix C show that this is not accompanied by a smaller value of the constant coefficient
of variation v{R). From the variation of the daily precipitation amounts within temperature

classes it is not clear whether one should use Tor T__..

Model 1 of Section 2 was applied to the precipitation record of De Bilt, but now with 7__ as
predictor instead of 7. Table 8 shows the resulting multiplication factor F for a constant
increase in T__, of 3°C. Again the lowest temperature classes were discarded for parameter

max

estimation. Further details about the regression analysis can be found in Appendix C.

Table 8 Multiplication factor F (with its standard error se),
but now for various values of T, instead of T.

A constant increase in maximum temperature of 3°C
is assumed (precipitation threshold 0.1 mmy.

Model 1
T [ F se
-10 -7 1.25 01
-8 -5 1.25 .01
-6 -3 1.25 01
-4 -1 1.29 01
-2 1 1.25 O
0 3 1.25 L0
2 5 1.25 01
4 7 1.25 .01
6 9 1.25 .01
8 11 1.24 01
10 13 1.12 01
12 15 1.00 0
14 17 93 .01
16 19 80 01
18 21 80 .01
20 23 94 01
22 25 1.02 02
24 27 1.15 04
26 29 1.36 07
28 31 1.66 12
30 33 212 21
32 35 2.81 .36
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The interval with F-values < 1 is more pronounced than in Table 2. Transformation of the
observed precipitation amounts with the factor in Table 8 results in a 7% increase in the
annual mean precipitation for the perturbed climate. There is now not only a decrease in
mean rainfall during September, but also for August and October.

The difference between the precipitation scenarios based on 7, and T will generally be
larger when the predicted change in T, is not the same as that in T. Karl et ai. (1991) show
that the increase in the observed mean temperature over the contiguous United States, the
former Soviet Union and the Peoples Republic of China during the last century is mainly due
to a trend in the minimum temperatures whereas there i$ no significant change in the
maximum temperature. But for the 2xCO, experiment of a version of the UK Meteorological
Office GCM (Cao et al.,, 1992) the increase in global annual mean surface temperature is
accompanied by a comparable change in maximum temperature. Something similar holds for
Tand T__ inthe CCC second-generation GCM over Northwestern Europe. Table 9 presents
the changes in seasonal and annual averages of Tand T_,, for the two fand grid points near
De Bilt and for a larger region around the Netherlands (16 land grid points}, covering Great
Britain, Denmark, Germany, France, Switzerland and parts of Austria, Spain and ltaly. The
1xCO, and 2xCO, cases in this table refer to a 10-year simulation. The difference in annual
means between the 2xCO, and 1xCO, cases is about 3°C for mean temperature and 3.5°C
for maximum temperature. The increase is relatively constant from June to February whereas

the increase in spring is somewhat lower.

Table 9 Average daily mean temperature T and maximum temperature T, observed
at De Bilt {(1906-1981) and 10 year simulations of the CCC-GCM (two nearest
and 16 land grid points averaged).

T{C)

Winter Spring Summer Autumn Year
De Bilt 2.5 85 16.2 99 9.2
GCM 1=xC0, 2 grid points 31 B4 16.2 97 9.3
16 grid points 4.2 g1 171 105 10.3
GCM 2=CO. 2 grid points +32 +2.3 +3.5 +3.2 +31
-1-C0, 16 gnd pomnts +3.0 +2.3 +37 +3.4 +30

7‘.‘??“.)( (A.;C)
Winter Sprng Summer Autumn Year
Ce Bilt 52 13.2 2t.2 138 13.4
GCM 1=C0, 2 grid points 46 111 19.2 12.2 116
16 grid points 62 119 20.4 13.9 13.1
GCM 2xC0, 2 gnd points +3.7 +2 4 +33 +38 +3.5
-1xCQ, 16 grid points +32 +2.4 +4.1 +3.8 +3.4
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The averages for the 76 year record of De Bilt are also shown in Table 9. The differences
between the average temperatures at De Bilt and those for the GCM control run (1xCO.-case}
are small, in particular for the daily mean T.

Transforming time series of daily precipitation with a multiplication factor derived from T__ is a
useful alternative to a factor based on T. The resulting precipitation scenario will not be very
different when the changes in Tand T__ are comparable as is the case in present day GCM

simulations.
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7 Conclusions and discussion

A time series of daily precipitation amounts in a future climate at a certain location can be
generated using the precipitation-temperature relation for days with rainfall. A rather advanced
regression model is needed to describe this relation. From the fitted model a temperature
dependent factor F can be derived for the relative change in daily precipitation due to a given
temperature perturbation. In the most exiended version of the model this factor aiso depends
on the time of the year. A series of daily precipitation amounts for the perturbed climate is
subsequently obtained by multiplying the observed daily amounts by the factor F. In this
method the number of rain days remains unchanged.

The factor Fis to some extent sensitive to the height of the threshold defining a rain day and
to the starting point of the 24-hour interval over which precipitation is sampled. A somewhat

different factor is also found when the maximum temperature is used as predictor instead of

the daily mean temperature.

The main advantage of the method is that on a daily basis the consistency between
temperature and precipitation is not violated. For a 3 °C temperature increase at De Bilt the
resulting precipitation scenario shows a marked increase in the monthly means during winter
(20 to 27%, depending on the model used). The changes in monthly means are much smaller
during late spring, summer and early fall. There is even a decrease in mean precipitation
during part of that period, in particular when a seasonally dependent factor is used. For all
models the increase in annual mean rainfall varies between 7 and 9%. This is consistent with
the predicted change in global mean precipitation due to doubling CO, concentrations in
present-day GCM simulations.

The use of the factor £ in this study assumes that the precipitation-temperature relation is
preserved in a changing climate. The verification of this assumption with GCM simuiations
needs further attention. The comparison with the increase in global mean precipitation may be
criticized because the global mean is largely determined by the tropics and the oceans. The
use of regional GCM data for this purpose may meet difficulties because daily precipitation is
highly vartable in time and poorly represented at the various grid points. There can also be
quite substantial changes in the number of rain days in regional GCM data. Because
precipitation occurrence and the amount of precipitaticn are partly influenced by the same
factors, these changes might be accompanied by changes in the mean amount which are not
accounted for by temperature. Because of these difficulties it is also questionable to study the
precipitation-temperature relation directly in relatively short GCM runs.

The use of a factor implies that the constant coefficient of variation does not change. The
verification of this assumption with GCM data may meet similar problems as with the relation
between mean precipitation and temperature it is also possible to compare the values of v(A)



for different ciimatic regions in Europe. Littie variation in these values supports the use of a
factor. For the De Bilt record it is remarkable that v{f) is not influenced by the increased
contribution of convective precipitation at high temperatures.

The observed precipitation - temperature relation at De Bilt is strongly determined by the
decreasing importance of frontal rain at daily mean temperatures above 10 °C and the
occurrence of heavy showers at high temperatures. A separate study of the precipitation-
temperature relation for frontal rain and convective precipitation may deepen the insight into
the change of precipitation with temperature and may lead to a better choice of the systematic
part of the regression model. Whenever hourly amounts or weather classification data are
available there are many possibilities to make a subdivision of these two types of

precipitation.

Aithough the precipitation-temperature relation was only examined for De Bilt, the resulting
values of the multiplication factor are also applicable to other inland stations in the
Netherlands. The use of the method for coastal regions and other countries requires further
study of the precipitation-temperature relation.

Besides temperature and precipitation, other variables like solar radiation, humidity, wind
speed and evapotranspiration are often required in climate change impact studies. To be
consistent with a constant precipitation - temperature relation and no change in rainfall
occurrence, it is advisable to maintain the relative humidity or the dew point depression in the
observed record. The fact that the number of rain days remains the same in the perturbed
climate also rules out large changes in the incoming solar radiation.

Cther climate elements than temperature determine the precipitation amount on rain days as
well. One of them is surface air pressure. The assumption that the sequence of rain days in

the perturbed climate remains the same as in the present climate will generally no longer be
valid when there is a systematic change in surface air pressure. The incorporation of surface
air pressure in the regression mode! is the subject of further research.
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APPENDIX

A Factor F for Model 2

In case of a warming climate and choosing Modei 2 (Section 2) for g(T) the multiplication
factor F becomes:

F - exp|b(T"-T)] T.T7<m,
F = explb(T"=T) ~ c(T"-m) + d(T* m)’| T<m<T <m,
F=exp[b(T"T) + cl(T*-m)? - (T-mP} + d{(T"-m)® - (T-m,)"}|
m<T,T"<m, (A1)
F = exp|b(T*T) + cl(m,-m)@T"-m,-m,)~(T-m,’|
+ dl(m,-m 23T *-2m,-m)~(T-m)’). m<T<m<T"

F = exp[b(T*—ﬂ + 2¢(m,-m)(T"-T) « 3d(m2~m1)2(r*-r)} T.T°>m,

B Variance of the estimated factor

The factor Fin equation (7) can be expressed as:
F = expju’d] (B1)

where uis a p-x1 vector depending only on Tand T%, 8 is a p-x1 vector of unknown
regression coefficients and t denotes the transpose of a vector (p-<p). For instance for
T<m,<T*in equation (8} the vectors v and 6 are given by:

vt = [T T mpreme and o = (bed) (82)

An estimate F of F is obtained by replacing the unknown elements of 8 by the estimated
regression coefficients:

F=explu' 6] (83)

Now L=u'8 is a linear combination of estimated regression coefficients. Its variance is given
by (Morrison, 1978):

var(L) = u' ¥u (B4)
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where ¥ is the covariance matrix of 8. An estimate of this matrix is easily obtained from
the fitting procedure in Appendix C.

To obtain an approximation to the variance of F use can be made of a Taylor expansion of F
about E(L)= u' 6 (delta method):

F~explu’ o]+ explu' 8| - (L-u'0) = F + FAL-u'8) (BS)
giving:
var F= Févar(l) = F* (u' Xu) (B6)

The square root of this approximation is given as the standard error se in Tables 2,4,5,7 and
8.

C Parameter estimation, testing for lack-of-fit and seasonal variation

Non-seasonal models

The unknown regression coefficients in the model were estimated by an iteratively reweighted
least squares procedure. The procedure was applied to the mean precipitation amounts in the
various temperature classes. This yields almost the same estimates as fitting the model to the
individual daily precipitation amounts. The final weighted sum of squares in the procedure can
be used to test for lack-of-fit.

Let n, denote the number of rain days, ithe mean (or maximum) temperature and F-?; the
mean precipitation amount for the k-th temperature class (k=1, ... ,K). Neglecting the slight
variation of the temperature within the classes, the following regression equation is obtained

for A,
R, = exp g('i:)] + g, (C1)

o J
The error term ¢, has zero mean and variance:

var(e,) = o, 2/”k (C2)

where o, is the standard deviation of R for the -th temperature class. It is the same standard
deviation as that shown in Figure 2.

Equation (C2) assumes independence between the precipitation amounts within each
temperature class. Buishand (1977, pp. 83,84) showed that in the Netherlands there is a
significant correlation between the precipitation amounts on successive wet days during the
winter period (correlation coefficient~0.15) and that there is no correlation during the rest of
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the year. The small positive correlation for the winter period has little effect on the variance of
g, and will therefore not impair the fitting procedure given below.

Fitting @ model by least squares implies minimizing a sum of (weighted) squared residuais
with respect to the unknown mode! parameters. In our application the sum
K 12

Sabed) =Y wk[ﬁkexp{g(ﬁ)}] (C3)
has to be minimized with respect to a,b,c and d. The weights w, must be inversely
proportional to var(e,). It is thus necessary to have an estimate of o, in equation (C2). A
disadvantage of the sample standard deviations in the temperature classes is that they have
a rather large standard error (in particular when n, is smalf) which may invalidate the use of
the chi-square distribution for testing lack-of-fit. It is therefore better to substitute a modelled
value for o, €.9. by making use of the fact that the coefficient of variation v, hardly varies
over the temperature classes. The latter can be approximated by a simple expression like:

v, = h + hT, (C4)

Table C1 shows estimates of the parameters h, and h,. These estimates were obtained by a
weighted least squares fit (with weights n,) to the sample coefficients of variation in the
various temperature classes. In most cases the coefficient h, is not significant (constant
coefficient of variation). From equation (2) it follows that the standard deviation &, can be
approximated by:
o, = v, explg(T}) (5)
and thus the weights w, become:
2
C6
w, =n, | [vk exp{g(‘T[)}] (8)

Through its relation with g(T,) the weights depend on the unknown regression coefficients.
lteratively reweighted ieast squares implies that these weights are adjusted to the current
values of a,b,c and din each iteration step. Initial estimates of these coefficients can be
obtained by linear regression of In(R,) on g(T,) with weights n/v°. The iteration procedure
reduces to a sequence of weighted linear regressions of an adjusted dependent variable on
the explanatory variables (McCullagh and Nelder, 1989). The final parameter estimates are
denoted as a,b.c and d. The asymplotic properties of these estimates are the same as in the
case of known o, (Davidian and Carroll, 1987).

The fitting procedure also provides an approximate covariance matrix of the parameter
estimates, cf. Seber and Wild (1989, p.89). The standard errors in Table 1 are based on this
covariance matrix. The error bars in Figure 1 were obtained by substituting the final estimate

of o, in equation (C2).
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The generalized Pearson X “-statistic X “=S{a,b,c.0} can be used to assess the goodness-of-
fit. Under the null hypothesis X * has approximately a chi-square distribution with K-4 degrees
of freedom. The quality of the approximation can be improved by grouping classes with few
rain days. In this study there were at least n,=8 rain days in each class. Table C1 presents
the values of X? for the models considered in Sections 2, 5 and 6. From the table it is clear
that an acceptable fit can only be achieved when the two lowest temperature classes are

discarded.

Table C1 Estimated coefficients in the equations for g(T)} and v,, number K of classes,
and X %-statistic for the non-seasonal madels discussed in Sections 2, 5 and 6
(n.s. indicates that the parameter is not significant at the 5% level). The values
of the test-statistic in brackets refer to the case where the two lowest
temperature classes were included in the fitting procedure.

Coefficients g(T) Coefficients v, Goodness-of-fit
a b c d f, h, K X’
Mode! 1
T;00UT,>0.1 mm 0.7648 0.0825 00144 B.7E-4 147 ns 17 14.8(339)
7,00 UT:z0.3 mm 1.0728 0.0619 -0.0098 49E4 1.03 0.0097 17 6.9 (60.0)
TB88UT.>01 mm 08473 00682 -0.0101 46E-4 142 ns. 17 138(379)
Tmax0-0 UT;>CG.1 mm 06406 0.0749 -0.0137 55E-4 142 ns. 19 8.6 {30.5)
Model 2
T.0-0UT:>0.1 mm 0.7639 0.0832 -0.0147 7.0E-4 1.47 ns. 17 144 (339)

Quasi-likelihood functions

The distribution of the parameter estimates in a non-linear regression model can strongly
differ from the normal distribution. it is therefore not always safe to base statistical inference
on the standard errors or the covariance matrix of the parameter estimates. A better
alternative is to make use of iikelihood ratio tests and likelihood confidence regions {Seber
and Wild, 1989). The quasi-likelihood functicn is related to the log-likelihood. In contrast to the
|atter, it requires that only the first two moments are specified. The method is applicable to
situations where the variance is the product of two terms, a constant dispersion parameter
and a function of the mean. This is the case for the mode! with constant coefficient of

variation.

Let pk=exp[g(i)] be the mean for the k-th temperature class (k=1, ... ,K) and v the constant
coefficient of variation, then the variance of R, is given by:
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var(R) = v°u,” In, {C7)

and the quasi-iikelihood Q (a b,c.d) reads (McCullagh and Neider, 1989).
K
Qlabed = Y nJAju iyl (C8)
Aot
The quasi-iikelihood estimates are obtained by maximizing {C8) with respect to a,b,c and d.
These estimates are, however, eguivalent to the iteratively reweighted least squares
estimates. They also correspond to the maximum likelihood estimates for the gamma
distribution. From the literature on stochastic rainfall modelling (Buishand, 1977, Stern and
Coe, 1984) it is known that the distribution of A is close to the gamma distribution. A slight
difference between these two distributions is, however, that the lower bound of A is not
exactly zero.

The confidence regions in Figure 3 contain combinations of ¢ and d for which the quasi-
likelihood is close to its maximum Q (a,b,c,d). To be more specific, let a(c,d) and b{c,d) be the
guasi-likelihood estimates of a and b for fixed ¢ and d. These are obtained by a similar
iteratively reweighted least squares procedure as the fuil quasi-likelihood estimates.

The 100y % confidence region consists of the values ¢ and d for which

2Q (4b.6d) - 2Q [a(cd).bied)cd] < vie, (C9)

with ¢,=-2In(1-y) the corresponding percentage point of the «°~variable. This region
is easily obtained by calculating the differences between the quasi-likelihoods in (C9) for a

grid of ¢,d values about c,d.
A lack-of-fit test can also be derived from the quasi-likelihood function (McCullagh and Nelder,
1989). This test was not considered in the present study.

Seasonaj models

The seasonal dependence of the precipitation temperature relation was investigated by
classifying the daily prectpitation amounts according to temperature and season. Let n,, be
the number of rain days, 7, the mean temperature and A, the mean precipitation amount in
the k-th temperature interval (k=1, ... K} for season s (s=1, ... |S). Empty classes {e.g. at high
temperatures in winter) were discarded.

The parameter estimates in Table 3 were gbtained by applying the iteratively reweighted least
squares procedure to the mean amounts A,_ in the various classes. To improve the chi-
square approximation t¢ the null distribution of the lack-of-fit statistic X °, classes with few rain
days were grouped within the season concerned until n,, was at least 8. This resulted in
X =42 4 with 35 degrees of freedom. The value of X is not significant at the 5% level

Besides that the coefficient of variation v/R} hardly varies with temperature for the 0.1 mm
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threshold, it is also nearly constant over the various seasons For the weighted mean v of
v(R) a value of 1.37 was found. The fact that this value 1s iowei than that given in Table Ct
for the non-seasonal classification is an indication of seascnal dependence of the precipiation
temperature reiation.

Seasonal dependence can be tested formally with a quasi-iikelihond ratio statistic.
Analoguous to (C8) the quast likelihcod function is defined as’

Q©) = - n,Rju,inu, (€10)

classes

where 8 is the parameter vector and u, =E(R,.) is the theoretical mean amount in the k-th
temperature interval for season s. The summation in aguation (210} is aver all non-empty
classes. Under the null hypothesis (H,) 0 equals 0,, whereas under the alternative hypothesis
(H,) there are no restrictions on 6. The quasi-likelihood-ratio statistic is then given by:

D = 2[a) - @, |

where 0, and 6 are the iteratively reweighted least squares estimates of & under H, and H,
respectively. Under H, the quantity Djv® has an asymptotic chi-square distribution with 7
degrees of freedom, where r is the number of restrictions on 6 to define 8,

(C11)

The expected monthly means in Figure 5 were obtained without making use of a
mathematical function for the precipitation-temperature relation. The theoretical means u,, in
the non-empty classes form then the components cf 6 and A,. is the estimate of u,_under H,.
Under Hy: u,= - =u.~u, (k=1 ... ,K). The common mear u, is estimated as the
average precipitation amount A, in the k-th temperature interval The test-statistic in equation
(C11) then reads:

D, =2 Y n[(LIR )+ (A /) c12)
and =M-K, with M the number of non-empty classes. The value of D. /v in Table C2 is
significant at the 5% level. Omitting classes with less than 8 rain days gives an identical

result.

For the parametric modei in Section 4 the means R, follow from B, =explg(T, )] and the
parameter vector is given by 0=(a,, ... - @, Do - Do GO). The quasi-likelihood-
ratio statistic for testing H,: a,,,.= - =a,,,,., and b,,...= - =b,__ . is denoted as D,. There are
r=2(5-1)=6 degrees of freedom in this test. It is alsc possible to test for seasonal variation in b
given that there is seasonal variation in a. The resulting test-ctatistic D, has =5-1=3 degrees
of freedom. The values of D,/v” and D,/v¥ in Table ©2 are significant at the 5% level.



Table C2 Values of D,/F, DZ/? and Dslv_?for testing seasonal dependence of the
relation between precipitation and temperature (r=degrees of freedom).

Model 1
D v* r D.iv" r D r
T0-0UT:>01 mm 1373 34 102 5 B 88 3
D Fitting regression splines to the logarithms of daily precipitation amounts

The regression model given by equation (1) is almaost equivalent to the following linear model
for the logarithms of the precipitation amounts:

InR = g(T) +¢ (D1)
The error term ¢ in this model has zero mean and its standard deviation o(g) is
constant or varies only slowly with temperature.
If the distribution of € does not depend on temperature, then the mean of R is
given by:
(D2)

E(R) = exp|g(T)|Elexp(e)] = Cexp[g(T)]

and A has constant coefficient of variation. In contrast with the non-linear model for R there
appears now a constant factor Cin the expression for the mean. This constant is determined
by the distribution of €. For the normal distribution C=exp{c*(¢}/2], ¢f. Cohn et al. (1989).
Equation (7) for the factor F remains valid, since C appears both in E(R) and E(R™). This is,
however, no fonger true when o(c) changes with temperature as is the case for rain days with
a precipitation amount > 0.3 mm.

When of(¢) varies with temperature, the constant C in equation (D2} has to be repfaced by a
temperature dependent factor C(T)=Efexp(c)]. Let r; be the standardised error term, i.e.
n=e/o(e), then exp(e) can be approximated by:

exp(e) ~ exp(on)+{ o(e)-o [nexp(on) 03
where o is the average value of o(¢) for all rain days. Consequently:
C(T) = T +|ofe)-o|D (D4)
where
(D3)

C = Elexp(on)| and D = E[nexp(on)]

The bootstrap procedure in Duan (1983) can be used to obtain distribution-free estimates of c
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and D. To get an idea of the effect of a non-constant o(s) on. the factor F it is, however,
admissable to take the theoretical values C=exp(o/2) and D=oexp{o?/2) for the normal

distribution.

Assume now that o{e) varies linearly with temperature:

ole) = o + h(T-T) (D6)
with T the average temperature for all rain days. Substitution of (D8) in {D4) gives:
C(T) = C + W(T-T)D = C|1+h(T-T)DIC]|
~ Cexp|h(T-T)DIC| (D7)
Consequently, the factor Fin equation (7) should be multiplied by
(D8)

f = C(T)C(T) ~ exp|h(T*-T)D[C]

For the rain days with a precipitation amount > 0.3 mm h=0.0087 and D_/C_=E:--1 14 giving
f==1.03 for T*=T+3°C. The correction is of the order of magnitude of the standard error of the
estimated factor at low and moderately high temperatures (see Table 2).
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