SCientifiC report Ministerie »./an Verkefacen Waterstaat
WR 95-01 Koninklijk Nederlands

Meteorologisch Instituut

Transformation of pr
series for climate cha
studies

A.M.G. Klein Tank and

_dn
KNMI




Scientific report; WR 95-01

De Bilt 1995

Postbus 201

3730 AE De Bilt
Wilhelminalaan 10
Telefoon 030-206 911
Telefax 030-210 407

UDC: 551.501.45
551.577.3
551.583.1

ISSN: 0169-1651

ISBN: 90-369-2070-1

¢ KNMI De Bilt. Niets uit deze uitgave mag worden verveeivoudigd en/of ocpenbaar gemaakt worden door middel van
druk, fotocopie, microfilm, of op welke wijze dan ook zonder voorafgaande schriftelike toestemming van het KNMI.



Transformation of precipitation time series
for climate change impact studies

AM.G. Klein Tank and T.A. Buishand
Section of Climate Scenarios and Ozone
Royal Netherlands Meteorological Institute KNMI






Preface

This report describes results of the Climate Scenarios Project at KNMI. The project is
part of the Dutch National Research Programme on Global Air Pollution and Climate
Change (NRP). The present report is a sequel to KNMI Scientific Report WR 93-02
presenting earlier work on the project. We thank the Canadian Climate Centre (CCC),
Victoria, B.C., Canada for providing the output of their General Circulation Model.
We also thank J.J. Beersma (KNMI), G.P. Kénnen (KNMI), B W.A H. Parmet (RIZA,
Arnhem) and F.W. Zwiers (CCC) for their comments on earlier versions.

February 1995 AM.G. Klein Tank
T.A. Buishand






Abstract

A new technique is developed to obtain suitable time series of daily precipitation for
climate change impact studies by means of a transformation of an observed record.
The transformation makes use of regression relations between precipitation and other
meteorological elements. The method allows for a modification of the sequence of wet
and dry days by assigning a probability of rain to each day.

Separate regression models for rainfall occurrence and the amount of precipitation on
wet days are fitted to the historical data at De Bilt (the Netherlands). A logistic
regression model is introduced to determine the probability of rain from the values of
surface air pressure P. relative humidity U and relative incoming solar radiation (.
Dry days with a high probability of rain are altered in wet days when the rainfall
frequency increases in the future climate. A decrease in the rainfall frequency is
achieved by changing wet days with a low probability of rain into dry days. The
precipitation amounts on wet days are regressed on temperature 7 and surface air
pressure P. From this regression model a temperature and pressure dependent
multiplying factor is derived. This factor gives the relative change in the precipitation
amount resulting from a temperature and/or pressure perturbation and is used to
transform the observed amounts. The regression model also provides the expected
amounts for new wet days.

As an example, the 1961-1990 precipitation record at De Bilt is transformed using the
seasonal mean changes in T and P over Western Europe for the 2xCO, climate in the
Canadian Climate Centre General Circulation Model (CCC-GCM). U and Q were kept
the same as in the present-day climate. The alternative to change these elements
according to their statistical relations with P is briefly discussed. The changes in the
seasonal mean amounts in the resulting daily precipitation scenario are highest in
winter (+449%) and lowest in summer (+8%). The annual mean amount increases by
about 20%. These values differ considerably from the GCM predicted precipitation
changes (+28% in winter, -26% in summer and no change on average over the year).
Possible explanations for this disagreement are given. It is concluded that the simple
wansformation method is a good alternative to more advanced stochastic techniques of
time series simulation.
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1 Introduction

Studies of climate change have a long history in the scientific literature. Since the
1980's the main interest is focused on the potential changes of the Earth's climate
caused by the increasing emissions of CO, and other trace gases. Advanced three-
dimensional General Circulation Models (GCMs) have been used to simulate possible
future climate conditions. These simulations indicate that the enhanced greenhouse
effect resulting from the increased CO, concentrations can lead to substantial changes
in temperature, precipitation and evapotranspiration. However, the magnitudes of the
changes vary widely from model to model and for regional precipitation, for instance,
there is even disagreement about the sign of the changes. Despite the large uncertainty
about potential changes, it is important to assess their impacts on agriculture, water
management and natural ecosystems. These studies need more detailed information
about the future climate conditions for the site or region of interest than can be derived
from the GCM simulations. Quite often climate change scenarios consisting of time
series of daily precipitation, temperature and other variables (solar radiation, air
humidity, wind) are required. Such scenarios should give a meteorologically
consistent picture of a future climate with realistic statistical properties of the various
elements (means, variances. occurrence of extreme events). They should not be
considered as predictions, however.

The simplest and most widcly used mcthod of deriving time series suitable for impact
studies is to transform an observed climate time series. For instance, a constant
temperature increment of 1, 2 or 4°C may reflect the expected temperature rise from
the enhanced greenhouse effect. An accompanying increase or decrease of 10% or
20% in the long term mean rainfall is usually achieved by multiplying the observed
amounts by a constant factor. Both the monthly (Gleick, 1987; Mimikou et al., 1991;
Kwadijk, 1993) and daily values (Bultot et al., 1988, 1992; Cooley, 1990; Panagoulia,
1991, 1992) of observed temperature and precipitation have been altered in this way.
Other variables like air humidity and solar radiation have sometimes been considered
by those authors to derive representative values of evapotranspiration. In Né¢mec and
Schaake (1982) and Arnell (1992) proportional adjustments were also applied to the
estimates of potential evapotranspiration for the current climate.

Klein Tank and Buishand (1993) multiplied the daily precipitation amounts by a
temperature dependent factor. This factor was derived from a mathematical
description of the observed relation between the mean daily amounts on wet days and
temperature. The preservation of this precipitation-temperature relation through the
multiplying factor cnsures that internally consistent scts of daily temperature and
precipitation are obtained. The proportional adjustment of daily precipitation assumes
that the number of rain days remains unchanged. In order to obtain a broader range of
climate change scenarios 1t is desirable, however. to allow for changes in rainfall



occurrence. Some authors have moditied the observed sequence of wet and dry days
by a Monte Carlo technique (Bultot and Gellens. 1989; Robock et al., 1993). The
dependence of rainfall occurrence on factors like the pressure distribution and
cloudiness 1s. however, 1gnored in that work, which makes the internal consistency of
the resulting scenarios questionable. For instance, there is a risk that a relatively large
number of anticyclonic cloudless days will be considered to be wet in the perturbed

climate.

Stochastic simulation of time series 1s another posstbility to obtain the required input
tor impact studics. Especially in the hydrological literature several techniques can be
found for generating synthetic rainfall sequences. Most of this work deals, however,
with precipitation only. A notable exception is a paper by Richardson (1981) about the
simultaneous generation of daily values of precipitation, maximum temperature,
minimum temperature and solar radiation. Wilks (1992) discussed the use of his model
for generating sequences for future climate conditions. Another application is given in
Valdés et al. (1994). Semenov and Porter (1994) applied a slightly different stochastic
model to assess the impacts of climate change on wheat crops. Simplifying
assumptions about the distribution and correlation structure of the four variables may
lead to physically unrealistic combinations of these variables or even impossible
values. It is further unknown how far discrepancies between simulated time series for
the current chimate and the historical observations resulting from model deficiencies
affect the final estimates of the climate change impacts.

Recently a lot of attention has been given to the generation of daily precipitation
sequences conditional on the observed large-scale atmospheric circulation patterns or
the simulated patterns in a GCM (Bardossy and Plate, 1992; Wilson et al., 1992;
Hughes et al.,1993). This approach is known as statistical downscaling. The use of the
method for generating realistic sequences of daily precipitation for impact studies of a
CO, induced warming is hampered by the fact that the changes in the frequencies of
circulation types in GCM runs with enhanced CO, concentrations are relatively small
compared with the differences between the frequencies in the control run and the
historical observations (Hughes et al., 1993; Matyasovsky et al., 1993). It is further
not sufficient to relate precipitation to circulation patterns only. Matyasovsky et al.
(1993) introduced the height of the 500 hPa level as an additional explanatory variable
in the Bardossy and Plate model. This height is strongly determined by the
temperature in the lower atmosphere and thus the change in the amount of
precipitation is coupled to temperature as in the approach of Klein Tank and Buishand
(1993).

Deterministic simulation of regional climates using a high resolution Limited Area
Model (LAM) nested in a GCM is popular among climate modellers to increase the
resolution of GCMs over the area of interest. It assumes that the GCM can realistically
simulate the large-scale atmospheric features and that the high resolution LAM is
capable to take into account the effects of orography and regional-scale processes on
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the various climate variables (Giorgi and Mearns, 1991). Due to computational
expenses this deterministic downscaling has only been explored for relatively short
periods (3.5 complete years) or selected seasons, which restricts its applicability in
climate change impact studies (Giorgi et al., 1994).

From the above it is clear that the existing techniques need further development. In
this report the method of Klein Tank and Buishand (1993) for the transformation of
observed rainfall amounts on wet days is extended to allow for changes in the
sequence of wet days. In Section 2 rainfall occurrence is related to surface air
pressure, air humidity and solar radiation. As in Katz and Parlange (1993) daily mean
surface air pressure at a point reflects the effect of the atmospheric circulation on
precipitation. Humidity and solar radiation accommodate the effect of cloudiness on
rainfall occurrence and are often required in climate change impact studies. In Section
3 surface air pressure is included in the regression model of Klein Tank and Buishand
(1993). The multiplying factor for transforming the daily amounts then no longer
depends solely on temperature, but also on surface air pressure. Section 4 deals with
GCM predicted changes in the long term means of the various variables in the models
for rainfall occurrence and amount of precipitation. The use of statistical relations
between surface air pressure, relative humidity and solar radiation for supplementing
the estimated changes from GCM simulations is discussed in Section 5. Two methods
are presented to modify an observed sequence of wet and dry days given the changes
in these three elements. Examples are given of the effects of the changes in surface air
pressure, relative humidity and solar radiation on the mean number of rain days. In
Section 6 the changes in the mean precipitation amounts are presented both for the
situation of a temperature perturbation and that of an additional perturbation in surface
air pressure. Section 7 gives a general discussion and the main conclusions.



2 Statistical description of rainfall occurrence

The number of rain days in a given month and daily probabilities of rain are related to
surface air pressure P, relative humidity U and relative incoming solar radiation Q.
The latter is the quotient of incoming solar radiation at the surface and downward
solar radiation at the top of the atmosphere (a function of date and geographical
location) and is known as the clearness index or atmospheric transmittance in the
literature on solar energy (Graham et al., 1988). By using  instead of absolute values
of incoming solar radiation most ot the annual cycle 1s eliminated. Q is an adequate
indicator of both cloud cover and thickness (Slob, 1985). High values of Q correspond
with little cloudiness. Two regression models are presented:

Model A: A multiple linear regression model that relates the percentage N of rain
days in each month to the monthly values of P, U and Q. The percentage
of rain days is chosen instead of the absolute number because of the
differences in length between the various months.

Model B: A logistic regression model that relates the status of a day (wet or dry) to
the daily values of P, U and Q.

The effects of changes in the variables P, U and Q, which may occur in a future
climate, are most easily demonstrated with Model A (see section 5). The logistic
model can also be used to alter wet days in an observed climate time series in dry days
or to assign additional wet days to the record. An essential assumption in these
applications is that the model remains unchanged in the perturbed climate.

Models A and B are described in detail in this section. Parameter estimates for the
record at De Bilt (1961-1990) and their statistical significance are given. The
percentage of days correctly predicted as wet or dry by Model B is also presented. The
models’ ability to reproduce the observed annual cycle of the monthly mean
percentage of rain days is discussed. A rain day is defined as a day with a recorded
precipitation amount > 0.1 mm. The effect of alternative definitions of a rain day is
considered briefly.

Model A: Monthly values

In Model A the percentage N, of rain days in a month i is linearly related to the
monthly values P, U; and Q, of surface air pressure. relative humidity and relative
incoming solar radiation:

N, =a+ th, +cU, +dQ, + €, i=1,...,1 (1)



Table | Estimated regression coefficients with standard error (se) and Student's 7-statistic in the
model given by cquation (1) for rain days at De Bilt (1961-1990). The observed
significance level e refers o a two-tailed test.

Coefticent Estimate Se ! «
a 1630.608 159.822 10.2 < 0.01
b -1.566 0.160 9.8 < (.01
¢ 0.500 (0.200 2.5 0.01
d -(0.708 ().133 -4.6 < (.01

where / is the total number of months of observation. It is assumed that the errors €,
are independent and identically distributed with mean zero. P,, U, and (), are obtained
by averaging the daily values of P, U and Q. P, is expressed in hPa, while U, and Q,
are expressed as percentages. At De Bilt the observed long term mean values of P, U,
Q. and N. are 1015.2 hPa. 829%. 38% and 55% respectively. Table 1 presents the least
squares estimates of the regression coefficients «, b, ¢ and d. These coefficients are
statistically significant at the 5% level. The Student test in the table assumes that the
errors come from a normal distribution. This assumption is reasonably satisfied for

monthly data.

The three variables P, U, and Q, explain 50% of the variance of N.. This value is only
slightly lower when either U, or Q; 1s left out of the model, because of the rather
strong correlation between these two variables (correlation coefficient -0.83). P, alone
explains 40% of the variance of N,. From Table 1 it follows that a change in P, of

-3 hPa. while keeping other variables (U,, Q,) constant, would result in 4.7% extra rain
days per month (= 1.4 days). It should be noted, however, that it is not always allowed
to change only one variable in the regression model independently of the others, since
adecrease in P, would generally lead to systematic changes in U, and Q, as well. In
Section 5 it is demonstrated from the relations between these variables in the observed
climate of De Bilt that this effect is small, however.

Model B: Daily values

The occurrence of rain can be described by a binary variable which takes the value 1
when a day is wet and the value O when it is dry. A more advanced regression model
than the standard linear model is needed to link this variable to other meteorological
variables. The logistic model is popular for analysing binary data (Cox and Snell,
1989: McCullagh and Nelder, 1989). The model assigns to potential wet days a high
probability of rain, whereas for potential dry days this probability is low.



The probability p; that day j is wet is represented as:

1 .
pj = — ]=1,...,J (2)
1 +exp [—hj]
J is the total number of observation days and £, has the same form as the deterministic
part in the standard linear regression model. In our application:

h}, = q + bPJ. + ch + dQ}. j=1,..,J (3)

where «a, b, ¢ and d are the regression coefficients. Now P, U;and Q; are the daily
values for surface air pressure (hPa), relative humidity (%) and relative incoming solar
radiation (%), respectively. By definition the probability that day j is dry equals 1-p,.
In the logistic model p; is always between 0 and 1 regardless of the value of /. Figure
1 shows the relation between p; and h;. This relation is non-linear and p; is therefore
also non-linear in P, U, and Q..

a’ 0.5 7
0.0
-5 0 5
b
Figurc 1 Relation between p; and /i in the logistic regression model.



/ Maximum likelihood estimates of regression coctficients with standard crror (se) and

Tuble 2
Wald-statistic in the logistic model for probability of rain using a subset that consists of
cvery 10th day of the 1961-1990 record at De Bilt. The observed significance level «
refers to a two-tailed test,
Coetticient Exstimate se Wald «

d 107.492 9.609 1251 < (.01
b -0.108 0.010 1289 < 0.01
¢ (.049 0.011 19.9 < (.01
d -0.033 0.006 34.2 < (.01

The regression coetficients a, b, ¢ and d were estimated by the maximum likelihood
method. This is a standard method of parameter estimation in the logistic model. It is
incorporated in a number of statistical packages (SPSS, SAS, BMDP). These packages
assume, however, independence between successive cases. To exclude the effect of
autocorrelation the model was fitted to subsets containing only every 10th day of the
1961-1990 record at De Bilt. Table 2 presents an example of estimated regression
coefficients with their standard errors and the Wald statistic. This statistic can be used
to test the statistical significance of a regression coefficient (Buse, 1982). It is
comparable to the square of the r-value in Table 1 for the standard linear regression
model. Table 2 shows that all regression coefficients in equation (3) significantly
deviate from zero. Moreover, the values of the Wald statistic are all higher than the
square of the r-values in Table 1 even though in this case 90% of the data is left out of
the analysis. This clearly demonstrates that more accurate estimates of the regression
coefficients are obtained with the use of daily values instead of monthly values.

Tablc 3 Means of estimated regression cocfficients in the logistic model for 10 different subsets
of the daily record at De Bilt (1961-1990).

Coetticient Estimate
a 101.412
b -0.103
C ().060
d -0.032




Because each subset contains 1 out of 10 days a total of 10 different logistic
regression models was obtained from the complete historical time series. Table 3
shows the mean values of the parameters in these 10 models. Details of the fitted
regression models are given in Appendix A.

The fit of the logistic model was tested with the Hosmer-Lemeshow statistic. The
results are presented in Appendix A. From these results it can be concluded that
systematic errors are small. The logistic model also rather successfully predicts the
status of a day from the observed values P,, U, and Q,. Table 4 classities the days in
the record of De Bilt according to the observed rainfall occurrence and their predicted
status from the fitted logistic model. The prediction for day j is wet if the estimated
probability of rain p;, > 0.5 and dry otherwise, where P, is given by:

R 1 ._
P, = _]—1,...,.] (4)

1+exp|-(d+bP +éU +dQ )

with &, b, ¢ and d the estimated regression coefficients in Table 3. From Table 4 it
follows that 75% of the days (31.5 + 43.7) is correctly predicted, which is nearly as
good as operational forecasts using advanced numerical weather prediction methods

(Appendix A).

As a consequence of the non-linearity of the logistic model, the effect of a constant
change in P, U; or Q, on p; depends on the values of P, U; and Q and thus on the value
of p, itself. Thl% is illustrated in Figure 2, where the increase in p; is presented when
for each day AP, = -3 hPa. The figure shows that a decrease in P, of 3 hPa has the
highest impact on days with a probability of rain of about 0.5. The effect is only half
as high on days with f)j =0.1 or p;=0.9. When AP;=-3 hPa, the observed long term
mean probability of rain in De Bilt changes from 0.55 to 0.60, which gives 5% extra
rain days per month (= 1.5 days). This is in good agreement with the 4.7% extra rain
days per month found with Model A for the monthly values.

Tablc 4 Classification of days according to observed and predicted ramfall occurrence at De Bilt.

Predicted

Dry Wel
Observed Dry 31.5% 13.8%
Wet 11 1% 43.7%
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Figure 2 Increase in probability f)j of rain when AP, = -3 hPa and the model parameters in Table 3
apply.

A slight improvement of model performance is possible by adding the status of the
previous day (1 for a rain day and O for a dry day) to the right-hand side of equation
(3). The values of the Hosmer-Lemeshow test statistic for this version of the model are
presented in Appendix A. About 77% of the days is correctly predicted using again
p;= 0.5 as a threshold for classifying a day as wet or dry.

nal variation

The mean percentage of rain days at De Bilt is relatively large during winter and small
during summer. Figure 3 shows that this annual cycle is reasonably reproduced when
Model A is used to predict the percentage of rain days in each month from the
observed values P, U; and Q.. The largest discrepancy is found for February where the
model overestimates the percentage of rain days on average by 6%. For the other
winter months December and January the model also has a positive bias, which is,
however, much smaller than that for February. Because the least squares method
preserves the overall monthly mean percentage of rain days, a small negative bias is
found for most of the rest of the year. A better descripition of the annual cycle
requires a regression model with seasonally varying regression cocfficients.



100 T L Wl
— - Expected
80 | — Observed
IS5 - =
~ t N~ = i
“ 40 ¢
20 ¢ 1
O 1 : 1 1 1 ! e
JFMAMIJ JASOND
Months
Figure 3 Annual cycle of expected and observed percentage of rain days at De Bilt (1961-1990).

Expected percentages are based on the parameter values in Table 1.

For climate change scenario objectives the need for such a model is questionable,
since there are large uncertainties in the perturbations AP,, AQ, and AU, (see Sections

4 and 9).

For Model B the total number m of rain days for each calendar month can be
estimated from the observed daily values P, U; and Q; as:

) &)

m = ;

M =~

J

il
—

with K the number of days in the month. The annual cycle in the percentage of rain
days shows then similar discrepancies as in the case of Model A with a maximum
difference of 8% between the predicted and observed percentage of rain days in
February. Also for the daily values a seasonally varying model has to be introduced to
obtain a better description of the annual cycle.
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A rainfall threshold of 0.3 mm 1s sometimes preferred to the value of 0.1 mm. The
reason for this is that small amounts (0.1 mm and 0.2 mm) in the obscrved record may
well be caused by dew or fog. For the 0.3 mm threshold the estimates of b, ¢ and ¢ in
Model A for the monthly values are almost the same as those in Table 1 for the 0.1
mm threshold, whereas the value of « is smaller as a result of the lower number of rain
days at the 0.3 mm threshold. For the daily model (Model B) the new parameter
estimates are presented in Table 5. In this case the model fits the data worse than with
the 0.1 mm threshold. For three out of the 10 subsets of the precipitation data at De
Bilt the Hosmer-Lemeshow statistic is significant at the 5% level, indicating lack-of-fit
(Appendix A). Nevertheless the status of 75% of the days is correctly predicted.

Long records of daily precipitation amounts over the 0-O UT interval are generally
derived from the registrations of self-recording raingauges (pluviographs). Such
records are only available at a limited number of principal climatological stations. In
the Netherlands most rainfall stations are only equipped with a standard raingauge and
the precipitation amounts then refer to the totals over the 8-8 UT interval. The use of
these precipitation amounts instead of the 0-O UT amounts hardly effects the
parameters in Model A for the monthly values. Table 6 presents the estimated
coefficients for the logistic regression (Model B) of rainfall occurrence over the 24h
interval ending at 8 UT on the values of P, U, and Q, for the 0-0 UT interval of the
previous day. With the exception of ¢ these estimates are only slightly different from
those given in Table 3 for the 0-O UT amounts. Again the status of about 75% of the
days is correctly predicted, while the fit is not worse than for precipitation over the 0-
0 UT interval (Appendix A).

Tablc 5 Means of estimated regression cocfficients in the logistic maodel for 10 differcnt subscts
of daily rainfall data with a threshold of 0.3 mm defining a rain day instcad of 0.1 mm as
in Table 3.

Cocflicient Estimate
a 114.480
b -0.115
¢ 0.046
d -0.040
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Tablc 6 Mecans of estimated regression coelficients in the logistic model for 10 different subsets
of precipitation amounts over the interval from 8 to 8 UT instead of 010 O UT as in

Table 3.
Coefticient Estimate
d 100.867
b -0.101
0.045
d -00.032




3  Statistical modelling of the relation between
precipitation amount on rain days, daily mean
temperature and surface air pressure

Precipitation amounts on rain days exhibit large variation and skewness. Days with
small amounts predominate. A regression model to link such data to the daily
temperatures is presented in Klein Tank and Buishand (1993). This section deals with
the inclusion of surface air pressure in that model. As in the regression model for
rainfall occurrence this variable partly accounts for the rather complicated influence of
the atmospheric circulation.

First a short description of the regression model for the precipitation-temperature
relation is given. A similar type of model is then used to relate the precipitation
amounts on wet days to daily mean surface air pressure. From the two models for the
daily precipitation amounts more comprehensive models are derived which contain
both temperature and surface air pressure as explanatory variables. Parameter
estimates and their statistical significance are presented. The value of a generalized
chi-squared statistic is given to judge the adequacy of the fit. A non-parametric check
is made on seasonal variation in the relation between precipitation, temperature and
surface air pressure. The use of daily rainfall amounts over the 8-8 UT interval rather
than the 0-0 UT interval is briefly considered at the end of this section.

Because of the large variation of the daily precipitation amounts long data records are
needed to obtain accurate estimates of the mean amounts for given values of
temperature and surface air pressure. As in Klein Tank and Buishand (1993) the 1906-
1981 record at De Bilt is considered in this section.

The model in Klein Tank and Buishand (1993) for the relation between precipitation
amount R on rain days and daily mean temperature 7 is of the form:

R = exp [g(T)] + € (6)

where € is a random error term with mean zero. The function g(T) consists of
piecewise polynomials:

g(T)y = a + bT T<m,

13



Table 7 Estimates of the coefticients in cquation (8) with their standard error (se) for rain days at
De Bilt (1906-1981). After Klcin Tank and Buishand (1993).

Coctticient Estimate se
a 0.7649 0.0233
b 0.0829 0.0039
¢ -0.0144 0.0015
d 6.7E-4 Y. 9E-5
. . 2 . 3
gy =a+ bl + c(I'-m)" + d(I-m) I'>m, (7)

or in the Heaviside function notation:

g(Ty = a+ bT + c(T-m)’ + d(T-m)’ (8)

where (T-m,), = max(0,7-m,). The knot m, has been fixed a priori at 7="7°C. The
model can be extended with a second knot at 7= 21°C to preclude the possibibility of
arapid change in the mean amounts at the end of the temperature range. Estimates of
the coefficients a, b, ¢ and d in equation (8) are presented in Table 7. Apart from the
interval from 14°C to 18°C, the mean precipitation amount increases with increasing
daily mean temperature. The coefficient of variation v, of the daily precipitation
amounts (the standard deviation divided by the mean) is almost constant over the
whole temperature range, £, = 1.31.

The mean precipitaton amount generally decreases with increasing surface air
pressure. Figure 4 presents the mean precipitation amount at De Bilt for daily mean
surface air pressure class intervals of 6 hPa. Again only rain days are considered. A
similar model as in the previous subsection can be used to describe the relation
between R and surface air pressure P:

R = exp [h(P)] + € (9)

where /it P) 1s a non-linear function of P and € has the same meaning as in equation
(6). In this study the function ii(P) is taken as:

h(P) = a, + a,(q,-P) + a,(q,-P)’ + a,(q,-P)’ (10)
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Figurc 4 Mean precipitation amounts at surface air pressure class intervals of 6 hPa for rain days

at De Bilt (1906-1981). The smooth curve is based on a fitted regression model. The
error bars indicate the standard deviations of the means.
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Figure 5 Standard deviation o and coefficient of variation v, of daily precipitation R at surface air

pressure class intervals of 6 hPa at De Bilt (1906-1981). The dotted line is based on
equation (11).
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Table 8 Estimates of the coetficients in equation (10) with their standard error (sc) for rain days
at De Bilt (1906-1981). The statistic Z is the ratio of these two quantities.

Cocetticient Esttmate s8¢ Z
a, 0).6862 0.0163 42.0
d, 0.1080 0.0032 333
d. -0.0036 2 7E-4 -13.5
d, 3.3E-5 5.6E-6 7.7

where (¢,-P), = max (0, ¢,-P). The knot ¢, has been fixed a priori at P = 1020 hPa. At
this knot /i P) changes from a cubic polynomial (P < 1020 hPa) to a linear function
(P > 1020 hPa). The iteratively reweighted least squares technique described in Klein
Tank and Buishand (1993) was used to estimate the parameters g, «,, «, and a;. The
method was applied here to the mean precipitation amounts in the 12 air pressure class
intervals in Figure 4. There were at least 8 rain days in each class interval. The final
parameter estimates are presented in Table 8. These estimates have an asymptotic
normal distribution. The statistic Z is comparable to Student's r-statistic in Table 1 for
the linear regression model. Since the number of rain days is large, the significance of
the regression coefficients can be tested by comparing the values of Z with the
percentage points of the standard normal distribution. All parameters are significant at
the 5% level.

The smooth curve in Figure 4 is based on the fitted model. The curve shows a
monotone decrease in the mean precipitation amount with increasing surface air
pressure. There is a point of inflexion near P = 990 hPa. The occurrence of such a
point is characteristic for a cubic polynomial. The coefficient a; is responsible for the
rapid increase in the mean precipitation amount at very low values of P. This seems
not very realistic since 1n general precipitation amounts are lower towards the centre
of depressions. This feature of the model does, however, not lead to a significant value
of the generalized Pearson X *-statistic for lack-of-fit. The rapid rise of the mean
precipitation amount at low values of P can be avoided by supplying a second knot
near the point of inflexion and imposing linearity of 4(P) beyond this knot. The
coefficient of variation v, of the daily precipitation amounts is almost constant for P <
1000 hPa, but increases with increasing P for P> 1000 hPa (Figure 5). In the
iteratively reweighted least squares procedure v, was described by:

v, = 0.959 + 0.031 (P-q,), (11)

where ¢. = 1000 hPa. The value of ¥, for P < 1000 hPa is considerably lower than the
value .31 for the regression of precipitation on temperature in the previous
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. AL . .
subsection. However, above 1000 hPa, v, increases rapidly to values higher than 2
near the upper end of the pressure range.

Temperature and surface air pressure on rain days are only weakly correlated. The
strongest correlation occurs in the winter season (correlation coefficient = -0.16).
Equations (6)-(10) form therefore a useful starting point to formulate models for
predicting the precipitation amount on rain days from daily mean temperature and
daily mean surface air pressure. The models considered here are of the form:

R = exp[k(T,P)] + € (12)

First the case 1s considered where k(T P) consists of the separate terms in equations
(8) and (10):

2 3
k(T’P) =a, t al(ql—P) + az(ql_P)+ + a3(q1_P)+
+ bT + c(T-m)’ + d(T-m)’ (13)

Thus in this model the parameter « in equation (8) changes with surface air pressure
according to equation (10). The parameters b, ¢ and d, that describe the change of the
mean precipitation amount with temperature, do not depend on P. From another point
of view, the parameter q, in equation (10) changes with temperature according to
equation (8) and the parameters «,, d,, a,, that describe the change of the mean amount
with surface air pressure, do not depend on T. The effects of changes in T and P on the
mean precipitation amount are multiplicative in this model (see Section 6). Table 9
gives the estimates of the coefficients a,, a;, a,, a;, b, ¢ and d. These were obtained by
applying the iteratively reweighted least squares method to the mean amounts in a
total of 119 temperature/pressure classes of at least 8 rain days each. Rain days with a
temperature < -7°C were discarded for parameter estimation. The coefficient of
variation v, was described by:

v, = 0.808 + 0.0157 + 0.025 (P-q,), (14)
where ¢, = 1000 hPa. As in the model for precipitation and pressure, v, does not
change with P if P < 1000 hPa.

Figure 6 shows that this 7 parameter model reasonably reproduces the variation of the
mean precipiation amount with temperature and surface air pressure. Nevertheless the
value 184.9 of the X *-statistic is significant at the 1% level. Figure 7 presents the
standardized differences SDIF between the observed and predicted mean precipitation
amounts in the various temperature/pressure classes.
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Table 9 Estimates of the cocilicients in equation (13) with their standard crror (s¢) lor rain days
at De Bilt (1906-1981). The statistic Z 1s the ratio of these two quantities.

Coefticient Estimate se VA
da, 0.2063 0.0230 9.0
a, 0.0882 0.0030 29.7
. -).0021 2.5E-4 -8.4
a, 2.0E-5 ().5E-5 3.8
b 0.0679 0.0034 20.2
¢ -0.0088 0.0014 -6.2
d 4.2E-4 1.0E-4 4.1

Large symbols are used to mark classes with large residuals. Fourteen out of 119
values of SDIF in Figure 7 are either < -2 or > 2. This is significantly larger than the
expected value 6 assuming normally distributed residuals. There is no clear grouping
of residuals with a particular symbol, indicating a rather complicated interaction
between the effects of temperature and surface air pressure. For a better description of
the mean precipitation, this interaction can be taken into account by adding several
extra terms to the model. One possible form of k(T P) is:

2 3
k(T’P) =a, t al(ql_P) + a2(q1_P)+ + a3(q1_P)+

+

2 3
by + by(4,-P) + b,(q,-P). + b,(q,~P).| T

v ey + @ PI(T-mYs + [dy + d,(q,~P)|(T-m). (15)

In contrast to the previous 7 parameter model all parameters a. b, ¢ and « in equation
(8) vary now with surface air pressure.The isolines in Figure 8 represent the

theoretical mean amounts according to the extended 12 parameter model. The 6 mm
and 8 mm isolines are quite different from those for the 7 parameter model in Figure

0.
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Figure 6
intervals of 6 hPa for rain days at De Bilt (1906-1981). Model values of the 7 parameter
model (isolines) are compared to observed values (black circles). The dashed line
P =960+ 2.3T is considered in Section 6.
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Figure 7 Standardized differences SDIF between the observed and predicted (7 parameter model)

mean precipitation amounts in the various temperature/pressure class intervals in Figure
6. The difference in cach class is standardized through division by the estimated standard

deviation of the observed mean amount.
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intervals of 6 hPa for rain days at De Bilt (1906-1981). Model values of the 12
parameter model (isolines) are compared to observed values (black circles). The dashed
line P =960 + 2.3T is considered in Section 6.
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Table 10 Estimates of the coetficients in equation (15) with their standard crror (sc) for rain days
at De Bilt (1906-1981). The statistic Z is the ratio of these two quantitics.

Cocttlicient Estimate s¢ Z
a, 0.2476 0.0302 8.2
a, 0.0739 0.0044 16.7
d, -0.0015 4.3E-4 34
d, 1.5E-5 1.OE-5 1.5
b, 0.0658 (0.0053 12.3
b, (0.0025 6.4E-4 39
b, -1.6E-4 0.6E-4 2.6
b, 2.2E-6 1.6E-6 1.4
C, -0.0178 0.0024 7.5
¢, 9. 1E-4 2.2E-4 4.2
d, 0.0011 1.8E-4 6.2
d, -71.7E-5 1.9E-5 -4.1

From Table 10 it is seen that, except for ¢, and b, the parameter estimates are
significant at the 5% level. The coefficients a, and b, refer to the terms containing

(¢, - P)'.. This cubic term was strongly significant in the precipitation - pressure
relation in the previous subsection. The value 127.6 of the X *-statistic for the 12
parameter model is much lower than that for the 7 parameter model and no longer
significant at the 5% level. The much better fit can also be seen from the standardized
differences SDIF between the observed and predicted mean precipitation amounts in
the various temperature/pressure class intervals as shown in Figure 9. The number of
values in the extreme intervals is reduced to 7. Removing the two terms containing
(¢, - P)', from the regression model leads to a significant increase in the value of the
X “-statistic from 127.6 to 153.5. Further checks on the model are possible by
estimating the parameters a. b. ¢ and d in equation (8) for distinct intervals of surface
air pressure or by estimating «,, d,. d, and d; in equation (10) for distinct intervals of
temperature (Appendix A). The better description of the mean amounts by the 12
parameter model may be relevant for climate change scenario objectives, because the
largest differences with the 7 parameter model are found for cases with relatively high
mean amounts.



sonal variation

The 7 and 12 parameter regression models were kept constant over the year. As with
the precipitation - temperature relation (Klein Tank and Buishand, 1993), a simple
check on seasonal variation is possible without making assumptions about the form of
the relation between precipitation, temperature and surface air pressure. Figure 10
compares the observed mean precipitation amounts with the expected means for a
constant relation between those variables. The latter were obtained by replacing all
observed daily amounts by the mean in their temperature/pressure class intervals. The
constant relation seriously overestimates the observed monthly means during spring
(with a maximum up to 23% in April) and underestimates the means for the summer
months July and August. This pattern was also observed for the constant precipitation
- temperature relation (Figure 5 in Klein Tank and Buishand, 1993). The main reason
for the similarity between the two patterns is the small seasqnal variation of the mean
surface air pressure on rain days. The mean absolute difference between the observed
and expected monthly means in Figure 10 is 8.4%. This is somewhat lower than the
value 9.3% for the constant precipitation - temperature relation in Klein Tank and
Buishand (1993). The slight improvement for the inclusion of surface air pressure is
mainly caused by a better prediction of monthly mean rainfall during autumn.
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Figure 10 Expected monthly mean amounts for a constant precipitation - temperature/pressure
relation (dotted) compared to the observed means at De Bilt (1906-1981).
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Although mean surface air pressure shows little seasonal variation on rain days.
surface air pressure still can contribute to certain aspects of the seasonal variation in
the precipitation - temperature relation. In contrast to the other seasons there is a
significant negative correlation between T and P for the winter scason. A temperature
rise in this season is therefore usually accompanied by a decrease in surface air
pressure. The latter causes an additional increase in the expected mean precipitation
amount. This partly explains the relatively high value of the coetficient & in equation
(8) for the winter season in Klein Tank and Buishand (1993). The above check on the
monthly mean amounts is not suitable to detect this kind of seasonal variation in the
precipitation-temperature relation.

Sensitivity to the definition of a rain day

The relation between the daily precipitation amount sampled at 8 UT and mean
temperature/surface air pressure on the previous day (in the 0-0 UT interval) can also
be described by the models in equations (12), (13) and (15). The choice of a different
time interval for the precipitation amounts has very little effect on the coefticient of
variation v,, which was estimated as:

b, = 0.849 + 0.014 T + 0.024 (P-q,). (16)

Table I Estimates of the coefficients in equation (13) with their standard crror (s¢) in case that
precipitation is sampled at 8 UT over the past 24 hours instcad of the 0-0 UT mterval as
in Table 9. The statistic Z is the ratio of these two quantitics.

Coeflicient Estimate se Z
a, 0.4315 0.0234 18.4
a, 0.0759 (0.0030 249
a, -0.0020 2.5E-4 -7.8
a, 2.0E-5 ().SE-5 3.7
b 0.0531 0.0034 15.7
C -0.0057 0.0013 -1.3
d 2764 (.9L-4 Y




where ¢, = 1000 hPa. Tables 11 and 12 give the estimates of the coefficients in
equations (13) and (15) for the 7 and 12 parameter model, respectively. Only for the
12 parameter model is the value of the X *-statistic not significant at the 5% level. The
estimates of the regression coefficients b, ¢ and d in the 7 parameter model and b, b,,
b.. b, ¢, ¢, . d,and d, in the 12 parameter model are almost all closer to zero for the
8-8 UT amounts, reflecting a less rapid increase of the mean with temperature. Such
differences between 0-0 UT and 8-8 UT amounts do not exist for a change in surface
air pressure. [t can be concluded that somewhat different precipitation scenarios will
be obtained for a warmer climate when only the 8-8 UT amounts are available instead

of the 0-0 UT amounts.

Table 12 Estimates of the coefficients in cquation (15) with their standard crror (s¢) in case that
precipitation is sampled at 8 UT over the past 24 hours instead of the 0-0 UT interval as
in Table 10. The statistic Z is the ratio of these two quantities.

Coefficient Estimate s¢ yA
d, 0.5205 0.0310 16.8
da, 0.0604 0.0046 13.3
a. -0.0017 4.7E-4 -3.6
a, 2.1E-5 1.1E-5 1.9
b, 0.0393 0.0054 7.2
b, 0.0033 6.7E-4 5.0
i1, -1.4E-4 (.7E-4 -2.0
b, 1.6E-6 1.7E-6 09
<, -0.0101 0.0022 -4.5
¢ 4.2E-4 2.1E-4 2.1
d, 0.0006 1.6E-4 39
d, -3.8E-5 1.7E-5 2.2




4 GCM predicted climate changes

General Circulation Models (GCMs) are the main tools available today for climate
simulation. Most GCMs have a horizontal resolution of the order of 500 km and
contain about 10 vertical levels. For some variables the GCM simulations provide a
reasonable guess of possible large-scale changes. Other variables are, however, so
poorly represented in the model simulations that they should not be considered at all.
This will be illustrated here with output of the Canadian Climate Centre (CCC) second
generation GCM (McFarlane et al., 1992; Boer et al., 1992).

Figure 11 Geographic resolution and land-sea distribution of the Canadian Climate Centre (CCC)
sccond generation GCM. The land gridpoints (shaded) in the small box (2 gridpoints)
and the large box (16 gridpoints) are considered in this study.
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Table 13 Mean pereentage N of rain days, precipitation amount R. temperature T, surfacc air
pressure P (reduced to sea level), relative humidity U and cloud cover C for the 10- year
[xCO, simulation of the CCC-GCM (small box in Figurc 11) and for the 1961-1990

record at De Bilt".

Scason Year

Element DJF MAM A SON
N (%)

CCC-GCM 91 * 9() * 92 * 91 * 9] *

De Bilt 60 53 48 59 55
fé(mm)

CCC-GCM 3220 263 * 314 * 331 % 1243 *

De Bilt 194 176 214 220 803
T(C)

CCC-GCM 3.1 8.4 16.2 9.7* 94

De Bilt 2.6 8.4 16.2 10.2 9.4
ﬁ(hPa)

CCC-GCM 1015.8 1014.8 1013.1%* 1015.8 1014.7

De Bilt 1014.8 1014.4 1016.0 1015.3 1015.2
U (%)

CCC-GCM 100 * 95 * 96 * 98 * 97 *

De Bilt 87 78 77 85 82
C (%)

CCC-GCM 64 * 63 66 66 65

De Bilt" 74 62 66 67 67

t Cloud cover C only for the S-year period 1986-1990.
* Significantly different from the values at De Bilt at the 5% level using the Welch-Aspin test (two
tailed).

The output of a 10-year simulation with present-day atmospheric CO, concentrations
and a 10-year simulation for an atmosphere with a doubled CO, concentration were
made available on a 3.75° x 3.75° grid over Europe (Figure 11). For each grid box a
number of important climate variables is archived with a time step of 12 hours or |
day. These simulated climate data are generally not representative of the climate at a
site within the gridbox. Quite often large differences are found between the long term
local means and those for the T x CO, case. As an example Table 13 presents the
seasonal and annual mean percentage N of rain days, the mean precipitation amount R
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and the means of the explanatory vartables in the regression models for N and R for
the 1961-1990 record at De Bilt and the two land gridpoints in the small box covering
the Netherlands (Figure 11). Mean cloud cover € is considered instead of incoming
solar radiation. because the latter was not available for the GCM. The relative
humidity {/ for the GCM was derived from the simulated values of temperature T and
specific humidity ¢ and the simulated values of surface air pressure P were converted
to mean sea level values (Appendix B). Because the assumption of equal variances in
Student's r-test is not valid in a number of cases, the Welch-Aspin test (Pearson and
Hartley, 1976) was used to determine the statistical significance of differences in
observed and simulated means.

Most striking in Table 13 is the much larger simulated percentage of rain days than
that observed. Large ditferences between the simulated and observed numbers of rain
days have also been found for other GCMs (Reed. 19806; Beersma, 1992). 1t can partly
be attributed to the fact that GCM output is considered to represent the mean
precipitation over a grid box (Reed. 1986: Giorgi, 1990; Thomas and Henderson-
Sellers. 1991). The number of rain days is not the same for each point within the grid
box and even if this would be the case spatial averaging of precipitation amounts leads
to an increase in the number of rain days. In the CCC-GCM the area of a grid box is
about 100,000 km* at 50 degrees latitude. The annual number of days with mean
rainfall = 0.1 mm over a homogeneous region of that size is about 40% larger than that
at a point (Buishand et al.. 1993), giving an increase in N of about 20%. Thus about
half of the differences between the simulated values of N and those observed at De
Bilt should be attributed to spatial averaging rather than to the very crude description
of the various physical processes in the GCM.

The poor representation of precipitation in GCMs often leads to substantial
differences between the simulated and observed long term mean amounts. The
simulated annual mean m Table 13 1s about 50% larger than that at the De Bilt. The
table further shows that the calculated mean values of the relative humidity are
abnormally high for the GCM simulations. This anomaly is investigated further in
Appendix B. Temperature and surface air pressure simulations are much more realistic
than precipitation and humidity. The largest discrepancy for temperature in autumn
(0.5°C) s just significant at the 5% level. Surface air pressure at De Bilt is only
significantly underestimated during summer. The simulated mean cloud cover does
also not differ much from the observed mean, except for the winter season for which
C is strongly underestimated.

Because the simulated data at a single gridpoint are not comparable with an observed
chimate time series and the skill of GCMs to reproduce the climate at scales down to
those of single grid boxes s questionable (von Storch et al.. 1993) there 1s a large risk
that differences between the means for the 2 x CO, and 1 x CO, cases at the nearest
gridpoint are not representative of the true changes of the local or regional climate.
Such differences not oniy exhibit systematic errors. but aiso random errors caused by



the limited lengths of the simulation runs. For precipitation, for instance, the relative
standard deviation of the seasonal means for the GCM data in Table 13 is about 5%.
Taking the average over a number of gridpoints lowers the random errors and it also
reduces the risk of large systematic errors. Here the spatial averages of the 16 land
gridpoints in the large box in Figure 11, covering Great Britain, Denmark, the
Benelux, Germany, France, Switzerland and parts of Austria, Spain and Italy, are
considered to obtain a better picture of the differences between the 2 x CO, and 1 x
CO, climates. The choice of 16 gridpoints is rather arbitrary. It is impossible to derive
an optimum number of gridpoints. because too little is known about the errors in the
magnitude of the CO,; effect over the region.

Table 14 Predicted mean changes in N, R, T, P, U and C for the CCC-GCM (2xCO,-1xCO,; 10-
ycar runs) in the small box (2 gridpoints) and large box (16 gridpoints) in Figure 11,

Scason Year

Elcment DJF MAM A SON
AN (%)

2 gridpoints +5* -1 -2 -4 * -1

16 gridpoints +4 % +1 -7 -3k 2 F
ARIR (%)

2 gridpoints +28 * +21 -26 % -11 +0

16 gridpoints +25 % +11 21 -1 +4
AT(C)

2 gridpoints +3.2% +2.3% +3.5% +3.2% +3.1%

16 gridpoints +3.0* +2.3% +3.7% +3.4% +3.1*
Ai"(hPa)

2 gridpoints -3.9% -0.9 +0.5 0.0 -0.7

16 gridpoints -3.4% -1.1 +0.3 -0.1 -0.8
AU (%)

2 gridpoints -2 -1 0 0 -1

16 gridpoints 0 0 2 x -1 -1 *
AC (%)

2 pridpoints +7 # 0 -7 -5 K -1 #

16 gridpoints +5* 0 -9 % -3 % 20

* Changes significant at the 5% Ievel using the Welch-Aspin test.



Table 14 presents the changes in the seasonal and annual means (2 x CO, - 1 x CO,)
of N.R.T.P. U and Cin the CCC-GCM. The predicted mean changes for the small
box (2 gridpoints) covering the Netherlands do generally not differ much from those
for the Targe box (16 gridpoints). The temperature increase resulting from doubling the
atmospheric CO, concentration in the GCM is about 3°C over Western Europe. The
GCM also shows a sharp increase in mean precipitation over the region during winter
and a decrease during summer (see also Houghton et al., 1990, Figure 5.6). The
number of rain days changes in the same direction during these two seasons. The
increase in the mean precipitation amount and the number of rain days during winter
is consistent with the systematic changes in surface air pressure and cloud cover for
that season. The lower rainfall frequency during summer is only accompanied by a
significant decrease in cloud cover. The changes in the mean number of rain days and
cloud cover are not related to the relative humidity in the GCM simulations. The mean
relative humidity is. however, in both the 1 x CO, and 2 x CO, simulations closc to
100% and should therefore not be considered further.

In the remainder of this report only the GCM predicted mean changes in T and P for
the 16 land gridpoints over Western Europe are considered to obtain daily
precipitation scenarios for a doubled CO, climate. The use of the changes in Tand Pis
in line with the conclusions in Houghton et al. (1990, pp. 102, 108) that the recent
higher resolution GCMs are capable of generally realistic simulations of surface air
temperature and surface air pressure. This gives some confidence in the magnitude of
changes predicted by these models.
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5 Changes in the occurrence of rain based on
statistical relations

In section 2 the dependence of rainfall occurrence at De Bilt on surface air pressure P,
relative humidity U and relative incoming solar radiation  was described. This
dependence can be used to model the changes in rainfall occurrence given a
systematic change in one or more of those variables. In the previous section it was
suggested to base the change in the seasonal means of P on GCM simulations.
Regression analysis offers the possibility to estimate the accompanying systematic
changes in U and Q. This is demonstrated in this section with the monthly values in
the 1961-1990 record at De Bilt. The linear Model A in Section 2 is used to estimate
the changes in the percentage of rain days resulting from the systematic changes in P
over Western Europe in the CCC-GCM. Difficulties with the extension to daily values
are identified. Methods to transform an observed sequence of wet and dry days with
the logistic Model B in Section 2 are discussed and illustrated with the systematic
changes in the percentage of rain days at De Bilt resulting from the earlier mentioned
pressure perturbation.
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Figure 12 Annual cycle of £, U, Q and N at De Bilt (1961-1990).
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Changes in monthly values

For the monthly values a linear regression model suffices to derive the changes in U
and O resulting from a pressure perturbation. The estimates of U, and Q, from the
titted models to the De Bilt data are given by:

260 .94 + 6.67cos(211i/12) - 0.18P, i=1,..,1 (17)

s
I}

-457 .39 - 7.83cos(2I1i/12) + 0.49P, i=1,.,1 (18)

Q.
I

H

with 7 the total number of months considered. A cosine term is included in these
equations because there is a marked annual cycle in U and ¢ whereas P shows little
seasonal variation. From Figure 12 it is seen that U is relatively high in winter. On the
other hand the mean of Q reaches its maximum in summer. When the relations (17)
and (18) also hold in a perturbed climate, a constant decrease in P, of 3 hPa results in
an increase n U of 0.54% and a decrease in Q of 1.47%.

The reported changes in U and @ are rather modest as a result of the weak correlation
with P and could perhaps be neglected for climate change scenario objectives. For the
1961-1990 record at De Bilt the estimated correlation coefficients between P, and U,
and P, and Q, are -0.19 and 0.32, respectively. This does not improve when the annual
cycles are removed. Nevertheless the values are statistically significant (< 0.05).

Although P is the most important variable in the regression relation for rainfall
occurrence, large changes in U and Q also lead to a considerable increase or decrease
in the number of rain days. Because of the rather strong relation between the two
variables. it is not justified to make a change in U without changing (. The estimated
correlation coefficient between the monthly values U, and Q, in the record at De Bilt is
-0.83 (-0.63 when the annual cycles in U, and Q, are removed). For the monthly values
at De Bilt the change in Q, can be based on the following relation with Uy

0, = 128.85 - 1.11U, i=1,..1 (19)

Provided that this regression relation holds f01 the perturbed climate, an increase n U,
of for instance 5% results in a decrease in Q of 5.55%. According to the linear
multiple regression model of Section 2 there will be an increase in the percentage of
rain days of 6.43% (= 2 days per month) with these changes in U; and @, and no
change in P.. This is in sharp contrast with Bultot and Gellens (1989) who changed U,
in their climate change scenario with 5% without changing Q, and the percentage of
ram days.



Tuble 15 Changes in the mican pereentage N of rain days in perturbed climates at De Bilt using
Model A. The monthly values of £, U and () in the [961-1990 record were changed
according to the GCM prediction in Table 14 (2xCO--1xCO,, 16 gridpoints), cquation
(17) and cquation (18), respectively.

Perturbation Season Year
IDARE MAM JIA SON
AN
perturbation in 22 only +5 +2 0 0 +2
perturbations in 2.U.() +7 +2 -1 0 +2

As an example of the changes in the monthly mean percentage of rain days resulting
from a pressure perturbation. the seasonal mean changes in surface air pressure P due
to doubling CO, in the CCC-GCM are considered for a large area surrounding the
Netherlands (Table 14). U and Q were either kept the same as in the present-day
chmate or changed according to equations (17) and (18). Table [5 presents the
changes in the mean percentage of rain days in the perturbed climates at De Bilt as
obtained with Model A.

There is a large increase in the percentage of rain days during winter. A much smaller
increase is found in spring and there is no or little change during the other seasons.
Negating the changes in U and Q resulting from the pressure perturbation has only a
slight effect on the predicted change in rainfall occurrence. Only for the winter and
spring is there a reasonable agreement with the changes in the percentage of rain days
predicted by the GCM (see Table 14). In contrast to the scenario in Table 15, the
2xCO, GCM run shows a strong decrease in the number of rain days during the
summer and autumn. This decrease is accompanied by a systematic change in cloud
cover €. whereas the changes in P are small. The changes in U and Q from the
climatological relation with P in the second scenario in Table 15 are small and at
variance with those expected from the change in C.

Changes i daily values and transtormation of the sequence of wet and dry days

The linear models in equations (17). (18) and (19) always add a constant AU/, or AQ,
to the observed values U/, and Q,. For daily data this can be problematic because of the
physical boundaries of these elements. Relative humidity U is for instance quite often
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close to its upper boundary 100%. Because in the Netherlands U is always far away
from its lower boundary, a change in the observed daily values U, can be achieved
with the transformation f (100-U)). The factor f can be estimated from the monthly
mean values by fitting a linear regression model to In(100-U,). For the record at De
Bilt the fitted relation 1s given by:

In(100-U,)) = -5.99 - 0.39cos(2I1i/12) + 0.009P,  i=1, ] (20)

The result of a decrease in P of 3 hPa is now that the value of ( IOO—(’}I) changes with a
tactor f = ¢ = 0.97. The same factor applies to the daily values. For De Bilt the
long term annual mean humidity U is about 82%. Because A(100-U) = (f-1) (100—17) =
-0.03 (100-82) = -0.54 the change in U is +0.54%. This corresponds well with the
increase found earlier for the monthly values using equation (17).

Another transformation is necessary to change the daily values of Q. Especially during
the winter season Q is frequently close to its lower boundary zero in the Netherlands.
One should further take into account that the temperature increase resulting from the
higher concentration of greenhouse gases in the atmosphere has little effect on the
valucs of @ for days with clear skies. Rather advanced techniques are needed to
transform the daily values of Q.

There are various methods to obtain a sequence of wet and dry days for a perturbed
climate where the frequency of wet days differs from that in the present-day climate.
If more rain days are expected in the perturbed climate, then dry days with high values
of the probability p," of rain in the perturbed climate can be transformed into rain
days. It 1s possible to limit this transformation to days that are preceded or followed by
a rain day. In case of an increasing frequency of dry days, rain days can be
transformed in dry days in a similar way.

In Section 2 it was noted that for the logistic model the total number of wet days is
estimated as:

~

m = ﬁj 20
=
with K the number of days in the period considered. Now let us assume that, for
instance in winter (DJF), the probability that day j is wet changes from p, to p," due to
a systematic change in surface air pressure in that period. The change in the number of
wet days is then estimated as:

—

K K
Am = P - Eﬁj (22)
J=1 J=1

where A is usually rounded to the nearest integer. For Am > 0, the Am dry days
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with the highest values of p," can be transformed into wet days, whereas for Am <0,
the Am wet days with the lowest values of p," become dry days.

In general high values of p," are found on days with low surface air pressure. The
expected precipitation amount is relatively high for such days. Another selection
procedure for the additional wet days will generally lead to a lower value of the
expected precipitation amount for these days. Therefore. instead of choosing the dry
days with the highest values of p," a simple alternative based on simulation of binary
variables is also considered. For each dry day a binary variable Y is drawn giving the
status of that day in the perturbed climate (1 = wet and 0 = dry). In order that the
expected number of additional wet days equals Am the probability 1T that ¥, = 1
should be equal to: ’

L
L, = Am p 2115]_* j=1,.,L (23)

with L the total number of dry days in the period considered. The probability that day
j will be transformed into a wet day increases thus linearly with p,". Just as in the
observed record there will be dry days with a high probability of rain in the
transtormed record. For the case Am < 0 a similar procedure can be applied to the
observed wet days.

Example:

Equation (22) was used to obtain the change in the number of rain days at De Bilt
from the seasonal mean changes in P in the CCC-GCM. The daily values of U and Q
were left unchanged. The probabilities of rain in the right-hand side of equation (22)
were derived from the logistic model using the parameter estimates in Table 3. It was
found that the value of Am varied between +4.7 days per year in the winter season
(AN =+5.2%) and -0.5 days per year in the summer season (AN = -0.69%). As
expected the change in the percentage of rain days is almost identical to that in Table
15 where the linear model was applied to monthly values.
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6 Changes in the amount of precipitation based on
statistical relations

The models in Section 3 for the dependence of precipitation amount on temperature
and surface air pressure can be used to generate representative and internally
consistent daily time series of these weather variables for a CO, induced warmer
climate. Although a change in the CO, content of the atmosphere almost surely leads
to a systematic change in 7. it is much less certain whether this will also be the case
for P. Therefore the situation that there 1s no systematic change in P is discussed first.
Then the changes in the seasonal means of 7 and P in the CCC-GCM are used to
obtain a synthetic daily rainfall sequence for De Bilt in a doubled CO, climate from
the 1961-1990 record at that location.

When there is only a temperature perturbation it is reasonable to assume that the
number of rain days remains the same as in the present-day climate. The precipitation
amounts in the perturbed climate can then be obtained by multiplying all daily
precipitation values in the observed record by a temperature and pressure dependent
factor, representing the predicted change in the mean amount according to the
regression model. The factor Fis given by:

F(I,T",P) = exp [K(T",P) - K(T,P)] (24)

with 7~ the temperature in the perturbed climate. For the 7 parameter model in
equation (13) the factor no longer depends on P and equation (24) reduces to:

F(I,T*) = exp [B{T"-T} + c{(T*-m ) ~(T-m)’}

w d{(T"-m) ~(T-m)}] (25)

This expression is identical to that derived in Klein Tank and Buishand (1993) from
the precipitation - temperature relation.

As an example, the sttuation of a constant temperature increase of 3°C and no change
in surface air pressure at De Bilt 1s considered. All daily amounts in the 1961-1990
record were multiplied by F derived from the 4 parameter model in equations (6) and
(8) with only temperature as explanatory variable. the 7 parameter model in equations
(12) and (13) and the 12 parameter model in equations (12) and (15).
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Figure 13 Changes in the mean precipitation amount Rina perturbed climate at De Bilt. All daily

temperatures in the 196 1-1990 record were increased by 3°C. The multiplying factor F
was based on the 4 parameter model with only T as explanatory variable (solid line), the
7 parameter model (dashed line) and the 12 parameter model (dotted line). In the last two
cases surface air pressure was kept the same as in the present-day climate.

For all three cases Figure 13 shows the relative differences between the monthly
means of the new record and the observed means. The multiplying factors were
applied to all wet days in the record of De Bilt including wet days at very low
temperatures (7<-7°C), which were discarded for parameter estimation.

The higher temperatures in the perturbed climate give rise to an increase in the mean
precipitation amount compared to the historical observations at De Bilt. For all three
models the relative increase in the monthly mean is about 20% for the winter season:;
the relative increasce is nearly always less than 10% for the period May-October. The
seasonal cycles for the 7 and 12 parameter models in T and P are almost identical. In
comparison with the historical observations the annual mean increases with about
10%. The interannual standard deviation changes with the same factor as the annual
mean.

The use of the 4 parameter precipitation - temperature relation does in fact assume that
P changes according to the present-day relation between P and T rather than that there
1s no change in P. Because there is a weak correlation between P and T the results

36



from this model slightly differ from the models containing both P and T The latter
should be preferred.

Because in a warmer world temperatures are considered which have never occurred.
the model for the relation between precipitation and temperature/surface air pressure is
somewhat extrapolated beyond the range of observed data. Klein Tank and Buishand
(1993) showed that for the 4-parameter precipitation-temperature relation the
multiplying factor F(T,T") in equation (25) rapidly grows at the upper end of the
temperature range. For the case 7' =T+ 3°C they found that F varied between 0.95 at
T=12°C and 2.07 at T = 24°C. When the 7 parameter model in equations (12) and
(13) for the precipitation-temperature/surface air pressure relation is used, the extreme
values of F are reached at the same temperatures (1.02 at 7= 12°C and 1.82 at

T =24°C). The multiplying factor for the 12 parameter model in equations (12) and
(15) shows a different behaviour.

Table 16 Multiplying factor F (with its standard error s¢) for values of 7 and P along the line
P =960 +2.3Tin Figures 6 and 8 when there is a constant increase in temperature of
3°C on cvery day and no change in surface air pressure.

12 par model 7 par modcl
T T P F s¢ F se
3 6 967.0 1.20 33 1.23 01
4 7 969.3 1.17 27 1.23 01
5 8 971.7 118 22 1.22 .01
6 9 974.0 1.23 19 119 0l
7 10 976.3 1.30 A7 1.14 01
! 11 978.7 1.34 16 1.10 01
9 12 981.0 1.32 14 1.07 01
10 13 983.3 1.26 1 1.04 01
11 14 985.7 1.17 09 1.03 01
12 15 988.0 1.07 07 1.02 01
13 16 990.3 97 07 1.02 01
14 17 992.7 88 07 1.03 02
15 18 995.0 1 08 1.04 02
16 19 997.3 a7 09 107 03
17 20 999.7 74 A0 1.10 05
18 21 1002.0 5 oy 1.14 06
19 22 1004.3 19 A2 1.19 08
20 23 1006.7 &Y A3 1.25 A1
21 24 1009.0 1.06 15 1.33 14
22 25 1011.3 1.37 19 1.42 A8
23 26 1013.7 1.93 30 1.53 23
24 27 1016.0 2.98 63 1.67 29
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Consider for instance the values of F in Table 16 along the dashed line P =960 + 23T
in Figures 6 and 8. The lowest value of /in the table 1s 0.74 (T = 17°C), the highest
value 2.98 (77=24°C). For the record of De Bilt very low values of /7 can be reached
on wet days with P and T values under the line P =960 + 2.37" For instance at 7" =
18°C and P =995 hPa the value of F drops below 0.6. The cubic term in 7 in equation
(15) is then negative and dominates the factor. There is no clear physical explanation
for this behaviour. To avoid such low values of the factor, a lower bound of F can be
introduced (for instance /= 0.70) or. for days with T and P values under the line

P =960 + 2.37T. the factor can be set equal to the value at the point on the line where
the surface air pressure equals P Since this is only necessary for a relatively small
fraction of the wet days it hardly influences the changes in the long term monthly
means given in Figure 13.

Apart from the very low values of F for wet days with moderate temperatures under
the line P = 960 + 2.37. the multiplying factor for the 12 parameter model becomes
extremely large at high temperatures if 2> 1006 hPa. The cubic term in T is then
positive. In the record of De Bilt the multiplying factor reaches values as high as 6.3 at
T=24°C and P = 1022 hPa. A less sharp rise of the factor at high temperatures can be
achieved by introducing a second knot n1, > m, after which k&(T,P) is taken again linear
in 7. When m, = 21°C the highest value F' = 3.21 in the record of De Bilt is reached at
7=21°C and P = 1030 hPa. The large value of the factor 1s of little interest here
because the precipitation amounts are small if P = 1030 hPa.

In the 7 and 12 parameter models the coefficient of variation vartes with 7 and P. The
use of a factor does not preserve the relation between v, and these variables in
equation (14). More advanced techniques are necessary to achieve that this relation
also holds in the perturbed climate. The need for such techniques is questionable
because the change in v, is rather modest (not more than 5% in case of a 3°C
temperature increase and no change n P).

Precipitation scenario in ¢ase of perturbations in both temperature and surface air
HesSure

In case of a systematic change in both 7 and P the multiplying factor F becomes:

F(T.,T"PP") = exp [K(T",P") - k(T,P)] (26)

where T and P refer to the values of 7 and P in the perturbed climate. For the 7
parameter model F can be written as the product of the temperature dependent factor
in cquation (25) and a pressure dependent factor of the form:

* * £\ 2 2
FP.P) = expla {P-P"} + a,{(q,-P7).-(q,-P).}
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+ a3{(ql_P *)i_(ql_P)i}] (27)

The systematic change in P 1s generally accompanied by a change in the number of
rain days. The techniques in Section 5 should therefore be used to alter the observed
sequence of wet and dry days. The precipitation amount on a new wet day can be
based on the regression model for R. The simplest method is to use the predicted value
explk(T".P")] from the model. A more realistic precipitation record that better
reproduces the daily variability 1s obtained by generating these amounts from an
exponential distribution (Appendix C). The various steps to obtain a scenario for the
case of perturbations in both temperature and surface air pressure are summarized in
Appendix D.

The scenario construction method was applied to the 1961-1990 record at De Bilt
using the seasonal changes in temperature and surface air pressure over Western
Europe in the CCC-GCM as presented in Table 4. Relative humidity and relative
incoming solar radiation were left unchanged. Table 17 presents the relative
differences between the seasonal and annual means of the transformed daily
precipitation record and the original means. The multiplying factor F was based on the
12 parameter model. For the determination of additional wet or dry days, both the
method that changes the day status according to the highest or lowest values of ;" and
the alternative Monte-Carlo method of generating binary variables were considered
(see Section 5). On the new dry days (on average 0.5 day per year in the summer
season) the precipitation amount in the scenario was set to zero. For the new wet days
(on average 4.7, 1.7 and 0.2 days per year during winter spring and autumn,
respectively) only the predicted mean amount exp[k(T ", P')] was used for the
computation of the seasonal and annual means.

Table 17 Changes in the mean precipitation amount Rin perturbed climates at De Bilt. The daily
values of T and P in the 1961-1990 record were changed according o the GCM
predictions in Table 14 (2xCO,-1xCO,, 16 gridpoints). The multiplying factor F was
based on the 12 parameter model. A change in the number of rain days was achicved
cither by a change in the day status according to the highest or lowest values of p' () or
by gencrating binary variables (I1). J

Scasuin Yeur
Method DIF MAM T1J1A SON
AR/R (%)
I +47 +22 +9 +11 +22
11 +44 +20 +8 +11 +20)
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The annual mean in this scenario increases with about 209 . whereas the interannual
standard deviation increases with 14% . Due to the change in the number of rain days
the mean and standard deviation no longer change with the same factor. The relative
changes in the winter season are more than twice as high as in the other seasons. The
method used to determine the additional wet or dry days has hittle effect on the
changes in the scasonal and annual means. Almost identical results are obtained with
the use of the 7 parameter model instead of the 12 parameter model.

As a result of the substantial systematic change in 77and P. this scenario is extremely
wet. The percentage increase is much higher than that predicted by the CCC-GOM for
the 2xCO, climate over Western Europe (Table 14). The predicted precipitation
changes in the CCC-GOCM are thus strongly at variance with those expected from the
accompanying changes in 7 and P. This discrepancy is partly caused by the fact that in
the scenario U/ and () were not altered. which is not consistent with the systematic
changes in cloud cover in the GCM simulations. In contrast to the scenario there is a
strong decrease in the number of rain days in the CCC 2xCO, summer and autumn
climate, which can be attributed to the substantial decrease in cloud cover during these
scasons. It is further possible that the refations between precipitation and other
elements are not preserved in the GCM simulations as is assumed in the scenario. The
predicted changes in mean precipitation from climatological relations are, however, a
useful alternative to the GCM predictions because precipitation is very poorly
reproduced in these models. Even if one wishes to base a scenario on the GCM
predicted scasonal precipitation changes. one still has to find a method to obtain
representative and internally consistent daily time series.

The unequal changes in T and P for cach season result in different values of the
temperature and pressure dependent factor £ in the scenario. It is possible to avoid
abrupt changes in £ at the transition of seasons by describing the predicted changes by
continuous periodic functions. Whether this is necessary is an open question because
abrupt changes in F are masked in the transformed series as a result of the day to day
vartation in R. T and P.



7 Conclusions and discussion

Simple deterministic transformations of observed climate records have been popular to
obtain time series for climate change impact studies. For daily rainfall data the most
widely used method assumes that the number of rain days remains unchanged.
Extensions that allow for changes in the sequence of rain days have recently been
considered. A sensible approach is to base the inclusion or removal of rain days on an
estimate of the probability of rain from the values of other meteorological vartables. It
is further important that the transformation of the precipitation amounts is consistent
with the changes in other elements. This can be achieved by regressing the preci-
pitation amounts on these clements.

FFor the record at De Bilt the percentage of rain days in a given month can be related to
the monthly mean values of surtace atr pressure P, relative humidity U and relative
incoming solar radiation Q by means of the standard linear regression model as
presented in this report. The non-linear logistic model, however, is needed to obtain an
estimate of the probability of rain for individual days. The four parameters in the
model were taken constant over the year in this study. For a complete description of
the annual cycle in the number of rain days, it is, however, necessary to incorporate
seasonal variation in the parameters. The best fit to the data 1s obtained with a
precipitation threshold of 0.1 mm.

The regression model for the relation between precipitation amount R on rain days and
daily mean temperature T presented in Klein Tank and Buishand (1993) can be
extended with surface air pressure to take partly into account the possible changes in
atmospheric circulation that may accompany a temperature change in a future climate.
There is a complicated interaction between the effects of temperature and surface air
pressure on the amount of precipitation. Nevertheless a 7 parameter model which
negates this interaction reasonably describes the variation of the mean precipitation
amount with temperature and surface air pressure. A 12 parameter model, which
includes several interaction terms. 1s needed to obtain a non-significant value of the

X *-statistic for lack-of-fit. Both models with constant regression coefficients over the
year cannot fully explain the scasonal variation in the monthly means. Besides a
temperature and pressure dependent multiplying factor to adjust the daily amounts on
existing rain days. the models provide the expected rainfall amount on new wet days.
i.e. observed dry days that were changed into wet days.

Sensible values for the changes in 7. P. U and Q are required before the regression
models for rainfall occurrence and precipitation amounts on rain days can be used to
transform the observed time series of daily precipitation into a daily time scries
suitable for climate change impact studies. One possibility is to derive these changes
from regional GCM output. This is only recommended. however, if the GCM can
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reasonably reproduce the variable of interest. Statistical relations for the observed
climate can also be used to obtawin a consistent set of changes in 7, P, U and (0. Such a
relation can be a linear regression model when the changes in monthly means are
suttficient. More complex models will generally be needed to represent the relation
between daily values. in particular for vartables with clear physical boundartes ({7 and

).

A transtormation of the observed daily raintall sequences at De Bilt based on the
seasonal mean changes in 7 and P as predicted by the CCC-GCM for the 2xCO,
climate leads to an increase in the annual mean of about 20% . FFor the winter months
(DJI) the increase 1s even twice as much. These results only slightly depend on how
probabilitics of rain are translated into wetand dry days and the choice between the 7
and 12 parameter model for the precipitation amounts. The GOM 2xCQO), climate
shows a less extreme increase 1 the mean amounts over Western Europe than the
above transformed record. The GOM predicted changes in the mean amounts are not
necessarily better because precipitation is very poorly represented in the model
simulations. Different precipitation scenarios may be obtained from the regional
predictions of T and P in other GCMs. In particular. recent transient experiments with
coupled occan-atmosphere models could be considered.

The derivation of a scenario trom statistical relations tor the present-day climate
gencrally assumes that these relations remain unchanged. For this reason temperature
was not considered in the logistic model for rainfall occurrence. since itis very
unlikely that the relation between ramfall occurrence and temperature is preserved in
the doubled CO, climate. For instance. as warm summer days are often dry, a
temperature increase would lead to a decrease in the number of rain days during
summer according to that relation. In general. it is. however, rather difficult to verify
the constancy of statistical relations under climate change conditions. Regional GCM
data are of limited use for this purposc. Verification of the statistical precipitation
relations i this report 1s hampered by the high temporal variation of daily
precipitation and the poor description of this element in the GCM simulations.

A marked distinction between our transtormation method and the stochastic simulation
procedure i Richardson (1981) 1s that the Tatter considers precipitation first. The
other variables are conditionally generated on the sequence of wet and dry days. The
relation between temiperature and the amount of precipitation is ignored in that
approach. Richardson’s model assumes that the maximum temperature, the minimum
temperature and the incoming solar radiation follow a three dimensional normal
distribution. It is well-known that the normal distribution cannot adequately describe
the distribution of the daily values of O (Bennett. 1975 Amato et al.. 1985 Graham et
al.. 1988). In the Netherlands the distribution of the daily incoming solar radiation is
negatively skewed for the dry days in the summer scason and positively skewed with a
relatively large coetfictent of vartation during the winter season. The normal
distribution then overestimates (2 for clear summer days and occasionally leads to

42



negative values during winter (about 105 ot the wet days and 3% of the diy days).
Daily temperature distributions also may difter from the normal distribuvon (Toth and
Szentimrey. 1990). The normal distribution 1s. however, the only suntable distribution
to generate multivariate time seres. Franstormation of the origimal variables might be
considered to achieve normality. But also then it s difficult to treat the varation of the
incoming solar radration within its physical boundaries well,

Richardson's model assumes tirst-order Markov dependence. The model reproduces
the Tag zero and lag one cross correlation coctticients between the maximium
temperature, the minmmum temperature and the mcoming solar radiation. This does not
guarantee, however, that all relations between these clements are preserved and thus
there is a possibility that irrealistic combinations are generated. This risk grows if
other varrables (relative humidity. wind) are added to the model. Teis further well-
known that first-order Markov dependence is msuificient o reproduace the complex
autocorrelation structure of climate time series (Gregory etal. 19930 Woolhiser et
al..1993). The variances of monthly and annual precipitation amounts are therefore
often underestimated and prolonged droughts as well as periods of exoreme werness
are not well preserved. This shortcoming cannot casily be remedied. The duration of
heat waves and cold spelis also suongly depends on the autocorreiation stucture. The
model's fatlure to reproduce fong period variation may put limitations on its use for

clinmate change impact stuagics.

Statistical downscaling of GCM simulations can fead to Targe errors in the long term
seasonal and annual mean amounts. because present-day high resolution GCMs poorly
reproduce the frequencies of the various circulation types. like the number of days
with a cyclonic or anticvclonic circulation (Hulme et al.. 1993 Beersma. 1994, 1t is
also unlikely that the generated raintall sequences will have the right autocorrelation
structure due to simplitications in the stochastic precipitation model and because the
GCMs have difficulties to describe the persistence of the Targe-scale circulation (Hug-
hes etal., 1993). The classification of the circulation types might not be optimal for
predicting rainfall occurrence. the amount of precipitation and thewr changes.
Extension with other variables than precipitation seems desirable. This will, however,
meet similar difficulties as in the Richardson approach.

Deterministic downscaling of GOM simulations has not vetdeveloped far cnough 1o
he useful for i broad rance of impact stadies. Limited computer rosonrces prevent
simulations of sufficienty long climate tine series. Moreover, this technique 1s unable
to provide more detailed information than the resolution of the nested AN which is
currently of the order of 20 km. Systematic errors in the Targe-scale GOM circulations
are transmitted to this scade as the GU M provides the boundary conditions of the

nested model.

[tcan be concluded thae the grounds for using awrciativedy siipic ransiornasion of

observed records mstead of stochastic or deterministic simulation nicihods are rather
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strong. Problems with dissimilarities between observed and simulated climates for the
IxCO, case do not exist in the transformation method. Nevertheless the regression of
daily precipitation amounts on two or more weather variables causes already some
difficulties. Further complications might be expected when seasonality 1s incorporated
in the regression models. The necessity of this extension can, however. be questioned
because of the large uncertainties in the changes of the covariates. Transformation of
observed records becomes cumbersome when chimate change is caused by a change in
the mean direction of the air flow or by a change in the mean duration of blockings
and depressions. Although there is some speculation that such changes may
accompany the global greenhouse warming. their magnitude and direction are
extremely uncertain. The transformation of the daily values of U7 and Q needs further
attention. The fact that these two variables were kept the same precludes a scenario
with a strong increase in extreme summer droughts. which may have important

impacts.
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Appendix A: Model validation

The occurrence of rain: testing for lack-ot-tit

Pearson's X statistic and the likelihood ratio test are generally used to assess the
adequacy of the fit of the logistic regression model (McCullagh and Nelder, 1989).
The latter is connected with parameter estimation by the method of maximum
likelthood. A problem with both test-statistics is that their asymptotic chi-squared
distribution under the null hypothesis no longer applies when the independent
variables are continuous. For this situation Lemeshow and Hosmer (1982) proposed a
modificd X “-statistic based on a grouping of the data according to the value of the
estimated probabilitics of idin.

The sequence of wet and dry days can be represented as v, v,, ..., v, where y, = 1 if
day jis wetand v, = 0 if it is dry. The estimated probability p, of rain on day j
according to the logistic model is given by equation (4). First ¢ groups are formed
with cutpoints 1/g. 2/g. ... (g-1D/g and day j is assigned to group & if (k-1)/g < p, < k/g.
k=1, .. ¢ InTable Al the cutpoints are defined at 0.1, 0.2, ..., 0.9 (¢ = 10). For each
group the numbers of dry and wet days are counted and these numbers are compared
with the expected frequencies according to the fitted model. The Hosmer-Lemeshow
coodness-of-fit statistic /" is then obtained by calculating Pearson's X “-statistic for
this 2xg table.

From asymptotic theory it follows that the null distribution of l? can be
approximated by the chi-square distribution with g-2 degrees of freedom. This has
been confirmed by extensive simulation (Hosmer and Lemeshow. 1980). Table A2
presents H,” and parameter estimates in the logistic regression model for each of the
10 subsets of the observed daily rainfall data. The mean value of the test-statistic H,
is close to its theoretical value 8 under the null hypothesis. The largest value (13.56)
of H,” in Table A2 is just significant at the 10% level. For this subset Figure Al shows
the relation between the predicted and observed number of rain days in the 10 groups
(reliability diagram). Even for this worst case there 1s no serious bias.

In Table A3 //;’ is given for the cases discussed in Section 2, where either the status
v, of the previous day is added to the modcl, or the threshold defining a rain day is
0.3 mm instead of 0.1 mm. or precipitation is sampled over the interval from 8 to 8 UT
mstead of O to O UT. It 1s scen that tor the 0.3 mm threshold three values of l:\l‘,\,' are
above the critical value 15.51 for a test at the 5% level. From this it can be concluded
that there 1s a systematic departure trom the logistic model in equations (2) and (3)
with that threshold. For precipitation in the 8-8 UT interval there is no indication of
lack-of-fit.



Table Al

Observed and expected frequencies of wet and dry days inintervals based on fixed
cutpoints of the estimated probability of rain (with the paramcter estimtes in Table 2 for
the 1961-1990 record at De Bilt).

Estimated probability of rain ()

[O- O.1- 02- (0.3~ (04 (0.5 0.6- (0.7- 0.8 (0.9- Totul
0.1] (.2] ).3] 0.4] 0.5} 0.6] 0.7] 0.8] ).9] 1.0]
Observed
Wet days 5 14 26 33 51 61 68 95 125 1Y 597
Dry days 65 93 72 65 56 44 42 32 23 6 498
Totul 70 107 9¥ 98 107 105 110 127 148 125 10958
E\D - ! N i
Wet days 5 16 24 34 48 58 72 95 126 IR 596
Dry days 65 91 74 64 59 47 38 32 22 7 499
Total 70 107 98 9& 107 105 110 127 148 125 1095
A
Table A2 Valucs of the statistic H; and estimated coctficients in the logistic regression model for
cach of the 10 subscts in the daily rainfall record at De Bilt (1961-1990).
Subsct ﬁ a b ¢ d
| 2.09 107.492 -0.108 0.049 -0.033
2 8.55 102.893 -0.104 0.049 -.043
3 8.07 114.537 -().118 0.076 -0.024
4 5.04 96.549 -0.097 0.047 -0.040
5 7.86 91.196 -0.094 0.065 -0.026
6 8.25 100.421 -0.104 0.0K82 -0.025
7 1313 101.571 -0.104 0.066 -0.033
8 13.56 93.507 -0.095 0.050 -0.031
9 4.19 00.558 -0.101 0.051 -0.037
10 4.1l 105.392 -0.108 0.062 -0.027
Average 7.49 101.412 -0.103 0.060 -().032
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Figure Al Reliability diagram for subset 8 in Table A2. The open dots refer to the numbers of wet

days in the probability intervals used for the calculation of the H,'-statistic.

Table A3 Values of the statistic I/}g' for each of the 10 subsets in the daily rainfall record at De Bilt
(1961-1990) with cither the status of the previous day added to the model (v;;), or with a
precipitation threshold of 0.3 mm instead of 0.1 mm, or with precipitation amounts over
the interval 8 to 8 UT instead of 0 to 0 UT.

Hg‘
Subset Vi 0.3 mm 8-8 UT
1 16.04 8.12 16.96
2 5.50 9.09 9.34
3 5.67 18.09 10.07
4 4.35 7.97 7.19
5 6.22 15.12 1.39
6 8.47 10.82 5.45
7 5.07 17.98 3.77
8 9.84 16.13 10.51
9 6.84 5.74 11.65
10 4.46 4.36 2.85
Mean 7.25 11.34 7.92




More advanced goodness-of-fit tests using nonparametric kernel methods are given in
Azzalini et al. (1989) and le Cessie and van Houwelingen (1991). These tests were not

considered 1n the present study.

The logistic model provides for cach day a probability p, of rain. The model performs
well if wet days (y, = 1) are associated with high values of p, and dry days
= () with low values. Thus the score

1 J

7 E - ] (Al)
J=

should be small. In the meteorological literature B 1s known as the Brier Score.

The observed long term mean probability or climatological probability of rain equals
¥. This probability would have been obtained when the logistic model only contained
the constant term «. For p, = ¥, the score B is equal to:

J
Y oy =y (1-y) (A2)
The Brier Relative Score (or Brier Skill Score) is defined as:

BRS = (1-B/B_)*100 (A3)

For a perfect predictor (8 = 0). BRS = 100, whereas BRS = 0 says that the prediction
rule is not better than the use of .

For the 10 subsets in Table A2 the mean value of BRS equals 32. This is slightly lower
than the values reported in Kruizinga (1983; Figure 3) for an application of logistic
regression to the output of the ECMWF numerical weather model (ECMWEF =
European Centre for Medium Range Weather Forecasting, Reading UK).

Performance indices can also be derived from the classification table in Section 2. A
good one is the Hanssen and Kuipers' discriminant V(Woodcock, 1976). V= 0if days
are randomly taken to be wet with probability ¥, whereas for a perfect predictor V= 1.
For Table 4 the value of Vis 0.49. In the original work of Hanssen and Kuipers (1965)
about the same performance was achieved by using only the height of the 500 hPa
level as a predictor (V = 0.49. p.33) and by a prediction rule based on surface air
pressure, wind direction and the occurrence of precipitation on the previous day
(V=0.50. p. 45). For climate change scenarios the use of some of these predictors is
questionable, however. It is for instance very likely that in a doubled CO, climate the
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relation between precipitation occurrence and the height of the 500 hPa level will
differ from that n the present-day climate. The higher temperatures in the 2xCO,
climate lead to an increase m the height of this pressure level. but not necessarily to a
change in the number of rain days (Section 7). When wind direction is incorporated in
the modcl for precipitation occurrence. then the dependence of relative humidity and
incoming solar radiation on wind direction must also be taken into account. Inclusion
of predictors which are not required tor the intended impact study should be avoided

as much as possible.

Further checks on the model for daily precipitation amounts

For a further check on the 12 parameter model in Section 3 for the relation between
the precipitation amount on rain days. daily mean temperature and daily mean surface
air pressure. the parameters «. b. ¢ and d in equation (8) were estimated for distinct
pressure intervals. In Table A4 and Figure A2 six different intervals of surface air
pressure are considered. Some notable features are the maximum of the parameter b
near P = 1010 hPa and the almost monotone change of the parameters «, ¢ and  with
P. The values of a. b. ¢ and d, derived from the 12 parameter model by substituting the
mean ot P at each interval, are in good agreement with the direct estimates. Model
values never differ more then 2.1 times the standard error se from the direct estimates.

In a similar way the parameters «,. ;. d, and «, in equation (10) were estimated for
five distinct temperature intervals (Table AS and Figure A3). Also for these
parameters the values derived from the 12 parameter model are in good agreement
with the direct estimates. Model values never differ more then 2.3 times the standard
error se from the direct estimates. The statistical significance of a cubic term in Pis
confirmed by the significant valucs of the cstimate of «, in three out of the five

intervals.



Tablc A4

Estimates of the coetficients a, b, ¢ and  in the precipitation - tcmperature relation,
cquation (8), with their standard crror (se) for various vatues of surface air pressure P for
rain days at De Bilt (1906-1981). Estimates arc compared to the theoretical values
according to the 12 parameter model in equation (15). SDIF gives the standardized
difference between estimate and model value.

a b
P (hPa) Esumate 8¢ Maodel SDIF Estimate S¢ Model SDIF
99(). () 1.572 0.056 1.538 0.6 ().049 0.010 0.051 -0.2
1003. 1.161 0.041 1.163 0.0 0.069Y 0.007 ().00Y 0.0
1011, l 0.768 0.050 0.791 -().5 0.076 0.008 0.077 -0.1
1016.8 ).563 0.062 ().452 1.8 0.065 0.010 0.074 -0.9
1022.6 (.095 0.074 0.048 0.6 0.054 0.013 0.061 -0.5
1030.4 -0.641 0.072 -0.509 -1.8 0.055 0.015 0.039 1.1
¢ d
P (hPa) Estimate s¢ Mode! SDIF Estimate se Model SDIF
990.6 0.001 0.009 0.010 -1.0 -().8E-4 9.1E-4 -1.2E-3 1.2
1003.2 -0.003 0.003 -0.002 -0.3 -3.0E-4 3.0E-4 -2.0E-4 -().3
1011.1 -0.009 (0.003 -0.010 1.7 4.0E-4 1.6E-4 4.0E-4 0.0
1016.8 -0.013 0.003 -0.015 0.7 7.0E-4 2.0E-4 9.0E-4 -1.0
1022.6 -0.023 0.006 -0.021 -0.3 17.0E-4 4.3E-4 13.0E-4 0.9
1030.4 -0.006 0.012 -0.028 [.8 -4.0E-4 10.7E-4  19.0E-4 2.1
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Figurc A2 The functional dependence of the parameters a, b, ¢ and d in the precipitation -

temperature relation, equation (8), on surface air pressure for rain days at De Bilt (1906-
1981). This relation was fitted to the precipitation amounts in six different intervals of
surface air pressure. For each interval the estimated parameters are plotted at the mean
value of P. The crror bars indicate the standard errors of these ¢stimates. The solid lines
represent the theoretical values according to the 12 parameter model.
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Table AS Estimates of the cocefficients ¢, @, ¢, and «, in the precipitation - pressure refation,
cquation (10), with their standard error (se) for various values of temperature 7 for rain
days at De Bilt (1906-1981). Estimates are compared to the theoretical values according
o the 12 parameter model in equation (15). SDIF gives the standardized difference

between estimate and model value.

a, a,

T C) Estimate sC Model SDIF Estimate s¢ Model SDIF
0.4 0.279 0.036 (0.259 0.6 0.078 0.005 0.073 1.0
5.2 (3.639 0.024 ().584 2.3 0.087 (.004 0.086 0.3
8.9 0718 0.029 0.779 2.1 0.101 0.006 0.099 0.3

13.1 0.703 0.032 0.695 0.3 0.144 0.009 0.125 2.1
17.1 0.765 0.059 ().680 1.4 0.117 0.021 (.135 -(0.9
a, a;

T C) Estimate s¢ Model SDIF Estimate s¢ Model SDIF
0.4 -1.6E-3 0.6E-3 -1.1E-3 -0.8 1.8E-5 1.5E-5 0.4E-5 0.9
5.2 -2.4E-3 (.4E-3 -2.2E-3 -0.5 2.7E-5 0.8E-5 2.2E-5 0.6
8.9 -3.1E-3 0.6E-3 -3.0E-3 -0.2 3.9E-5 1.4E-5 3.6E-5 0.2

13.1 -5.9E-3 I.1E-3 -3.9E-3 -1.8 9.7E-5 3.2E-5 5.2E-5 1.4
17.1 -4.2E-3 2.8E-3 -4.8E-3 0.2 8.2E-5 10.0E-5 6.6E-5 0.2
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Figure A

The functional dependence of the parameters a,, a,, a,, a; in the precipitation - pressure
relation, cquation (10), on temperature for rain days at De Bilt (1906-1981). This
relation was fitted to the precipitation amounts in five different temperature intervals.
For cach interval the estimated parameters are plotted at the mean value of 7. The error
bars indicate the standard errors of these estimates. The solid lines represent the
theorctical values according to the 12 parameter model.
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Appendix B: Humidity and surface air pressure in the
CCC-GCM

The CCC-GCM does not provide the relative humidity U at screen level, but the
specific humidity ¢. The latter was interpolated from the lowest prognostic level
located approximately 200 meter above the surface. No checks were made on the
internal consistency of the various sceen level quantities. In this study the daily values
of U were derived tfrom the daily specific humidity ¢, surface air pressure P and
surface air temperature 7, which were available as 12-hourly sampled data (P) or as
12-hourly means (¢,7). From the mean of the two 12-hourly values the daily saturated
vapour pressure ¢, was obtained using the Clausius Clapeyron relation (Magnus
approximation):

e, = 6.107exp[17.57 /(241 .8+T)] (B1)

and the vapour pressure ¢ was computed as:

e = qP/0.622 (B2)
The daily relative humidity U is given by:

U = 100e/e, (B3)

The daily relative humidity at De Bilt is, however, a mean value of the relative
humidity at the 24 clock hours. The two daily values of U differ because of the diurnal
cycle of the temperature and the non-linearity of equations (B1) and (B3). To quantify
the systematic difference the daily mean relative humidity at De Bilt was compared
with that obtained from equations (B1) and (Bi) using the daily means of 7" and ¢. The
latter is on average smaller than the values of U in Table 13 for De Bilt. The largest
discrepancy 1% is found for summer. This discrepancy 1s much smaller and of
opposite sign than those found between the model simulations and the values for De
Bilt in Table 13. The abnormal mean values of the relative humidity for the model
stimulations should mainly be ascribed to deficiencies of the interpolation procedure to
obtain the specific humidity at screen level.

Surface air pressure given by the CCC-GCM was reduced to mean sea level (msl)

pressure according to WMO standards (WMO, 1964). A temperature correction was
taken into account. The effect of air humidity could not be considered. The latter is,
however, only important in (sub)tropical regions. The transformation formula reads:

- 0.0148275H / (T+273.16+0.00325H) )
Pm:l Pnuface *10 ( 84)
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with H the surface height above mean sea level. The prescribed surface height of the
two gridpoints in the small box of Figure 11 is 249 m and 351 m. respectively. The 16
land gridpoints in the large box vary in height between -9 m in the northwest and

593 m in the southeast.
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Appendix C: Simulation of precipitation amounts

The regression model provides a value for the mean precipitation amount u(7" P ) =
exp[k(T",P)] for each new wet day in the perturbed climate. The aim of simulation is
to add random variation to this estimate in order to reproduce the variability of the
daily precipitation amounts. Reasonable results are already obtained by generating
from the one parameter exponential distribution. The density of the exponential
variable X is given by:

fx) = Ae™ x>0 (C1)

The parameter A determines the mean and the variance of X:

E(X) = 1/A ; varX = 1/A? (C2)

The variable X takes values on the interval (0,%). The precipitation amount R” has,
however, a positive lower bound & = 0.05 mm because days with smaller amounts are
recorded as dry days. Therefore R should be generated as R* = X + 8. From E(R") =
E(X) + & it follows:

1A = (T P*)-5 (C3)

The variable X can be written as X = X / A with X the standard exponential variable
(exponential with A = 1). X can be generated as X = -InV, where Vis a uniform
(0,1)-variable. The precipitation amount R" is then:

= (-InV)/A+d (C4)
where 1/4 is given by equation (C3).

The coefficient of variation of R" equals 1/(1 + 1) = 1. This is in reasonable
agreement with the values from equation (14). The value of v, can be exactly
preserved by generating from the gamma distribution or another two parameter
distribution on the interval (0,»). The gamma distribution is a two parameter
generalization of the exponential distribution and has the advantage that its parameters
can simply be expressed in the mean and the variance of X. The generation of gamma
variables requires a somewhat more advanced Monte Carlo procedure. A good survey
of techniques can be found in Duvroye (1986).
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Appendix D: Users guide

Consider the situation that. in addition to a temperature effect on the precipitation
amount, there is a change in the number of rain days as a result of a change in the
pressure distribution (atmospheric circulation). The procedure outlined i this report
to obtain a representative daily precipitation time series for that situation consists of
the following 9 steps:

I. Prepare a file with time series of daily values of mean temperature 7', precipitation
amount R, mean surtace air pressure P, relative humidity U and relative incoming
solar radiation (). Records ot several decades are necessary to assess the impacts of
changes in the severity of droughts and other extreme events.

Determine the scasonal or monthly mean changes in 7 and P. elements that are used
as covariates in the models, and apply them to each individual day, giving 7" and
P'. The changes may be derived from GCM experiments with enhanced CO, air
concentration. In the present report U and Q were left unchanged, so that
U=Uand Q =Q.

2

3. Detine a wet day as a day with a recorded precipitation amount > 0.1 mm. The
remaining days in the observed record are dry.

4. Compute for each day j the probability of rain (equation (4)) as:

1
p = - - j=1,...K DI
" lvexp -(@+bP +¢U +dQ )] (D1)
and:
5% = 1 i=1,.,K
pj = J=1,..., (Dz)

1 +exp [— (@+bP +eU+dQ " )}

for the actual climate and the perturbed climate, respectively, with K the total
number of days in the period considered. The estimated coefficients a. b. ¢ and d
are given i Table 3. For precipitation sampled at 8 UT over the past 24 hours
instead of the 0-0 UT interval. the estimates in Table 6 should be used.

12
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5. Compute for cach of the four seasons or twelve months the change A in the total
number of wet days due to the perturbation in P for that season or month.
According to equation (22):

I 4 1 4
Am =Y p" - Y P (D3)

6. In the situation that the number of wet days increases (Am > 0) transform the A
dry days with the largest values of p," into wet days, where Am should be rounded
to the nearest integer. As an alternative a binary variable Y, can be drawn for each
dry day giving the status of that day in the perturbed climate (1 = wet and O = dry).
In order that the expected number of additional wet days equals Am the probability
[1, that ¥, = 1 should then be equal to:

L
L = Am p’/ ;p}* j=1,..,L (D4)

with L the total number of dry days in the period considered. For the situation that
the number of wet days decreases (Am < 0) transform the Am wet days with the
smallest values of p," into dry days in a similar way.

7. Generate the amounts on the new wet days in the record from the exponential
distribution (Appendix B). Set the amounts on the selected new dry days to zero.

8. Transform the amounts on days that remain wet in the scenario with the multiplying
factor derived from the model for the relation between precipitation amount,
temperature and surface air pressure:

F(T,T*PP") = exp [K(T"P") - k(T,P)] (D5)

The estimated coefficients in the model are given in Table 9 (7 parameter model) or
Table 10 (12 parameter model). For precipitation sampled at 8 UT over the past 24

hours instead of the 0-0 UT interval, the estimates in Table 11 (7 parameter model)

or Table 12 (12 parameter model) should be used.

9. Save the new daily time series of R°, 7', P', U" and Q' for use in impact studies.
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