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Abstract

cale

This is done within the context of the barotropic

The relevance of solated resonant trind inter

atmospheric circulation s

-

vorticity equation on the sphere. The equations governing the dynamics of a resonant triad on

the sphere are of the same form as those on the beta-plane. They
i i .

rals; giving a periodic vacillation of the amplitudes of the waves

in terms of elliptic mt

o

s of the triad

participating in the triad. The vacillation period depends on the total energ

and on the initial energy distribution within the triad. This dependence is inve

y. It is investigated whether or not, for realistic energy distributions, there

NINerics
fime-seale for which the resonant interactions within the triad dominate over the interactions

of the triad components with the rest of the spectrum. This is done <t ool &

harotropic model truncated to T21. Several experiments are d ibed. The overall results

are that vacillation can be observed for a few cycles. The vacillation period lie

s the nonresonant inferactions rapidly transfer the energy to

and 60 days. After a few oy

gy lost 18 returned back

the rest of the spectrum. However, after some time part of the ener

to the resonant triad and vacillation asain takes place. The results may shed some new light
[ o

on the observed infraseasonal oscillations in the tropical and extratropical atmosphere.



1 Introduction

The first step in many investigations of geophysical Hows is to linearize the equations of
motion. The general solution is then relatively easy to obtain and consists of a superposition
of noninteracting normal modes, or waves. When the spatial domain is of finite extent, then
there is a countably infinite nurber of such waves, each of which can be characterized by a
discrete label,

The fact that the waves behave independently of each other 1s the great advantage of the
linear approximation. In the fully nonlinear case this s no longer true. It is still possible,
however, to consider the low as a superposition of waves, The difference is that now the waves
interact among each other. If the nonlinear terms are quadratic then three waves are involved
in each interaction. Whether, in the case of quadratic nonlinear terms, three waves interact
or not, is determined by certain conditions on the labels of the waves. These conditions
determine the structure of the set of waves participating in interactions. Usually this set is
so complicated that handling of all the interactions can only be dealt with nmumerically.

If the nonlinear terms are small, then the situation can be simplified considerably. For
small nonlinear terms the time scale of interaction between waves will be slow compared
with the time scale of each wave’s individual behaviour. This notion can be worked out
systemnatically, using the method of multiple scales. It leads to the distinction of two time
regimes: the {fast) wave propagation and the (slow) wave interaction regime. In the first
regime the waves behave as if they were linear, Le., independently of each other, In the second
regime interactions do play a role, but only to a limited extent. In the interaction regime
only interactions have to be taken into account which satisly a resonance condition. These
interactions are called resonant to distinguish them from the other, nonresonant, interactions.
Because the set of resonant interactions is usually considerably smaller than the set of all
interactions, limitation to the resonant interaction regime is an important simplification.
Theories which handle nonlinearity in this particular way are called weakly noulinear theories.

The aim of this paper is to obtain more insight into the question of how relevant resonant
interactions are for the dynamics of large-scale atmospheric flow. A frst-order description

of this flow, neglecting vertical structure, horizontal divergence, forcing and dissipation, is

the barotropic vorticity equation on a rotating sphere. The hinear solutions {(modes) of this
equation are Rossby-Haurwitz waves, referred to as spherical planetary waves (SPW). They
constitute a countably infinite set of solutions characterized by labels (m,n), where m and
n are integers with —n < m < n and 0 < n < oo, As the barotropic vorticity equation is
a nonlinear equation the waves interact with each other. Three waves are involved in each
interaction because the nonlinear {advective) term is quadratic,

The nonlinear interactions of planetary waves have been studied by many investigators.
The method for solving the nonlinear barotropic vorticity equation by expanding the fields

i terms of spherical planetary waves was given by Silberman (1954). Also, a few conditions



for interaction between these waves were given. A systematic analytic investigation of the

systerns obtained in this way is given by Platzman (1962). It was mentioned also that the
three component systern, L.e. the system in which the fields are expanded in three spherical
planetary waves, can be solved in terms of elliptic functions. The solution, and in particular
the energy exchange among the components, is periodic in time. The solution, however,
was not written out in explicit form. The investigation of the significance of Silberman’s
conditions for the case of an infinite beta-plane is given by Longuet-Higgins and Hill (1967)

It was also pomnted out that for application to the ocean and atmosphere it is generally
ks &

desirable to consider resonantly interacting planetary waves in closed basins and on a s gg}i:zf‘-‘fn:-}x

A recent exploration of the set of resonant interactions for the barofropic vorticity equa-
tion on a sphere was carried out in a number of papers by Kartashova (1990a, 1990b, 1991)
and by Kartashova et al. {1990}, In these studies it was proven that the set of all resonantly
interacting planetary waves can be partitioned into disjoint subsystems. An important i rzig‘}ii«
cation of these results is that, within the context of the weakly nonlinear theory, the different
subsystems can be treated independently. The simplest isolated subsystem of resonantly in-
teracting waves consists of three waves, called a resonant triad. The equations governing the
dynamics of this system are of the same form as those for a resonant triad of Rossby waves
on the beta-plane. These equations can be solved analytically in terms of elliptic integrals.
The behaviour ‘Cﬁf one isolated triad can be described as follows. On the wave propagation
time scale each of the three waves behaves as it was a linear free wave. On the interaction
time scale the amplitudes of the waves change periodically, where the period depends on the
initial amplitudes of the waves. This (slow) periodic exchange of energy among waves in a
single isolated triad is the simplest manifestation of weak nonlinearity.

In this paper we wish to extend these earlier researches by studying the behaviour of
resonant triads in a full spectral model of the barotropic vorticity equation. More specifically,
it will be investigated whether the slow periodic exchange of energy among waves in an

isolated triad is observed when all other modes (not only resonant ones) are present.

11

In section 2 we describe the main analytical results concerning the resonant interactions
of spherical planetary waves (SPW) obtained by Kartashova (1990a, 1990b, 1991) and by
Kartashova et al., (1990). Section 3 is devoted fo the investigation of the formula for the
energy exchange period among the modes of the resonant triads. In section 4 computer
simulations with the numerical model of the barotropic potential vorticity equation with

iruncation T21 are described. Discussion of the oblained results can be found in section 5.



2 Resonance conditions for spherical planetary waves

To describe the nonlinear dynamics of large-scale atmospheric nondivergent flow we will use
the barotropic vorticity equation on a rofating sphere. This equation describes the time

evolution of a two-dimensional, incompressible, inviscid and unforced Huid:

{i; B ws e sy oy
5 70w S, Y 2sing) = 0 {1}
it

Here ¥ is the streamfunction and ¥° and J are the Laplace and Jacobi operators for a

spherical surface. The equation is written in nondimensional form using the radius @f the

Farth @ (6.371x 10° m) and the reciprocal of the Earth’s angular velocity Q0 (7.292 % 107%1)

as length and time scaj.z-:-%s;? respectively, The coordinates specifying a point on the sf;gﬁn:—&re are
A and ¢, where A is longitude and ¢ is latitude. It is assumed that these coordinates are
expressed in radians,

The equations for the real-valued amplitudes of three resonantly interacting SPWs, de-

noted by (my,ny), (ma. 02}, (g, na ), have the form (Kartashova et al., 1990}

;"y\;} (fi = ;f{’f‘i;k - ,;?Vg}(iezéég,
Nody = Z{Ny — Nylayas, (2)
j{y{.{z i 7( iy o Ny }ﬁiélzg

where Ny = nin, 4+ 1), 1 = 1,23, a; 18 the amplitude of +-th wave, and the interaction
coeflicient 7 18 given by
1 ,OP® apt .
- f {m;_f}m e e g P }Pfi}d 2, {3
9 i o VY
of e {2 by bl

where we use the notation PO, ¢ = 1,2.3, for the associated Legendre functions of the first
kind P of degree n; and order m;.
The f,::(:»x'zciﬁ;;(:sgm for resonant interactions between three spherical planetary wave solutions

(SPWs) of system (1) are

y by =,
Ry -k Ty = I,

my <oy, V= 1,2, 3,

P
R

¥y Tl;g‘ I~ ?3; f?i % T,
1y + 1y ey 18 odd,

ny # ny ¥ na,

w



where w == —2m/n{n + 1) is the frequency of the SPW and m and n are the zonal and total

wave numbers respectively. The first two equations of the system (4) are the constraints

with respect to frequencies and wave numbers of resonantly interacting waves. All other

conditions are necessary for nonzero interaction coefficients. The three last conditions are in

accordance with the selection rules studied by Platzman (1962},
The investigation of the interaction coeflicients as a fa.m*zzt’%:.:a(;m of myng it = 1,2, 3 showed

the existence of a hypothetical interaction latitude g defined by the lollowing expression

2
)+ mi(nf +nd - nd)

@

L5 wh = , (5]

4 73 4 nd)

so that if 0 < cos? @y < 1 {We sav in this case that the interaction latitude does exist.}, then

247

the interaction coeflicient 7 ~ w*%, where n = maxn;. When the interaction mtm;dw does

not exist, Z ~ n™/% je. the interactions become less effective (Kartashova ef al., 1990)

The system (4) has to be solved in integers and this is a nontrivial problem. In general
there is no proof for the very existence of a solution. However, for the systemn (4} it furns
put that there exists an infinite number of solutions; explicit formulae giving one- and two-
parameter series of solutions have been found. The following question arises immediately: do
all waves participate in resonant interactions or not? It appears that there are many waves
that do not participate in resonant interactions. In fact, for a physically {meteorologically}

relevant region of spectral space (we mean here 0 < m,n < 100) the number of waves
;.}ai‘é;%ci sating in resonani interactions does not exceed 32%; it decreases as b where r =
{m?* +n }W ‘. when 7 tends to infinity. It was shown thai resonant interactions are local in
the sense that for any fixed wave its interaction domain (Le. the region in wavenumber space
consisting of all waves that could interact with this one) is finite and is wz‘ii;tff;s'; oub explicitly.
For a wave with wave vector {(m,n) the radins of this domain is of order ne

The set of all SPWs taking part in resonant interactions, can be pa,r?;ii;%()z'zei)(;i into non-
intersecting partial subsystems which do not cross-interact resonantly (Kartashova et al.,
1990, Kartashova, 1990a) and this is a manifestation of a more general property of a wide

class of wave systems with discrete spectra (Kartashova, 1990b}. As a rule, such subsysterns

consist of 3-5 SPWa. There exists only one infinite subsystem (Kartashova, 1990a). It is

very important 1o notice that there is no energy exchange in resonant interactions between
ihese subsystems, so as a first approximation it is be possible to study each subsystem
independently for some finite time. The spectral region T21 (waves with m,n < 21} will be
further studied numerically. It contains 4 isolated triads, 3 groups of 2 {‘€'3313’3<?{2££2i’§ triads and
a group of 6 connected triads (see Table 1). As mentioned above, the case of solated triads
can be treated analytically. In this case, the equations for the slowly changing amplitudes of
resonantly interacting SPW can be integrated exactly. The solution is expressed in Jacobian

elliptic functions. The energy exchange between the modes of the triads is periodic and the
period can be written out explicitly as a function of the initial energies of the modes, the

wave numbers, the interaction coefficients ete. (see section 3). The groups of resonant SPW

6



containing more than three waves can show a rather complex type of behaviour. In this case
chaotic behaviour is possible. Indeed, starting with the case of 5 waves we are dealing with a
physical system described by connected differential equations like those describing a system
of coupled oscillators. This leads to complex behaviour (Rabinoviteh and Trubetskov, 1989)
and makes an analvtical description of such systems a questionable matter. In the present
paper we are not concerned with these groups. The subject of our study is the perodic
energy exchange between the modes of one isolated resonant triad.

We would like to conclude this section by making the following remark. As the solutions
found analytically do not exhaust all the solutions of {4), we have to investigate the finite
region n < 200 numerically. This is a nontrivial problem, as any straightforward algorithm
would take an extremely large amount of computer time. Indeed, combining the first two
equations of (4}, we immediately see the main computational difficulties. We have an equa-
tion in integers on five variables which, however, is not Diophantine (some of the variables
oceur in the denominators); to solve it numerically in integers, the common denominator

has to be found. This procedure leads to a Diophantine equation on five variables of degree
five, i.e. the calculation time grows with n® (a few weeks of calculation time for a PC AT
even within the T21 region). Being interested not only in atmospheric, but also in large-scale
oceanic waves, we have been studying a much larger region than T21 (see above). A specially
developed fast algorithm has been used (Kartashov and Kartashova, 1991). It is based on
divisibility properties of the triangle numbers n(n + 1), The required amount of computer

. s e
fime grows approximately as log n™.

]



3 Energy exchange between the modes of a triad

¢

The solution of the system {2
be written in terms of Jacobian elliptic functions {Whittaker, 1937). Here we are not going

} has been obtained about one and a half century ago and may

into the full detail of its derivation but just give its main idea. First of all, we note that the

system has two conserved integrals. The first one is

Nia* + Nyas + Na ;ag R {6}

This iz the energy conservation law. It is obtained by multiplyving the i-th equation by a,,
) i ¥ Uy,
;= 1,2,3, and adding. We also have the enstrophy conservation law

o dnig 2D

B3 2 ard 2o, [ - { vy
Nial + Nja; + Niay = ¢ {7}

It is obtained by multiplying the i-th equation by Niai, 1 = 1,2,3, and adding. The constants

¢y and ¢; depend, of course, on the initial values of a;,7 = 1,2,3. From Bquations (6) and
(7) we obtain expressions for ay and @5 in terms of ay. Substitution of these expressions into
the first equation of system (2) gives one differential equation of the first order which may
be solved in terms of the {rzfiipsf;fu: functions cn, dn and sn. Let a;p denote the initial value of

the amplitude a;, ¢ = 1,2,3. Then the solution can be written as

{ty == gﬁ‘g{:ﬂ{gjlg(_} s 9}%}?
ag == bydn{t /g — A), (

sy

fhog = g}ggﬂ{fff() . Q‘i}x
where
5}? e ago 4 No(Ny — N} N (N — .f\fi}z"z%(}g

B == aly + No( Ny — Ny NNy — Ny)ady, (9)
b2 = a2y -+ Ny(Ng — N )/ Na( Ny — N3dad,

and 1y is given by the expression

T Ny~ Ny Ny— Ny Ny oo o
fo = ;{ Ny N, agy -+ mm:{;w”z{}}j . ()

The constant A is obtained from the initial conditions. The Jacobian elliptic functions cn,

sn. dn are defined in the following way (Abramowitz and Stegun, 1970). Let

i 1 .
u = /,f I (11)
Jo (1 — psin® @)Y '

Then we define



:

Snu == SN, {

o, .
R ey
oo

CRY = COS @,

-

o
frem

dnae = {1 — psin J(p}i,ﬂzq

These funciions are periodic in u. The periods of snu and cnu are equal to 44 and the period

of dan is equal to 2K where

K j/ﬁ ” it (15)
o {1 —psin?§)1/2
is called the complete elliptic integral and
2 N L2 No
Yow,—x; T 90T,
}';’ = 2 X A (Eh }
B30 57,7, + a? Sy vl

is the modulus of the elliptic functions. The modulus g has to satisty the following condition:
0 < p < 1. It is easy to show that the expression (16) gives a positive value of g for arbitrary
ag and Ni1=1,2,3. As to the other condition, we have to check it and if it is not satisfied,

the solution may be obtained by interchanging the indices 1 and 2 in the formulae above. If

K= = e ) e | s 00 (17)

, /‘%;’2 do L, 1T4smyp o
Jo cosf 2 1 —sing

It means that the period of all these elliptic functions tends to infinity. To zmdm‘%and this

let us look at how these elliptic functions degenerate at g = 1. Since u = 31In T‘E;E{;i and
S
exp Fugd”
and immediately notice that the degenerate snu grows from 0 to 1 as u changes

shu == sing for g = 1, we have that snu turns into 1 — For both ¢nu and dnu we

from 0 to oc. Af the same time the two other functions decrease from 1 to 0.
Now, keeping in mind {12)-(14), we can express the period 7 of the energy exchange

within the modes of the resonant iriad as

7o dpte, p=1,2,3,... (18}
At first glance it is difficult to say anything definite about the period 7 from this formula
which contains 7 variables, most of which occur in a highly nontrivial manner. However,
some qualitative observations can be made. To this end it is more convenient to speak in
terms of energies rather than amplitudes. Let us denote the initial energies of each mode as

Fg, 1= 1,23, and define 2y, 25 by

Ehg = 2¢ - Lso, {i‘}%
Eogg = 25 - B, (20)

9



so that 2y and 2, show the fraction of the main mode’s energy Fag that s initially contained

in the first and second modes respectively. (Here and below the mode with largest frequency

iz called the main mode) Now we .{'ffwm‘{,c (10} and (18} in the new variables {using that

Fre= Nia?,i= 1,2,3). The period becomes 7 = pry, p= 1,2,3,..., where 7o is given by
4K Ny — Ny
- - A ¥ A7 A I—172 3y
Ty = 1/d§ \’ % A 5 R‘Yz( - f%; i d.gf\_n;h‘a‘g s f%j}}; o, {l} )}
/F, 2i¥y

JitH]
and we can see immediately that 7 is inversely proportional to the inferaction coefficient 72
of the triad and also to the square root of the initial energy of the main mode. For a fixed
trind 14,19, 114 are, of course, fixed, so that 7y depends on 2, as 1/{xy + consti?, Notice
that there is no explicit dependence of w on .

Now we rewrite g in these variables as
{ A7 Az &%) AT Y
[ = i\% e ng} {f"z; - :\q}
AN T (V=N (N

The most interesting fact is that g does not depend on the initial energies of the modes but

(22)

only on the distribution of the initial energy among the modes of the triad. This, of course,

applies also to A{g). It is not difficult to show that = 1 only if

B (23)
}9’2 - ."@3 ;’p‘vﬁ} - Y i ’
Thus, for any fixed Nj, 7 = 1,2, 3 there exists a line in the plane (2, 2,) for which the integral

K diverges; we will call it the degeneration line.
The previous discussion leads fo the following qualitative description for the period 7 of

one fixed triad. For s x,§§ values of @y, 7, and such that z;/xy % (N — N3}/ (Ny — Ny}, the

period 7 ~ K(p)/Z 37 . 1t is finite but can become very long when a, z, tend to zero. So

the period becomes very long if almost all energy is initially contained in the main mode at

the initial moment. For large values of 2, @, such that zy/zg #£ (Ny — Ny)/ (N3 — Ny}, the
2 ty L3 ifde F A

/2 4%y oo
period 7~ K{p)/Z B« .4/ Tt is finite but can become very long when the ratio x, /2, twds
to (Ny — Na) /(N — Ny). When a1/xy = (Ny — Ng)/{(Ns — N} the main mode continually

)
kJ/

gets energy from the two other modes and never loses it. It is very important to notice that

g

theoretically for a fixed triad and arbitrary value of the initial energy we can always get the

initial energy distribution in such a way that this non-periodic regime will appear.

For a fixed triad and fixed energy distribution between the modes, the period 7 decreases
when the energy grows. Using formula (21) describing the dependence of 74 on the energy
distribution between the modes in general is not easy. So it was done numerically and the
results are given in section 4. There we shall also make a comparative analysis of different
triads to obtain some qualitative characteristics of their periods and their dependence on the

initial energy distribution and on the individual parameters of each triad.

16



4 Numerical simulations

Our numerical simulations have two different objectives. First of all, we wish to verily the

ions for the case that the spectral energy in the resonant {riads is distributed

analytical expre
according 1o observations. To characterize our second objective we have to remember that
all results concerning the resonant triads have been oblained under the consiraints of the
weakly nonlinear theory of wave interactions. This means that these results are valid if there
exists a time scale at which resonant interactions are dominant. To nvestigate whether or
not such a time scale exists was our second goal.

We have used a numerical model of the barotropic vorticity equation on a sphere. The
amplitudes of the streamfunction were chosen according to the analysis of observed data.
Data of the atmospheric flow at the 5300 hPa pressure level for each day of December 1989 at
0 and 12.00 GMT have been processed. These data consist of the complex expansion coefli-
cients {in terms of spherical harmonics, Le., spherical planetary waves) of the streamfunction
fields. The root mean square of the (nondimensionalized) amplitudes of the coefficients was
computed of the 62 fields of this period. The values are displayed in Table 1.

First of all, remembering the existence of the degeneration line, described by (23) in the

parameter space {2y, 23}, we want {o find out the relative size of the line’s neighbourhood in
which the growth of the period becomes critical. The growth of K is critical when deviations
of u caused hy variations in xy, 29 of the size that would have been caused by small ervors in
the initial data leads to a change of the order of K. In this area the period formula does not
give reliable results., This only happens in a narrow region of g values {close to 1} hecause
if 18 considerably smaller than 1, K {y) changes slowly enough (from #/2 to 3.69 while u
grows from 0 to 0.99, see Abramowitz and Stegun, 1970).

To estimate the size of this neighbourhood consider the representation of A as a power
series:

YRR {

K(p) =57 3 pat™ = 57l + (5) 0+ (55 546
wen(d -

lts coefficients p, can be expressed in terms of I'-functions and the following upper bound
can be obtained:
s

P = T ¥ .i;ﬂz»"&} n

-

3
%
o,

T
gy
R

oo

{(The estimate of p, can be obtained using the Stirling formula). This means that the sensitive

area for K () is very narrow. Indeed, for y differing from 1 by no more than ¢ = 5. 107 the
asymptotic formula %31‘; T can be used for K{p) (Zomring, 1988) and a simple calculation
shows that the sensitive area has width A < £ + 107%, j.e. the difference between ¢ and

A is negligibly small. We have fo evaluate the precision with which 2y and 2y should be

given to yield g with precision up to 2. Using the representation {22} it can be shown that

S
S



the former sé‘zzﬁmizfﬁ be equivalent to ¢ max{l + ¢, 1/¢l, where ¢ = {(Ny — N3} /(N5 — Ny). This
means that if we take a point {2y, zs) from the sensitive area and change either z, or x,
in the third s‘.’h git then we get out of this area, Thus the area which has to be ignored
due to uncontrolled growth of K{u) within measurement errors of g is so small that it has
no practical importance. For every triad and observed distribution of the energy we have
checked whether or not the growth of A is eritical. It turned out that in all cases we are
far away from the sensitive area. Therefore the period formula should give reliable results.
To test this we made the first series of numerical simulations. Fig. 1 displays the results
for the triad {4,12); (5,14); {9,13) {triad Ay from Table 1). The horizontal axes depict the
initial energy total energy £ = Fy + I, + I3 of the triad and the energy in the two smallest
modes as a fraction z of the energy in the main mode (it means that x; = z, = x). The
vertical axis depicts the period T = 74 in days. The values on the axis I are expressed
in dimensionless units and were chosen according to observed data (see above). The figure
gives the following qualitative picture: the period T grows when the initial energy decreases
and T grows steeply if @ and B are small simultaneously. Notice that for this case there is

practically no dependence of T on 2. Pictures for other triads are almost identical up to a

rescaling of the axis,

The triads A, and As, for instance, have values of periods very close to those of friad 4,
for the same values of £ and z, bat the periods of the triad By are substantially shorter. This
can be explained by hm}\ma at the values of the inferaction coefficients of all these triads
Zays Zans 2, (see Table 1), While Z,, and Z,4, differ from each other less than a factor of
two, the coe ﬁ§z< ient Zp, 18 saiﬁ';@ﬁs‘i 10 times larger than Z4, and 5 times larger than Z4,. In
all cases the values of the periods are between 30 and 60 days. The values of n; for all these
triads are so close that their wnfluence can not be singled out.

In Figs. 2 and 3 the vertical axis is the same as before while the two horizontal axes
depict 2y and x4 the energy £ for which the figure was made, is printed at the top of the
figure. Fig. 2 displays the results for triad (4,12); (5,14); (9,13} (triad A;) and in Fig. 3
the same is shown for the triad (6,18); (7,20); (13,19) (triad As). In both figures we can see
how the period tends to infinity near the degeneration line; the part of the picture that is
symimetric with respect to the degeneration line has been omitted to make the picture more
informative. For the same reason the triangle in the foreground has been omitted also. We
can see that the period changes slowly if the ratio z,/x, is far from the degeneration line
and grows fast near this line. The same qualitative picture emerges for all other triads and
for other values of the total energies in each triad.

After this detailed study of individual triads we may now raise a question with respect to
the existence of weakly nonlinear regimes in a numerical model containing all modes in the
region T21, not only resonant modes. A simple way to characterize the nonlinearity of a wave
Lo is to check whether the ratio of the particle velocity |0¢/dp| to the phase velocity

127w /(n ~ m)] is small enough (for instance, of order 107%). Often this ratio is chosen as a

12



parareter of the systems’ nonlinearity (Kamenkovich and Monin, 1978}, Thus we have to
estimate the amplitudes’ values for which this ratio will be small enough to display weakly

nonhinear behaviour., Let us denote

2w {n —m)
and notice that
O Op = alm,n)sin(mh -~ wté’}?ﬁf’ﬁ‘*{mn @) (27}
i
It means that
nin 4+ Lin—my a -
g < alm, nj-- 1 - S lcos - 5 Pl (sing) | . {28}
4 { Mo . )
To estimate
L cosw T {(sing) | (29)

d
we use the formula which allows varying degree of Legendre functions to remave the derivative
of the Legendre function {Abramowitz and Stegun, 1970). Then Rodrigues’ formula allows
us to obtain the expression for Legendre functions in terms of finite sums of cosines of even

ﬁ;(‘}i ree. As a result we obtain

, 0 .
[ cosp f o (sin ) [< const - n”. {30}
Now fixing some small & we get the estimation of wave amplitude
al{m,n) < const-n"". (31)

{(the constant now depends on ¢} I this condition s valid {or all three amplitudes of the triad’s
modes, the non-resonant interactions can be neglected and the behaviour of an isolated triad
practically does not differ from the behaviour of the triad in the full wave field; the triad
simply 7does not notice” the presence of other modes of the spectral domain considered. But
it is easy to see that for wave numbers 10 and larger this condition gives very small values of
the amplitudes {order 1079 in dimensionless units). So theoretically we cannot expect triads

to behave as if they were solated. To study the energy behaviour within the triad when the

amplitudes are much larger, i.e. of the realistic Gf{i@z; was our next step.
In the first series of numerical simulations with the barotropic model we put at the iitial
time all the energy of the wave field into one isolated triad, for different energy distributions

among the modes of the triad. It turned out that the energy oscillates between the modes

of the triad for a few periods losing not more than 2 — 5% of the initial energy and after

gy goes out of the triad very fast. During a time comparable with the period

that the ene




of vacillation more then 90% of the energy is spreaded over the spectrum. Thus we have
found two different phases in the evolution of the wave field: the vacillation phase and the
spreading phase. The results for the triad A, (4.12); (5,14} (9,13) are shown in Figs. 4 {o 6.

of the triad which is the total initial energy of the

The vertical axis depicts the initial energy

wave field, The horizontal axis depicts time in hours. When the wnitial energy s very high

b

(about two orders larger than observed values), energy begins to spread over the spectrum
almost immediately, alter two or three vacillation cycles with a period of about 3 days, and

e A N P g 4
more than 90% of its energy in 12 days (Fig. 4). Decreasing the

after that the triad loses
initial energy to 3.3- 1079, we see that the energy remains in the triad for about 120 days and
this corresponds to 4 energy vacillation cycles with a period of 30 days (Fig. 5). After that

days %ézzﬁ triad loses more than 70%

Lrum and o about 250

the energy spreads over the sy
of its energy. In Fig. 6 when the initial energy is & = 1.82.107° the period 1s about 42 days
eriment has

and the time that the triad behaves as an solated iriad is 220 days. The ¢

1077, 1t turned out that in this case the energy

also been done with the initial energy
does not spread over 3;?;4:3 spectrum during more than 2000 days and oscillates between the
modes of the triad with a period of about 190 days. All the results shown in Pigs. 4 10 6
have been obtained for the same distribution of the %f‘;%‘i;%ai energy between the modes of the

5,

triad (E; = Fy = 0.258;). Fig. 7 and Fig. 8 display the results for a realistic initial energy

distribution (taken from the Table 1) between the modes of triad. Concerning Fig. 7, when

the initial energy F = 7.5 1077 the period is about 43 days and energy remains in the triad

for about 470 days {this corresponds to 10 energy vascillation cycles}). Increasing the initial
energy to F = 1.5+ 107% we see that energy remains in the é‘.rmd more then 240 days while

the energy vaseillation cycle is equal to 31 days.

These experiments have been repeated for the triad (4,12); (5,14); (9,13} with different

initial distributions of the energy and for all other isolated friads in the spectral region T21.

They all show the same qualitative behaviour.

ing feature. It appears that part of the

From the figures we can see another intere

energy returns to the triad after spreading over the spectrum. This process of spreading and

returning is repeated a few times. It happens for all triads that were studied.

& It

[



5 Discussion

In the study of the periodic energy exchange in resonant triads in the spectral domain T21,
some interesting results were obtained. PFirst of all, it turned out that there exists a time

scale dominated by the weally nonlinear regimes for which vacillations occurs. There are 16
resonant friads within 121 whose vacillation periods are determined by the initial distribution
of the energy, The values of these periods lie between 30 and 60 days for realistic values of
the initial energy.

We have also found that an energy exchange cycle exists between the energy in the triad
and that in the rest of the spectrum. This means that energy leaks out of the iriad via a
few modes. For stance, in the case of Fig. 9 energy leaks out of the triad mainly through

two rnodes (this 1s immediately shown by applying the inverse Fourier transform to that part

of the time evolution of inverse energy How}. The phenomenon of energy return deserves ¢
separate study. Here we have only noticed its existence.

Thus we have found that there exists a time scale for which resonant friads behave as
predicted by weakly nonlinear theory. Therefore it is not unlikely that some guasi-periodic
low-frequency phenomena in the atmosphere or ocean can be uzzdemmﬂd and described within
the context of weakly nonlinear theory. A large amount of evidence has accumulated that
large-scale travelling planetary waves exist and that these waves ;g;r(;s;mgam as expected from
the linear theory. The periods of these waves depend on the total wavenumber n and range

> waves can be detected in the observations is important

from b to 20 days. The fact that thes

from the viewpoint of predictability. They form the more predictable aspects of atmospheri

iC
How. The observed large-scale waves have a nearly equivalent barotropic vertical structure,
i.e., there is altnost no shift of phase with height (Madden, 1979), Therefore these waves can
be studied to some extent under the constraints of the barotropic vorticity equation. The
resulis obtained may be used as a basis {for studyving resonant triads in more complicated
models (with forcing, dissipation, more realistic initial conditions, etc.). If the periodic

energy exchange among the waves in resonant triads is indeed observed in more realistic

models, this may shed some more I ,9;%1‘6, on the intraseasonal oscillations in the fz::{&r&,i.fs};}i{r&,ﬁ

atmosphere (Ghil, 1991, Jin and Ghil, 19901 These oscillations have periods of about 40-5(

days. These periods are too long to be i{-z};'g:)ia:«z,z.:m-?e::i in terms of linear planetary waves but t Emy
may occur as a result of the slow energy exchange among waves in a resonant triad.

Here we would like fo make a remark on the robusiness of the obtained results, L.e. on their
lack of sensivity to small deviations in the initial energy distributions and in the total initial
energy. We see immediately from Figs. 1 to 3 that small variations in the energy distribution
(ie. in @y and 2y when oy /2, is far from the degeneration line) leads to small changes in the
values of the periods. The qualitative picture does not change. 1t was shown analytically
that the sensitive area close to the degeneration line is negligibly small and has no practical

importance. Small variations in the total initial energy also do not lead to significant changes



in vacillation behaviour, because the period is a smooth continuous function of the mitial
energy.

A few numerical simulations were performed in which initially 95% of the field energy
is concentrated in the triad while the rest is randomly distributed over the Held. Prelim
nary results show the same character of the wave field evolution though the vacillation time
becomes shorter.

Finally we would like to note that the results obtained by studying the period formula
{section 3) are of their own interest. These results are due to the general form of the system
{2) and remain valid for all systems of differential equations of this form. Investigators have
had to spend a lot of computer time to find out in numerical simulations at least a few
general tendencies of the wave energy behaviour (Loesch and Deininger, 1979} that now are

described and explained analytically.
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Table 1. all resconant briads in spectral domain T21.
Triad Wave Participating Interaction Undimensio~ Undimensio~
{m,n} of the wave coefficient nal observed | nal observed
in the other % of the values of energy of
triads triad streamfunc- the triad
tion ampli-
tuds
1 2 3 4 ) &
Izclated triads
Al {4,123 - F.B2 1.35E-5 1.458E~7
(5,14} - 9.37E~6
(9,13} - _1.18E~5
A2 (1,20) o 37.46 2.99E~6 5.4E~-8
(3,14) - 7. 43E~6
{(4,15) - 6.98E~6
A3 {6,18) - 13,68 4, 38E~6 3.22E~8
{7,220} - 3.478~6
{13,19) - 3.41E~6
A4 {1,143 - 47 .67 92.97E~6 5.84E~8
{(11,21) - 2.87E-6
(12,20} - 3.23E-6
Groups of two connected triads
Bi {2,6) B2 3.14 4.258-5 5.098~7
{3,8) - 3.57E~-5
(5,7) - 3.93E-5
B2 {2,686} Bi 14.63 4.25E~5 3.59E-7
{4,14) - G.,.27E~8
(6,9} - 3,39E~5
B3 {2,20) - 69 .25 F.EZ2E-8 6., 1E~8
{6,14) B4 8,.31E~6
(8,15) - &.70E~-6
B4 {32,6) - 11.31 G, 19E~5 3.8E~7
{6,14) B3 B.31E-%
{9,9) - G.70E~S
B5 {(3,10) - 61.99 1.897E~5 1.32E-7
{85,213 B& 2.6BE~6
(8,14) - 9.88E~6




Pable 1 (Continued)

i 2 3 4 5 &

B6& (8,11) - 8.71 1.62E~5 6.9E~8
{5,21) BS 2.68E~6
(13,13) - 2,.59E~6

Group of six connected triads

c1 (1,6) c3 28.98 '5.37E-5 4.95E-7
(2,14) Cc6 8.35E~6
{3,9) <5 3.52E~-5

2 {2,73 - 2.77 3.85E~-5 1.78E~-7
(11,20} 3 2.98E~6
(13,14) - 3.27E-6

3 {1,8}) Ci 15.08 5.37E~-5 2.62E-7
(11,20) c2 2.95E~6
(12,15) C4 5.,04E~6

4 {9,141} - FT4.93 7.99E5-6 4, 8788
(3,209 - 3,41E~6
{12,115} C3 5.04E~6

o5 {3,9) Cl 32.12 3.52E~-5B 2.68E~8
(8,20} - 3.46E~6
(11,14) - 6.52E~6

06 {2,14) 1 11.0% B.35E~6 3.34E-8
(17,20 - 1.80E~6
{19,193 - 1.31E~6
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