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HIRLAM singular vectors

Roel Stappers and Jan Barkmeijer, KNMI

1 Abstract

As a first step towards a sensitivity analysis of the Hirlam model code has been developed for calculating
singular vectors. Preliminary tests for two case studies indicate that the fast growing structures are identified.
We briefly discuss some basic properties of the leading singular vector for one case.

2 Background

Weather forecasting has to deal with many uncertainties, which may stem from various sources. For example,
the parameter settings in physics packages, which are not truly known, or the uncertainty in the analysis itself.
Here we shall focus on the latter: the uncertainty in the initial condition of the model. We will use adjoint
techniques to determine sensitive geographical areas of the analysis, where uncertainties in the analysis may
have the largest impact on the Hirlam forecast. As such, the computations of these fast-growing perturbations or
Hirlam singular vectors is a natural component of the Hirlam-Aladin initiative GLAMEPS (see this Newsletter)
to define a limited-area model ensemble for Europe. For an extensive discussion of the use of singular vectors
in ensemble forecasting we refer to [4].

3 Uncertainty for initial conditions

Assume that the Hirlam forecast model is written in the form

ẋ = F (x, θ) x(0) = x0 (1)

wherex denotes the state vector,θ is a vector with model parameters,x0 is a vector with initial conditions and
F is a differentiable vector valued function.

For a given initial condition and model parameters the nonlinear model can be integrated in time to give a
reference trajectoryx(t). If we add a small perturbationǫ0 to our initial condition, i.e.z0 = x0 + ǫ0, and again
integrate the model, we obtain a new trajectoryz(t) = x(t) + ǫ(t). Substituting the solutionz in equation (1)
and Taylor expandingF around the trajectoryx(t) gives

ẋ + ǫ̇ = F (x, θ) +
∂F

∂x

∣

∣

∣

∣

x(t)

ǫ + h.o.t. (2)

Sincex(t) is a solution of (1) we conclude that up to first order the time evolution of ǫ0 is given by the tangent
linear model

ǫ̇ =
∂F

∂x
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where the Jacobian∂F
∂x

is evaluated along the nonlinear trajectoryx(t). In [3] it is shown that even for asymp-
totically stable tangent linear models (for whichǫ(t) → 0 ast → ∞) large error growth can occur during short
forecasts. Equation 3 is linear, which allows us to write

ǫ(T ) = M(T )ǫ(0) (4)

The operatorM is called the resolvent or propagator of 3. In order to be ableto determine linearly fast-growing
perturbationsǫ(0), we still have to define a norm at initial time and at the optimization time during which the
perturbation is allowed to grow. Here we use the total energynorm given by:

∫∫
[

u2 + v2 +
cp

Tr

T 2

]

dΣ
∂pr
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dη +
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∫
[

R
Tr

pr

(ln ps)
2

]

dΣ (5)

whereu, v, T andln ps are perturbations in thex andy component of the wind, temperature and logarithm of
the surface pressure respectively. At the moment no humidity perturbationsq are used in the total energy norm.
The integration is carried out over the complete integration domain.

For a given unit normǫ(0) we are interested in thoseǫ(0) that produce the largest perturbation growth in terms
of total energy. In other words we are looking for unit normǫ(0), which maximize

(Mǫ(0)x,Mǫ(0)) = (ǫ(0),M∗
Mǫ(0)) (6)

So the fast-growing perturbationsǫ(0), or singular vectors, are given by the leading eigenvectorsof the operator

M
∗
M (7)

HereM
∗ is the propagator of the adjoint model of Hirlam. In the abovederivation we silently assumed that

this adjoint is determined w.r.t. the inner product inducedby the total energy norm. In fact the Hirlam adjoint
is derived w.r.t. an inner product almost similar to the Euclidean inner product, which results in a slightly more
complicated operator in equation (7). Also a projection operator can be added at optimization time to compute
singular vectors which grow in a pre-selected geographicalarea.

The singular vector calculation is based on the Hirlam 4D-VAR code and uses the minimization algorithm
MCGLSV to determine the eigenspectrum of equation (7). We point out that during this computation the
operatorM∗

M is not explicitly known because of its large dimension. The square root of the eigenvalues of
M

∗
M are usually called singular values.

4 First results

To test the singular vector calculation two meteorologicalcases were considered. During the development
phase of the code we compared ARPACK routines and MCGLSV, using Hirlam 7.1alpha3 (linux) and 7.1rc1
(ECMWF). Both approaches gave identical results. Initial reported problems, such as incorrect behaviour near
the boundaries, appeared to be due to the MPI environment andcould easily be solved.

We present some results for the case with starting date 5 March 2006 at 3 UTC. The domain is given by NLON
× NLAT × NLEV = 54 × 50 × 40 with a 0.5 × 0.5 degree resolution. Figure 1 shows the wind field present
in the nonlinear reference trajectory at model level 19 (500hPa) at 3 UTC and the 5 hour forecast. In the SV
computation the optimization time is set to 6 hours.

Figure 2 shows the rms of the wind field at model level 19 (500 hPa) for the leading singular vector (SV) at
initial and final (optimization) time. The 6 hour time evolution is obtained by integrating the tangent linear
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Figure 1: Wind field at model level 19 (500 hPa) for 5 March 2006at 3 UTC (top) and the 5 hour forecast
(bottom)
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Figure 2: Rms of the wind field for the leading singular vectorat model level 19 (500 hPa) at initial time (left)
and final time (right) using the same contour interval
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Figure 3: Singular values of the leading singular vectors for March the 5th 2006 at 03 UTC with an optimization
time of 6 hours

model (3). Initially the perturbation is located over the North Sea and moves towards Denmark and the north
of Germany at final time. Although the amplification of the leading SV is not very large, it shows that the SV
algorithm is still capable to find growing structures, even for this short optimization time of 6 hours.

In figure 3 the singular values of the leading SV’s are given.

5 Outlook

In the near future we will perform computations with an optimization time of 12 hours and Hirlam SV’s will
be compared with ALADIN SV’s. Also we plan to extend the current SV calculation so that it allows the
computation of so-called forcing singular vectors [2] and the study of parameter sensitivity. Another area of
application of HIRLAM SV’s will be the Hirlam-Aladin initiative to define an ensemble for the European area:
GLAMEPS [1].
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