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Scatterometer Ambiguity Removal Scheme 
Comparison 

 

ABSTRACT 

Scatterometers provide ambiguous winds and ambiguity removal (AR) schemes exist to 
select a unique solution from the set of ambiguous wind vectors based on spatial filtering 
constraints. Several of such AR schemes have been developed in the past and based on 
subjective arguments several of these schemes are in routine use. Here we present an 
objective method to compare AR schemes. We consider different AR schemes for 
scatterometer data, compare them for different wind speed regimes, geographical region, and 
dynamical cases, in order to provide both an objective and subjective judgement of their 
relative merits. We find that AR schemes are not particularly successful, particularly not in 
the tropical region. Based on the different characteristics of the schemes and their varying 
performances in different cases, we make recommendations on AR for scatterometer data in 
order to improve its success rate.  

INTRODUCTION 

Retrieved scatterometer winds are generally ambiguous (Stoffelen, 1998) and several 
schemes have been proposed in the past for ambiguity removal (AR). In this paper we present 
and compare some schemes that were developed for the European Space Agency’s remote-
sensing satellite (ERS) scatterometer. In addition to the subjective comparison of AR 
schemes, we present a method for the objective comparison of AR performance among the 
different schemes. We show that this way of comparison is effective to evaluate the 
shortcomings of AR schemes, but also reveals a more general way forward to improve AR. 

ERS scatterometer winds have a dual ambiguity and there are two wind solutions in 
each wind vector cell (WVC) on the earth’s surface. Several ambiguity removal schemes were 
evaluated before the launch of ERS-1 [Graham et al., 1989], and a scheme called CREO 
[Cavanié and Lecomte, 1987] was selected and implemented by the European Space Agency 
(ESA). In this scheme two anti-parallel fields from the two solutions at each node are built up. 
For each field the number of cases in which the highest-probability solution is chosen is 
calculated. When this number is significantly higher for one of the fields than for the other, 
then the field with the higher number is selected. This application of CREO is called 
‘autonomous’ ambiguity removal. Using ERS data Stoffelen and Anderson [1995] have shown 
that the probability of the two wind vector solutions is close to 50% and that the rank of the 
correct solution is spatially correlated, which implies that autonomous ambiguity removal is 
not likely to be very successful; a conclusion that indeed was found to be true.  

If autonomous ambiguity removal fails, or is not applied, then a comparison is made 
between both anti-parallel wind fields and a numerical weather prediction (NWP) forecast of 
the surface wind field; the wind field with the higher correlation is selected. Now cases of 
failure tend to be associated with rapidly changing and/or complex synoptic situations, for 
which correct scatterometer winds would have been especially valuable. Consequently we 
developed a procedure to use a short-range NWP forecast to select direction at every node, 
and introduced a revised ambiguity removal procedure within the PreScat package (Stoffelen 
and Anderson, 1997). This alternative scheme based on the United Kingdom Meteorological 



Office (UKMO) scheme SLICE [Offiler, 1987], shortly called PreScat here, which improves 
the ambiguity removal skill.  

In all AR schemes considered in this paper, first a local selection of direction is made by 
choosing the retrieved solution closest to a NWP background wind direction. Experience has 
shown that the field so produced is reasonable most of the time but there are local regions, 
i.e., in about 5% of cases, where the solution appears unmeteorological. It is therefore 
advisable to apply a spatial filter in an attempt to increase meteorological consistency. 
Besides the purely statistical AR schemes mentioned above, other schemes have been 
proposed that exploit meteorological balance constraints on convergence and flow rotation. In 
the following subsections we present the various AR schemes that we mutually compare. 

Verification of AR schemes has always been subjective. Some schemes can provide 
solutions that are meteorologically unreasonable, such as without a closed circulation around 
a tropical cyclone or with opposed directions in an otherwise uniform flow. If meteorological 
balance is constraint in the AR this test will obviously not present much errors. Moreover, 
when comparing two different AR schemes, one can subjectively evaluate the differences. 
However, this can be very difficult; see, e.g., Stoffelen and Anderson (1997) figure 3. 

In next section we present an objective method to compare AR schemes. It uses in our 
case a 24-hour forecast as background in the AR and uses a first guess, i.e., a 0-12 hour 
forecast for the verification. Since the first guess quality is much better than the background 
quality in terms of ambiguity selection, the AR skill can be evaluated. Moreover, since often a 
24-hour forecast is used for routine AR in operations, it is a very relevant test.  

The data used and comparison results are described in subsequent sections, leading to 
the conclusions and recommendations, where a way forward in AR is suggested by taking 
advantage of the merits of the different schemes in the different meteorological regions. 

PRESCAT 

The filter consists of a 5 × 5 box which slides over the wind field, up to 114 rows at a 
time. The box first slides in the direction opposite to that of the satellite, starting at the inside 
edge of the swath and proceeding as in Figure 1a. When it reaches the end of the sector, the 
direction is reversed, and it exactly retraces its track. On the third pass it starts at the outside 
edge of the swath and proceeds as in Figure 1b. On the fourth pass it exactly reverses the trace 
of the third pass.  

Within a 5 × 5 box, the direction at the centre of the box is chosen, based on a weighted 
average of the differences from the N surrounding points, of which there are usually 24; but 
there may be less near the edge of the swath if part of the box is over land, or, if some points 
have been rejected by the quality control on the backscatter measurements [Stoffelen, 1998]. 
At the central point, a mean likelihood, L i , is calculated for each solution i where 
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and the summation on j is over the N surrounding points in the box. The solution, i, with 
the highest probability L i is then selected. The parameter q 2 should represent the wind 
component variability within a box. Currently a value of q = 2.5 m s −1 is used. The computed 
likelihood of a solution thus depends on the wind vector since speed as much as direction 
indicates the consistency between neighbouring points.  



The parameter C j represents the confidence in the solution at WVC j. The initial value 
of C is 

C
P A NN

=
× ×
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       (2) 

where P is the scaled probability that the wind direction is within, say, 5° of the true 
direction, A is the probability that the current solution is the correct one, and NN is the number 
of nearest neighbours [Stoffelen and Anderson, 1995]. Points for which C is low are given low 
weight, and will not have a strong influence on the selection of a solution at neighbouring 
points; the opposite is true for points for which C ≈ 1. Thus, the filter propagates information 
with high confidence to areas where confidence is low.  

The confidence of a point is updated after a pass of the filter according to 

C C C L= + −( )1  

where L is defined in Eq. (1), i.e., confidence is increased relatively mostly when the 
wind vector at the neighbouring points is consistent, and when we have confidence in the 
neighbouring solutions (see, e.g., Eq. (1)). Stoffelen and Anderson [1995] have given the 
description of a consistency check of the three radar measurements at each location whereby 
anomalous triplets are rejected (1−2%); these are usually in areas with high variability (i.e., 
fronts, cyclones, etc.). Because the background information is usually also of lower quality in 
such areas, and because rejection is often associated with wind shifts, the quality control (QC) 
benefits the ambiguity removal. Stoffelen and Anderson [1995] give a few examples of 
PreScat AR to both show its strength and weaknesses in important meteorological situations. 

VARSCAT 

The heuristic VARSCAT algorithm was developed specifically to process the 
scatterometer measurements (Roquet and Ratier, 1986; Leru, 1999), to improve the 
operational scheme used at IFREMER (Quilfen and Cavanié, 1991). It is a global procedure 
minimizing a cost function over the sensor swath corresponding to its full width and to an 
adjustable length along the satellite track. For this work on the ERS instruments, this 

 

  
 
 
 
 

Figure 1.  Schematic of the way that the 
PreScat AR filter slides along an 
ascending orbit in (a) the first two 
iterations and (b) the second two 
iterations. 

 

 



parameter has been set to a maximum of 5,000 km. Given the 25 km grid resolution of the 
ERS products, it means that the cost function is minimized for an ensemble of 3610 data 
points. The discretised cost function is defined as follows: 
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where i and ian are the indexes for the point in the swath and the antenna, respectively; 
nbp the number of points considered (maximum of 3610); modσ and obsσ  the normalized radar 
cross-section (NRCS) derived from CMOD4 and measured by the scatterometer, respectively. 
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where 1 and 3 are the indexes of  the fore and aft antennas respecticely. 
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where v and Φ  are the wind speed and direction, respectively; k is the index for the four 
points (or less near the swath edges) the closest to the point of index i. 
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 is the wind vector at point i and div is the divergence operator. δγβα ,,,  are 
empirically-determined weight constants. 

Therefore, the cost function contains two smoothness terms, lisF and divF , and two terms 
to ensure the proximity of the solution to the observed NRCS field, sigF and aniF . Because the 
relative influence of each term becomes less identifiable as the number of terms of the cost 
function increases, the minimization is done in two steps. In the first step only sigF and lisF  
are activated. The latter term avoids large differences in the wind direction at nearby points, 
its value being maximum for a difference of 180o, and it is weighted by the wind speed to 
enable a larger wind direction variability at low winds. This step must ensure spatial 
consistency of the global solution. In the second step are activated the terms sigF , divF  and 

aniF . The latter, called the anisotropy term, is closely related to the wind direction harmonics 
since the NRCS difference between the two lateral antennas by approximation filters the wind 
speed NRCS dependency. This term is given a large weight to make more efficient retrieval 
of the wind direction, the divergence term ensuring the dynamical consistency of the wind 
field. 



2D-VAR 

In line with Lorenc (1988), in 2D-VAR ambiguity removal is formulated as a 
minimisation problem of the objective function: 

scat
ob JJJ +=  

where oJ  is the observation cost function and bJ  the background field cost term. 2D-
VAR is based on the analysis of wind increments with the control variable defined as 
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where x  is the control state, bx  is the background state, u  the west-to-east component 
of the wind, v  and the south-to-north component.  

The background term bJ in the cost function is based on a maximum probability 
formulation and the assumption that errors in the background field have a statistical 
distribution, which is Gaussian around the wind vector components. The background term 
quantifies the spatial context of background field errors and determines the spreading of 
observational information. It is expressed as  

xBxJ T
b δδ 1−=  

The background error covariances are assumed homogenous and isotropic, i.e., a 
function of separation distance only (Daley, ….; see figure 2). At each iteration of the 
minimisation the increments of the control variable are expressed in terms of the spatial 
structure of the error covariances. As such, these represent the spatial filtering characteristics 
of 2D-VAR. 

The control variable is defined on a so-called “extended grid” (see figure 3) to constrain 
the analysis to be close to the prior background information outside the swath. Since the 
analysis is forced to be plausible outside the swath, using this constraint limits overfitting of 
the scatterometer winds within the swath.  



 
Figure.2 Wind structure function for the longitudinal (vertical) and transverse (horizsontal) 
wind error component. 
 

.  
Figure.3 The extended grid constructed around the bounding box that holds the observations 

The observational term in the cost function SCAT
oJ at each WVC is 
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where iV  is a wind vector solution, ii vu , are the (observation-minus-background) wind 
component increments, H  is an interpolation operator that maps the control variables onto 
the observations and siε  is the standard deviation of the expected total mean component wind 
error for scatterometer winds that is defined by =siε  1.8 m/s. 5.0=iP  for ERS scatterometer 
winds, since both solutions have (almost) equal probability [Stoffelen, 1998]. After 
minimisation the analysis is obtained from  

aba xxx δ+=  

which constitutes the best estimate for the surface wind field given the background field, the 
observations, and the objective function. The scatterometer wind solution closest to the 
analysis is taken to be selected by 2D-VAR. 

SCAR 

The successive corrections AR (SCAR) as developed by DNMI acts much like 2D-
VAR. Its objective function is similar to the one of 2D-VAR, but its principle difference lies 
in the method of iteration. Variational methods like 2D-VAR perform the minimisation of the 
objective function in spectral space and as such tend to optimise all spatial scales 
simultaneously. Successive correction methods on the other hand, tend to first fit the large 
scales and subsequently fit the smaller ones. This may have an effect on the results. 

Another difference with 2D-VAR lies in the fact that SCAR is not using an extended 
grid, and as such there is no constraint that the analysis should be close to the background 
information in the extension zone. 

METHOD OF COMPARISON 

All schemes use a background wind field (BG) in one way or another 

• In PreScat and VARSCAT for initialisation of the AR scheme; and 

• 2D-VAR and SCAR as a constraint in the objective function. 

In the practise of near-real time processing the available global BG is often a 36 hour 
forecast, which is of poorer quality than an analysis or so-called first guess (0-12 hour 
forecast) as for example depicted in figure V-13 of Stoffelen (1998). Nevertheless, we find 
that a 36-hour forecast is generally capable of resolving 97% of the ambiguities in the ERS 
scatterometer data. Obviously, and as we will see, the remaining 3% of points where the 
selection (and thus BG wind) is wrong usually coincides with low wind areas or areas with 
considerable atmospheric dynamics. In particular the latter areas are of great meteorological 
interest and correct observations in such areas would be particularly useful. Moreover, BG 
selection errors tend to be spatially correlated and appear in groups of WVCs of varying size. 

AR seeks to correct these 3% of wrong selections and in off- line testing and comparing 
AR schemes we can use a first guess wind field (FG) for verification. Later on we will show 
that the ECMWF FG on its own probably only provides a wrong selection in less then 1% of 
cases for ERS scatterometer data. These errors tend to be in the same regions as the BG 
selection errors, but are generally not correlated otherwise. This can be understood, since 



substantial amounts of new additional observations are used to produce the FG, which were 
not available at the time of production of the 36-hour forecast. The remaining FG errors thus 
tend to be independent of the BG errors. As such, we can verify most (over 2%) of the 
corrections of the AR schemes by comparison to a FG. 

Our method thus consists in using a BG in the AR scheme application and a FG for 
performance analysis. For reference we add the BG and FG selections to our data base; all AR 
schemes should verify better with the FG selection than the BG does. One of the two 
ambiguities is selected when its vector difference with the reference is smallest. Besides 
selection statistics, which do not indicate the meteorological gravity of a selection error, we 
also compute vector RMS difference statistics. In this case, a 180 degree selection error at 
high wind speed is penalised relatively severely as compared to such error at low wind speed. 

DATA 

For the AR scheme comparison in this paper about a month of ERS-2 scatterometer 
retrieved winds are used from January 2000. A typical 12-hourly data coverage plot is shown 
in figure 4. The ERS-1 was launched on 17 July 1991, carrying a C-band scatterometer. The 
satellite flies in a polar orbit at a height of 800 km. The scatterometer instrument, which is 
also mounted on ERS-2 launched in 1995, has three independent antennae pointing in a 
horizontal plane towards a direction of 45°, 90°, and 135° with respect to the satellite 
propagation, thus illuminating a site in the scatterometer’s swath three times, by the fore, mid, 
and aft beam, respectively. The incidence angle of the radar beam varies from 18° to 47° for 
the mid beam, and from 24° to 57° for the fore and aft beams. The swath, approximately 500 
km wide, is sampled every 25 km resulting in 19 measurement nodes across the swath; along 
the swath the sampling distance is also equal to 25 km. The nodes are not independent, 
however, and the effective spatial resolution of the instrument on the earth’s surface (called 
the footprint) is approximately 50 km. A quality control procedure is implemented which 
identifies and rejects 1-2% anomalous triplets of backscatter measurements [Stoffelen, 1998]. 

Since AR schemes act as spatial filters, the way of presentation of consecutive WVCs to 
these schemes is relevant. The schemes can only constrain spatial consistency over a certain 
domain. One orbit constitutes about 1,600 WVC rows, and ~800 WVC rows exist from pole 
to pole. PreScat is able to process from pole to pole and thus processes all continuous pieces 
of ocean swath in one batch. 2D-VAR, VARSCAT, and SCAR all process about 200 WVC 
rows in one batch. We checked the continuity between batches and found generally no 
problem with continuity. In the few January cases where a discontinuity is present over the 
swath due to the batches, it was not clear whether the situation improves when processed in a 
single batch (not shown). In general, we believe that the splitting up in batches does not affect 
our results seriously. 

The BG wind field used for the four AR schemes is retrieved from ECMWF. For 
observation times of 

v 12h < t ≤ 24h a BG from forecasts with lead time from 24 to 36 hours at 6-hourly 
intervals is used; and 

v 0h < t ≤ 12h a BG from forecasts with lead time from 36 to 48 hours at 6-hourly 
intervals is used, 

i.e., once a day at verification time noon a move is made to the next day forecast and forecast 
lead drops from 48 hours to 24 hours. This “day break” was not found to cause any problem 
in the AR. 



 
 
Figure4. 12-hourly wind coverage plot centred around 6 UTC 6 January 2000. Grey shades 

over sea depict ERS scatterometer wind speed 
 

The FG at appropriate time is used for verification. This is a cubic time interpolation 
between a 3-, 6-, and 9-hour forecast to the actual observation time. These ECMWF fields are 
available from the 0, 6, 12, and 18 UTC forecasts in January 2000. 

COMPARISON RESULTS 

STATISTICAL RESULTS  

Activity and performance of the AR schemes were investigated for all wind speeds. 
However, as expected, for winds below 3 m/s the activity is large and the performance low for 
all schemes. As such, we did not further statistically investigate winds below 3 m/s. 

ACTIVITY 

Figure 5 shows histograms of the scores of the different AR schemes. In the black 
rightmost column the percentage of selections differences between BG and FG is shown, 
which varies between 1-6%. The activity of an AR scheme may be measured by adding the 
light and dark grey columns, since this represents the percentage of difference of selections 
with respect to the BG. Doing so, we note that the AR schemes generally do not have the 
level of activity necessary to correct all BG selection errors and room for improvement 
probably remains. 
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Figure 5. Percentage AR scores. In each panel the rightmost column is the percentage 

of BG selections different from the FG selections. The light grey column is the percentage of 
selections where the AR scheme solution is in line with the FG selection, but not with the BG 
selection. The dark grey column presents the percentage of cases in which the AR scheme 
disagrees with both FG and BG. Right panels represent wind speeds between 3 and 7 m/s, left 
panels winds above 7 m/s. From top row to bottom, respectively the NH, tropics, SH, and all 
results together are shown. 
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Figure 6. Percentage of difference with FG versus AR scheme for wind speeds above 7 m/s 
(left) and for wind speeds 3-7 m/s (right). 

 

The level of activity of 2D-VAR is clearly below that of all other AR schemes, whereas 
SCAR appears generally as the most active. There are also geographical differences; in the 
tropical region (below 20 degrees latitude) the discrepancy between BG and FG is relatively 
small and in line with this the activity of the AR schemes is lowest here, albeit far too low to 
correct all wrong BG selections. The relatively good scores in the tropics at low winds are 
probably due to the trade winds.  

PERFORMANCE 

Ambiguity removal is generally beneficial, since the “better” column in figure 5 is 
generally taller than the “worse” column. Moreover, activity generally pays off, since the 
taller the grey columns, the larger the difference between “better” and “worse”. Figure 6 
summarises the selection performance. All this is particularly clear when comparing 2D-VAR 
to the other AR schemes. We already noted that the activity of 2D-VAR is largely insufficient 
and therefore one may expect better scores for the more active AR schemes. SCAR is the 
most active, and this does particularly pay off in the NH and SH at high winds. 

In the tropics, the SCAR activity seems to be detrimental as compared to the BG 
reference. More in general, we note that the difference between the two grey columns in 
Figure 5 is small compared to their lengths. This indicates that AR schemes appear generally 
as ineffective. This ineffectiveness seems to depend on AR scheme and geographical region, 
which gives some scope for improvement, when the physical characteristics of the schemes 
are compared and the AR schemes are updated. Also, changes at high wind seem more 
effective on average than AR changes at low wind speeds. 

LARGE SCALE ERRORS 

In order to better understand the scale of the AR scheme error characteristics, we look 
into subsequent areas of 19.19 = 361 nodes where more than 72 wind vector selections (> 
20%) are different. Subsequently, we checked all WVC in such massages against BG and FG. 
We comment on some peculiar findings here.  
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Figure 7. RMS of wind vector difference of AR scheme with FG versus AR scheme for wind 
speeds above 7 m/s (left) and for wind speeds 3-7 m/s (right).  

 

Speed > 7 m/s NH Tropics SH 
 BG FG BG FG BG FG 

PreScat 89 79 79 87 82 73 
SCAR 83 88 73 64 83 83 

Table 1. Percentage of identical selection between AR schemes (rows) and BG and FG fields 
(columns) in case of large-scale discrepancies (see text) between PreScat and SCAR. 

 

Table 1 shows results for the different geographical regions for wind speeds above 7 
m/s for messages where PreScat and SCAR selections deviate by more than 20%. SCAR 
shows generally more activity (more different from BG) and clearly a better score in the NH 
and SH. In the tropics however, the SCAR activity is clearly penalised and PreScat is doing a 
much better job on the large-scale corrections at high winds. We do not show the results at 
low winds, since these largely confirm the general statistical results discussed in previous 
subsection. 

Table 2 shows the results for the tropical region for wind speeds above 7 m/s for 
messages where PreScat and 2D-VAR selections deviate by more than 20%. These cases 
overlap with the tropical cases shown in table 1, but are 50% less in number. In this case 2D-
VAR outperforms PreScat by almost 10%, which is unique. The BG verification suggests that 
2D-VAR performs better because it is inactive though. Since both FG scores are not good, it 
suggests that the cases with 20% difference are due to both poor BG and poor AR (of 
PreScat).  

 

 

 

Speed > 7 m/s BG FG 

PreScat 66 48 
2D-VAR 95 57 

Table 2. As table 1, but between PreScat and 2D-VAR, and for tropical wind selections only. 

 



PreScat was also compared to VarScat, showing that PreScat slightly better verifies with 
the FG (except in the SH for wind speeds over 7 m/s where the opposite holds), where the 
activity of both schemes is similar. Apparently, VarScat is more effective in correcting small 
scale errors, since its overall performance is generally better. 

WIND VECTOR PERFORMANCE 

Figure 7 translates the general selection performance as depicted in figure 6 into a wind 
vector RMS performance. This may be of high meteorological interest since more weight is 
given to errors as they occur at higher wind speed. However, very similar conclusions may be 
drawn from figures 6 and 7 

• PreScat works best in the tropics, closely followed by VarScat; 

• VarScat outperforms in the summer SH and on average everywhere; and  

• SCAR is the most beneficial one in the winter NH. 

METEOROLOGICAL CASES 

In order to understand the statistical results, maps were investigated that show selection 
differences. Some illustrative cases are shown in Appendix A, where we focus on areas of 
large discrepancy between the AR schemes. A first and important assessment is that the FG 
looks generally consistent with one of the two scatterometer solutions, indicating that the FG 
is indeed a good reference for validation of the AR schemes. As may be expected, the 
scatterometer shows small-scale information not present in the generally smooth FG.  

However, at wind speeds below 5 m/s, usually in the tropical region, the FG flow can be 
occasionally inconsistent with a flow depicted by either one of the two wind vector solutions 
(see e.g. Case I App. A). On the other hand, we still believe that the FG is generally useful for 
wind speeds 3-7 m./s to validate the AR schemes. The performance of all AR schemes at low 
wind speed thus can be improved in our view, since the scores in figures 6 and 7 are poor as 
compared to the BG score. 

In all cases of large differences between AR schemes, be it low or high wind speed, the 
BG does verify poorly. Sometimes, some of the AR schemes are able to largely correct the 
initial BG choice (e.g. PreScat and SCAR in Case I and Case IV of App. A), but at other times 
the BG initial choice is not corrected. For example, in Case IV of App. A 2D-VAR and 
VarScat are not able to produce the fairly simple flow pattern because of BG errors. Such 
dependency on the BG is undesired, particularly in case of subsequent NWP data assimilation.  

In the cases presented in App. A we can see effects due to the limited batch size of the 
SCAR and VarScat AR schemes (Cases I, II, and IV). Since the cases presented are selected 
cases of particular large discrepancy, these show the gravest batch effect in our data set. 
Where in some of those cases batch size would have affected the statistical score, the 
frequency of occurrence of such effects is very low and we believe does not much affect the 
statistical results.  

Case V is very interesting indeed since it illustrates the spatial filtering characteristics of 
each scheme by looking at the angle and extent over which the errors occur. PreScat shows 
the smallest error over a small segment of the low and a radial extent of about 300 km. This 
corresponds to the filter width used in PreScat AR. On the other hand SCAR shows an error 
in a much larger segment extending to about 500 km in radial direction, corresponding to the 
rather broad spatial structure functions used.  



DISCUSSION AND CONCLUSIONS 

An AR scheme comparison has been carried out at KNMI. AR schemes used a 24-36 
hour forecast as BG and a FGAT for objective verification. Ambiguity selections based solely 
on the BG result in generally 3% of error. However, these cases present meteorologically 
dynamic and thus relevant situations, such as developing waves, and mispositioning of lows 
and tropical cyclones. For wind speeds below 7 m/s, the number of selection errors is larger 
than for wind speeds above 7 m/s. On the other hand, the meteorological relevance of 
selection errors at lower wind speed is smaller indeed. In line with this we excluded selection 
errors below 3 m/s in our comparisons. 

AR schemes are generally only able to bring the BG selection error percentage down to 
2% and thus are not very effective in general. Stratified by geographical region and wind 
speed class, AR scheme scores with respect to the BG vary from slightly detrimental to about 
25% beneficial, and based on AR scheme characteristics a number of potential improvements 
emerge  

• The number of selections that is different between BG and AR scheme is denoted 
activity here. Activity generally pays off, but is penalised in the tropical region; the 
inactive 2D-VAR only scores well in the tropics and the active SCAR is slightly 
detrimental here. Activity is controlled by the structure function for 2D-VAR and 
SCAR; the wider the structure, the broader the spatial scope of changes. Also, the 
weight of the BG winds in the objective function may be decreased to increase 
activity. PreScat and VarScat can also be changed to affect activity. Based on our 
results, tests with varying activity of the AR schemes, are expected to show more 
optimal performance in particular geographical regions, and location-dependent 
settings could evolve. 

• The fact that PreScat works best in the tropics and SCAR is the most beneficial one in 
the winter NH appears related to the physical constraint used for AR. PreScat uses 
wind vector continuity and SCAR uses the constraint that changes with respect to the 
BG should be rotational rather than divergent (see also figure 2). Such wind structures 
appear for geostrophically-balanced wind fields. However, the geostrophical balance 
breaks down in the tropical region and wind vector continuity better characterises the 
flow here. This is an obvious explanation for our results. The PreScat wind vector 
continuity constraint may also be used in 2D-VAR and SCAR by using structures of 
equal rotation and divergence as depicted in Daley (1991). Also in PreScat and 
VarScat one could vary the constraint with respect to rotation, albeit in a less 
straightforward way. We thus recommend testing of geographically-dependent 
structure functions for AR. 

AR errors occur in spatially coherent structures. We find that large error structures tend 
to appear less for PreScat. Given the overall scores, PreScat has relatively frequent small error 
patches in the SH and NH. Of all schemes 2D-VAR and VARScat seem most dependent on 
the BG input. The active SCAR is more independent of the BG, but clearly overactive in the 
tropical region. 

In terms of relative performance VARScat outperforms on average, PreScat is generally 
best in the tropics, SCAR in the winter NH, and VarScat in the summer SH. 2D-VAR should 
be clearly made more active in general, while the other schemes, as discussed above, probably 
would benefit from geographically-dependent settings.  

In case of large dynamical errors in the BG, FGAT seems to be generally correct. As 
such we recommend FG for AR in NWP applications where FG information is readily 



available. Moreover variational schemes, such as 3D-Var or 4D-Var, are recommended to use 
FG and multiple ambiguous scatterometer wind solutions in the meteorological analysis 
objective function (Stoffelen, 2000). 
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APPENDIX A 

A selection of cases is given where in a large number of cases two AR schemes differ in 
wind vector selection. The cases are presented in order of increasing wind speed. First the 
date and time are indicated for each case, then the two schemes are indicated, the number of 
differences, lat/lon, and a set of conclusions. The 6 maps depict respectively VARScat, SCAR 
(DNMI), PreScat, 2D-VAR, BG (ECMWF), and FG (ECMWF_FGAT). 

 

CASE I DATE 2000/01/13 20:47:46  

Selection:  number prescat <> dnmi 
number differ : 270 0.844595  in  3  message(s) 
longitude -161.57 
latitude   -17.00 
 

• Wind speeds < 5 m/s  

• DNMI has a message edge effect, but not serious  

• Small scale wind flow unclear  

• VARSCAT and 2DVAR show internal inconsistency  

• BG (+24) incorrect  
 

 



 



CASE II DATE 2000/01/16 09:49:48 
Selection:  number prescat <> varscat 
number differ : 228 0.727914  in  3  message(s) 
longitude -163.49 
latitude   -16.20 
 

• Wind speeds 0-10 m/s  

• Noisy; all AR schemes show inconsistencies of some sort  

• VARSCAT shows a major badge edge effect  
 

 



 
 



CASE III DATE 2000/01/06 01:35:12  
Selection:  number prescat <> varscat 
number differ : 244 0.741299  in  3  message(s) 
longitude  -34.52 
latitude   -37.41 
 

• Wind speeds 0-10 m/s  

• VARSCAT and 2DVAR follow wrong BG  

• But PRESCAT and DNMI mostly correct  

• BGFG (+24) is incorrect  
 

 



 
 



CASE IV DATE 2000/01/19 06:20:17  

Selection:  number prescat <> varscat 
number differ : 446 0.755937  in  4  message(s) 
longitude  -92.33 
latitude   -60.29 
 

• wind speeds 5-15 m/s  

• BGFG (+24) large dynamical error  

• VARSCAT and 2DVAR more or less follow wrong BG  

• DNMI corrects half of wrong BG  

• DNMI shows badge edge effect  

• PRESCAT almost fully corrects wrong BG  

• all AR schemes show one or more areas with large inconsistencies  
 

 



 

 
 



CASE V DATE 2000/01/31 11:22:37  

Selection:  number prescat <> dnmi 
number differ : 491 0.780973  in  4  message(s) 
longitude  -24.72 
latitude   -32.97 
 

• wind speeds 10-20 m/s  

• BG (+24) large dynamical error at high winds  

• PRESCAT 1/6 segment error in low segment ; radius 300 km  

• VARSCAT ½ segment error in low segment ; large radius 500 km  

• 2DVAR 1/3 segment error in low segment ; radius ~350 km  

• DNMI 1/3 segment error in low segment ; large radius ~500 km  
 

 



 

 


