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To my mother, Carol, Paco and Pere

“Now, there’s a man with an open mind --
you can fedl the breeze from here!”
Groucho Marx
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Chapter 1

Introduction

Most of the remote-sensing satellite radsystems can provide sea-surface wind field
information, which in turn is very useful fa number of meteorological and oceanographic
applications. This thesis reviews the wind reteprocedures of such systems and explores
fundamental methodology to overcome tip-to-date unresad problems.

In this introductory chapter, the need 8@ma-surface wind observations, as provided by satellite
radars, and the interaction between the meignal and the wind are discussed. Then, the
different satellite radar symhs and the influence of their measurement geometry on wind
retrieval are analysed. The aim and overview othlesis are presented at the end of this chapter.

1.1 Importance of sea-surface wind observations

The atmospheric flow is determined by the wireldiand the mass or atmospheric density field.
Soffelen (1998a) shows that pressure or tempeeatgmass-related magnitudes) observations
alone are not sufficient to describe the atmosplilewe. Outside the Tropics, only the large-scale
component of the wind field ngabe derived from the atmospheric pressure and temperature
fields. The wind measurements are therefore necessalgfine the circulation in the Tropics at

all scales and elsewheaié subsynoptic scales.

1.1.1 Meteorological observations

The Global Telecommunication System (GTS{listributing the meteorogical observations of
the Global Observing System (GOS) in a timelgnner for many meteorological applications.
The GTS conventional data include observation pressure, temperature, humidity, wind and
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other parameters coming from the surface-bdgeound stations, oil platforms, buoys, ships,
etc.), balloon radiosonde (vewicprofiles of several of thesmeteorological parameters) and
aircraft systems. These conventional datarareenough to describe the atmospheric flow in
sufficient detail §offelen, 1993). Over land, there is a lack of observations in the poorly
populated and/or undeveloped regions of the worlekr@vwe oceans, the lack observations is a
more acute problem. For example, ships andadfisc cover very limited regions of the global
ocean (only traffic routes) at irregular intervalistime and space, and they tend to avoid the
worst (and therefore most interesting) weath#guoys, while of higher accuracy, have even
sparser coverag@ilas and Hoffman, 2000).

Satellites offer an effective way to provide nwetdogical information in these otherwise data
sparse regions. There are two types of rersetssing instruments onboard satellites: passive and
active.

The passive instruments measure the elecoetac (EM) radiation coming from the Earth
surface and/or its surrounding atmosphere. Seveeteorological parameters can be derived
from these instruments, depending on the danmdithe EM spectrum (microwave, infrared,
visible, etc.) where each instrument operates. For example, the thermal infrared is used by the
Along Track Scanning Radiometer (ATSR) onboamlHarth Remote Sensing (ERS) satellites to
retrieve sea surface tempenas; the ultraviolet, visible and near infrared is used by the Global
Ozone Monitoring by Occultation of Stars (G@E) onboard the Environmental Satellite
(ENVISAT) to retrieve ozone and other trace gasmsentrations; and the infrared is used by the
High-resolution Infrared Radiation Sounderli@3®) on board the National Oceanographic and
Atmospheric Administration (NOAA) polar sdiegds to retrieve temperature and humidity
profiles of the atmosphere.

The passive instruments can also be useditieve winds. The emission of microwave radiation
from the ocean surface depends on the surfacghness, which in turn depends on the near
surface wind speed (see section 1.2.3). Howedlieraccuracy of the mvals decreases in the
presence of clouds, and no wind direction can be eléritkn example of this type of instruments
is the Special Sensor Microwave Imager (3$Mnboard the Defense Marological Satellite
Program (DMSP) platforms. An alternative to measuinds from passive struments igo track
clouds or humidity features from geostationary Istge (fixed with respect to an Earth location)
such as Meteosat. However, it is often diffictdt accurately assign a igat to the features
tracked.

The active instruments emit EM radiation towsatle Earth and measure the properties of the
signal that comes back to the instrument, atesorption, reflection oscattering by the Earth’s
surface or its atmosphere. The most common mmedsoroperty is the amplitude, but also the
polarization, the phase or the frequency measents are applied. Regarding the retrieval of
meteorological parameters, active sensing easlly adequate for deriving winds. A good
example is the Doppler Wind Lidar (DWL). @ DWL emits a laser pge towards the Earth,
which is scattered in all directions by aergsaiticles and molecules in the atmosphere. A small
fraction of this scattering will return to the DWThe motion of the aerosol particles in the
direction of the laser beam (=l line of sight, LOS) will prodce a Doppler frequency shift in
the return pulse. Since it is assumed that thespheric particles move with the wind, the LOS
wind speed can be derived. Although only one ponent of the wind can be derived with the
DWL, the instrument is very useful since it wile the first spaceborne instrument capable of
retrieving wind profiles of the atmospheréhe European Space Agency (ESA) recently
approved an experimental DWL missievhich is planned for launch in 2007.
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As discussed above, the wind infaton is crucial to describeghmatmospheric flow. Over land,
despite the data voids, there is a reasonabtaianof wind observations. However, the oceanic
wind observing systems described up to now atleeeirather sparse (ships, buoys, etc.) or
provide profile wind information (DWL), leadinig a poor horizontal covage, especially at the
surface. Since oceans cover about 70% of ththiasurface, the wind observations over water
are essential for a wide variety applications (see section 1.1.2).

The radars onboard satellites are able to pewccurate sea-surface wind vector information
with a high coverage (compared to conventiateth). The radar is a microwave active system,
which is used to observe the surface roughriéisse the sea surfaceughness is driven by the
wind, the latter can be inferredbfn radar data (see section 1.2).

A more comprehensive description of the differgpies of meteorological data used in the GOS
can be found at the World Meteorologicalg@nization (WMO) web site (http://www.wmo)h

1.1.2 Applications of sea-surface wind observations

As already discussed, the satellite radars are the main sea-surface wind information source, which
is essential to describe the atmospheric flow. Fitognvarious types of satellite radars, mesoscale
winds, with spatial redotions ranging from a few km t@00 km, can be derived. Therefore,
these wind observations are very useful for maeyeorological and oceagraphic applications.

Weather forecasting

The forecast of extreme weather events isahways satisfactory, while their consequences can
have large human and economic impact. &intany weather disturbances develop over the
oceans, sea surface wind observati@an help to improve theggliction of the intensity and
position of such disturbances.

Nowcasting, short-range forecasting and nuoatrweather prediction (NWP) assimilation can
benefit from the sea surface wind observations. In this res@ieffelen and Anderson (1997a)

show that the spaceborne radar winds havereficial impact on analyses and short-range
forecast, mainly due to improvements on the sub-synoptic scales. Moreover, the impact of
assimilating sea surface winds into NWP modatgificantly depends on the data coverage.
Soffelen and Van Beukering (1997) andJndén et al. (1997) show a much more positive impact

by duplicating the sea surface wind data coverage.

Wave and Ocean modeling

Surface winds are needed to drive surface wadesarge models. A reliable wave prediction is
as important as a good weather predictarshipping activities, for example.

Ocean circulation models are driven by surfacedsiand heat exchange. Moreover, the surface
winds are needed to calculate surface fluxedhexdt, moisture and momentum at the air-sea
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interface. Therefore, the ocean model outputtisngly related to the quality of the forcing
(wind) input. Global gridded remote-sensing sea-surface wBagamy et al., 2001) have been
extensively used in ocean model forcir@grifma et al., 1999;Quilfen et al., 2000). The ocean
circulation models play an important role, Btample, in the seasonal forecasting of the El Nifio
southern oscillation (ENSQr the Asian Monsoond étif et al., 1998).

Climate

Surface wind fields are required to validate dedpocean-atmosphere global models, which in
turn are essential to understand the Earth climate. The Tropics is a very sensitive region of our
climate system. Accurate and widely avaithime series of near surface wind data in the
Tropics would help to predidimate and climate chang&dffelen, 1998a).

Local studies

Local wind fields, such as land-sea breezed &atabatic wind flows strongly affect the
microclimate in coastal regions. They determina targe extent the advection and dispersion of
pollutants in the atmosphere and coastal waeysgeneration of local wind driven currents).
Since most of the world’s population lives in ca@hstreas and most pollutants are released into
the environment near coasts, the study of tHesal winds is also of great relevance for
environmental purposes.

The use of high-resolution sea-surface winds cammpertant in a number of applications, such
as in semi-enclosed seas, #faalong marginal ice zes and in coastal regions.

1.2 Relation between radar backscatter and wind

The radar (transmitter) emits enowave radiation towards the Earth. This radiation, with a
wavelength of typically a few cémetres, is scattered and refledton the wind roughened sea
surface such that a part of theited power will be detected by tinadar (receiver). Only a small
fraction of the radiation is absorbed byethatmosphere at the wavelengths mentioned
(Rosenkranz, 1993).

1.2.1 The radar equation

In a radar system, the relation between the received p&year(d the transmitted powdpy is
given by the following equatiort{aby et al., 1982):
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where A is the beam wavelengtl; the antenna gainR the antenna-target distancg,the
effective area (radar footprint) and® the normalized radar cross-section (NRCS). The sub-
indexest andr stand for transmitter and receiver, respectively. Equation 1.1 represents the most
generic formulation of the radar equation, whiobrresponds to bistaticadar. That is, the
transmitter and the receiver use different antennae and can therefore be in separate locations.

In case of monostatic radar (tsmitter and receiver use the saantenna), the antenna gain,
antenna-target distance and effective area vaoesdentical for the transmitter and receiver.
Therefore, equation 1.1 cée re-written as:

_ ¥ (PG%c°
e

If we assume thatr® does not vary oveA (generally assumed over sea), we get the following
expression for the averagedin A:

P
- 1.3
P (1.3)

However, in reality, the roughness elemenisthe ocean surface largely depend on the local
wind condition, which in turn can exhibit largariability. Since the st¢gering mechanism does
not linearly depend on the geophysicahdition, the geophysical nability within the footprint

will contribute to o° (Stoffelen, 1998a). This is particularly acute for low winds and large
footprints.

Radar footprint

The radar footprint oresolution is the spatial discriminan between signalseceived from
different parts of an area. More specifically, thsolution is the distance between points at which
the response power is half the peak-powg) (€sponse. That is, the resolution is defined as the
half-power width of theesponse. This is illustrated ingkire 1.1, where the resolution W is
shown as the width between the half-power points in the response from the target sensed.

Power
Response

——= Range (Measured by Time)
——= Angle (Measured by Antenna Pattern)
——= Speed (Measured by Doppler Shift)

Figure 1.1 Radar definition of resolution; the half-power width (Figure 7.20 from Ulaby et al., 1982)
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The microwave systems obtain resolution by mesmant of one or more of the following
guantities: angle, range, andesp. The angular discriminationashieved by the beamwidth of

the antenna. The narrower the beamwidth, the higher or “finer” the resolution (smaller the area
cross-hatched in Figure 1.2a) Ehe range (antennarget direction projeet onto the surface)
resolution is obtained by a time-delay measuremehich is equivalento a range measurement
because of the known constanteeg of the EM wave. Many different kinds of time-delay
techniques may be used in radar systems, ascpulse, frequency-modulated or chirp radars
(Ulaby et al., 1982). In Figure 1.2b, the crosshatched akaws the resolution resulting from the
combination of the angle and the range measents. In the case of only range measurement,
that is, the antenna beam illuminates all the ground (broad beamwidth), the resolution cell would
be a ring lying between the twwalf-power range response contguas shown in Figure 1.2b.

The speed measurement depends on the Dogmdguency shift of the received carrier
frequency, which is proportional to the relatispeed between the object sensed and the radar
system. The geometry of a radar system travetivey the Earth is suchahdifferent points on

the surface have different relative speeds. Thesetby using the appropriate frequency filters

(a) (b)
\ |

1/2 - Power
Range-Response
1/2 - Power ontours 1/2 - Power
Beam Contour Beam Contour
(c) (d)
| /\
1/2 - 'Power ]E;IZ , Pé} wetr
1/2 & Power - eam Lon our
Speed-Response peed-Response
Contour T — Contour X15 - Bl
Beam Contour Range-Response

Contours

Figure 1.2 Methods for microwave sensing: (a) angle only, (b) angle and range, (c) angle and speed, and (d) range
and speed (Figure 7.21 from Ulaby et al., 1982).
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one can discriminate between signals from diffepants of the surface adhe Earth. Similar to
the discussion of Figure 1.2b, Figure 1.2c shtwesresolution of combining the angle and the
speed measurements (cross-hatched area) anestilation of using only the speed measurement
(hyperbolic-shape strip).

The radar that does not use theexp resolution is called the real aperture radar (RAR). The
scatterometer is a RAR for which a combinatiomawfge and angle resolution techniques (Figure
1.2b) is used to get a spatial resolution ygfidally 25-50km. The radar system that uses the
combination of the range and speed discriminatiigure 1.2d) is called the synthetic aperture
radar (SAR). The SAR can have a spatial resolution up to a few meters. More detailed
information about the resolution cddar systems can be foundJhaby et al. (1982).

As discussed in section 1.3gtbxisting radar systems from whisea surface wind fields can be
retrieved are the non-nadir lookj monostatic radars (scatterometed SAR). For such systems,
theo® or NRCS is usually called dar backscatter coefficient.

1.2.2 Radar backscatter modulation of the sea surface

As illustrated in Figure 1.3, ¢hradar backscatter increases with the sea surface roughness. The
latter modulates the radar backscatter signateweral ways. Here, we synthesise the major
contributions to this modulation.

Bragg scattering

The backscatter signal fromethsea surface is dominated by the so-called Bragg resonant
mechanism, when using radastgms such aséhscatterometeiMélenzuela, 1978) and the SAR
(Hasselmann et al., 1985).

The backscatter power is praponal to the density of stace elements whose size is
comparable to the incident wavelength. Therefore, the Bragg scattering is dominated by
centimetre wavelength surface elements. These egltsmare the so-catlegravity-capillary
waves. They respond instantaneouslyhe strength othe local wind Plant, 1982). Since the

caps of these waves tend to align perpendiculdéingdocal wind, the radar backscatter is wind
direction dependent.

From a theoretical point of view, the conditifor resonance of the incoming microwaves is:

n A
== 1.4
°  2sind (14)
Where A and @ are the microwave wavelengthdaincidence angle respectivelyg the gravity-
capillary (Bragg) wavelength, amda positive whole number. The joacontribution to the radar
return is forn=1 (Valenzuela, 1978). Bragg scatteringhisught to be dominant for an incidence
angle range of 30< @ < 7C.
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(©)
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Figure 1.3 Schematic illustration of the microwave scattering and reflection at a smooth (a), rough (b), and very
rough (c) ocean surface (Adopted from Figure |-5, Soffelen, 1998a).

Specular reflection

Another mechanism to get backscatter signal filoenocean is specular reflection. The facets of
the ocean that are normal to the incidentrowaves will reflect the radiation back in the
direction of the radar antenna. The specular reflection contribution to the backscatter signal
depends on the incidence angle of the rableam. For increasing incidence angles, the
probability that a facet is oriented perpenthcly to the incident beam decreases, since the
steepness of the ocean waves is limited. Atgbatterometer and SARcidence angle regime
(generally,@ > 20), the specular reflection thought to provide a noregligible contribution to

the radar backscatter for incidence angles smaller tha(S@&Wart, 1984).
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The orientation of the facets will generally dependent on the surface wind speed and direction.
Therefore, the contribution @he specular reflection ° is, as in the casef Bragg scattering,
wind vector dependent.

Speckle noise and tilt modulation

At the spatial resolution of the SAR systeifupp to a few meters), there are two major
mechanisms that significantly increase thariability of the backscatter measurements:

» The speckle noise is a well-known problem, whatcurs in a coherent system such as
radars. The speckle noise isrfeed as a result of random phasgiations in the interaction
between the radar signal and the surfaGeo@iman, 1976). The phase variations are
introduced by a single or a combination tbe following effects: small-scale properties
(roughness) of the surface; randonotion of point scatters;nd variations inthe distance
between the radar and the target.

 The wave modulation (tilt modation) produces vari@ns in the pixelintensity at such
scales. That is, for ocean waves longer than the SAR resolution, the amount of specular
reflection and Bragg scattering wilary according to the part of the wave which is targeted
by the radar.

In order to eliminate the variability associatiedthese mechanisms, a practical solution is to
decrease the resolution (increase the pixel sifelhe SAR. By averaging the backscatter
intensity over an area of 300-500 mstehe speckle nge is removedRortabella, 1998; Lehner

et al., 1998). At such scales, the variability associatedhe wave modulation is also removed
since the longer waves are uydetween 200 and 300 meteiherefore, by degrading the
resolution of the SAR systems etlvackscatter variability asso@dtto speckle noise and wave
modulation can be removed. The scatterometeesysbnly have the speckle type of variability
but because of their large footprints @3km), it is reduced to 5-10% typically.

Consequently, in terms of the meahvalue, the scatterometemcaithe SAR (at 500 m resolution
or lower) have similar propertie&érbaol, 1997) and are modulated lilie Bragg scattering and
the specular reflection.

1.2.3 Interaction between the sea surface and the wind

As mentioned before, when the wind startdblimwv over the ocean, the gravity-capillary waves

are formed almost instantaneously. Part ofahergy of the wind is absorbed by the ocean and
transferred in space and time from the shomeves (gravity-capillary) to the gravity
(decimetric) and longer (metric or larger) waves. For increasing wind speeds, longer waves are
formed. A fully developed wind sea will theogé contain a wide spectrum of waves.

The dynamic interaction beegn the long and the shovaves is rather congx as illustrated in
Figure 1.4. The distribuin of the gravity-capillary waves msodulated by the gravity and in turn
the long waves. The distribution or energy densitthe gravity-capillary waves is known (up to
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a certain degree of knowledge) to be dependent on the @oftelen (1998a) describes with
some detail the theoretical relation between the wind speed and direction and the energy density
of such waves.

1.2.4 The geophysical model function

As discussed in section 1.2.2, the gravity-capili@ragg) waves are the dominant contribution

to the radar backscatter. We also know thatdlexists a relationshipetween the sea surface

wind and such waves (section 1.2.3). Therefore, the centimetre-wavelength radars (scatterometer
and SAR) provide in principlsea-surface wind vector information, and as such, a wind-to-
backscatter relationship exists. The latter isegally referred to as the geophysical model
function (GMF).

Several attempts have been madetheoretically model the GMFJdnssen et al., 1998).
However, the results were not satisfactory. Thidus to the fact that the ocean topography is not
well understood. The interactions between lond short waves are not trivial. Phenomena such
as breaking waves, foam, formation of slicks, etc., contribute in different ways, not yet
understood, to the density of tgeavity-capillary waves. Moreovethe EM interaction of the

(a) Long wave + gravity wave +
gravity—capillary wave

(b) Long wave modulates gravity A
| waves adiabatically

/ My

HTA L
NAAAAMAAAY ]

{(c} Gravity caplillary waves modulated “
_ via gravity waves ;

| o A R iy

\

Figure 1.4 Schematic illustration of the indirect modulation of short gravity-capillary waves by a long wave. (a) A
simplified system consisting of a long wave (dotted), a gravity wave (dashed), and a short gravity-capillary wave
(salid line). In (b) the modulation of the gravity wave by the orbital velocity of the long wave is taken into account.
In (c) the modulation of the gravity-capillary waves by the gravity waves is also taken into account (Figure 5.1
from Mastenbroek, 1996).
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radar with the complex ocean topography is not well modelled, i.e., the Bragg scattering and the
specular reflection.

An alternative is to find an empirical GMHRAhe latter is widely used for sea surface wind
retrieval from radar backscatter measuremeB@veral GMFs are available and tuned for
different radar instruments. However the basic formulation is common to all non-nadir looking
monostatic radars.

The empirically derived forward model functionNIG), which relates the state variables (wind
speed and wind direction) to the observatioaddr backscatter), is generally defined as:

0° = By[1+ B,cos@) + B, cos@g)|” (1.5)

where@ is the wind direction. Whethe wind blows precisely ithe azimuth direction of the
radar beam (or view), if it blows towds the radar is referred to as upwiget@) and if it blows
away from the radar is referred to as downwigdl8C); when it blows precisely perpendicular
to the azimuth direction of the radaew, it is referred to as crosswing=90° and@=27C)., and
the coefficients B B; and B depend on the wind speed, thedbincidence agle, and the
polarization and frequency of the radar beam. The value of the expoaadtthe number of
harmonics (additional harmonics may be addeegueation 1.5) depend on the tuning performed
for each GMF.

The empirical GMFs were originally tuned for the different scatterometers. However, as
discussed in section 1.2.2, in terms6f the scatterometer and the SAR have similar properties.
Therefore, a scatterometer GMF can be usedtt@ve winds from SAR data, provided that the
GMF is derived for the same frequency, pdaation, and incidence angles used by the SAR
instrument.

Wind stress versus 10-meter wind

The reference wind used by the GMiBshe 10-meter height windJ{g). However, the energy
density of the Bragg waves is actually not diyecelated to the surface wind but to the surface
wind stressr (momentum flux), which is a measuretbé impact that the wind has on the sea
surface. The relationship betweeandUy is:

T =CpU Uy (1.6)
whereCp is the surface drag coefficient.

Therefore, it seems more reasonatoldind the empirical relationship-to-o°, rather than the
Uie-to-0°, and then applyguation 1.6 to derivéJ;o. However, theCp depends on wind speed
and its determination is still uncertain (comp@&keparameterisations @mith et al., 1992, with
those ofDonelan et al., 1993). Instead, by directly estimating thigo-to-0°, the mean behavior of
Cp is taken into account implicitly. Moreover,observations are compéted and not widely

! Note, however, that the sub-footprint variability, which contributes tati{see section 1.2.1), depends on the
footprint size. Also note from equation 1.5 that the wind direction modulation is not linear and, therefore, the sub-
footprint wind direction variability will result in a small change in wind direction modulation at low winds. These
effects are ignored here.
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available, whereado observations are relatively stratéprward and widely availableSjoffelen,
1998a).

Real versus neutral winds

The atmospheric stability is knowto affect the surface dra@d) and therefore th&-to-Ujg
relation of equation 1.6. Thiwill introduce some uncertaintwhen using real winds in the
estimation of the GMF. In such cases, a mean staiidn in the lowest 10 meters (as influenced
by the air-sea temperature differeh@t any wind velocity is k&n into account. Since stability
depends on the wind speed, the mentioned unceriaistyall in the case statterometers (large
footprints). However, in the case of high resioln SAR it may still have an important effect
especially when the stratification rapidly chasgfrom stable (or neutral) to unstable. An
example of GMF tuned to reh0-meter winds is the CMOD-&pffelen and Anderson, 1997D).

An alternative is to correct the measured windgo)(to equivalent neutral windsJ{on) in the
process of estimating a GMF. Sindgyy is uniquely related to éhstress by theorresponding
drag coefficient Cpn in this case), this is equivalent to measurand thereforeheoretically
desirable. However, when estimating the GMFusing NWP model winds it is difficult to get
accurate information on the atmospheric stahilitherefore, performing wind corrections with
inaccurate stability information is equivalet@ adding another sourcef error to the GMF
estimation. If we use buoy data, which include aamiinformation on atnspheric stability, to
estimate the GMF, it is still doubtful whethar correction based on local stability can be
representative of the stabjlitaveraged over large radar footprints such as those from
scatterometers, i.e., 25-50 km. Moreovioy iS an oceanographic variable (remember it is
equivalent to the surface stress), and therefore, once derived, it has to be corrégtefibrto
further meteorological use. Mdout accurate information on ace stability (buoys are not
everywhere), this correction is uncertain. Armmple of GMF tuned toeutral winds using buoy
data is CMOD-Ifr [fremer, 1996).

1.3 Remote-sensing satellite radars

The scatterometer and SAR are the only remetesing satellite radar systems (up to now)
capable of observing wind fields over the oceHnmerefore, this thesis will be focused on the
wind retrieval problem of such systems. Instisection, a brief description of the so-called
monostatic non-nadir lookingdars, i.e., scatteromet@nd SAR, is given.

1.3.1 Scatterometers

The scatterometer is a monostatic non-nadir lmpKRAR. As discussed in section 1.2, wind
vector information can be empirically derivedrr it. Over the last tar decades, scatterometers
onboard satellites have provided very valuablessetace wind field information. In addition to
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the meteorological and oceanographic use of soateter winds, the scatterometer data are of
interest in applications such as sea ice (dag, edge and iceberg track monitoring) and
permafrost detection, snow melt and rainforest deforestation.

In terms of the antenna geometry, the scatterensystems can be classified as: side-looking and
rotating scatterometers.

Side-looking scatterometers

The side-looking scatterometers consist of a s&rebeam antennae with a fixed orientation, all
pointing to one or both sides ofetlsatellite flight track. The indence angles of such radars%(15
< @ < 70) are within the Bragg scattering and specular reflection regimes.

The National Aeronautic and &ge Administration (NASA) hasunched two side-looking Ku-
band (about 2 cm wavelength) scatterometergoupow: the Seasat-A Scatterometer System
(SASS) onboard Seasat, and the NAAt&rometer (NSCAT) onboard ADEOS-1.

The SASS was the first satellite scatteneter. It was launched @978, but unfortunately failed
after three months. As shown fRigure 1.5a, it had four tennae with dual polarization,
horizontal (H-pol) and vertical (V-pol). At eadhide of the subsatellite track, the set of two
antennae (fore and aft viewg)uwered a swath of 500 km. Thus, any wind vector cell (WVC) or
node (subsatellite cross-track locadmf the swath is illuminatetivice, first by the fore view
and a few minutes later by the aft view, at two dédfé azimuth angles (segew orientation in
figure 1.5a). Since the H-pol and V-poews were seldom operated simultaneoudlgn{z et al .,
1984), only two measurements are usually takenefach WVC. As it will be shown in section
1.4.1, with only two independent measuremetite, wind retrieval is ambiguous. Fore more
details on the Seasat mission and the SASS instrumerRiessan (1983).

Based on the SASS experience, a follow-on instrunSECAT, was launched in 1996 onboard
ADEOS-1, which lasted for 9 months. In companisvith SASS, a dual-polarization view (mid
view) in between the fore andtafiews was incorporated at easide of the swath (see Figure
1.5b); the fore and aft views were only V-pol dhd swath was larger (600 km). The addition of
a third view improves significantly the wind retrieval. Moreover, for H-pol the relationship
between backscatter and windffelis from V-pol, and as such, H-pol provides useful
complementary information, iparticular on the wind directiodomain. However, as we will see

in section 1.4.1, the optimal orientation of thedmiew would be precisely in between the fore
and aft views. More NSCAT-related information can be fountPin(1997).

In the interim between SASS and NSCAT, E%funched two identical C-band (5.7 cm
wavelength) scatterometers onboard ERS-1 (I881) and ERS-2 (April 1995), respectively. In
contrast with SASS and NSCAT, the ERS scatteromet8®AT) have optimal antenna
geometry for wind retrieval, with the mid viemrecisely in between thiere and aft views (see
Figure 1.5c). However, since the antennae arg \é+pol (no H-pol), the wind direction retrieval
is somewhat ambiguous (see section 1.4.1Softelen and Anderson, 1997c). As seen in Figure
1.5c, the SCAT illuminates only one side of tiwdsatellite track and its swath is 500-km wide.
For more detailed information on the ERS SCAT instrumentd-S&€1993).

The Advanced scatterometé&x§CAT) due onboard METOP, which jdanned for lanch in late
2005, will use the same wavelength, polarization and antenna orientation as SCAT, but will be
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double sided (see Figure 1.5d). Therefore, AS@ATbenefit much from the knowledge gained
during the ERS missions. However, the ASCAT ramfancidence angles is such that the
extreme outer part of thevath corresponds to incidence anglegt were not available in the
SCAT swath. A detailed description of ASCAiistrument and data products can be found in
Figa-Saldana (2002).

Rotating scatterometers

In contrast with the side-lookingcatterometers, the rotating scaiteeters have a set of rotating
antennae that sweep the Eastinface in a circular patteas the saliée moves.

The SeaWinds on QuikSCAT mission (from NASA and NG¥ is a “quick recovery” mission

to fill the gap created by the loss of data fi®CAT, when the ADEOS-4atellite lost power in
June 1997. It was launched in June 1999 andndasiversion of the instrument (SeaWinds-2)
will fly on the Japanese ADEOS-2 satellite, cutlenscheduled for launch in late 2002. The new-
concept SeaWinds instrument is a conicallynsaag pencil-beam Ku-band scatterometer. It uses
a rotating 1-meter dish antenna with two spot gieavH-pol view and a Yol view at incidence
angles of 46° and 54° respectivelyat sweep the surface in a dilar pattern (ge Figure 1.6a).

Due to the conical scanning, a WVC is gengraiewed when looking forward (fore) and a
second time when looking aft. As such, up to four views emerge: H-pol fore, H-pol aft, V-pol
fore, and V-pol aft, in each WVC. The 1800-knder swath covers 90% of the ocean surface in
24 hours. As discussed in sectiod.2, the data coverage is important for several applications,
especially for data assimilation. In this resp&aaWinds represents a substantial improvement
compared to the side-looking scatterometersgretihe largest coverage, given by NSCAT, is
only half of SeaWinds coverage, i.e., 90%tloé ocean surface within 48 hours. However, the
wind retrieval from SeaWinds data is not triviil.contrast with the side-looking scatterometers,
the number of views and their azith angles vary with the subsHite cross-track location. The
wind retrieval skill will thereforedepend on the area of the swadh,will be further discuss in
section 1.4.3. For more detailed information on the QuikSCAT instrument and data we refer to
[Spencer et al. (1997),JPL (2001),Leidner et al. (2000)].

Another concept of rotating scatteromet@FSCAT) is currently being investigated by ESA. It
consists of a rotating fan-beam scatterometerchvivould sweep the Earsurface in a circular
pattern (see Figure 1.6b) and would covevide range of incidence angles (approx? 208 <
50°). The number of views and their azimuth angley véth the subsatellite cross-track location
like for SeaWinds, but due to the wide incideaogle range, generally meviews are provided.
For more information on the ongoing work, we refekitoet al. (2002).

1.3.2 SAR

The SAR is a monostatic non-nadir looking radar, which uses the range and speed (Doppler)
measurements to improve resolution (see sectidri)l.The SAR is therefore a high resolution
radar, which has been used in many applicasoct as ocean wave modlgjl, sea ice detection,
surface topography, land surface propertiesaseroil moisture, disaster monitoring (floods,
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Figure 1.5 Schematic illustration of the illumination pattern of the side-looking scatterometers. (a) SASS, (b) NSCAT,
(c) SCAT, and (d) ASCAT. The grey areas denote the swath and the arrow the direction of the subsatellite ground track.
All beams pass a particular location in the swath within ~7 minutes. VWV and HH stand for V-pol and H-pol,

respectively (Figure I-7 from Soffelen, 1998a).
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earthquake, oil spills, etc.), deforestati etc. As the scatterometer, the SAR is mainly
modulated (over water) bydtsea-surface wind field.

During the last two decades, several SAR systems have been put into orbit onboard different
satellite missions, e.g., Seasat, ERS-1, JERS-B-ERRadarsat-1 and Envisat. In terms of
antenna geometry, all of them have a single-viminting perpendicular to the flight track (see
Figure 1.6c). Several parametelepend on the instrument design: the resolution (from 3 mto 1
km) the swath width (from 20 km to 500 km), th@arization (V-pol, H-pal cross-polarization)

and the frequency (C-band, Ku-band). Some of the SAR instruments can operate in different
modes and therefore vary several of the mentiggagameters. For example, the Envisat SAR has
the capability to change resttn, swath width and polarizath using modes such as scansar,
wide-swath, image, alternating polarization or global monitoring.

In order to use the SAR° information for wind retrieval, a comprehensive calibration is required
(Scoon et al., 1996; Kerbaol, 1997). In this respect, the ERS-1 and ERS-2 SAR images can be
well calibrated and therefore used for wind retriewadrbaol, 1997). Such SAR instruments
operate in C-band, use V-pol, have a spatiallutiso of about 30 metera 100-km wide swath,
and illuminate the Edmts surface at a meamcidence angle of 23 For more detailed
information on the ERS SAR instruments and dataES8g1993).

1.4 Wind retrieval

The wind retrieval procedure for scatterometer datschematically illustrated in Figure 1.7. A
set of radar backscatter measuretagobservations) in each observation cell (WVC) is inverted
into a set of ambiguous wind solutions. The invaersbutput is then usedogether with some
additional information (typically 'm NWP models) and spatial corisiscy constraints, to select
one of the ambiguous wind solutions as theseobed wind for every WVC. This is called
ambiguity removal (AR), and in contrast with the inversion, which is performed on a WVC-by-
WVC basis, the AR procedure is spatially filtering many neighbouring WVCs at once.

An important aspect of wind retrievial the quality control (QC). Thgoal of the QC is to detect
and reject poor-quality retrieved winds. As illusdiin Figure 1.7, the output from inversion can
be used for QC purposes prior to AR.

INPUT OUTPUT
. Wind
Observation Field

Control

Figure 1.7 Schematic illustration of the scatterometer wind retrieval process
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1.4.1 Inversion problem

As discussed in section 1.2.4, the GMF (spation 1.5) relates the radar backscatter
measurements (known) to the wind speed tredwind direction (unknowns). The number of
independent® from the same area (WVC) is therefafeparticular impeotance for a successful
inversion of the two unknowns. As shown in seatl.3, the number of views per WVC and their
relative azimuth angles depend on the radar instrudesign. In this section, we briefly discuss
the inversion problem for different mber of views and relative geometry.

a) Case with one view

Since the GMF has two unknowns (speed ainelction), if only one backscatter measurement
from one view is available, then the invers problem is underdetermined. Thus, there are
infinite wind speed and direction solutions, whigatisfy equation 1.5, as seen from the solution
curve (solid line) shown in Figure 1.8a. Moreovi®e range of wind solutions is extended if we
take into account the measurement noiae, denoted by the dashed and dotted curves
(corresponding to a simulated0% noise ino°).

b) Case with two views

Two backscatter measurements with different atimangles, that is, two views, should be
enough to derive a unigue win@gator solution since the invéss problem should resolve two
unknowns. However, because of the harmonicsenGMF, there can be up to four ambiguous
solutions. This is illustrated in Figure 1.8b, evl the wind solutions (sexrcles) correspond to
the intersections of the two inddual solution curves (one for eacfl). Since this is an ideal
case (no noise), the solutions are always represéyteurve intersections. However, if we take
into account the measurement noise (positive gatine vertical shifts othe curve as shown in
Figure 1.8a), sometimes there will be no intersegtihus reducing the number of solutions to up
to two (even if the curves do not intersect, ¢hwill be two local mimmum distances between the
two curves that can be taken as solutions).

The GMF is harmonic (i.e., highly non-linear) in the wind direction domain but behaves quasi-
linearly in the wind speed domai@onsequently, for two indepenteviews, the wind speed is
generally well determined (all solutions correspond to a similar wind speed value in Figure 1.8b).
The degree of independence of thtviews is given by the azimuth separation among them.
Because of the harmonic wind direction dependenteeobackscatter signédlearly reflected in

any solution curve of Figure 1.8), the optimal azimuth separation between two vie¥qse®0
Figure 1.8b). By looking only at the solid andttéd lines of Figure 1.8e, we see the effect of
using twoo® views very close in azimuth (only Separation). Both solution curves are very
close to each other (almost parallel), denotirag tieither the wind digion nor the wind speed

are well determined (no clear minimum distancemtersections), thus resembling the case with
only onec® view. Similar problems arise when theotwiews are too far in azimuth. In the
extreme case where the azimuth separation i% (8@ solid and dashed lines of Figure 1.8e), the
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only difference between the two curves is gy the upwind-downwind asymmetry (see speed
value differences between the two minima in thiedsar the dashed curve of Figure 1.8e). Two
views can be considered independent when their azimuth separation rangelis (30

Therefore, in general, for two independent Isaclter views, there wilbe up to four equally
likely (intersection of curves) wind solutions, witlarying wind speeds and very different wind
directions, denoting an ambiguity problem.dase of V-pol and azimuth separation of,ate
solution wind speeds will be very similar (as seen in Figure 1.8b).

c) Case with three or more views and good azimuth diversity

For three or more views, thaversion problem is overdetema@d provided that the azimuth
diversity, that is, the spread azimuth looks among measurements (i.e., spread of views) in the
WVC, is sufficiently high.

Figure 1.8c shows the inkson using 3 noise-fre@® measurements with good azimuth diversity
(90° separation between fore and aft views and avieid precisely in the middle). In this ideal
case, there is a unique intersec (see right circle) of the tbe solution curves, potentially
denoting a unique solution (the “truth” as indicated by the arrow). However, it is clearly
discernible that there is another location wherdities almost intersect (séft circle), denoting

a secondary solution. In reality, the measurenmarige will almost always prevent any triple
intersection and produce two solutso(see circles) witsimilar minimum curve-distance values.
Thus, the inversion will result in wvequally likely ambiguous wind solutions.

Figure 1.8d shows the same as Figure 1.8c butavidapol mid view. As mentioned before, the
H-pol and V-pol backscatter are differently maated by the wind. Thus, the incorporation of a
H-pol view can help in resolving the wind diteon ambiguity. In particular, comparing Figures
1.8c and 1.8d, a larger separation of the cuavesnd the secondary solution is noticeable in the
latter (see left circles), produced by thegkx upwind-downwind asnmetry of the H-pol
compared to the V-pol (see dashed curvesgrdiore, by using a H-pdinstead of a V-pol)

view, the secondary wind solution becomes less likely and consequently the inversion less
ambiguous.

Generally speaking, in the presence of good azirdivérsity, there can be up to four generally
well-determined wind solutions of which one or tae the most likely. This represents a clear
reduction in ambiguity withespect to the two-view case.

d) Case with three or more views and poor azimuth diversity

Figure 1.8e shows the im&on using 3 noise-fre@” measurements with extremely poor azimuth
diversity: two views separated &nd a third view 180apart. As discussed before, tadviews
separated by °5in azimuth are not considered indepemdand therefore the wind retrieval is
problematic. Moreover, the only diffaree between two views separated °L&0given by the
upwind-downwind modulation of the radar backscatie Figure 1.8e, since all views are V-pol,
the upwind-downwind modulation is almost symmetgnilar minima values in each solution
curve) and the dashed line (E8@part view) is therefore verglose to the other two lines,
especially in the wind direction range from 150 300 (indicated by segment). In this ideal
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case, there is still a triple intersection (see arrow), denoting a unique solution. However, in the
presence of noise, the curves can be indistinguisisaizh that this case resembles the case with
only one view: almost no wind speed and direction skills.

Figure 1.8f shows the same as Fgur8e but witha H-pol view 180 apart. Comparing the V-

pol and the H-pol solution curves (dotted lined~@fures 1.8e and 1.8fespectively), the H-pol

has a larger upwind-downwind asymmetry (as already discussed) and a smaller upwind-
crosswind modulation (shown here as the dpééference between the curve maximum and
minimum). Both effects contribute in Figure 1.&f significantly separate the curves and to
reduce the overlapping region tbe wind direction range from 17Go 250 (indicated by
segment).

By using a H-pol view, there is a gain in both the wind speed and the wind direction
determination, in comparison with the thregdl-view case. However, comparing this case with
the good azimuth diversity case, the loss in wind speed and direction determination is still
significant.

The examples shown in this case (Figures 18kl1a8f) represent the worst scenario in terms of
azimuth diversity. In general, for poor azimuth diversity you can still solve certain winds with
reasonable accuracy, depending on the speed amdlyinthe direction of the true wind with
respect to the azimuth views, i.e., the GMF #pfittes to speed and direction changes for each
view. For example, azimuth views of 8@0C, 170, and 190 resolve a true wind of 8Qquite

well, but one of 90 badly. The inclusion of additional viewvill help in the determination of the
wind speed and the wind direction. The mardependent the additionalews, the better wind
vector determination, i.e., accuracy, will result.

In summary, for one view, the inversion problenunderdetermined. For two or more views, the
problem is determined and, because of the noige of satellite radar siems, the accuracy of
the retrieved winds is generallyigh. The latter is howevarot true in casef poor azimuth
diversity among views. Another problem ofultiple-view systems is the wind direction
ambiguity. This problem is most significantr fovo-view systems and least significant when
using multiple H-pol views.

1.4.2 Inversion methodology

For two or more independenf views, a technique called Mianum Likelihood Estimation is
used to invert winds. The Maximum Likelihodgistimation (MLE) can be interpreted as a
measure of the distance between a set afeasurements and the solution lying on the two-
dimensional GMF surface in a n-dimensional spd&eff@len, 1998a). In the standard wind
retrieval procedure, the minimu MLE values correspond to the wind solutions used for AR
purposes. For simplicity, in section 1.4.1, M&E is interpreted as the distance among rthe
single-o° solution curves as a function of the windedtion, where the $ations correspond to
the wind directions with minimum distances; togver a minimum distance (solution) is, the
larger the likelihood of this solution of beingetlitrue” wind. As is later discussed, the MLE
takes into account the measurement noise. ThE fdrmulation and the standard wind retrieval
procedure are further discussectirapters 2 and 3, respectively.

20 Wind field retrieval fronsatellite radar systems



a) b)
One View Two Views
20 T T 20 T T T
T T
~ ~
E £
- -
© »
by o
2 2
(78] (78]
- -
£ Z
= =
5 = 5 —
0 | | | | | | | 0 | I I I | | |
0 45 90 135 180 225 270 315 360 s} 45 90 135 180 225 270 315 360
Wind Direction (deg) Wind Direction (deq)
Three Views Three Views
20 T T T 20 T
T T
~ ~
£ £
- -
2 2
by by
2 2
(78] (78]
- -
£ =
= =
5k — 5k —
0 I I I I I I I 0 | | | | | | |
s} 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360

Wind Direction (deg) Wind Direction (deg)

Three Views Three Views
T T

20 T

T 20 T

wind Speed (m/s)

Wind Speed (m/s)

0 | | | | | | | 9] | | | | | | |
9] 45 90 135 180 225 270 315 360 o] 45 90 135 180 225 270 315 360
Wind Direction (deg)

Wind Direction (deg)

Figure 1.8 The curves represent the set of wind speed and direction values, which satisfy the GMF for a single
o easurement, produced by a wind of 8 m/s and 245 ° (arbitrary reference). The incidence angle of the viewsis 54 °. The
number of views and their polarizations and azimuth angles are distributed as follows: (a) one V-pol view at 45 °(solid),
with simulated noise in o°(dotted and dashed correspond to + 10% and —10% o °increments, respectively); (b) two V-pol
views at 45 ° (solid) and 135 ° (dotted); (c) three V-pol views at 45 ° (solid), 90 ° (dashed), and 135 ° (dotted); (d) same as
(c) but the 90 °view (dashed) being H-poal; (€) three V-pol views at 45 °(solid), 50 ° (dotted) and 225 ° (dashed); (f) same
as (e) but the 50 °view (dotted) being H-pol. The arrows point the “ truth” ; the circles and segments show the possible
wind solutions.
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For onec® view, the inversion is underdetermined as already discussed. Therefore, additional
information is needed to successfully invert wintsis will be further discussed in chapter 4.

1.4.3 QUuikSCAT problem

The SeaWinds swath is dividégtto 76 equidistant 25km-by-25ki¥VCs, numbered from left to

right when looking along the satellite’s propagatiarection. As already nrgioned, in contrast

with the side-looking scatteromete QUikSCAT has an antenna geometry, which is dependent on
the WVC or node number due to its circular scans on the ocean. Figure 1.9 shows the mean
azimuth separation between fore and aft viewspee number, for both the outer (solid) and the
inner (dotted) views. The plot shows a varyamymuth separation not only between the fore and

aft views (notice that both the solid and dasheédiare far from being flat) but also between the
inner and outer views (notice that the lines aot parallel), denoting an azimuth sampling
(diversity) dependence on the node number. Sime®uter and inner viesare V-pol and H-pol,
respectively, it can be easily inferred from thethat the number ofiews and the polarization

is also node dependent.
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Figure 1.9 Mean azimuth separation between fore and aft views by node, for a few revolutions of HDF data; the
outer view separation isin solid line and the inner view separation in dotted line.

As discussed in section 1.4.1ethkill of the wind retrieval gbrithm depends very much on the
number of views and #ir polarization and azimuth diversity. The QuikSCAT swath is therefore
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subdivided in several regions, igh are assigned to three diffatecategories (see Figure 1.6a)
according to the different inversion skill cases already discussed (see section 1.4.1):

e Category | corresponds to the so-adlleuter regions @des 1-8 and 69-76),
where there is only V-pol outer-view infoation (see Figurd.9). The inversion
skill in this region corresponds to cdsef section 1.4.1. At nodes 1-2 and 75-76,
the azimuth separation between the fore and aft views is very small (sometimes
only one view is available), thuesembling the single-view caa®f section 1.4.1
and resulting in both windpeed and direction underdetermination. However,
these nodes represent a very small path@®fQuikSCAT swath. At the remaining
outer region (nodes 3-8 and 69-74), thes enough azimuth separation between
the two views (more than 20as seen in Figure 1.9) to consider them independent,
thus resulting in a signdant wind direction ambiguity.

» Category Il corresponds to the so-callteet regions of the swath (nodes 9-28
and 49-68), where there are four views éfamner, fore-outer, aft-inner and aft-
outer) and two polarizationéH-pol and V-pol) availele, with good azimuth
diversity (see azimuth spreading in Figat8). The inversion skill in these regions
corresponds to caseof section 1.4.1 with H-pol information: the wind vector is
well determined and the wind direction ambiguity is small.

» Category lll corresponds to the so-cdlieadir region (nodes 29-48), where there
also are four views and twablarizations but the forand aft looks are nearly 180
apart and the separation between the rirarel outer views is very small (see
Figure 1.9), thus showing poor azimuth dsity. The inversion skill in this region
corresponds to caskof section 1.4.1 with H-pol information: the wind speed and
the wind direction are poorly determined.

The QuikSCAT instrument includes all the diffieténversion problem caseescribed in section
1.4.1, especially casds ¢, andd, and it is therefore of particular interest to study the wind
retrieval problem. In contrastith the previously flown scattemeters, all side looking (see
section 1.3.1), the QuikSCAT swath includesaaea of poor azimuth diversity (nadir region),
which represents a new challerfge scatterometer wind retrieval.

1.4.4 SAR problem

As discussed in section 1.2, the synthetierape radar (SAR) backscatter intensitig$) (and
their statistical properties caih quantitative information aboudhe state of the sea surface
roughness and therefore can be used to deeaesurface wind information. As such, well-
calibrated SAR data, e.g., ERS-1 and ERS-2 SAR instruments, can be used for wind retrieval.

Although much work has been done on the fodvaodelling of estimating the radar backscatter
modulations from the geophysical parametersetlaee fewer reports on the inverse modelling to
estimate geophysical parameters from the SRRnodulations. The main reason for this comes
from the fact that for single-view measurement instruments, such as SAR (see section 1.3.2), the
wind inversion has an inherembderdetermination problem (cas®f section 1.4.1). In addition,
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as already discussed, the relationship betweeand the geophysical panaters is non-linear
and ambiguous, further complicating the inversion.

On the other hand, C-band SAR images of ska surface usually manifest expressions of
atmospheric phenomena occurring in therineaboundary layer. Most common among these
phenomena are boundary layer rolls, atmosphemwvective cells, atmospheric internal gravity
waves, tropical rain cells, katabatic wind floausd meteorological fronts. This has recently been
documented in a series pépers published in tHgpecial Section on Advances in Oceanography

and Sea I ce Research using ERS observations (JGR, 1998) and in theeOQ (1998).

For the study of these atmospheric phenomen®&® &#n provide very useful wind information.
However, it is clear that additional externaformation needs to be used to overcome the
inherent underdetermination prebt of SAR wind retrieval.

1.4.5 Quality control

Radar systems such as space-borne scatteromatbrextended coverage are able to provide
accurate winds over the ocean surface and camtaitg contribute to improve the situation for
tropical and extratropit¢acyclone prediction Iaksen and Soffelen, 2000; Soffelen and Van
Beukering, 1997; Atlas et al., 2001). However, the impact adbservations on weather forecast
often critically depends on the Quali@ontrol (QC) applied. For examplBphn et al. (1998)
show a positive impact of cloud motion winds on the European Centre for Medium-Range
Weather Forecasts (ECMWF) model after QCjlevthe impact is negative without QC. The
effect of QC also applies fosatellite radar data. Besides their importance for NWP data
assimilation, in applications such as nowcastang short-range foredasy, the confidence of
meteorologists in the satellite radar databested by a better QC. d@iefore, in order to
successfully use satellite radar data in anyhef mentioned applications, a comprehensive QC
needs to be carried out in advance.

The goal of QC is to detect and reject poorhty&V/VCs. Several geophysical phenomena other
than wind can “contaminate” the radar observatiand in turn decrease the quality of the
retrieved winds. A shortescription of the most significant phenomena follows.

Seaice

As previously discussed, the sea surface wardsinferred from the sea surface roughness. The
wind retrieval from satellite radar systemdhsrefore only possibledm water observations. A
WVC partially or totally covered by other surfacésmn water, such as land or sea ice, will
contain poor or no wind information. Consequenttyis important to identify and remove such
WVC from the wind retrieval process.

In contrast with the coastal lines, for whictpiecise description is available, the sea ice edge
information is less accurate since the sea i@diginuously changing. The information used to
identify sea ice areas in the radar data proces$iam is often derived from satellite data, which
is often insufficient for an accurate and updtite monitoring of the sea ice sheet changes.
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Therefore, at high latitudes, there can bedortaminated WVCs, which have not been flagged
as such in the data product.

Confused sea state

For a constant sea-surface wimg,the longer waves develogésdiscussion on wave formation
in section 1.2.3), the surface stress (and ther&gygradually decreases since such waves grow
and move in the direction of the surface winde Thinimum surface stress corresponds to a fully
developed wind sea, that is, a sea statguilibrium with the local wind. HoweveMastenbroek
(1996) shows that, in general, the surface stdssacterized by the searface roughness, does
not significantly depend on the sea state. Onlgases of confused sa#ate, such as in the
vicinity of the center of a lovpressure system or along atmosphé&oat lines, where the sea is
clearly not in equilibrimn with the local wind, the wind retnal is of poor quality. Moreover, in
such cases, different wind fields can take pathensame WVC (e.g., imagine a front line, which
separates two different wind fieldsrossing the WVC), decreasing in turn the quality of the
retrievals. This is of particular importance tbe large scatterometer WVC, since the probability
of having different wind fields ia WVC increases with the WVC size.

Rain effects

Rain is known to both attenuatedabackscatter the microwave signgbn de Hulst (1957)
explains these effects. Raindrops are smathpared to radar wavelengths and cause Rayleigh
scattering (inversely proportional to wavelengthhte fourth power). Large drops are relatively
more important in the scattering and smallgavelengths more sensitive. For example,
Boukabara et al. (1999) show the variation of thegsal measured by a ts#lite microwave
radiometer with the rain rate. As the rain ratereases, the spaceborne instrument sees less and
less of the radiation emitted by the surface] arcreasingly sees the radiation emitted by the
rainy layer that becomes optically thick due to volumetric Rayleigh scattering. For SeaWinds, at
Ku-band, a dense rain cloud results in a radass-section correspondito a 15-20 m/s wind.

In addition to these effects,dfe is a “splashing” effect. Ehroughness of the sea surface is
increased because of splashing due todraips. This may increase the measuwé&dwhich in
turn will affect the quality ofvind speed (positive bias duedd increase) and direction (loss of
anisotropy in the backsttar signalyetrievals.

Comparing Ku-band to C-banddars, the higher frequency diie former makes the rain
attenuation and scatterimgfects about 50 times stiger. In particular, aSeaWinds operates at

high incidence angles and therefore the radiatiost travel a long path through the atmosphere,
the problem of rain becomes acute. It is therefore very important to include a consistent QC
procedure in the QuikSCAT wind retrieval process.
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1.5 Aim and overview of the thesis

The aim of this thesis is towiew the current wind retrieval pcedures of scatterometer and SAR
systems, identify the most significant unresolved problems, and propose new methods (based on
fundamental methodology) to overcome such problen this respect, the antenna geometry of

the QUIkSCAT nadir region presents a new probfieen, poor azimuth diversity) in scatterometer

wind retrieval, which needs to be carefully asikred. On the other hand, although some work has
been done to derive winds from SAR, the underdatetion problem of such instrument is still

a major obstacle for successful wind retrieval; m#sas are therefore needed. Finally, and due to

the importance of quality control in scatterometryQC procedure for QUikSCAT is identified as

a major goal in this thesis.

In chapter 2, Maximum Likelihood Estimation, the mosbmmonly used technique to invert
winds from scatterometers, is defined andrebterized. The Maximum Likelihood Estimator
(MLE) is an optimization technique derived from Bayes theory, which maximizes the probability
of the “true” wind by minimizing the so-called ML&bst function. The shape of the latter can in
turn be used to examine the inversion problem since it provides information on the relative
probability of every point (wind gation) of the cost function. In this respect, the poor azimuth
diversity in the views of thQuikSCAT nadir region produces broad minima in the MLE cost
function, indicating a decrease in the level of duteation of the problem, compared to the steep
and well defined minima of the QuikSCA3weet regions. The QuikSCAT nadir region
represents a new challenge in terms of scatteromate retrieval and, as such, it is identified as

a region of main interest in this thesis.

Prior to investigating the wind retrieval inetfQuikSCAT nadir regignthe MLE behaviour is
further examined. Due to non-linearities the inversion and some misestimation of the
measurement error (noise), the MLE presents ssystematic dependencies. These are removed
by empirically normalizing the MLE, as a functiohwind speed and node number. The resulting
normalized residual (Rn) is a very usefulrgraeter for wind retrieval and quality control
purposes, as demonstrated in the followingptars. Finally, the difference in the MLE
distribution between different pressing of the same instrumental&s also examined, including
a theoretical derivation of thaistribution properties and a mparison between simulated and
real distributions. It turns odhat a reduction of the multi-dimsional space of the MLE, due to
the averaging of several backscatter measuremisniise main cause for a change in the MLE
distribution. Despite the distribution differenceke information content of the MLE remains
almost the same as inferred from the wind estal scores achieved hiyne different data
processing.

In chapter 3, the wind retrieval for deteined (scatterometer) problens revised, with special
attention to the QuikSCAT nadir region. Theatterometer standard wind retrieval procedure
consists of considering the MLE cost ftiooa minima as the potential (ambiguous) wind
solutions that are used by the ARocedure (a spatial filter wdh uses background, i.e., NWP,
wind information as well) to select the observeddviln the QuikSCAT nadir region, where the
cost function minima are broad, the use of ®tandard proceduresults in inaccurate and
unrealistic wind fields. This is due to the fachtithe standard procedure only considers the MLE
minima as potential wind solutions, ignoring ak theighbouring cost function points that are of
comparable probability of being “true”. A scheme, which takes into account the information on
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the skill of the inversion, thas, the shape of the MLE cosirfction, seems more suitable when

the retrieval problem is less well determin&dich scheme would allow more ambiguous wind
solutions (not constrained to only the cost function minima) when the retrieval problem results in
broad cost function minima. A multiple solution scheme (MSS) is therefore proposed in order to
overcome such inversion limitations, notably present in poor azimuth diversity areas.

The MSS uses a variational analysis AR, thusugng spatially consisté and meteorologically
balanced retrieved fields. Moreover, the variatiokia explicitly uses tk relative probability of

each ambiguous solution. This makes the scheme flexible enough to accept many wind solutions
without the risk of oversmoothing e@hresulting wind field, since éhless likely solutions will

always be down-weighted. An empirical method, which converts the MLE values into
probabilities of the “true” wind, isxplained and applied for QuikSCAT.

A comparison between the standard wind retriewal the MSS procedures is then performed,
using the National Center for Environmental Prediction (NCEP) winds as background term in the
variational analysis and ECMWF winds for valida. The comparison is performed at 100-km
spatial resolution, since the 100-km product shtwvbe both less ambiguous and more accurate
than the 25-km product. The MSS turns oubb&omore in agreement with ECMWF than the
standard procedure, especially at nadir. Moreavshows more spatially consistent and realistic
winds without removing the information contenttbé observations. In fact, AR results in winds
with generally higher a priori pbability. As such, the MSS concept is potentially beneficial for
QuikSCAT data assimilation purposes in NWP.

The wind retrieval for underdetermined problems is revisedchapter 4. Single-view
measurement systems such as the SAR presanharent underdetermination problem, that is,
the single-backscatter measurememhich is sensitive to both the wind speed and the wind
direction, is insufficient to resolve the wingector. However, there exist a few algorithms
specially developed for SAR, which try to iat# the problem by only deing one of the wind
components. This is the case of the SAR windddion algorithm (SWDA), which is deriving the
local wind direction from the linear expressioassociated with atmospheric phenomena such as
wind streaks, detected in the SAR image. Apotalgorithm, the scatterometer GMF, derives
unambiguously the wind speed provided that thedwdirection information is given. Therefore,
a method, which combines the SWDA and theteoateter GMF, can close the problem in
terms of SAR wind retrieval. Such method, ig¥h provides independent wind vectors, i.e.,
equivalent to assuming no underdeterminationjaigdated against high resolution NWP data.
Several problems are identified when using thethod for SAR wind retrieval. The accuracy of
the SWDA decreases with increasing wind streplcing and the wind streaks show some
misalignment either to the riglar to the left of the “true” wid direction. Since the combined
method assumes no errors, i.e., the algorithmsparéect, the reported errors in the wind
direction estimation (SWDA) are directly affting the wind speed estimation. Moreover, the
wind direction cannot always be derived, demgtthe inherent underdetermination problem of
SAR wind retrieval.

A generalized inverse method, i.e., SAR windiegal algorithm (SWRA), which is based on the
Bayesian approach and uses a simplistic sessfraptions, is proposed as an alternative to the
current SAR wind retrieval algorithms. It acknledges that the SAR wind retrieval is
underdetermined and, as such, combines the Bif§& information (SAR term) with additional
external information (background term), i.e., RWvinds, to derive the wind field taking into
account that both sources of information camntairors and these are well characterized. The
SWRA is validated and compared to the previmethod, showing very promising results. It
results in a compromise between the SAR tr@dNWP information. However, the SAR wind
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variability information is mainly added to éhmost sensitive wind component, i.e., the wind
speed, resulting sometimes in a wind directiotdfidose to the smooth NWP field. It is shown
that by setting a more comprehensive set of assumptions, i.e., allowing the wind direction
information derived from the SAR image patterrb&incorporated in the SAR term, the problem
may in some cases be solved.

In chapter 5, a new QC procedure is set for QuUIkSCAT, in particular to screen out rain-
contaminated points. It is based on the MLE and, as such, follows the QC procedures developed
for NSCAT (Figa and Soffelen, 2000) and ERSSoffelen, 1998a) scatterometers. The MLE
indicates how well the backscatter measurementsinsbe retrieval of particular wind vector

fit the GMF, which is derived for fair weatheonditions. The main assumption for this QC
procedure is that since a large inconsistency with the GMF results in a large MLE, this indicates
geophysical conditions other than those moddiethe GMF (e.g., rain, confused sea state, sea
ice). A (MLE) threshold, which separates the goo@lity winds from the poor-quality retrieved
winds, can therefore be tuned.

A generic and empirically derived method, whigses the normalized MLE, i.e., the Rn, as QC
parameter, is proposed to characterize and validtet QC procedure. The Rn results in a good
QC indicator and rain detectdk.Rn threshold is defined suthat it maximizes the poor-quality
rejections (including rain-contaminated data)d minimizes the good-quality rejections. The
results show indeed the potential positive atipof assimilating QuikSCAT winds into NWP
models after using the QC by Rn.

In order to improve the QC for QuikSCA®,comparison between the above-mentioned (Royal
Dutch Meteorological Institute or KNMI) QC by Rand a rain flag developed by JPL is then
performed. The KNMI QC turns out to be moféeetive as QC indicator, while the JPL rain flag

is more effective as a rain detector. The JPL flaigp is, however, rejecting too many consistent
wind data in dynamically active areas. The KN®C is therefore recommended. Nevertheless,

in the poor azimuth diversity areas, where tiR Jain flag is able to detect some flow-
inconsistent and rain-contaminated winds, which are not detected by KNMI QC, the combined
use of the KNMI QC and the JPL rain flag is recommended.

In chapter 6, a general discussion on thenwalescribed in this thesis is presented. In particular,
the differences and similarities of the wind retriew&thods proposed in chapters 3 and 4, that is,
the MSS and the SWRA, respectively, are dised. Both methods are based on the Bayesian
approach and use some additional informatian, NWP winds; the main difference between
them lies in the level of determinationtbk problem that each method is facing.

The MLE-based QC presented in chapter 5 Imaged use or none when the problem is not
overdetermined, that is, wheretle are less than three radaws, e.g., QUIkSCAT outer-region

and SAR cases. Alternatives to QC radar windsuich cases are presenteste. Other QC issues
such as the need of a QC for low-resolutiomdsi i.e., 50 km and 100 km, and the claim of
effective rain flags in Ku-band radars are also addressed. Finally, a general outlook is presented.
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Chapter 2

Maximum Likelihood Estimation

In remote sensing, the relationship betweey @lpservation or set of observations and one or
more geophysical state variables is generapresented with the following equation:

y =K, (X) (2.1)

wherey is the vector of observations,s the vector of state variables tlyalepends on, and the
operatorK, is the so-called forward model, which relates the state variables to the observations;
the subscriph reminds us that it might be non-line&he process of deriving the best estimate of

x for a giveny, allowing for observation errors, is called inversion. There are several approaches
for inverting remotely sensed variables, inghgd Bayes’ theorem, exact algebraic solutions,
relaxation, least squares estimatitnuncated eigenvalue expansions, €odfers, 2000). The

most general approach to the problem is theeBay approach. This approach is also used in
scatterometry, where the inversion process is highly non-linear.

Several optimization techniques, st depend on the desired statial objective, can be applied
when using the Bayesian approach, including maximum likelihood, maximum posterior
probability, minimum variance, minimum measorent error, etc. The maximum likelihood
estimation is the most commonly used technigue to invert winds in scatteroRietspr{, 1990;
Soffelen, 1998a).

In this chapter, the MLE is defined and several of its properties, related to the inversion and
quality control, are extensively examined.
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2.1 Definition

2.1.1 Bayesian approach

The Bayesian approach is used gengrall meteorological analysis, as proposed Layenc
(1986). He proceeded from a generic Bayesialyars equation, expressed in terms of multi-
dimensional probability distribudn functions, through a fairly stdard set of assumptions, to a
variational equation for the “best” analysis.

The Bayes’ theorem states that the posterior pittyatsf an event A occurring, given that event
B is known to have occurred, is proportionaltie prior probability of A, multiplied by the
probability of B occurring given that A is known to have occurred:

P(A|B) O P(B|A)P(A) (2.2)

This is applicable to the inverse analypreblem. If A is the event true statge)(and B is the
event observationy{), then equation 2.2an be re-written as:

P, 1y,) O P(y, [x,)P(x,) (2.3)

This equation defines andJdimensional Probability DistributioRunction (PDF), which we shall
call P4(x), i.e., posterior probabilityRodgers, 2000), specifying all we know about the analysis.
For a complete solution to the generalizeobgm we need to know also the accuracypthis
information is also contained Py(x).

The probabilityP(y,|x;) contains the uncertainty in the observation and the forward model and
can be written as:

P, 1X) =Py (Vo =k, () = [Py, = ¥o) TP (v, =k, (x)) ey, (2.4)

wherey; are the true observation valu€g,represents the randoobservational errors arfej the
forward model errors.

The prior probabilityP(x;) contains our knowlege about the state before the observations are
taken. As it will be shown throughout the thesige definition of the prior probability is very
important for solving inversion problems. E¢joa 2.3 can therefore be re-written as:

P.() O Ry (¥, —k, (X)) TP(x,) (2.5)

In using this nomenclature we have aptted the assumption that the PDF®gfandP(x;) are
independent, i.e., that their errors are uncorrelatith is generally the case. If this is not the
case, one should use the joint PDF instead.
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Then, as already mentioned, several optimizagohniques, depending on the desired statistical
objective, can be applied when using the Bayesian approach (equation 2.5). For example, the best
estimate of the state, can be the mean & (x) or the maximum oP4(x), which correspond to

the minimum variance and the maximpsterior probability estimates »f, respectively.

2.1.2 MLE optimization technique

In scatterometry, the MLE consists of maximiziRgx) (see equation 2.5)sing no external
information (other than scatteneter) in the prior probabilityP(x;)) term. For example, in the
case of the ERS scatterometers, the prior inddion in the measurement space was used in the
P(x;) term to define the MLE Soffelen and Anderson, 1997c). For SeaWinds, no prior
information about the stateis used, that is:

P(x,) = constant (2.6)

For scatterometer wind retrieval, since the problem is, in general, determined (see sections 1.3
and 1.4), using no external information in the prior probability is generally valid.

Following the derivation of equation 2\e now need to specify the PDRsandP,. A common
assumption, which simplifies the solution, is that errors are Gaussian, i.e., that the PDFs are
multi-dimensional Gaussian functions. In this case, equation 2.5 can be written as:

P.() 0 eXp[—%{yo —k, 00} (O +F) ™ {y, —k,(x)}] (2.7)

whereO andF are the error covariance matricePphndP,, respectively. Since maximizirigy
is equivalent to minimizing —Ii;), the MLE cost functin can be written as:

MLE ={y, =k, (x)}" (O +F){y, —k,(x)} (2.8)

For scatterometery, contains the® measurements(, is the GMF; and is the wind vector at
10m height. The GMF isansidered perfect, i.eE=0, and theo® measurements are assumed
uncorrelated, i.eQ matrix is diagonal. Equation 2.8 nsinimized locally, that is, in a WVC-by-
WVC basis. For SeaWinds, the MLEtigerefore defined as [adopted frdfPL (2001)]:

_1dfos-ad)
MLE—N; r

(2.9)
where N is the number of measurements; ° is the backscatter measuremedg,® is the
backscatter simulated throughetfeophysical Model Function §@-) for different wind speed
and direction trial values, anp(os 9 is the measurement error variance (noise). Strictly
speaking, when assuming Gaussian errors, a kefifp(c; shoyld be added to the right-hand

side of equation 2.9 but thisrte is not significant and, asuch, is not used. [Note: th is
usually taken proportional to eithey; °or gs 4 the latter is chosen, following the MLE definition
for QUIkSCAT given by JPL.]
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2.2 Cost function

The MLE value represents the probability of a trial wind vector (solution) being the “true” wind,
according to equation 2.3. The SeaWinds opmaton technique consists of looking for the
minima of equation 2.9, which peesent the local solutions withaximum probability of being

the “true” wind. Since it is computationally expamsto search for minimum MLE in the entire
wind domain, the following procedure is usually applied in scatterometry:

* For a particular wind direction, the minimuMLE is searched as a function of wind
speed, which, in contrast with wind eation, behaves quasi-linearly and a single
well-determined minimum is usually found. &lsearch is generally performed at the
speed step size given by a look-up-¢aflUT) (0.2 m/s for QuUikSCAT).

* The same operation is repeated for every wind direction, at the step size given by the
LUT (2.5° for QuUikSCAT). The resulting minimum MLE as a function of wind
direction is referred to as MLE cost function.

In the standard wind retrieval procedure, theBvtost function is searched for minima. There
are typically up to four minima, which arcalled ambiguous wind solutions. The set of
(ambiguous) wind vector solutions are subsequently used for AR purposes.

2.2.1 Wind retrieval skill

The MLE (see equation 2.9) can be interpreted aseasure of the distance between a set0f
values and the solutiogs ° set lying on the GMF surface in a transformed measurement space
where each axis of the measment space is scaled Kp(os 9 (Soffelen and Anderson, 1997¢).

As discussed in section 1.4.2, such distancebeasomehow interpreted as the distance among
the singlee® solution curves of Figure 1.8 describedsaction 1.4.1. The ape of the MLE cost
function is then determined by tk@ modulation of any view (modulation of a singi&-solution
curve) and the relative geometry among viéiphase” shift among curves). By using the MLE
cost function minima in the retrieval (standgmebcedure), the shape of the cost function will
determine the skill of the wind retrieval.

Figure 2.1 shows an example of the MLE chstction for QuikSCAT. The diamond symbols
indicate the ambiguous wind solutions detedbgdthe inversion procedure. The shape of the
minima determines the accuracy of the wind reaieThe broader the minima (equivalent to the
larger the overlapping segment in Figure 1.8),léiss accurate the retrieved winds are, since we
are ignoring the neighbouring wind solutions te thinima, which are afomparable probability

of being the “true” wind, i.e., comparable MLE valurhe depths of the minima relative to each
other determine in this caseethikelihood of each ambiguous sttn of being the “true” wind
and therefore the ambiguity or wrtainty of the system. The ckrsthe depth of the secondary
minima to that of the primary (deepest) minmmand the larger the number of (deep) minima
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(equivalent to the larger the number of clear itetisns or near-interseotis in Figure 1.8), the
more ambiguous the wind retrieval is.

The modulation of the cost function (diffecenbetween maximum and minimum in Figure 2.1)
is also important in terms of wind retrieval ay. It shows how unlikely the lowest likelihood
points of the cost function ampared to the highest likkbod points. For example, the low
GMF modulation at low winds (equivalent toetfow solution curve modulation in Figure 1.8)
results in a low cost functionadulation. In this case, the wintirection solutions coming out of
the inversion are not smeaningful anymore, since the emt procedure is ignoring many cost
function points of comparable probability tbat of the ambiguous solutions. The low cost
function modulation therefore rdtiin low wind direction skill when using the current (i.e.,
standard) wind reieval procedure

The MLE cost function is an output from the imsien, and as such is reflecting the inherent
inversion problems. Using the minima of tNLE cost function as the only ambiguous wind
solutions can lead to poor quality retrievals. Aswik see in chapter 3, if we properly use the
information on accuracy and ambiguity derivedrirthe MLE cost function (inversion), the wind
retrieval may improve significantly.

MLE along line of minima

80

60

MLE

40

N
o

o
O‘\\\

| | | |
60 120 180 240 300 360

Wind Direction (degrees)

Figure 2.1 Example of MLE cost function for QuikSCAT node number 33. The diamond symbols indicate the
locations of the minima found by the inversion procedure.

2.2.2 QuikSCAT example

As discussed in section 1.41Be wind retrieval performance deases in certain regions of the
QuikSCAT swath. This is an infent problem of the QuikSCATversion, which is reflected in
the shape of the MLE cost function.

! Wind direction information is meteorologically less meaningful for low winds. We generally find that the wind
vector error does not depend on wind speed.
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The example shown in Figure 2.1 correspondsoide number 33. This WVC is inside the nadir
region, close to the sweet region. As we apghnahe nadir sub-track of the satellite (nodes 38
and 39) and the azimuth diversity decreases,MLE cost function minima tend to become
broader and therefore wind retriél@ss accurate. In contrast, @happroaching the sweet region
and the azimuth diversity increas, the minima become steemnd consequently the wind
retrieval more accurate. In theteuregion, the wind vector st anymore overdetermined since
there are only two views. The MLE cost functwiil have most of the timas four minima with
nearly equal and low MLE values (very often zero values or intersections, as discussed in section
1.4.1). The outer region is therefore the naabiguous of the QuUikSCAT swath. The minima in
this region will be steep and therefore as accuaat¢hose in the sweet swath, except for the
nodes at the edges of the swath, where the twer eigws are close t@ach other (poor azimuth
separation) and therefore broad minimavind direction are again present.

In order to better illustrate the QuikSCAT inversion problem, we have inverted QuikSCAT
winds, using inversion softwaravailable at KNMI, and performed collocations with ECMWF
model winds over a period of ®urs (more than 7 orbits).

Figure 2.2 shows the two-dimensional histograms of trark (deepest cost function minimum)
KNMI-retrieved wind solution versus the ECMWind for wind speed (left plots) and wind
direction (right plots), and for flerent parts of the swath: swegbp plots), nadir (middle plots)
and outer (bottom plots) regioridote that the right plots are mputed for ECMWF winds larger
than 4 m/s. This is done to avoid noise in pihas, produced by the typical low wind direction
skill at low winds, i.e., for a constant wind vecesror the wind directionreor is increasing with
decreasing wind speed. The ambiguity of theesysis reflected in the quality of thé' tank
solution. In other words, the deeper thérank in comparison witthe secondary minima, the
higher the likelihood of the corresponding rahkvind to be the “true” wind (higher*lrank
skill), i.e., the lower the ambiguityt is clearly discernible from #éplots that the sweet swath is
the region with the best'Trank skill. It has the lowest bias and standard deviation (SD) values
and the highest correlation values of the ergiwath in both speed and direction. As expected,
the worst ¥ rank skill corresponds to the outer regicfise uncertainty or ambiguity is revealed
in the wind direction contour pts as data accumulation awfagm the main diagonal (seé line
departure in the plots). Iparticular, the typical 18Gambiguity of scatterometer data is shown as
data accumulation along the T8@iagonals. Again, the sweet region (plot b) shows little data
accumulation away from the main danal, mainly located along the T8@iagonals. In the nadir
swath (plot d), the data accumulation away frommniain diagonal is larger and somewhat more
spread in comparison with the sweet swath, ieg@ slightly worse ambiguity problem. In the
outer swath (plot f), it is clearly discerngbthe large accumulations of data along the®180
diagonals and elsewhere, dengtthe significant ambiguity dhe system in these regions.

Figure 2.3 shows the same as in Figure 2.2druthe KNMI-retrieved wind solution closest to

the ECMWF wind. The quality of the closest solution gives an idea of the accuracy of the wind
retrieval. The sweet swath (top plots) shows madaiv bias and SD values and high correlation
values in both speed and direction. The ogteath (bottom plots) shows similar scores. The
wind speed and wind direction contour lines ofhbthte sweet and the outer swaths are close to
the diagonal line, denoting again high accuracy efwhnd retrieval. However, this is not the
case for the nadir swath (middle plots). Moreoteg, bias and SD values are significantly larger
than in the rest of the swath, dengtielatively poor windetrieval accuracy.
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Figure 2.2 Two-dimensional histogram of the 1% rank KNMI-retrieved wind solution versus ECMWF wind in the
different parts of the swath: the sweet (top plots), the nadir (middle plots) and the outer (bottom plots) regions. The
left plots correspond to wind speed (bins of 0.4 mys) and the right plots to wind direction (bins of 2.59). The latter are
computed for ECMWF winds larger than 4 nvs. N is the number of data; mx and my are the mean values along the x
and y axis, respectively; m(y-x) and s(y-x) are the bias and the standard deviation with respect to the diagonal,
respectively; and cor_xy is the correlation value between the x- and y-axis distributions. The contour lines are in
logarithmic scale: each step is a factor of 2 and the lowest level (outer-most contour line) is at N/8000 data points.
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Figure 2.3 Same as Figure 2.2 but for the KNMI-retrieved wind solution closest to ECMWF wind.
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In summary, as seen in Figures 2.2 and 2.3sweet regions show the b&gahd retrieval skill of
the QuIkSCAT swath, in terms of ambiguignd accuracy. Although there is a significant
ambiguity problem in the outer swath, its aceyris comparable to #t of the sweet swathThe
wind retrieval accuracy in the nadir regionsignificantly poorer compad to the outer and
sweet regions of the QuikSCAT swath.

2.3 Normalized residual

The MLE represents a distance, which is “normalized” by the measurement error variance or
noise (see equation 2.9). In this respect, the MLE should behave uniformly across the swath
(node number) and over any nai condition. However, it ¢dn presents some unwanted
dependencies, and the main reason for this igleatneasurement noise is misestimated (a more
detailed analysis on these depamzes can be found in sectiod). In order to avoid this
problem, for a given wind and node number, gpeeted MLE value can be estimated, and used

to normalize the MLE in the following way:

Rn = MLE / <MLE> (2.10)

where the MLE value represents any point ef¢bst function for a particular WVC, and <MLE>
is the expected MLE for that WVC (nhode number) and wind condition.

Note that we are not trying to change the relatvegghts of equation 2.9 buather to provide an
averaged normalization of the MLE. In otherrd®, we do not intend to optimise the inversion,
i.e., change the MLE formula,rsie we believe that equatiorfds already working reasonably
well for such purpose; we rather want to definmore stable parameter which may be useful for
other applications. As we will see in chaptersnd &, the Rn (see equation 2.10) is a very useful
parameter for wind retrieval and QC purposes, respectively.

2.3.1 <MLE> for QuikSCAT

The purpose of the <MLE> is to compensate thgestimation of the measurement noise in order
to correct the MLE dependencies. Therefag, accurate knowledge of the instrument and
geophysical ©+F in equation 2.8) noise is needed. In this resgéga and Soffelen (2000)
used an instrument error model derived @gvanié (1997) to compute the <MLE> of the
NSCAT Rn parameter.

Since there is no instrument armodel available for QuikSCAT, an alternative method has to be
sought. As discussed in section 1.4.1amideal case (nmoise), the single® solution curves do
always intersect. In reality, and because ef teasurement noise, the solution curves may not

! Note that a feature of the closest is that the more soluienavailable, the better thpparent quality. However, it
is clear that quality degrades with the number of solutibhe outer swath results aretbfore too optimistic, since

the outer swath represents more solutions (typically thar) the rest of the swath (on average, between two and
three).
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intersect. Although for tw@* views the solution curves very often intersect (see discussion on
caseb), for three (or morep® views, the measurement noise prevents (almost) always a triple
curve intersection, leading to a few minimuhstances (wind solutions). The latter (in th®
space) actually represent, on average, a umeasf the measurement noise. The <MLE> can
therefore be derived from the mean MLE.

In order to compute the <MLE> for a givewind and node number, we then study the
dependencies of the mean MLE with respedhtowind speed, wind direction and node number
over 60 revolutions of QuikSCAHRierarchical Data Format (HDF) observations (see description
of QUIkSCAT data products in Appendix A). For such purpose, we use the MLE information of
the selected wind solution.

600

.'. 400

Mean MLE
Number of data

[ .= Meon MLE
0.4

— = Number of retrieved solutions

Number of HCEP solutions
| . . | L L L0

O 200
Wind Directlon (deg)

Figure 2.4 Mean JPL-selected MLE versus JPL-selected wind direction (dotted line) and wind direction
distribution of JPL-selected winds (dashed line) and NCEP winds (solid line) for node number 16. The direction
binning is 10°.

Figure 2.4 shows the mean MLE thie JPL-selected solution vassJPL-selectedind direction
(dotted line) together with thevind direction distributions oboth the JPL selected solutions
(dashed line) and the NCEP winds (solid ling)rfode number 16. The JPL direction distribution
shows some significant differences (peaks &odghs) as compared the NCEP distribution,
which may be associated to some deficienitigbe inversion and the NSCAT-2 model function
(first GMF used for QuikSCAT wind retrievallVe note that the mean MLE is following these
relative peaks and troughs of the JPL wind dioecdistribution with respect to NCEP, not only
in this particular WVC but also in the rest oéthwath (not shown). This an expected result as
measurement sets far away from the GBtiution surface in measurement spaSefielen,
1998a), that is, with lagMLE, are systematically assignedcertain wind directions (the shape
of the GMF solution surface makes certain winidections to be favoured in such cases).
However, these peaks are due to an invengioblem and not to a realistic MLE dependency on
wind direction. In other words, the mean MLlpeaks are not always showing a real MLE
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dependency on wind direction but just some artificial accumulation of wind direction solutions
due to some deficiencies in the inversion. Efene, we discard the nil direction dependency
when computing the <MLE>.

As such, <MLE> is computed as a function of wind speed and node number. The method to
compute <MLE> is as follows:

* We compute the mean MLE of the JPL-selectetution with respect to the JPL-selected
wind speed and the node number for the 60 révamisi of HDF data. Figure 2.5a shows a 3D
plot of this mean MLE. The surface is a bitsyiwhich is mainly due to geophysical effects
such as rain, which we want to discardnfr wind retrieval. At high wind speeds additional
noise is present due to the small amourdath we get at these speeds and node numbers.

* In order to filter the noise on the surface, set up an iterative process which consists in
rejecting the MLEs which are at least two tinmggher than the mean MLE for that particular
wind speed and node number, and we compueabe mean MLE surface. Then, we start
the rejection process again in an iterative modg! it converges (no more rejections). The
process converges very rapidly after two itersi@and the number of @arejected in each
speed and node bin is very dhiap to 7% in some high-spedins). This gives faith in the
noise filtering method as it shows that only thedathe MLE distributian is cut in each bin,
corresponding to geophysical anomalies. The resulting surface is shown in Figure 2.5b. The
peaks have disappeared in general and atdpghds the surface is much smoothed. In order
to show the consistency of thigtering procedure, we showhe contour plots of both mean
MLE surfaces (before and after filbeg) in Figure 2.6. It is €arly discernible that the shape
of the surface remains the sanmel @nly the noise has been removed.

* In order to extrapolate to high wind speeds,fiva two-dimensionafunction to the filtered
surface in a very simple way (see Appendix BTlje function is only fiin the inner swath
(nodes 9 to 68) and extrapolated for the oweath (nodes 1 to 8 and 69 to 76) (see
discussion below). The result dfe fitting is shown in Figer 2.7. The 3D surface is the
expected MLE and compares well to the coradunhean MLE in the inner part of the swath.

As discussed in section 1.4.1, for twd views, the solution curves intersect (equivalent to null
MLE value) very often regardless of the measurement noise. In such a case, i.e., outer regions,
the MLE is not a good noise indicator. Howeverijtas clearly discernible from Figure 2.7, the

mean MLE of the inner swath can be extraped to the outer regmns, thus providing Rn
computation for the entire QUikSCAT swath.

In this section, we have shown a methodctonpute the <MLE>, and therefore the Rn, for
QUuikSCAT. For such purpose, we use the “sel@tsolution information available in the JPL
HDF data product. However, the <MLE> candmnputed from: another inversion (e.g., KNMI
inversion); another data foah(e.g., BUFR); or another sfunction solution (e.g.,*1rank). In
this thesis, we will use the Rn for different pusps, which in turn will require different <MLE>
surfaces. The computation of the latter can be found in Appendix B.
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Figure 2.5 Mean JPL-selected MLE (plot a) and “filtered” mean JPL-selected MLE (plot b) versus JPL-selected

wind speed and node number. The speed binning is 1 m/s and the node binning is 1
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2.4 MLE characterization

For QuikSCAT, the data are distributed inotwdifferent formats, according to time delay
constraints: on the one hand, a complete daiduat, which usually takes a few weeks to be
delivered and is used for broad scientific piwg®) on the other hand, a near-real time (NRT)
product, which takes a few hours to be delivered, contains somehow reduced information
(aggregated data) compared te thrmer product, and is used faperational purposes (e.g., data
assimilation). The former is the Hierarchicalt®dormat (HDF) and the latter is the Binary
Universal Format Representation (BUFR). fAll description of the HDF and BUFR data
products can be found #PL (2001) and_eidner et al. (2000), respectively.

Figure 2.8 shows the contour plot of the tdimensional histogram of the BUFR MLE versus
the HDF MLE for QuikSCAT. [Note: in this section, the MLE of thérank solution from the
QuikSCAT sweet swath nodes is used; the NSQAGMF is used in the MLE computation].
The plot shows only small cofation (around 0.5) between hoMLE distributions. Moreover,
the mean BUFR MLE value (0.28) is significantly smaller than the mean HDF value (0.57).
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Figure 2.8 Contour plot of the two-dimensional histogram of the BUFR MLE versus the HDF MLE. The legend
and the contour lines are the same asin Figure 2.2 (the lowest contour level is, in this case, at N/4000 data points).

It is clear from these results that the MLE disttibas of both formats are significantly different.
Since the MLE information is essential for wiretrieval and QC purposes (see chapters 3 and 5,
respectively, for further discussion), it seemsvaid at this stage to try to understand these
differences and their implications for scattmetry. We therefore perform a comprehensive
characterization of the MLE.
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Appendix A describes the main differencestween HDF and BUFR, in terms of tle
information. In summary, the BUF& is an average of the different H@F measurements per
view. From a theoretical point of view, the Mldistribution characteristics may change just by
taking a different number a¥® in the MLE computation. In thisection, we show this with a
simple example. Then, a simulation is performed to bridge the gap between theory and reality.
Finally, the impact of the different (HDBnd BUFR) MLE behavior on wind retrieval is
examined.

2.4.1 Theoretical case

As discussed in section 2.2.1, the MLE is a distance betweea°tineeasurements and the
solution lying on the GMF surface, more prebjise squared distance (see equation 2.9). The
following case corresponds to a simplified version of the MLE, which uses the following set of
assumptions:

1) Typically for SeaWinds, HDF contains N per WVC while BUFR contains M=&° per
WVC in the sweet swath. Therefore, the MissEcomputed for HDF in a higher dimensional
measurement space than for BUFR. In thignegle we simplify the problem assuming N=2
and M=1.

2) The truth or solution lies in the omgof our measurement space for simplicity.

3) Since in scatterometry the errors are consi&@aussian, we consider pairs of measurements
(xy) in the N(=2)-dimensional space as Gaussian distributed points around the origin
(solution). Therefore, we asthe following two-dimensional Gaussian PDF (Probability
Density Function):

_1(+y?)

e? o dxdy, (2.11)

X, y)dxdy =
p(x, y)dxdy Py

where the SD in both axis is assumed identical,ae g;= .

4) For simplicity, we also assume constantipse values for bothIDF and BUFR. As such,
the MLE is equivalent to a squared distanceht® origin weighted by a constant factor.
Moreover, this assumption is important sinceiit allow us to show the significant change
between the mentioned MLE didtutions just by setting N>M.

Mathematical demonstration

In order to show the difference between twstrmbutions, we use the following mathematical
definitions:

* The mean or expected value of a funcfipry) is defined in terms of the POix,y) by
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E(f)= [ [f(xy)Cp(x,y) e ey (212)

—00—00

» The SD of a functiofi(x,y) is defined in terms of the PO#x,y) by

D(f) = VAR(F) =[E(f2) - (E(1))? (2.13)

whereVAR is the variance.

* Finally, the correlation between two functidifisy) andg(x,y) is defined by

CoR( fg) = EU9) ~E(F) (E(9)) (2.14)
SD(f) CSD(g) |

Using the above assumptions, we can rengguation 2.9 for both HDF and BUFR cases:
a) HDF (N=2)

Using the above assumed measurement noisegi(ege assumption 4), the MLE in the 2D
case is:
2 + 2

X
ML@D:—Zﬁl (2.15)

b) BUFR (M=1)

+
In this case, the measurement isaarrage of the two measuremems,(%], withz=0
as solution. The measurement noise can biéyeasmputed using equations 2.11, 2.12, and
2.13 and has the following valu&p, = (SD(2))> = ¢*/ . Zhus, the MLE in the 1D case is:
2 2 + 2
Z Xty Xy (2.16)
Kp 20 o

z

MLE,, =

In order to show thathe distributions oMLE;p, andMLE,, (analogous to MLE in BUFR and
HDF, respectively) differ, we compute their meatues, standard deviations and the correlation
using the above mathematical defimits (equations 2.12, 2.13, and 2.14).

The results show that reducingethumber of dimensions from o one in the observational
space by averaging the observations, sdoaot affect the mean MLE value
(E(MLEjp)=E(MLEzp)=1) but produces an increase the SD of the MLE distribution

(SD(MLE;p)=1 while SD(MLEZD):\E). Moreover, there is a cledecorrelation between the 2D

and the 1D MLE distributionsC(OR(MLElDMLEZD):ll\/5: 0.7). Therefore, it is clear that the
distributions differ.

In Figure 2.8, we directly compare the MLEsulibutions from the HB and BUFR products for
the entire set of 3 days of @SCAT HDF data collocated with the QuikSCAT BUFR data. The
contour plot of the two-dinresional histogram of the BUFR MLE versus the HDF MLE shows
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indeed small correlation beésn both MLE distributions, apresented in the introduction.
However, the results differ somewhat from the theoretical example. The correlation is smaller in
the real case and the ratio between the mearvatiHDF and BUFR disbutions is 1 in the

case of the theoretical example while 2 inrtb&l case where the mean BUFR MLE value (0.28)

is substantially smaller than the mean HDRuga(0.57). This can be expected, since the
theoretical example is just simplification of the problem as discussed above. In order to
understand the real results in mdegail, a simulation is needed.

2.4.2 MLE Simulation

In the simple example that we theoretically solve in Section 2.4.1, we show that the small
correlation between HDF and BUFR MLE distributions is due tathaveraging, assuming two
measurements for HDF and one for BUFR. Howewethe real case, where HDF contains more
than four measurements and BUFR typically fahe results, although similar, present some
differences with respect to the theoretical case. In particular, the correlation is significantly
smaller (0.5) compared to the simple theoretical example (0.7).

In this section, we simulate HDF and BUFR MLEs, assuming a realistic number of measurements
for both sets. First, the simulation is constrait@dhe most important assumptions used in the
theoretical case to show that the theoretical demonstration can be extrapolated to the real case by
using a larger number @ in both HDF and BUFR products. &ih, a more realistic simulation

is compared to the real distribution. Finally, gsimulate the effects of varying the numbeiodf

on the MLE distributions.

2.4.2.1 Simulation procedure

We use the JPL-selected winds of the BUFR filefath to simulate two sets of measurements.
The first set simulates the HDF product, usingdisga noise values and mber of measurements
per view. Then, similar to the real data, these oresmsents are averaged per view to generate the
second set which simulates the BUFR proddd¢te more HDF observations per view in a
particular WVC that we simulate, the larghe measurement noise that we assume for each
individual measurement, such that the infaiiora content is the same in each simulated HDF
and BUFR WVC. Once we have simulated botts s¢ measurements, we invert them, using
equation 2.9, to derive the simulated MLE.

Number of ¢°

In order to adequately simulate both prodwetshave to use a realistic numbemdfper WVC.
In the case of the HDF simulation, we prodaceariable number of measurements depending on
the WVC number and view.
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Figure 2.9 shows the histogram of the humbemeasurements per WVC and view for one day

of HDF data. [Note that because of symmebgth the fore-view and the aft-view histograms are
identical; therefore, only one of them is shoim the Figure]. Figure 9a corresponds to WVC
number 12 and Figure 2.9b to WVC number 55. Itlear from the different distributions of
Figures 2.9a and 2.9b that the number of measmtnin HDF varies from one WVC to another.
Moreover, these distributions abeoad, indicating thathe number of measurements is varying
considerably in each WVC as well. However, to simplify the simulation, we have chosen the
number ofa® corresponding to the peak efch distribution as thexéd value to represent the
number ofo® for each particular WVC and view.

As explained above, the BUFR measuremerggarduced by averaging the HDF measurements
per view. Therefore, the number of in BUFR will depend on the number of views in HDF.
Since we perform this simulatian the sweet parts of the swath, we use a constant number of
four o° per WVC for BUFR.

a) b)
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Figure 2.9 Normalized histogram of the number of o°measurements for WVC numbers 12 (plot a) and 55 (plot b).
The solid line corresponds to one of the inner swath views (fore or aft views have the same distributions) and the
dotted line to one of the outer swath views.

2.4.2.2 Simulation results

In order to provide a realistic simulation, weeube Kp and the wind drdbutions as provided in
the JPL product together with the realishamber of measurements for HDF and BUFR
computed in section 2.4.2.1

Figure 2.10 shows the contour plot of theotdimensional histogram of the simulated BUFR
MLE versus the simulated HDF MLE. Although ttistribution differs som&hat from the real
case (Figure 2.8), it is clear that we havecssgsfully reproduced the same small correlation
(about 0.5 in both cases) by simply assumirdjfi@rent number of measurements (mofein
HDF than BUFR). The remaining differences betw the simulated and the real distributions,
which can be explained by many issues, are analyseetai in section 2.4.3. Nevertheless, it is
clear from the results that the simulation is a gadléction of reality. Therefore, since averaging

46 Wind field retrieval from satellite radar systems



o° from HDF to BUFR is the main assumption of thalistic simulation, we conclude that this is
the main cause of the low correlation of MEE values (see Figure 2.8 or Figure 2.10).

The main difference between the real/simulatedriutions and the theoretical case is in the
mean MLE values. The ratio between HDF and BURean values is above 1.5 in the former
and unity in the latter (see section 2.4.1).drder to see the effects of extrapolating the
theoretical case to a higher dimensional oafehe measurement space for HDF and BUFR, we
also perform a more constrained simulatiofhe latter gives similar ratio between HDF and
BUFR mean MLEs to that of éhrealistic simulation, i.e., about 1.5. The reason for this
difference between the real/simulated distrimsi and the theoretical ones is that, in the
theoretical case, the solution is a point in the multi-dimensional space while, in the simulation
(also for real data), the solution is a multi-éimsional folded surface with a strong non-linear
behavior. This non-linearity may contribute ttee change in the MLE properties when going
from HDF to BUFR.

The general results of the constrained simulatiensanilar (not shown) to those of the realistic
simulation (see Figure 2.10). This shows that tlonstraining assumptions have no significant
effect on the low correlation of the MLE values.eféfore, this result validates the assumptions
used in the theoretical example.
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cor_xy= 0.54

Figure 2.10 Same as Figure 2.8 but for the realistic simulation.

! This simulation includes two additional constraints basetth@mssumptions 2 and 4 (s&etion 2.4.1), i.e., we
consider only one truth (origin in thieeoretical case), which in this casaiseastward wind of 7.8 m/s and we use
fixed Kp values for both HDF and BUFR, and fixes the number of measurements in HDF and BUFR, i.e., N=8 and
M=4 respectively.
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MLE distribution dependence on number of o®

Figure 2.11 is similar to Figure . We use the same simulatior@edure but in this case we
fix the number ob° used in the simulated HDF insteadusing a realistic number. In the case of
fixing the number of HDF measuremends5 (plot a), one view has twa® measurements and

the rest of the views have only one each. In the casesbfmBeasurements (plot b), two views
have two measurements each and therothw views have only one measurement each.
Analogous explanation goes for the cases of 7 (plahd 8 (plot d) measurements. [Note that the
different combinations of measurements / views (e.g., in the caseo@f you may use two

measurements for the fore inner, the fore outer ath inner or the aft outer view) do not affect
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the two-dimensional histograms (not shown)].

The plots in Figure 2.11 clearly show a decirggagorrelation value with increasing number of
HDF measurements (from 0.78 in plot a to 0.53 in @)oMoreover, this effect is also seen in the
shapes of the two-dimensional histogramsjcWhare progressively smeared away from the
diagonal. The correlation value tbfe theoretical case (0.7) is intlween the correlation values of
Figures 2.11a (0.78) and 2.11b (0.66). This sstgythat the decorrelation of the MLE when
going from N=2 to M=1 is similar to the orfeom N=5 or 6 to M=4. The two-dimensional
histogram in Figure 2.11d is very similar to the one in Figure 2.10. Both histograms present as
well similar correlation values. This is due to thetfthat the realistic distribution of the number
of 0° measurements used for HDF in Figure 2.10 contaios &easurements per WVC on
average for the sweet parts oéthwath. We can therefore irgeet Figure 2.11 as a transition
from the theoretical case to reality.

Figure 2.12 shows separately the distributifarge-dimensional histograms) of simulated BUFR
and HDF MLEs. The different plots correspotal the different number of measurements
simulated in HDF, in the same way as for Fegdrll. As explained in Appendix A, the BUFR
simulated measurements are an average by wiethe HDF simulated measurements. Figure
2.12 clearly shows that the MLE distribution ®mulated BUFR is invariant to the number of
HDF measurements used prior to the BUFR avegagrhis is an expected result since the
number of BUFR simulated measurements YWArC is always the same (four, one for each
view). However, the distribution of HDF MLES significantly changing with the number of
simulated HDF measurements, increasing its maak mean value with increasing number of
simulated measurements (see evolution from Eg@.12a to 2.12d). Since the MLE value is a
measure of the distance frometimneasurements to the GMF, this distribution change indicates
that the more measurements (or the more dgmoas in the measurement space) we use, the
lower the probability to be clode the solution or GMF. As discussed in the first simulation, the
dependence of the mean MLE value on the nurabareasurements is due to the non-linearities
in the GMF.

The decorrelation between HDF and BUFR MLEsigplained by their different distribution
characteristics. Although the non-linear behavior of the GMF is affecting the MLE distributions,
it is clear from the simulation results that ttiecorrelation is mainly due to a much smaller
number ofc® used in the inversion for BUFR compdrto HDF (about half, since typically
BUFR contains 4 and HDF 8 measurements).

In section 2.4.1, we demonstrate the changehe MLE distribution characteristics when
averaging from a two-dimensional measureimgpace to a one-dimensional one. With the
simulation here we are able to better charaztetie evolution of th®#LE distributions when
encountering higher dimensional measurement spaces.

2.4.3 Detailed analysis of MLE differences: real versus simulated

In sections 2.4.1 and 2.4.2, we clearlymdastrate the change in the MLE distribution
characteristics when averaging theinformation (from HDF to BUFR), which leads to a small
correlation of the HDF and BUFR MLEs. Howevernedifferences are visible in the simulated
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Figure 2.12 One-dimensional histogram plots of the MLE distributions of Figure 2.11. The number of measurements
used in the HDF simulation is: @) 5; b) 6; ¢) 7; and d) 8. mh and mb are the mean values of the HDF and BUFR
distributions, respectively; sh and sb are the standard deviation values of the HDF and BUFR distributions,
respectively.

MLE distributions compared to the real MLEs. In this section, we perform a closer analysis of
these differences.

50 Wind field retrieval from satellite radar systems



Distributions

Similar to Figure 2.12, Figure 2.13 shows three-dimensional histograms of HDF and BUFR
MLEs but for real (plot a) and simulated (realistic) (plot b) data. Note that the shape of the
simulated HDF and BUFR distributions is diffatecompared to the real distributions. In
particular, the mean value of the BUFR distribos is larger for the simulated MLE than for the
real MLE. Moreover, the SD value of the HDFtdisutions is substantially larger for the real
compared with the simulated MLE. We also nttat in the HDF real data there is a larger
accumulation of values in the vicinity of zero MLE.
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Figure 2.13 One-dimensional histogram plots of the HDF and BUFR MLE distributions for real data (a) and the
realistic simulation (b). The legend isthe same asin Figure 2.12.

Mean values versus node number and wind speed

In order to better understand thelierences in the ME distributions, we stdy the behavior of
the mean simulated and real MLE as a fiomcof wind speed ancross-track location.

Figure 2.14 shows the mean MLE surface agnetfon of wind speed and node number for the
HDF (plot a) and BUFR (plot b) real data (saswefaces as Figures 2.5b and B.2a, respectively,
but for the ¥ rank instead of the selected MLE). The noise in the MLE surfaces, caused by
geophysical effects (such as rain) and/or small amoiudéta (at high winds), is filtered out (see
section 2.3.1). The MLEs used in ttisgure correspond to the MLEs of th& rank solutions
provided in both QuUikSCAT dataroducts (HDF and BUFR). Figes 2.15a and 2.15b show the

same surfaces as Figures 2.14a and 2.14b, respectively, but for simulated data. The MLEs used in

this Figure correspond to the MLEs of th& rank solutions provided by the KNMI inversion
software.
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Figure 2.14 Mean 1%-rank MLE versus wind speed and node number (only inner swath nodes are shown) for real

data: (a) HDF and (b) BUFR. The speed binning is 1 nVs and the node binning is 1.

Wind field retrieval from satellite radar systems

52



a)

Figure 2.15 Same as Figure 2.14 but for simulated data..
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In HDF, there is a slight increa®f the surface with increasingstince to nadir (Figures 2.14a
and 2.15a). The reason for this increase liethéninversion. As the inversion is a non-linear
process, the scaling (linear corien), that is, the Kp noise (see equation 2.9), is not sufficient to
compensate for the increase in theBvdue to the increase in the numbeo®fNevertheless, the
mean MLE surfaces show that the$fect is minor. Note that the increase is stepwise in the
simulated data (Figure 2.15a) and not monotonitoaseal data (Figure 2.14a) because of the
approximation in the number of made in the simulation of HDF data, that is, we use a constant
number of measurements in each WVC whiledality the number of measurements per WVC
varies (see Figure 2.9).

In BUFR, there is no increase in MLE withcheasing distance to dia (Figures 2.14b and
2.15b), as the number of is kept constant for all WVC#&s for the HDF case, the simulated
MLE behaviour across track (Figure 2.15b) comepawell with the real case in BUFR (Figure
2.14Db).

If we compare the mean MLE behaviour asuaction of wind speed between the real (Figure
2.14) and the simulated (Figure 2.15) cases, we see a large discrepancy at low speeds. In reality,
the MLE increases with decreagispeed while in the simulated case the MLE decreases with
decreasing speed.

The reason for this MLE increase in the realse is that the observation error (Kp) is
underestimated for low wind speeds. Fromuaion 2.9, an underestimation in the Kp
(denominator term) will in turrproduce an increase in theLE. The Kp noise contains two
terms: the instrument noise and the geophysical néigga and Soffelen (2000) provide a
physically based model for the NSCAT backscattbservation error. They find that for low
wind speed, the largest uncertainty lies in #patial variability of the geophysical target
(geophysical noise). Since the different viamd polarization measuremts in a WVC do not
sample exactly the same area, the geophysicalcetibm error variability becomes substantial at
low backscatter levels.

However, in the simulated case, the Kp is considered as a true value and therefore we would
expect no increase or decreasedhe MLE value at low wind s®ds. This is however not the
case. The problem lies in the inversion and, amathgrs, in the fact that we assume that the
measurement noise is proportional to the true value. latter leads to a Kp that is proportional

to os° (simulatedo® from the GMF) in the denominator of equation 23offelen (1998a)
explains on page I1I-29 how proportional errazause positive bias in the solution (after
inversion). This positive bias will in turn guuce a decrease in the MUEgure 2.16 illustrates

the problem in the case of a twe@w measurement system (QuU@&AT has up to four views, but

for simplicity we draw a 2D case). The solidnaes represent the solution space. The diamond
represents the pair of “true” measurements, whrehthe starting point in the simulation process.
The solid circle around the diamond regmts the “true” measurement noise (KpJsing this

Kp: we simulate the measurement pair (triangle inside the solid circle). The dashed circle
represents its correspding estimated noise (K. After inversion, we get a positively biased
solution (star) which hags proportional noise (K represented by thdotted circle. As Kp
increases significantly, the MLE decreases s(ipthe denominator oéquation 2.9) and this
effect is more acute as we appro#ud origin corresponding to lower speeds.

Finally, it is clear that the mean MLE at mid amdh speeds is significantly larger for simulated
data than for real data (see turface platedevel of Figure 2.15 compared Figure 2.14). This
means that there is an overestimation of thédfpneasurement) noise at these speed regimes.
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Figure 2.16 Schematic illustration of the effect of proportional noise on MLE in a 2D measurement space.

Since the largest uncertainty at these spdeds in the instrument noise and not in the
geophysical noise, we conclude tkiadre is probably an overestimation of the instrument noise.

Main differences

According to the analysis, we conclude tha tmaining differences between the simulated and
the real distributions can be attributed to the following:

* The simulation of the number of per WVC and view in HDF igist a rough approximation.
In the real data a WVC can contain a variable number®ofsee Figure 2.9) and in the
simulation we have fixed this number.

* The different behaviour of the real and simethMLES at low speeds as discussed above (see
Figures 2.14 and 2.15). In the real data, ébe@mated Kp values, and more specifically the
geophysical noise valueare underestimated.

* An overall overestimation in the real datatbé estimated Kp values (except at low winds
where the opposite occurs), more specificallg ithstrument noise values. This is deduced
from the higher mean MLE values of both HRRd BUFR simulated distributions (Figure
2.15) compared to the mean values of the real distributions (Figure 2.14).
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There may be other reasons tltauld cause minor differences the distributions, such as
processing of eggs or composites,, for real data HDF usesggs and BUFR composites (see
Appendix A), whereas for simulated data weated both HDF and BUFR as composites.
Nevertheless and as discussed mhevious section, these diffecers are not so relevant as the
simulation is a good reflection of reality.

2.4.4 MLE influence on wind retrieval

In the previous sections, we have shown fhffierent the MLE distributions are in HDF and
BUFR. In the BUFR producti® measurements are combined to result in only 4 indepeatient

In HDF, on average, 8° measurements are available per WVC in the sweet swath. This data
reduction could cause information in tb& measurements to be lost. As such, the poor BUFR
and HDF MLE comparison should be taken seriaublythis section, we investigate in some
detail the wind retrieval performance propestef SeaWinds BUFR as compared to HDF. For
such purpose, we perform triple calédions of HDF, BUFR and ECMWF winds.

Figure 2.17 shows the two-dimensional histoggaof BUFR winds versus HDF winds (upper
plots), BUFR versus ECMWF (mhile plots) and HDF versus BAWF (bottom plots). The left
plots correspond to the histograms of wind spe@distlae right plots to # histograms of wind
directions. Both BUFR and HDFtreeved winds correspond to th& dank solution.

From the upper plots we note that the BUFR HIBF retrieved winds are not identical, although
very similar. Figure 2.17a shows almost no liaspeed and a very small SD (0.58 m/s). Figure
2.17b shows a typical effect of comparirigrank solutions, which ithe secondary distribution
around 180. This is due to the fact that' and 2° rank solutions (often with very similar wind
speed but wind direction 18@part) can have very similarlM values and therefore be switched
from one data product to the other. This effeeidls to very high directional SD values. Still, we
can see from the correlation factor (0.8¥%t the retrieved directions are similar.

Looking at the middle and bottom plots of Figure 2.17, we can see almost no difference between
HDF and BUFR when compared to ECMWFna$. Figures 2.17c and 2.17e show almost
identical wind speed distributions with almost the same bias and SD. Figures 2.17d and 2.17f
show very similar wind direction distributions with almost the same correlation factor.

Therefore, we conclude that the difference m KLE distributions is not affecting the quality of
the retrieved winds. Moreover, as we will see in chapter 5, the QC skills in BUFR and HDF are
also similar.
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Figure 2.17 Two-dimensional histogram of BUFR winds versus HDF winds (top plots), BUFR winds versus
ECMWF winds (middle plots) and HDF winds versus ECMWF winds (bottom plots). The left plots correspond to
wind speeds (bins of 0.4 m/s) and the right plots to wind directions (bins of 2.5 9. Only ECMWF winds above 4 nmv/s
are used in the wind direction plots. The legend and contour lines are the same asin Figure 2.2.
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2.5 Conclusions

The MLE is an optimization technique derivedrfr a Bayesian approach, which is generally
used in meteorologicahnalysis. This technique, as appl in scatterometry, maximizes the
probability of being the “true” wind by minimizing a cost function, which uses no prior or
background information.

In scatterometry, the standard wind retrievakcpoure works as follows: the minima of the MLE
cost function, considered asstambiguous wind solutions, areturn used by the AR procedure
to select the observed wind. In these circumstances, it is shown how the shape of the MLE cost
function determines the skill dfie wind retrieval procedure terms of ambiguity and accuracy.
In particular, for QuUikSCAT, the shape graduatlyanges with the cross-track location (WVC),
thus affecting the retrieval skill of the differesivath regions. On the one hand, in the regions
with only two views, i.e., outer regions, where ttost function minima are usually equally deep,
there is an important ambiguifyroblem. On the other hand, in the regions with poor azimuth
diversity such as the nadir region or the edgeb@®buter swath, where the cost function minima
are broad, the accuracy of the retrieved windsulsstantially lower compead to the rest of the
swath. The cost function shape is therefore refigahe limitations of the inversion. As such, a
new wind retrieval procedure, which appropiyateakes into account these limitations, would
improve the wind retrieval skill, in coparison with the sindard procedure.

The MLE usually presents some unwanted deparids to certain parares, such as the node
number or the wind condition. larder to remove these dependees, the MLE is normalized
(Rn). The dependencies are mainly causednbgcalculations of the measurement noise.
Therefore, accurate information on the measurémeise is needed in the normalization factor
(<MLE>). In the absence of a noise model, a gooise indicator is thenean behavior of the
MLE. A method, which uses the mean MLE information to empirically derive the <MLE> for
QUuikSCAT, is presented. It is shown that theédvdirection dependencies of the mean MLE are
not real but rather due to some deficiendiesthe inversion. The <MLE> is consequently
computed from the mean MLE dependencieshennode number and retrieved wind speed. The
Rn represents a more stable parameter, cadpar the MLE, and is very useful for wind
retrieval and QC purposes. This empirical method, although applied for QuikSCAT in here, is
generic and, as such, can be used to determine the Rn of any scatterometer system.

A comparison between the MLE of two different data formats, the QuikSCAT HDF and BUFR
products, shows that both MLE distributiorexe poorly correl&d. A comprehensive
characterization of the MLE is performed in order to fully understand the MLE distribution
differences. A very simple example is solved tietioally to show that the different level of
averaging of the data in HDF and BUFR (i.e., the BUWFRs an average of the HD&’s per

view) can be the main cause. From simulal@dE distributions with different number of
measurements (BUFR and HDF), we conclude that the small correlation of the MLE distributions
of both formats is due to th@ averaging. The simulation results validate the assumptions used
in the theoretical case.

Further simulations show how the MLE distributions change as a function of the number of
observations taken. The higher the differencéhénnumber of HDF and BUFR observations, the
smaller the correlation and the higher the migiue value difference between the two products.
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The remaining differences between simulatedl aeal MLEs are also analysed in detail.
Misestimation of the real measurement noisesamgblification in the computation of the number
of measurements for both formats in the simofaare pointed out as the main cause for these
differences.

Despite the small correlation between the HiDld the BUFR MLES, the wind retrieval of both
formats is of comparable quality. As onegimi expect, the QC properties in BUFR and HDF
show no major differences as well (see s#rtb.1.5). Therefore, we conclude that the
information content of the productm®t significantly affected by the® averaging.
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Chapter 3

Wind Retrieval for Determined Problems:

QuikSCAT Case

Scatterometers provide® measurements from multiple views and as such generally wind speed
and direction can be determined. However, ltwel of determination of the problem depends
very much on the number and relative geometmadér views. This is well illustrated in section
1.4.1 with several cases. The radar instrumeat thpresents all thescases, especially the
determined ones (caskesl of section 1.4.1), is QUikSCAT (ssection 1.4.3). Therefore, in order

to study the wind retrieval for determined problems, it seems reasonable to focus on such
instrument.

In chapter 2, the wind retrieval skill in the diféat parts of the QUikSCAT swath is extensively
discussed. Although the geometry varies withiode number, the good azimuth diversity of the
sweet regions is comparable to that of otbemtterometer systems, such as NSCAT or ERS
SCAT, leading to accurate winds. In the outayioas however, there & significant ambiguity
problem but, as discussed in sentR.2.2, the accuracy is compdeato that of the sweet swath.
Therefore, if there is a way to remove thédrent ambiguity, the outer swath could provide
accurate winds. This is feasible when using a consistent AR scheme, as sh8wffelen and
Cats (1991) for the Seasat SASS (comparable gégnie the QuikSCAT outer swath). The wind
retrieval over the poor-azimuth-diversity nadegion is inaccurate and has no precedent in
scatterometry; as such, spea@tkention should be given to it.

In this chapter, the standard wind retrieval pdage used in scatterometry will be described and
implemented for QuikSCAT use. An alternaimethod will be proposed in order to improve
wind retrieval, notably in the nadir region. Bagpnocedures will then be validated and inter-
compared with the help of independent NWP wind information.

As inferred from Figure 1.9 (section 1.4.3)e tQuikSCAT azimuth diversity smoothly changes
with the node number in the inner swath. Ihestwords, there is no discontinuity between the
sweet and the nadir regions. As such, it seememahate to consider the sweet swath as well for
this study. Therefore, we focus our reseaochimproving wind retrievain the inner swath
(sweet + nadir), giving special attention to the nadir region. However, this does not mean that the
methodology applied for the inner ath is not valid for the outeswath. Moreover, as will be
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further discussed in section 6.1.2, the results fitlaechapter are applicable to the outer swath as
well.

3.1 Standard procedure

The scatterometer wind retrieval procedure consisiisversion, QC, and AR. In this section, we
describe the standard inversion + AR methodolaggd in scatterometry. Regarding the QC
procedure, there is no standard procedure (upt); different methods have been used in the
past for the different instruments. Becausé&ofmportance and independence from the retrieval
procedure used, a separate chapter is dedicated to QC (see chapter 5).

3.1.1 Inversion

The MLE-based inversion has already been exhaalg discussed in chapter 2. The standard
procedure gives up to four ambiguous wind sohsi corresponding to the cost function minima.

In the process of deriving such minima, several parameters can be tuned to improve the inversion
in terms of ambiguity and quality. An exarapbn how to perform a comprehensive inversion
tuning, in this case, for QUICAT is shown in Appendix Che tuning, although improving the
overall wind retrieval skill, does not solve any of the already discussed inherent inversion
problems, as seen from the significantly lowskill of the nadir region, compared to the sweet
regions (see Appendix C).

As an interface between the inversion and the Aftaral step in scatterometry is to convert the
MLE into a solution probability. As can be infed from the equations of section 2.1, the
probability of being the “true” wind given a sef scatterometer observations is related by
definition to the MLE in the following way:

p(V|0_0) - %e—MLEIZ' (31)

where v represents the “true” wind and® the set of backscatter measurements, lansl a
normalization factor. The theoreticadlationship is therefore an exponential. In other words, as
the MLE, which represents the misfit of theasurements with the solution lying on the GMF
surface, increases, the probability of that ipatar solution being the “true” wind decreases
exponentially. In reality, for seeral reasons such as the misaddtion of the measurement noise
(see section 2.3), the shape of the exponenia differ from the theory. A comprehensive
characterization of the solution probabilityr QuikSCAT, based on the empirical methodology
described by&offelen et al. (2000), follows.
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Empirical solution probability

* We use the Rn instead of the MLE tooal the already mentioned problem in the
measurement noise estimation, such that equation 3.1 is re-written as:

p(v|o®) =%e‘“‘” (3.2)

wherek’ is again a normalization factor, ahds the parameter that we want to empirically
derive. Since we are not using the JPL inversion but the KNMI “tuned” inversion (i.e.,
NSCAT-2 GMF, no smoothing and 3D interpadat, as discussed in Appendix C), the
<MLE>, used to calculate the Rn (see doua2.10), is re-computed (see Appendix B.3).

* In order to empirically derive equation 3\®ge can ignore the a priori knowledge on the
exponential behavior of the probability, andkaahe following assumption: There exists a
function ps(x) such that, if we have a set of inversion solutign&ith normalized residual
Rn;, then the probability that ranks the one closest to the true wind, denotegdjyis given

by

P(s=j|Rn,i O{1,N}) :Nps(ii)

Z ps(Rni)

(3.3)

» To determingos(x), we concentrate first on only those cases which have exactly two solutions.
We process about 2.5 days of QuikSCATBUdata and we collocate them with ECMWF
winds. The closest solution to the ECMWF wiisdused as the “selext” wind. Therefore,
we can construct a two-dimeosal histogram showing the relative probability of selecting
the ' rank (or the % rank), as a function d&n; andRn,. But according to our assumption,
by applying equation 3.3 witN=2, we find that the probability of selecting th& rank is
given by

ps(Rnl)
ps (Rnl) + ps(RnZ)

P(s=1|Rn,Rn,) = ={1+ p,(Rn,)/ p,(Rn,)} ™ (3.4)

» Therefore, by re-arranging equation 3.4, the-thmensional histogram gives an estimate of
ps(Rn2)/ ps(Rny) for every combination dRn, andRn;. Figure 3.1a shows such experimentally
determined ratios as a functionki; - Rn,, for several values d®n;. Although forRn; = 2.5
the ratio is somewhat noisyi, it is discernitiiat the ratio is a fairlynvariant function oRn; -
Rn;. SinceRn; is constant and therefoq@(Rn;) is also a constant, this plot is actually
showing the shape pi(x).

* As we know from equation 3.2, the shapgx) is exponential and the® we just have to
fit the exponential to the experimentahction of Figure 3.1a by adjusting thg@parameter.
Figure 3.1b shows the best fit to Figure 3vihich is represented by the following function:

p.(x) = e (3.5)
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wherex is representing thien.

In order to check whether the assumption is correct angittjeve found can be generalized for
any number of solutions and not only for twee use the probabilitjunction to predict how
often a certain solution mi& corresponds to thertie” solution for a varying number of solutions
and varying distributions dRn; (remember that we have used only a few con®anvalues to

fit the distributions of Figure 3a). Tables 3.1 and 3.2 compaéhe predicted distributions over
the different ranks (same stratification as tabte&ppendix C) with théobserved” distributions
(using the closest to ECMWF) the sweet and the nadir swathspectively, for the set of about
2.5 days of collocated QuikSCAT-ECMWEF data. gk®wn, when comparing the left side to the
right side of the columnghe correspondence is remarkdbl€herefore, we conclude that the
assumption is correct and that equation 3.5 can be used to determine the solution probability.

Rn —Rn
2 1

Figure 3.1 Plot a shows the ratio of the number of realizations of Rn, and the number of realizations of Rnl as a
function of Rn,— Rny, and for values of Rn;=0.1 (solid), Rn;=1.1 (dashed), and Rn;=2.5 (dotted). Plot b shows the
single exponential fit to the curves of plot a

! Note that the right side of the columns of tables 3dL3# compare well as expecteith the columns of tables
C.1 and C.2 respectively, since the only difference is ttees#s used, i.e., much larger in the latter tables.

64 Wind field retrieval from satellite radar systems



Table 3.1 Predicted / observed distributions at 25-km (sweet swath)

2 Solutions| 3 Solutions| 4 Solutions| All Solutions

Number of Datd 331666 233477 317373 882516
Rank 1 91/90 82/82 77179 84 /84
Rank 2 9/10 15715 18/17 14714
Rank 3 - 3/3 4/3 2/2
Rank 4 - - 1/1 0/0

Table 3.2 Predicted / observed distributions at 25-km (nadir sWath)

2 Solutions| 3 Solutions| 4 Solutions| All Solutions

Number of Datd 262753 172506 45638 480897
Rank 1 821780 79179 65/ 66 79179
Rank 2 18720 17/17 20/19 18/18
Rank 3 - 4/4 8/8 2/2
Rank 4 - - 717 1/1

! Non-smoothing and 3D interpolation have been used in the inversion.

3.1.2 Ambiguity removal

In order to understand the impance of the solution probabiliipr AR, a brief description of
AR follows. As discussed in seati 1.4, the AR is the processss#lecting a unique wind vector
out of a set of ambiguous wind vectors at ed¥iC. The AR is not computed in a WVC-by-
WVC basis but over many neighbouring WVCs aterirhere are two AR techniques, which are
commonly used in scatterometry: spatial filtexrg., median filter for QuikSCAT, and variational
analysis.

Median filter

The median of a group of data values is tratie for which there are equal numbers of data
values of greater and lesser magnitude. This conventional definition of the median can only be
applied to non-circular (i.e., linear and scalar) data in which the ordering of the values is obvious.
For circular data or vector data such as scatteter winds, an alternative definition of median is
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used. The median of a set of data x(1), X(2x(N) is defined as the number x(M) which
minimizes:

D[x(M) = x() (3.6)

wherel<M < N.

The medians of circular and vector data caladaising the alternative definition have similar
characteristics to the median of non-circulaiadae., extreme and isolated data are ignored.

The median filter is used by JPL for QuikSCAT AR, 2001) and works as follows:

» The wind field over an entire revaion of scatterometer data istialised with the help of an
NWP model. For each particular WVC, th& tank or the 2 rank wind vector solution,
whichever is closer to the NWP field, is st as first guess wind. The number of ranked

* The wind vectors in a 7 x 7 filter window determine a median vector for the center WVC. The
median vector is compared with the ambiguities in that WVC, and the closest ambiguity to
the median is selected for use in the nexatten. The entire revolution is filtered in that
way. The process continues until it converges, i.e., when no new replacements of vectors have
been made.

The MLE (or probability) information is implicitlysed in the median filter. The probability can
play an important roll in the selection of ampbities used in the initialization and filtering
processes (this is further discussedection 3.2). However, it is never used explicitly in this AR
technique.

Variational analysis

The variational analysis is a commonly used technique for data assimilation into NWP models. It
consists of combining the background fieldW{R) with the observationsassuming that both
sources of information contain errors and theseveell characterized, to get an analysis field,
which is spatially consistent and meteorologicéiyanced. This analysis field can then be used
for scatterometer AR, that is, to select the eddbsmbiguous wind solution tbe analysis field at

each WVC. At KNMI, a simple 2D (at surface Iéwaly) variational analysis scheme (2D-Var)

has been specifically developed for ARoffelen et al., 2000), which attempts to minimize the
cost function

J(x) =J,+I, (3.7)

where J, is the background term anB§™ is the observation term. It uses an incremental
formulation with the control variable of wind increment®,= x— x,, defined on a rectangular
equidistant grid. The control variablg is the background field, which in 2D-Var is a NWP

model forecast. The forecast is also usedras duess making the control variable equal to the
null-vector at the start of the minimization.
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The J, is a quadratic term that contains the mseeof the background error covariance matrix. It
penalizes the deviationdm the background field. Th&™ expresses the misfit between the
ambiguous wind vector solutions and the tooinvariable at each observation point. The
contribution of the wind solutions in each obsdion point is weighted by the solution

probability.

In order to solve the minimization problem, enpigate gradients method is used, which also
requires the gradient of the cost function. Aftenvergence, the control variable vector of wind
increments is added to the background fieldktain the wind analysis. The analyzed wind field
is then used for AR, as already discussed.

The solution probability is indeed used explicittythis AR technique. It plays a very important
roll in the minimization and therefe must be characterized in a comprehensive way. In this
respect, the empirically derived solution probabijlgitiown in the previous section, is essential
for a successful use of a variational analysis AR.

3.1.3 Relevance of spatial resolution

KNMI has a NRT 100-km resolution QuikSCAT md product, which includes inversion, QC
and ambiguity removaBoffelen et al. (2000) show that the 25-kQuikSCAT winds are often

too noisy, especially at low windmd in the nadir region. Theysal show that the averaging of

the radar backscatter information, and themefthe reduction of the spatial resolution,
significantly reduces the noisef the inverted winds and theank-1 probability (see also
Portabella et al., 2001). For applications such as mesoscale NWP data assimilation, where the
effective resolution of the models is never lowean 100-200 km, the eof reduced resolution
QuikSCAT winds is very promising. In this respect, ECMWEF is now using a reduced resolution
QuikSCAT wind processing for sisnilation purposes. Therefora,comparison between the 25-

km and the 100-km inversions seems appropriathiatstage, and can in turn help to better
understand the QuikSCAT inversion problem.

Probability at 100-km

We can perform this comparison in terms of pnebability, since it is a closer stage to AR (see
section 3.1.1) than the MLE. Therefore, wstfcompute the probability for the 100-km product,
following the same methodology as foetB5-km product (see section 3.1.1):

* In order to get &n at 100-km resolution, the correspargl <MLE> (see equation 2.10) is
computed (see Appendix B.4).

* The shape opyx) is found by processing about 10 dafsQuikSCAT data and shown in
Figure 3.2 for the same valuesRf; as used in Figure 3.1a. The curves are noisier than in
Figure 3.1a, since the number of data usetiénl00-km two-dimensnal histogram is about
four times smaller than thased in the 25-km histograone 100-km WVC corresponds to
sixteen 25-km WVCs). Despite this noise, ntitat the curve of Figure 3.1b fit also fairly
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well the curves of Figure 3.2. Therefore, we also use equation 3.5 to compute the solution

probability at 100-km, whereis in this case thBn at 100-km resolution.

e Similar to tables 3.1 and 3.2, the results tlee verificatiomm of the 100-km probability are
shown in tables 3.3 and 3.4 respectivelye Torrespondence betwetie predicted and the
observed distributions is also remarkabt@nfirming the validity of equation 3.5 for
computing 100-km probability.

1.5

p(Rn,)/p(Rn,)

Figure 3.2 Same as Figure 3.1a but for the 100-km resolution Rn

Comparison

By comparing tables 3.1 and 3.2 to table3 8nd 3.4 respectively, one can clearly see the
substantially higher®irank skill of the 100-km product, denoting a smaller ambiguity problem
(see section 2.2.2 and Appendix C), compareitheéd25-km product (notihe higher percentages
of the rank-1 row in the 100-km tablescomparison with the 25-km tables).

In order to compare both productges have transformed the MLE sidunction into a probability
cost function by using equation 3.5. We invert thmeaaly mentioned sets of BUFR data (2.5 days
for the 25-km and 10 days for the 100-km) amek the probability cost function information.
[Note that discussing about peaks or maxima énpttobability cost funatin is equivalent to the
discussion about minima in the MLE cost funaji Figure 3.3 shows thetatistical results of
looking at several characteristiof the cost function.

68 Wind field retrieval from satellite radar systems



Table 3.3 Predicted / observed distribotis at 100-km (sweet swath)

2 Solutions| 3 Solutions| 4 Solutions| All Solutions
Number of Datg 53753 67947 73269 194969
Rank 1 97 /96 94 /93 92 /92 94 /93
Rank 2 3/4 5/5 717 5/6
Rank 3 - 1/2 1/1 1/1
Rank 4 - - 0/0 0/0
Table 3.4 Predicted / observed distributions at 100-km (nadir siath)
2 Solutions| 3 Solutions| 4 Solutions| All Solutions
Number of Datg 66618 40478 9344 116440
Rank 1 83/83 93/93 78174 86 /86
Rank 2 17717 6/6 16/19 13/13
Rank 3 - 1/1 3/4 1/1
Rank 4 - - 3/3 0/0

! Non-smoothing and 3D interpolation have been used in the inversion.

The top plots of Figure 3.3 show the histograrhthe difference between the maximum (Pmax)
and the minimum (Pmin) probabilities for the 25-km (plot a) and the 100-km (plot b) products.
The distributions of Figure 3.3b are muchodwler and shifted towards higher probability
difference values than the disutions of Figure 3.3a, dennog a better probaliiy modulation

and therefore accuracy (see sattR.2.1) of the 100-km product. Comparing the sweet (solid
lines) with the nadir (dotted lingswe see a better probabilitgodulation for the former in both
products.

The middle plots of Figure 3.3 show the histogsaof the number of cost function points with
probability larger than 10% for the 25-km (plotac)d the 100-km (plot d) products. As discussed
in section 2.2, the cost funeti is computed at the directigtep size of the GMF LUT (22band
therefore contains 144 points. The fact of hawahdeast one point abovi®% probability is an
indication of a good probability modulation e it shows how likely these points are with

respect to the remaining cost fulcti points with avexge likelihood ofriA: 0.7%. In this

sense, notice the larger amounttiofes that the 25-km product cost function does not have any
probability value above 10% compared to the k@0product, showing again a better probability
modulation of the latter. In amilar way, if we compare the g&t with the nadir swaths, we
notice a larger number of times (the double or aigere no cost function points were above
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Figure 3.3 Histograms of the difference between the maximum (Pmax) and the minimum (Pmin) probabilities (top
plots), the number of cost function points with probability larger than 10% (middle plots), and the difference between
Pmax and the mean probability (Pmean) over an interval of #12.5 °around Pmax (bottom plots), for the sweet (solid
lines) and the nadir (dotted lines) regions and for the 25-km (left plots) and the 100-km (right plots) products.
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10% probability in the kder. However, the fact of having more or less points above 10% does not
necessarily show a better modulati&or example, if we look at the shape of the distributions in
Figure 3.3d, we see that the nadir swath distmlouis shifted towards a larger number of points
compared to the sweet swath. Since the nadatrs@oes not usually have more than 3 solutions
(look at the number of data with 4 solutionscomparison with the number of data with 2 or 3
solutions in table 3.4), the relatively large raen of points above 10%robability could be an
indication of a flat peak, as expected frtns region of the swath (see section 2.2.2).

The bottom plots of Figure 3.3 show the histogs of the difference between Pmax and the
mean probability (Pmean) over an intervat@P.5 around Pmax for the 25-km (plot €) and the
100-km (plot f) products. This difference givesiadication of the peaknodulation. The larger

the difference, the steeper the maximum (or main peak) of the cost function and therefore the
better the accuracy of retrieved winds is (see sections 2.2.1 and 2.2.2). The larger accumulations
of data at low difference values in the nadir $w@btted) with respect tine sweet (solid) swath
confirms the existence of flatt@eaks in the former as discussed above. Moreover, this is not
only valid for the 100-km product but also foetB5-km product. The reason why we could not
infer flat peaks in the 25-km product from the malglot distributions ighat the flat peaks are
below the 10% probability level imposed in suglots. However, as we see from the larger
accumulation of data at low Pmax-Pmean valueSigure 3.3e with respect to Figure 3.3f, the
peaks are much flatter (lower peak moduwiatiat 25-km than at 100-km resolution.

Therefore, we conclude that, for QuikSCAfRie 100-km product is less ambiguous and more
accurate than the 25-km product and therefore mmitable for wind retrieval purposes than the
25-km product. In this chapter, wall therefore use the 100-km product.

3.2 Multiple solution scheme

So far, we have extensively examined the ligha problem for QuUikSCAT, tuned the inversion

in order to reduce its ambiguity and improve aiccuracy, and determinéake relation between

the relative probability of a solution and tMLE in order to prepare QuikSCAT ambiguous
solutions for AR. We have learned that in theinawath, the accuracy of the inverted winds is
low compared to the sweet swath, due to l@akpmodulation in the probability cost function.
For low winds, the accuracy is also low due to the low cost function modulation. The worst
scenario therefore occurs for low winds in theinawath, where the cost function modulation is
rather flat.

The number of solutions in the nadir swath is smaller than in the sweet swath (see the relatively
small amount of data with 3 and 4 solutions compared with 2 solutions in table 3.4, in contrast
with table 3.3). This may be caused by the noiseaauridé shape of the cost function, i.e., a cost
function that has well defined and steep prolitsggpeaks (or MLE minima) may have a larger
number of peaks than a cost function that lvasd peaks. However, it seems contradictory to
provide less wind solutions to AR when the cistction peaks are less well defined, since for
such cases the information content of the wsntlitions is poor. Along a broad peak, there are
several wind solutions with almost the samedative probability as the peak. However, by
selecting only one (as the inviens is doing), we assigpero probability to the rest of the points

that belong to the broad peak. On the other hiapdelecting all of the points of the broad peak,

we are transferring to AR all retrieved information; that is, the inversion could not find a clear
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candidate for that particular region of thestdunction, but rathema few candidates with
comparable probability.

Precedent

At JPL a procedure, based on a multiple sotutinversion output (not constrained to four
solutions) in combination with AR, called DIRTIRi]es et al., 2000) was developed. It includes
an initialization technique for the mediaitter, called the Thresholded Nudging (TN), and a
multiple solution selection scheme as input te thedian filter, calledhe Direction Interval
Retrieval (DIR).

The TN allows for more than two ambiguitiesh initialization (see sdon 3.1.2) and works as

follows. The probability of the cost function is normalizedtivthe probability of rank 1, and the

number of ambiguities (up to four) with norlzad probability above 0.2 is used in the
initialization.

The DIR performs AR in the following way. Givemthreshold T (0.8), aet of cost function
points around each of the local maxima (resulimgs many segments as local maxima) is
selected such that the number of points is mingahiand the integral of the cost function over the
interval of such points is T. Then, AR is perfad in the usual manner (except for using the TN
for initialization), and only theegment of points around the seleaetbiguity is further used by
the median filter (see section 3.1.2).

By examining many wind field cases, we concldioa the DIRTH windsre often very smooth
and unrealistic in the nadir swath. Here wenisfy some possible reasons for this result:

» By applying the median filter only on the segment that was selected in the first place by the
“traditional” AR, the scheme is subject to the accuracy of the latter. That is, if the traditional
AR fails in an area and productt® wrong solutions, all the segnts used in that area will
in turn produce a more or less smooth figddobably following some segment extremes,
depending on the segment width) but wrong.

* When using a threshold T of 0.8 to defittee segments, it may well happen that the
remaining cost function points that sum paobability of 0.2 (1-T) contain valuable
information indeed. In particularf we look at the Pmax - Hmdistributions in the nadir
swath for 25-km resolution (Figure 3.3a), ve® @ relatively poor probability modulation. In
such region, many cost functigoints with substantial probaity may be left out of the
segment selection. This will in turn deasse the quality of the wind retrieval.

The reason for setting such threshold T is to gméwversmoothing. That is, if we use T=1, all
data in the cost function will be ed by the median filter, which torn will result in a wind field
inhibited by the NWP reference and the median filter characteristics. This is due to a very
important limitation of the median filter AR, whids not explicitly using the relative probability

of each solution, but rather considering all sodutions with identical probability. Despite the
mentioned threshold and as attgaliscussed, the resulting winelfil is still substantially smooth

in areas with large solution segments, i.eg tfadir region. Since the median filter does not

! Sileset al. (2000) use the theoretical relation between MLE and probability, i.e., equation 3.1, to compute the
latter.
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ensure meteorologically balanced fields, theieeed winds are not only oversmoothed but also
unrealistic in some (of such) areas.

Alternative

The 2D-Var AR (see section 3.1.2) explicitlyegsthe probability of all ambiguous solutions.

This AR therefore allows the psibility of using as many amipious solutions as we desire
without a substantial riskf oversmoothing. Moreover, sinceetlvariational analysis is always
constrained to spatial consistency and meteorological balance, we can ensure realistic retrieved
winds by using a scheme based on a multiple solution inversion output in combination with such
AR.

Figure 3.4 shows a QuikSCAT retrieved wind fieldjng the standard inversion output (up to
four ambiguous wind solutions) atite 2D-Var AR. In the nadir ggon, it is clearly discernible
that the retrieved wind field is spatially inconsigteSince the 2D-Var angis field (not shown)

is spatially consistent, thegislem is most likely in the ambiguous solution distribution.
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Figure 3.4 QuUikSCAT retrieved wind field using the standard inversion output (cost function minima) and the 2D-
Var AR. The acquisition date is January 15 2002 at 16 hours UTC. The solid lines separate the sweet-left (left
side), the nadir (middle), and the sweet-right (right side) regions of the QUikSCAT swath.
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74

Wind field retrieval from satellite radar systems



Figure 3.5a shows the standamhbiguous solution distributigfMLE cost function minima) for
the same case of Figure 3.4. As we can clese®/in the nadir region, the wind solution pattern
shows almost no solutions in thikrection of the mean flow. Hrefore, even if the 2D-Var
analysis field were of acceptable quality, ther@asway to select a consistent wind field from
such solution pattern.

Figure 3.5b shows the multiple ambiguous solufioot constrained to four) distribution again
for the same meteorological case as Figuresr®&l43sba. We show all the cost function solutions
with probability above a guessed threshalfi2x10’. Notice how often the ambiguous solutions
in the sweet swath are around the cost functionmmim, which is in the direction of the mean
flow, denoting little ambiguity (main cost futh@n minimum much deeper than the remaining
minima) in comparison to the nadir swath. Natso that the number of solutions in the nadir
region is large, indicating loweaccuracy (broader minima) ah in the sweet swath. In
comparison with Figure 3.5a, vae providing much more infomtion content to the AR using
the multiple solution inversion output. As alreatigcussed, the 2D-Var will use the information
in an appropriate way (the ambiguous solutiares weighted by their computed probability) and
therefore, from a theoretical point of viewetimultiple solution concept should considerably
improve the resulting analysis field. Moreover, the AR will now result in a spatially consistent
wind field since the multiple solution concept dpesvide solutions aligned with the mean flow
(see solution distribution in the nadir swath of Feg8.5b). [Note: the dots in Figures 3.4 and 3.5
represent quality-controlled points. Tlgsue is discussed in section 6.2.2.]

Therefore, it seems reasonable to test the nelgplution scheme (MSS) against the standard
procedure. Since using all the points of the émsttion with non-zero proldity (up to 144) as
solution ambiguities for the 2D-Var AR is cpotationally expensivewe use the mentioned
probability thresholds, i.e., TOfor the standard procedure and 2x1for the MSS, as a first
guess.

3.3 Comparison between the standard procedure and the MSS

As discussed in section 3.1.2, the 2D-Mfmckground term is a NWP forecast field. The
QUuikSCAT data products distributed hjPL and NOAA include collocated NCEP wind
information. The latter is @sl for AR purposes, i.e., backgind term. As such, a different
reference should be used to compare the standardiretrieval and the MSS procedures. In this
section, we use ECMWF winds as reference.

3.3.1 Statistical results

Three days of QuikSCAT and ECMWF collocatethds at 100-km resoton are used in the
comparison. Table 3.5 shows the mean RMS of wind vector differences between ECMWF and
three different wind sources: standard windiegtal, MSS and NCEP. Comparing the standard
procedure and the MSS, the latter shows bekeiormance, i.e., agreement with ECMWF. As

! The reason for choosing a different probability threshold in the standard procedure and the MSS is due to the
normalization of the probability; the former is normalized with up to 4 solutions and the latter with up to 144.
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expected, the major difference beem the two procedures istime nadir region, where the RMS
difference is more than 0.5 m/s lower for th&S. In the sweet swath, the MSS also works
better. This is due in part to an improvemaniow winds, where low & function modulation is
expected, and in part to the improvement of thalyais field, i.e., a better 2D-Var analysis in
nadir is expected to positively impact the analysishe sweet regions. Indeed, the results (not
shown) indicate better agreement of MSS analgsimpared to standard analysis) with ECMWF
in both the sweet and the nadir swath.

Table 3.5 Mean vector RM5(m/s)

Standard MSS NCEP
Swath region procedure
Sweet 2.48 2.23 2.85
Nadir 2.98 2.45 2.96

! The vector RMS is referred to as RBIS of the wind vectodifference between
ECMWEF and the different wind sources shown in the table.

Both the standard procedure and the MSS spemerally better scores (against ECMWF) than
NCEP (see table 3.5). This suggests that 2D-Vandsessfully exploitinthe observations rather
than to follow the background (i.e., NCEP). #sisch, the quality of the background does not
significantly affect the quality of the retrievednalis. This is also true in the nadir region. As
discussed in section 3.2, the MSS provides atangmber of equallyKkely ambiguous solutions

in the nadir swath, compared to the sweet regitinss resulting in a larger influence of the
background term in 2D-Var. However, the impattNCEP in the nadir is also minor, as seen
from the substantial difference in vector Rd&ween the MSS (2.45 m/s) and NCEP (2.96 m/s).
The observations and the constraints on metegicdl balance and spatial consistency are
therefore the most dominafatctors in the retrieval.

Figure 3.6 shows the two-dimeasal histograms of the standgutbcedure (top plots) and the
MSS (bottom plots) selected solutions agalBSMWF winds, for wind speed (left plots) and
wind direction (right plots), in the nadir swafhe MSS shows a slight improvement in the wind
speed accuracy compared to sti@ndard proceduras denoted by their oe@sponding SD values
(see left plots). The main improvement is in wohdection. It is clear that the contour lines in
Figure 3.6d are closer to the diagonal thhose of Figure 3.6b. Ehbetter wind direction
accuracy of the MSS is confirmdxy the SD scores, where therstard procedure is more than
4° higher than the MSS. The fact that the main improvement is in wind direction is an expected
result since the MSS allows essentially a lasgerd direction choice tohe AR procedure (i.e.,
2D-Var) than the standard procedure. Thagea of wind speed values is generally small
compared to the range of wind directiongled MSS ambiguous solutions. Taking into account
that 2D-Var is properly weighting these solutidmsth assigned probabilits§ and, at the same
time, using some spatial constraints, i.e., rotasiod little divergence, the impact of the MSS is
maximal in the wind direction component.

The overall results (table 3.3@w that the difference in windeetor accuracy between the nadir
and the sweet regions is 20% for the standaodquture, while only 10% for the MSS. This is
mainly due to the substantial improvement of the MSS in wind direction accuracy at nadir.
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Figure 3.6 Two-dimensional histogram of the Standard (top plots) and MSS (bottom plots) selected wind solution
versus ECMWF wind in the nadir region. The left plots correspond to wind speed (bins of 0.4 nVs) and the right plots
to wind direction (bins of 2.59. The latter are computed for ECMWF winds above 4 nvs. The legend and contour
linesarethe same asin Figure 2.2.

MSS probabilistic behavior

A way to test the consistency tiie MSS is to look at the prdéty distributions of certain
solutions. Figure 3.7a shows howesf a solution with a particular probability value is selected
(diamond symbols) or closest to NCEP (star Isgl®) as a function gbrobability. Both the x-
axis and the y-axis are in logarithmic scakes such, the diagonal denotes a consistent
probabilistic behavior, i.e., a sdion with probability value 18 (for example) is expected to be
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“selected” 1% of the time. The closest solution supnt to be probabilistically rather inconsistent

as shown by the large discrepancy with thegoliel. This esswially means tht if the MSS
systematically selects the closestution, it would be doing a po@wb since it would not correct

the differences between QuikSCAT and NCEP (background) observing systems, where they
exist. The selected solution shows a more consistent probability pattern than the closest,
especially in the most populated regiae,, probabilities between why is t 4@nd 1F* (see

solid line in Figure 3.7b), where the diamondsacly follow the diagonal. The reason for this is

that many closest-to-NCEP low-probability l#ons are not seleetl and high-probability
solutions are selected instead. This indicatesithgéneral 2D-Var is successfully resolving the
large number of solutions provided by the M8%&s confirming the small dependency (of the
MSS) on the background discussethatbeginning of this section.

A remaining question is what ti with both tails of the distsiition, i.e., probkilities below 10°

and above 18?2 (see solid line in Figur8.7b), where the probabilistliehavior is far from being
consistent. Figure 3.7b shows thealifly of the data (star symbolay a function of probability.
Note that the quality is decreasing (i.e., incigaRRMS) as we approach the extremes of the
distributior?. In particular, below 16, the data are of poor quality (close to 4 m/s RMS),
indicating that the praibility threshold of 2x10 initially used by MSS (e section 3.2) may be
increased to improve the quality of the retrisvarhis is a QC issue, which will be further
discussed in section 6.2.2.
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Figure 3.7 (a) Number of times (normalized and in logarithmic scale) that a solution with a particular probability
value is selected (diamond) or closest to NCEP (star) versus probability (logarithmic scale). (b) Normalized
histogram of selected solutions (solid line) and mean RMS of vector difference between the selected solutions and
ECMWF winds (star) versus probability (logarithmic scale).

! Below probability of 8x16 the number of data is very small (see solid line in figure 3.7b) and therefore not
statistically significant, as deted by the noisy RMS values in the left part of Figure 3.7. This is also true for
probability above 182
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3.3.2 Cases

Many meteorological cases were examined in toisiparison. In order to better illustrate the
statistical results of the previous 8en we show some of these cases here.

Figure 3.8 shows the MSS selected wind fieldtha same poor-quality case as Figures 3.4 and
3.5. As discussed in section 3.2, in contra#th the standard precure, the MSS provides
solutions in the direction of ¢hmean flow in the nadir swath (see Figure 3.5). As such, a more
spatially consistent and realistic wind field gpected when using the MSS. This is shown in
Figures 3.4 and 3.8, especially in the middlethe plot. A few inonsistent wind arrows
(probably rain contaminated), which shoulddelity controlled (seéiscussion on QC at 100-

km resolution in section 6.2.2), are still present though.
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Figure 3.8 Same as Figure 3.4 but for MSSretrieved wind field.

Figure 3.9 shows another interesting caseh@iv the MSS is improving the quality of the

retrieved wind field in the nadir with respect tile standard procedure. Note the noisy and
granular wind field over the entire nadir stvanh Figure 3.9a. The MSS (Figure 3.9b) is
successfully filtering the mentioned noise, kee@hthe same time the dynamical information of
this case (intensity and location of the lpwessure system are the same in both plots).

Figure 3.10 shows a low wind speed case. Agam standard wind fiel{Figure 3.10a) shows a
noisy pattern in the nadir swath, which iceessfully filtered by the MSS (Figure 3.10b). The
presence of a low-pressure system is belépicted by the MSS. Moreover, the standard wind
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field is also somewhat noisy in the sweetalw as expected from the low cost function
modulation at low winds (see sixt 3.2). As it is discernilbl from Figure 3.10, the MSS is
successfully filtering the noise the sweet swath as well.

Figure 3.10c shows the ECMWF wind field. Botle timtensity and location of the low-pressure
system are in disagreement witte observations. The assimilation of a well-defined and spatially
consistent wind field such as the MSS could help very much to improve ECMWF forecast.

a) b)
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Figure 3.9 QuikSCAT retrieved wind field using the standard procedure (a) and the MSS (b). The acquisition date is
February 3 2002 at 2 hours UTC. The solid lines separate the sweet-right (left side), the nadir (middle), and the sweet-
left (right side) regions of the QUIkSCAT swath.

3.4 Conclusions

After the extensive examination of the scattertmmand, in particular, the QuikSCAT inversion
problems in chapter 2, the standard wind retripvatedure is compared to a new procedure, the
so-called multiple solution scheme, in this chad®eior to the comparison, several aspects of the
wind retrieval are revised.

First, and in order to get a more suitableeiface between the inversion and the AR schemes
used in scatterometry, the MLE cost functiortrémsformed into a probability cost function, by
experimentally finding the relation between th&Band the probability of the “true” wind. We
use the determined probability function to peedhow often a certaisolution rank corresponds

to the “true” solution, usindcCMWF winds as reference. &hcorrespondence is remarkable,
indicating that the sotion probability function we found is adequate.
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Then, to optimise wind retrieval, the spatial retiolu of the retrieved winds investigated. The
QUuikSCAT 25-km inverted winds are compartxdthe 100-km winds. It turns out that the
probability function derived for 25-km is also valid for 100-km resolution. The 100-km product,
which is less noisy by definition, shows botedeambiguity and more accuracy than the 25-km
product and, as such, the former is recommended for QuUikSCAT use in NWP data assimilation.
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Figure 3.10 ECMWF wind field (a); and QuikSCAT retrieved wind field using the standard procedure (b) and the MSS
(c). The acquisition date is February 3 2002 at 7 hours UTC. The solid lines separate the sweet-right (left side), the
nadir (middle), and the swest-l€ft (right side) regions of the QUikSCAT swath.
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The results of the extensive study on the QuikS@#VErsion problem (see chapter 2) show that
in order to improve the wind tgeval, notably inthe nadir region, more ambiguous wind
solutions need to be provided to the AR. lmesrto be successfulith a multiple solution
concept, it is very important to characterieach of the ambiguowgind solutions with its
corresponding probability of bajy the “true” wind. Therefore, median filter AR, in which the
probability of each solution is naxplicitly used in the final selection, is inappropriate. We
propose to use the multiple solution inversionpatiin combination with a variational analysis
AR (i.e., 2D-Var), the so-called MSS. The véinaal analysis AR is not only capable of
correctly assuming multiple solutions (it explicithges the probability) but also ensures spatial
consistency and meteorologicaldrace of the retrieved winds.

A comparison between the standard wind retrieval procedure and the MSS is then performed,
using NCEP winds as background term for 2D-¥ad ECMWF winds as validation reference.

The MSS turns out to be more in agreemesth ECMWF than the standard procedure,
especially at nadir. As expected, the MSS wim@alion is substantially better in nadir, thus
validating the procedure proposed. Moreovere thSS selected solution is, in general,
probabilistically consistent, whereas the closest#@EP solution is rather inconsistent with the a
priori set probabilities. In other words, the ughce of the background the retrieved field is
relatively small. As such, 2D-Var is successfully exploiting the information content of the
observations.

The meteorological cases examined clearly show more spatially consistent and realistic wind
fields for the MSS than for the standard procedespgcially at nadir. Moreover, the MSS is not
only acting as a spatial filter, but is also kiegpthe wind information (e.g., lows, fronts, etc.)
present in the observations. As such, the multiple solution scheme seems to be more appropriate
for QUikSCAT data assimilation gpwses than the standard scheme.

It may still be worthwhile to evaluate the effedft the spatial filtering by validating different
versions of MSS with in-situ data.
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Chapter 4

Wind Retrieval for Underdetermined Problems:

SAR Case

The wind retrieval of a single-view measuremepstem is underdetermined, i.e., an infinite
number of wind solutions satisfyefGMF described by equation 1.5 (casef section 1.4.1). As
discussed in section 1.4.4, the ERS SARstruments are well-calibrated single-view
measurement systems and, as such, idestldy the underdetermination problem.

As discussed in section 2.1.the MLE is a valid inversioparameter when the problem is
determined. In the case of underdetermination,abigous that additional information is needed

to derive the sea-surface wind field. This additional information can sometimes be derived from
the SAR imaging system itself andfrom NWP models or buoy data.

In this chapter, several SAR wind retrieval algorithms will be described, and a comparison of two
different wind retrieval methods will be performele first, widely usedor SAR wind retrieval,
assumes that the SAR system is not underdetedrand, as such, thenali direction information

can be derived from the SAR image and then usedjuation 1.5 (GMF) or equation 2.9 (MLE)

to solve the wind speed component [note that bqthations are equivalent for such purpose]; the
second is an alternative we propose, Whiassumes that the SAR system is indeed
underdetermined and, as such, combines the @R information with additional information,

i.e., NWP winds, to derive the wincefd by using a statistical approach.

4.1 Current wind retrieval algorithms

In recent years, several algorithms have béeveloped and applied f6AR wind retrievals.
Common among these are the C-b&@wmFs such as the CMOD-&6ffelen and Anderson,

1993; Johannessen et al., 1994a) or the CMOD-Ifr (fremer, 1996), the SAR Wind Direction
Algorithm (SWDA) Wackerman et al., 1996,Vachon and Dobson, 1996,Fetterer et al., 1998),
and the SAR Wind Algorithm (SWA)Ghapron et al., 1995,Kerbaol et al., 1998), which are all
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empirically based methods. A comprehengivesentation of these methods is foundjecial
Section on Advances in Oceanography and Sea Ice Research using ERS observations (JGR,
1998), EOQ (1998) and-etterer et al. (1998).

As discussed in section 1.2.4, in the C-band modelsgytieea non-linear function of wind speed
(exponential) and wind direction (harmonic). Foe ERS-1 scatterometer (whose data are used
to develop the C-band models), threeviews are available at each node (see section 1.3.1),
allowing a solution of the CMOD-#hversion to be obtained (cas®f section 1.4.1) after taking
account of the non-linearity (see scatterometer watideval discussed in chapters 2 and 3). In
contrast, inversion of a single-view SA®RR measurement is more difficult as the sensitivity
depends on the (unknown) true surface wind vecog; is therefore usually facing ambiguities
and a problem of underdetermination (case section 1.4.1).

A limitation of the SWDA is that the spatials@ution of the wind direction information is
derived from 25 km averages within the SAR imagence, at scales smaller than this, no wind
direction information is available. In turn, all tw@ variability is incorrectly assigned to wind
speed variability, by ignoring potential wind ditiea variability at these scales. Another problem
of the SWDA is the 180ambiguity in the wind direction determination, which is due to the fact
that the wind streak reflectise orientation of the wind bubt its sense of direction.

A limitation of the SWA is that the longer waseised to determine the smearing in the SAR
image spectrum, are not fully coupled to locat@vwariations. In addition, as the wind waves and
swell starts to feel the bottotapography as they move into shallow water, their period remains
constant but their propagationrettion change and the phase speed decreases. In turn, their
wavelength decreases as wé&lbiid and Pickard, 1978). This leads to an underestimation of the
SWA wind retrievals. Similar difficulties arise foffshore winds, in particular in shallow water,

as the fetch and depth-limited waters affect thewn of the wave spectrum. As it, for a given
wind speed, never reaches the spectrum for fully developed seas the SWA retrieval will
underestimate the wind speedn& the present studg focused on shallow water regions
(mostly 100m depth or below), the wind fieldrieval based on the SWA algorithm has been
discarded.

We have chosen to apply SWDA and CMOD#Vversion for further examination of the
limitations addressed above. The algorithms are therefore briefly introduced below.

SAR Wind Direction Algorithm

The SWDA is used to extract the wind diten information from linear, low frequency
expressions detected in the SAR image. Theseusnally associated with wind rows or wind
streaks, which are manifestats of roll vortices in the Bhetary Boundary Layer (PBLBi(own,
1990; LeMone, 1973). The rolls are approximately aligned with the surface wind. Roll vortices in
the PBL are counter-rotating helical circutatiwhich are superimposed on the dominant wind
field. They are most pronounced during unstable conditidfaekerman et al., 1996), although
Etling and Brown (1993) reported the presence of windlsran stable conditions as well. The
SWDA was proposed biretterer et al. (1998) and looks for thedeear expressions in the
Fourier domain of the SAR image at a spatigbhetion of 25 km to determine wind direction.
Subsequently SAR wind speed is ubueetrieved at smaller resolution.
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C-band model inversion

The CMOD-4 model was originally developed for the ERS-1 scatterom8tigffelen and
Anderson, 1993) but it has also shown to give readoleaestimates of wind speed when applied
to ERS SAR imagesJ¢hannessen et al., 1994a). As discussed in section 1.2.4, the model is
based on the backscatter from the rough oseaface for moderate incidence angles’{@0°),
which is dominated by resonant Bragg scatterixgleghzuela, 1978). Additionally, specular
reflection may contribute to the backscatter.

The CMOD-4 also follows the generic equatio® #lescribed in sectioh.2.4. The model is
tuned to the real (“trueind at 10 meters height and the ERS-1 scatteronogte€CMOD-4
describes the coherence of tuee, aft and mid view backst¢at measurement (the so-called
cone surface) within about 0.1 dB. Wind retrieval based on CMOReffden and Anderson,
1997b) results in an accuraf 3 m/s vector RMS (root mean square) when applied to
scatterometer daté&pffelen, 1998b). Other relevant references here inclkidesbakken et al.
(1998) and_ehner et al. (1998).

As discussed in section 1.3.2,derive the wind field in a SAR precision image (PRI) from a C-
band model inversion, comprehensive calibration of the radar backscattero?akieequired
(Scoon et al., 1996). The calibration procedure perforchen this thesis can be found lraur et

al. (1998).

4.2 General approach

Besides the limitations of the different algorithm®sented in the previous section, there is a
very important problem inherent in SA®R observations. Both wind speed and wind direction
information is present at the same time andnca be properly discriminated. As discussed
above, this underdetermination problem is obuJipusresent in the wind vector retrieval
algorithms, such as CMOD-4. Moreover, it direc#lifects the quality ofthe retrievals of the
algorithms, which only derive one windraponent, such as SWA or SWDA.

A methodology, which combines some of these algms with some external information, may
be the solution to this inherent problem IARSwind retrieval. In order to be successful, the
method should take into account the spatial ancliracy characteristics and limitations of the
observations and of the additional data used to combine them in an optimal way.

In this section, we considan alternative approach by which the problem of underdetermination
can be solved in a statistical way.el@peneral statisticalpproach used byorenc (1986) to solve
inversion problems (including underdeterminguoblems) in meteorological analysis is
characterized by the most general equation oBingesian approach discussed in section 2.1.1;
that is, the maximum a posterigrobability described by egtian 2.5. In contrast with
scatterometers, where no external infation is used in the prior probability(x;), Lorenc
(1986) uses background information, i.e., NWP. As sB¢k) can be written as the deviations
from (or errors of) some backgrourgl
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P(x,) = R (X=Xy) (4.1)

Therefore, assuming Gaussian errors andRhandPy (see equation 2.4re independent, i.e.,
that background errors and epgational errors are uncorredd, equation 2.5 becomes:

P,(x) 0 exp[—%{yo K, (0} (0 +F) ™y, -k, ()} —%(x—xbf B(x~X,)] 4.2)

whereO, F andB are the error covariance matricesPgf P, andP;. respectively.; the first and
second terms of the exponential are refertedas observation and background terms,
respectively.

This equation allows combining the remotely sensed measurements (observation term) and the
external information (background termn a statistical way. In othevords, it allows to combine

the SAR information, i.eg° and/or wind streaks, with sonbackground information, i.e., NWP
models and/or buoy data, to retrieve the mosbg@ble wind vector, assung that all sources of
information contain (Gaussian) errors and theseveell characterizedncluding their spatial
correlation.

The most probable wind vextresults from maximizing, (equation 4.2), which is equivalent to
minimizing —InPs):

J={y, -k, ()} (O +F){y, -k, ()} +(x—x,) B (x—x,) (4.3)
whereld is the so-called cost function.

In case of a non-linear forward mod&] or in case of non-linear error properties, e.g., the error
magnitude depending on the value of the tobservation, the maximum posterior probability
solution may have some unwanted features, such as biases (se®pféetpn and Anderson,
1997b). It is important in these cases to carefuilyestigate whether the best estimate comes
from the maximum probability or from other optiration techniques (sdgeginning of chapter

2), such as the minimum var@mor the unbiased analys&dffelen, 2000).

SAR Application

For SAR,y, can contairo®, wind direction from wind streaks ather derived parameters (see
section 4.1)k, can be the C-band model, the SWDAotner SAR wind retrieval algorithm (see
section 4.1)x, can be a NWP wind field or buoy wind data; ani the wind field at 10m
height.

The matriceO+F andB can be diagonal in which case thelgl minimisation problem is just a

sum of local minimisation problesnin meteorological analysd3,is constructed generally from
so-called spatial structarfunctions that provide the spatial error correlation of the background
field. Since the observational net is generally rather sparse, the typical correlation length
used for wind parameters is 250 km. Unless in specific cases of katabatic flow, land breeze, etc,
that may provide a well-determined physical fog;ithe scarcity of # observation network is

also a problem for high-resdlon models, such as the High-resolution limited area model
(HIRLAM). So, generally over a SAR saeithe NWP output will be quite smooth.
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Also, theO matrix may contain correlation. A goodample is the case where SAR image wind
streaks are used for wind direction determinafg®ee section 4.1). A spatial context of 25 km is
used for thisFetterer et al., 1998), and if the wind state from SAR at, let's say, 5 km resolution
is sought, then the contributidiom the wind streak observatis is spatially correlated.

For SAR, several existing wind treeval methods can be des&t by the above formalism.
Generally, further simplifying assurtipns have to be made such Bs-o or O + F = |
(identity).

4.3 Evaluation of two SAR wind retrieval methods

In this section, we evaluatBe outcome of two different SARind retrieval methods. The first

one is based on a commonly used combinatiothe SWDA and C-band models, whereas the
second one is the new method based on the demeeranverse approacaddressed in section

4.2. This new method, called the Statistivdind Retrieval Approach (SWRA) combines the
SAR derived wind information with the VHRvery-high resolution HIRLAM) output to
determine the optimum wind vector, using a simplified set of assumptions. Unlike the other
methods, this method takes into account theivelajuality of the observations (SAR) and the
background information (VHR). A description of thetalaised in here ipresented prior to the
evaluation.

4.3.1 SAR and HIRLAM data

A set of 15 SAR images thatere acquired from January 196y October 1997 by the second
European Remote Sensing Satellite (ERS-2) dlversouthern North Sea coastal regions were
selected representing variousndi conditions (onshore, offshoralong-shore, low, medium,
high). The ERS-2 SAR PRI images presdnite this paper are provided by ES&rébak and
Laur, 1995). All SAR acquisition times are betwed®:00 UTC and 11:00 UTC. The selected
SAR images are listed in table 4.1.

HIRLAM V55, a high-resolution (55 km) mesosedlWP model, is run operationally at KNMI.

It has the capability of running a nested VH¥Rery High Resolution) model with a 5 km
resolution, which is able to simulate andngete specific mesosealatmospheric weather
phenomena such as land-sea breeBesBfuijn, 1997). This model yieldsas output, among
others, the wind field at 10 m height above tba surface, which can be compared or combined
with the near surface wind information inferred from the SAR images.

A comprehensive description of HIRLAEN its nesting strategy can be foundmBruijn and
Brandsma (2000). However, it is impontd to mention that the analis is performed on the V55
model; the nested model does not have it:n amalysis scheme and receives its initial
information from the coarse mesh model. There are no specific physical parameterisation
schemes for the VHR model. [A compleatescription of such schemes is foundQuostafson
(1991)].
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Table4.1 ERS-2 PRI SAR images selected.

Orbit  Frame  Acquisition date Acquisition time Wind Condition$
(UTC)

9381 2529 4-Feb-97 10:48:56 H / Off
9567 2511 17-Feb-97 10:40:04 M / Along
9610 2547 20-Feb-97 10:46:20 M / Off
10297 2511 9-Apr-97 10:37:13 L / Along
10569 2547 28-Apr-97 10:40:34 M/ On
10984 2511 27-May-97 10:28:37 M/ On
11428 2511 27-Jun-97 10:54:30 H / Along
11614 2547 10-Jul-97 10:46:23 L / Along
12072 2547 11-Aug-97 10:40:37 L / Off
12301 2511 27-Aug-97 10:37:14 L / Off
12430 2511 5-Sep-97 10:54:28 M / Off
12487 2511 9-Sep-97 10:28:35 H/On
12530 2511 12-Sep-97 10:34:19 M / Along
12931 2511 10-Oct-97 10:54:29 H / Off
12988 2511 14-Oct-97 10:28:37 L/On

L L: Low winds (<7 m/s); M: Medium winds (7 m/s<v<13 m/s); H: High winds (>13 m/s)
On: Onshore winds; Off: Offshore winds; Along: Alongshore winds

In order to collocate the HIRLAM output produo the calibrated SAR (including analogue to
digital converter power loss correction) imageatandard size of 80 km95 km, we define a
WVC in the SAR image, as an area of 5knbkm only covered by ocean (no land or ice
“contamination”). In a pure ocean calibrated Siviage, there is a total of 304 (16 x 19) WVCs.
Then, the HIRLAM output product is spatially interpolated to the actual coordinates of the
WVCs. Finally, as HIRLAM forecasts are provided an hourly basis, the HIRLAM outputs are
linearly interpolated to the actuatquisition time of the SAR image.

4.3.2 SWDA+C-band method

In this section, we explore a common waydefiving wind vectors based on a combination of
one of the C-band models and the SWDA, wite additional help of the VHR HIRLAM wind
direction information.
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4.3.2.1 Methodology

As described irFetterer et al. (1998), the SWDA is used to retrieve the wind direction from the
streak features in the SAR image, which are @gprately aligned in the direction of the surface
wind. As emphasised in section 4.1, the esml method only providesstimate of the wind
streak direction, and therefore a 1&mbiguity remains. In contrast witfetterer et al. (1998)

who use buoy data to provide the additional information needed to solve this ambiguity, we use
the VHR model, i.e., the direction value @gsto that given by the VHR is selected.

The SWDA provides wind direction information 25-km grid cells. In order to retrieve a wind
vector of 5 km resolution (VHR model resoturt), the 25 km cells arsubdivided in 5 km
WVCs, assuming a constant and error-free wingction within the 25 km area. The CMOD-4 is
then used to retrieve the wind speed at each WVC based o, ttlee incidence angle and the
SWDA wind direction information. We computednali speed in an area of 3 x 3 25-km grid cells
at 5-km resolution.

As said in section 4.2, the SAR wind retriewadthods can be described by the general approach
while varying the set of assumptions. Therefahes alternative methodan also be described
following the general approach, bwith a very strong set of agsptions, notably: no errors, and
no background term in the cost function.

4.3.2.2 Validation procedure

Although the quantitative valitian is done with the VHR model wind information as a
reference, a method based on an optimum caatibm of both VHR and C-band models is also
used to qualitatively analyse some specific caseso doing one can alternatively retrieve the
wind speed or the wind direction from the Gidanodel, using the VHR wind direction or wind
speed products as input. In the latter case, whad direction is retrieved, four ambiguities are
generally found (i.e., up to four points in thdiddine of Figure 1.8a satisfy a given wind speed
solution) from which the closest to the VHR adition is selected. ThRMS difference of the
retrieved wind vector component comparethi® VHR component can then be estimated:

RMS = (4.4)

wherev; andv;' correspond to the wind vector componénta particular WVC provided by the
C-band and the VHR models respectively; &hd the number of WVCs in the SAR image.

The method, described Bortabella (1998), uses variations around the input VHR values to
look for the minimum RMS. In thease of wind speed retrievalsethariations are performed in
the VHR wind direction, looking foa minimum RMS in wind speed; and similarly, in the case of
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wind direction retrievals, the wations are performed in the VHR speed field, looking for a
minimum RMS in wind direction. These two fields are based on the independent sensitivities to

direction {ga j and spee{‘z}fa j changes respectively (whefres wind speed angis wind
@ ) 0

direction). As the VHR wind fields are smoptthe method thereforassumes that all the
variability captured in the SAR image is as&drto either the wind speed component (for wind
speed retrievals) or the md direction component (favind direction retrievals).

4.3.2.3 Validation

The combination of wind streak téetion and C-band models is wigleised to quantify the wind
field in SAR imagesFetterer et al. (1998) obtained a RMS difference (compared to buoy data)
of 2 m/s in wind speed and 3 wind direction using this e¢obined method in a total of 61
ERS-1 SAR PRI images.

In this section, we will focus the attention o fhotential use of this method and its weaknesses,
rather than performing a full valdion. For this purpose, we have chosen two SAR images out of
the set of 15. These images present clearlpisiind streaks. Figures 4.1 and 4.2 show the
SAR image (plot a), the corgsnding VHR wind field (plot b)the CMOD-4 retrieved speeds at
fixed (or VHR shifted) directions (plot c), ahCMOD-4 retrieved directions at fixed (or VHR
shifted) speeds (plot d), and the SWDA+CM@Dwind field (plot e) for the two SAR scenes
[Note: plot f is described and discussed inisect.3.3.2]. The validatn results are summarised

in table 4.2.

Case 1l
The VHR model predicted a mean spee.@fm/s and a meatirection of 206.6.

The SWDA derived mean direction field is 231vith a RMS difference (compared to the VHR
direction field) of 27.9. Figure 4.1a shows the wind streaktgan (straight white lines) and the
wind fronts (curved white lines) in the SAR ima@eamining the wind direction field in Figure
4.1e, it is clearly discernible that the SWDA swssfally detected the wind streaks in the image,
except for the lower right corner where there islear pattern of wind streaks. There is a bias of
25.3 towards crosswind of the retrieved directi@osnpared to the VHR directions (see Figures
4.1b and 4.1e) suggesting that the wind streaksnmotipe perfectly aligned with the “true” wind
direction. Wackerman et al. (1996) andAlpers and Brummer (1994) reported that the wind
streaks are aligned in a direction slightly to the rightio the left of the fue” direction. This bias
depends on the roll generation mechanisms (dynamconvective instaliies), the strength of
the PBL stratification, and on the \iedl velocity profile of the PBLGerling, 1986). Note the
unrealistic wind direction block mstcture in Figure 4.1e, with wind speed jumps associated with
the arbitrary shift in wind direction. This is cadsby the fact that the resolutions of the wind
speed and wind direction determination do not match.
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The CMOD-4 derived mean windespd field is 5.1 m/s with a RMS difference of 1.7 m/s. It is
discernible from Figure 4.le that in the aremhere the wind direction estimates are biased
towards crosswind compared to VHR directiqfggure 4.1b), wind speed estimates are high
compared to VHR speeds. This documents,x@eaed, that C-band mdderrors are directly
affected by the errors in the direction estimatioa,, a direction bias towards crosswinds will
produce an overestimation ofl2nd wind speeds and a biawaods upwind or downwind will
produce underestimation in the C-band speeds.

Despite this bias, the wind speield retrieved from the C-banaodel suggests the presence of
wind fronts, which are not detected by the Vididel. The upper right corner of the image
(Figure 4.1e) corresponds to the higher wind spesatl of the front (about 8 m/s). In the lower
left corner of the image there is also an @ase of the wind speed, suggesting the presence of a
second somewhat weaker front. This is dlse case for the retrieved wind speeds at fixed
directions in Figure 4.1c, whethe fronts can be seen as axtvispeed change. In comparison,
the retrieved wind direction at fixed speedg(ife 4.1d) also showthe wind front, but by a
change in wind direction. According to the windesik information, Figure 4.1c is more realistic
than Figure 4.1d, althoughis likely that both retrieval mbabds contain errors due to the strict
assumptions of° variability as either wind speext wind direction variations.

Case?2
The VHR model predicted a mean speed2b6 m/s and a mealirection of 322.9.

The SWDA mean direction field is 323.@nd the RMS difference is 18.9-igure 4.2a shows
the wind streaks (straight lines) ihe SAR image. Although there ® significant bias in this
case, the image presents some variability in thmelwlirection. In particular, the wind streaks are
changing direction in the right part of the imdgtraight black lines), suggesting the presence of
a wind front (curved black lineyhich is not predicted by the VHR model. To the left of the
front, the wind streak directions are biased abodttb&ards upwind when compared to the
VHR directions (see Figures 4.2b and 4.2e). Tsislue to the fact that the precision of the
SWDA is affected by the sampling thfe SAR scene in the Fourier domdtetterer et al. (1998)
reported that the precision ofetidirection estimate decreases as the location of the peak gets
closer to the origin of the Fourier domain. Irrtgaular, for wind streaks with spacing from 4.5 to
6 km an angle precision up to“°2Was reported. In the lower legbrner of the SAR image, the
wind streak spacing is 4.5 knedding to a discretization of 27n the wind streak direction
determination. Note again the arbiframocked structure of the wind field.

The CMOD-4 derived mean speed field is 10.7 amd the RMS is 2.8 m/s. The relatively high
RMS value indicates a significant variability edto the presence of the wind front. The wind
direction field in the right part of the windadint (Figure 4.2e) is slightly biased towards
crosswind compared to the C-band retrieve@dlions at fixed speeds in Figure 4.2d. On the
other hand, the C-band retrievedeeds at fixed directions ofdgtire 4.2c decrease at the right
side of the front. Therefore, the increase in wapeed to the right of the front (2-3 m/s higher
than the left part) in Figure 4.2e is mainly daoea misalignment of the wind streaks with respect
to the “true” direction field. Irthe lower left corner of the iage (Figure 4.2e), the speeds are
higher than in the surrounding 25-km wind directipid cells. The reason is the error in the wind
direction estimation due to the streak spacimbis error is biasing the direction towards
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crosswind in this particular 25-km cell, whigh turn produces highe€-band retrieved wind
speeds than in the surrounding 25-km cells.

In contrast with the previous image (case 1) réteeved directions dixed speeds (Figure 4.2d)
are more realistic than the retrieved speedxatifdirections (Figure 4c) according to the wind
streak information.

Summary of all cases

From the set of 15 SAR images, only four oérth contained clear wind streaks and therefore
used to examine the combined SWDA + Q@ubanethod. The two cases not shown present
similar problems to the two above discussed ssaakthough slightly better agreement with the
VHR as no fronts are present the scenes. This retrieval method is able to detect some
atmospheric phenomena, like wind fronts, whiok aot predicted by the VHR model. However,
the accuracy of the SWDA decreases with hed streak spacing and the wind streaks show
indeed some misalignment with the “true” winidedtion. The C-band moderrors are directly
affected by the errors in the direction estimati Due to the low resolution of the direction
retrievals, all the variabtly in the 25-km cells imssumed to be in the speed component, which is
obviously incorrect. Finally, the direction of thecal wind is not always detected hence limiting
the full use of the methodWe further investigate these cases in the next section.

Table 4.2 Validation SWDA+CMOD-4.

VHR Mean RMS in Bias in
SAR Scene Speed (m/s) / Speed (m/s) / Speed (m/s) /
Direction () Direction () Direction ()
Case 1 6.2/ 206.6 1.7/27.9 -1.1/25.3
Case 2 12.6 /322.9 2.8/16.5 -1.9/1

! Note that in this analysis, we have used the “peak” method to retrieve wind directions. This method simply finds
the position with the highest value and assumes that this represents a peak in the spectrum due to wind streaks.
Direction is assumed to be normal to the peak direction. Howestterer et al. (1998) also used a more

sophisticated method to look for the wind direction in the Fourier domain. This second method is called “cigar-
shaped” and assumes that the winédtion is manifested in the spectrumaaamear of energy in the crosswind
direction. This method was reported to be very useful, as it was able to detect not only wind streaks but also other
manifestations of the local wind. Sactant streaks (at low wil speed), blowing foam and water from breaking

waves (at high wind speed), and ellipticity of atmospheniweotive cells will give rise to image expressions that

are aligned with the local surface windetition. This, in turn, Vligenerate smears indticigar-shaped” spectrum.
Fetterer et al. (1998) detected smearsthre spectrum in all 61 ER1 SAR images examined.
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VHR wind field
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Figure 4.1 a) Calibrated SAR image 12301+2511; b) VHR wind field; ¢c) CMOD-4 speeds from VHR
directions shifted 359 d) CMOD-4 directions from VHR speeds shifted —1.5 m/s; €) CMOD-4 speeds
from SWDA directions; f) SWRA wind field.

Chapter 4. Wind retrieval for underdetermined problems: SAR case
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Figure 4.2 a) Calibrated SAR image 12530+2511; b) VHR wind field; ¢) CMOD-4 speeds from VHR
directions shifted -15¢ d) CMOD-4 directions from VHR speeds shifted —1.5 m/s; €) CMOD-4 speeds
from SWDA directions; f) SWRA wind field.
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4.3.3 Statistical wind retrieval approach

As explained in section 4.2, the method derived from the general approach will depend on the set
of assumptions we make. Here we present alsietpstatistical metho@onsisting of combining

SAR data and VHR wind to retrieve an optimumevivector. In contrast with section 4.3.2, it
assumes that both the SAR observations (inotuthe retrieval algorithms) and the VHR model
output contain errors.

4.3.3.1 Methodology

The method uses a C-band model function asdoiwnodel to relatthe SAR measured (and
calibrated) backscattén the wind state, and the VHRmd field as background information.

Therefore, equation 4.3 can be written as:
J ={0% -CMOD(V)}" (O +F)™{g2 —~CMOD(V)} +(v-v,,) B (v-Vv,) (4.5)

where o,,° are the backscatter measureme@s)OD the C-band model functiorvy the
HIRLAM VHR wind field, andv the wind field estimate.

For simplicity, we assume that there is no spatial correla@etk(@ndB are diagonal matrices),
and therefore the global minimisation problem ¢entreated as a suaf local minimisation
problems. In other words, waan minimize the cost functiahfor every 5-km WVC, instead of
minimizing the entire SAR scene. Therefofer every WVC the cost function we have to
minimize is:

o _ 0)? )2

Ao Av
where o ?is the backscatter valueraputed by applying the C-bamdodel with the wind vector
estimatev and incidence angk corresponding to that particular WW@ ECMOD(v)e]; 4o and

Av are the Gaussian error SDs from fBeand B matrices respectively. For simplicity, the
forward model has beawonsidered perfecfE0).

Assuming that the wind vector compent errors are independeaguation 4.6 can be written as:

o _ o0 2 _ 2 _ 2
3= Im=0 | (UnmU) (Ve Y 4.7)
Ao Au Av
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whereu andv are the wind vector components. In orttesimplify the discussion of the results,
the first term in the cost function of equatidry will be referred to as the SAR term and the
second and third together will be referred as the VHR term.

Following the maximum posterior probability rhetl addressed in section 4.2, the optimum
wind vector estimate for any given WVC willgtefore correspond to a minimum in the cost
function of equation 4.7.

The SWRA is based on a scanning approach. A wadge of wind vector values (step size of
0.25 m/s in both u and v compongnaround the VHR wind vector e for a particular WVC is
used as “trial” winds in the codtiriction. Each simulated “trial” windufv) is inverted (using the
C-band model functions) to provide a simulated “trial” radar backscatt®r The simulated
“trial” wind vector (U',V') which minimises the cost functiahis considered the optimum wind
vector for that particular WVC. Figure 4.Bavs a conceptual illustration of the SWRA. The
solid arrow represents the VHR wind vector #oparticular WVC and circles around the arrow
represent the VHR probability digiution of being the “true” windeach circle is a probability
“isoline” with increasing probability with isoli thickness). The ellipsesound the axis origin
are the SAR wind retrieval probability “isolines” (the spacing between isolines may vary with
wind direction due to the different model siingies) and the squared grid in dotted line
represents the simulated “trial” winds whethe SWRA is computed. The dashed arrow
represents the optimum wind vector, which igegi by the minimum value of the cost function
(maximum probability).

The Gaussian error SDs are chosen follov@todfelen and Anderson (1997b). They reported that
choosing ado proportional to the “trial’backscatter while looking foa minimum in the cost
function leads to a first-order error due t@ thigh non-linearity in theost function gradient.
Therefore, 4o will be proportional to the radar backscatter measurement and not to the “trial”
backscatter. As we are looking for the in the averaged backscattwser a 5 km x 5 km WVC,

Figure 4.3 Conceptual illustration of the optimum wind vector method.
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this value should be closelyssociated with the wvebility in the backscatter measurement
(instrument error + geophysical error) from 06t&km (subcell variability). The subcell averaged
mean SD for all the set df5 SAR images is 7.8% (s@&®rtabella, 1998) and is used as the
proportionality constant, i.edo= 0.078,°.

Au and 4v represent the error of the HIRLAM model at 5 km resolution. At present no attempt
has been done on calculating these errors, and since the HIRLAM is close to ECMWF, we use
the ECMWF errors insteadoffelen (1996) reported a large scale (250 km) error variance in
both ECMWF wind componentsi,¢) of approximately 1 fts’. Soffelen and Anderson (1997b)

use a climatological wind spectrum to estimate the small-scale variability. They find that the
computed variabilities are casgent with differences bewen measurement systems with
different resolution, i.e., buoys, scatteromesed ECMWF model. Using their climatological
spectrum, we estimate the variability between 5 and 250 km to be?&9 leading to a final

total error variance of 3 #fs* in both wind components. Therefory=4v=+/3 m/s.

4.3.3.2 Results

Table 4.3 shows the averaged variability in bethd components (the wind direction variability
is given in equivalent m/s) for all the VHR, SWRWd C-band retrieved wind fields. The latter is
computed by using a VHR wind speed (direction)ngsit to retrieve the wind direction (speed)
with the C-band model.

The variability in the C-band retrieved winds fields is, as expected, much higher than the
variability in the VHR wind fields due to the pact of short scale atmospheric phenomena which
are not included in the VHR model. The fadttthe VHR model does not have its own analysis
scheme, that it receives its initial information from the V55 model, and that there are no specific
parameterisation schemes for the VHR modek (section 4.3.1), makes the VHR effective
resolution closer to 55 km than to 5 km.

Similarly, table 4.3 shows low variability ithe SWRA wind directions, comparable to the
variability in the VHR wind fields and muchuer than the variability in the C-band models
retrieved wind directions. On the other hand,tagability in the SWRAwind speeds is between

the low variability of the VHR speeds and thgher variability of the C-band retrieved speeds.

For small-scale turbulence, as depicted in SAR images, one may expect the same amount of
variability along and perpendicular to the meanvflae., in the speed drdirection component).

VHR contains the large scales (about 100 kng the SAR term is effective in adding smaller
scale (5 km) variability when discrepancy occurs. This variahjlis added to the component

Table 4.3 Averaged STD comparisons.

Wind Component | VHR SWRA CMOD-4
Averaged STD Averaged STD Averaged STD
Speed (m/s) 0.55 0.75 1
Direction (m/sj 0.45 0.45 1.65

! The direction values are given in equivalent m/s.
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with largest sensitivity in the C-bandoatel, i.e., generally the speed component.

Figure 4.1f shows the SWRA wincdefd for case 1. As discussedsaction 4.3.2.3, Figure 4.1a
shows a SAR image where there are two fromtsich are not predied by the VHR model
(Figure 4.1b). Figure 4.1f shows the wind speeahge originated by this wind front (upper right
and lower left corners). The SWRA wind speads between the VHR speeds (Figure 4.1b) and
the CMOD-4 retrieved speeds (Figu#.1c), although much closer tioe latter, which is also
detecting the wind fronts. This an example where the SWRA has successfully combined both
SAR and VHR speed information.

Figure 4.2f shows the SWRA windefd for case 2. As discussedsaction 4.3.2.3, Figure 4.2a
shows a SAR image where theraislirection changéstraight lines) originated by a wind front
(curved line), which is not predicted by tMHR model (Figure 4.2b). This wind direction
change, which is clearly reflected in the C-bartdeeed directions (Figure 4.2d), is not detected
by the SWRA (Figure 4.2f). This is an exalen where the SWRA has failed to combine both
SAR and VHR direction information. The ad hoc assumption that all obsefveariations are
caused by wind direction (Figure 4.2d) seemtiebehere than considering wind speed and
direction sensitivities properly (Figure 4.2f).

Table 4.4 shows the ratio of restivity of C-band model funains to speed and to direction

(00"}
of
@

changes,

30°) and the SWRA bias (with respdot VHR) and variability in speed
(),

0p
and direction for these two cases. At the spmadl direction ranges dfie VHR wind field, the
sensitivity to speed changes is 2.5 (case 1) addchse 2) times larger than the sensitivity to
direction changes. As a consequence, theabiity is mainly added to the wind speed
component and the bias in wind direction is $mmampared to the bias in wind speed in both
cases (see table 4.4). Moreover, the results of the SWRA not just for these two cases but for the
entire set of SAR imageshow small variability in the windirection compared to the wind speed
field (see table 4.3). Similarly, the overall resulfsthe SWRA show little bias in the wind
direction field (mean absolute value of 0.6 eqlama m/s) compared to the bias in the wind
speed field (mean value of —1.5 m/s). The biawimd direction is very small in low wind speed
cases and especially in the up-, down- and onesd-cases. This is again because the sensitivity
to direction changes is in general too low aretefore the SAR term has a very broad minimum.
The broader the minimum in the SAR term i ttloser the SWRA diotion will be to the
minimum in the VHR term which in turn is théHR direction. This is reasonable as no “new”
information from SAR is provided. As a conseqeenwind direction is less well determined than
wind speed and thus more uncertain.

Table 4.4 Validation SWRA.

Sensitivity Ratio SWRA STDin SWRABias in

SAR Scene Speed (m/s) / Speed (m/s) /
Direction C)* Direction ()?

Case 1 2.5 0.8/0.5 -1.7/0.6

Case 2 1.8 0.9/0.5 -1.2/-0.7

! The direction values are given in equivalent m/s.
2 Same a$; the bias sign refers to clockwi§+) or counter-clockwise (-) bias.
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In summary, it seems that the SWRA icaessfully combining the SAR and the VHR speed
information. In comparison it is systematicallding less variability to the wind direction,
biasing the results towards the VHR direction information, since the SAR radar backscatter is
generally most sensitive to wind speed variations.

Using the information on wind streaks, one manadude that the backscatter variability in
Figure 4.2a is caused by the widdection rather than the wind speed changes. In order to
improve the SWRA performance, an additional wstreak term may bedded after investigation

of its weight (additional terms in matri@+F) as a measure of the quality of the SAR-derived
wind direction. Improved wind direction deteination will result in improved wind speed
retrieval. Furthermore, in meteorological analysis spatial correlation patterns (Bjadni& used

to prescribe the amount of rotation and divergencene analysed field. We anticipate that the
dominating rotational part would constrain the solutd the SWRA in the appropriate direction.
However, we did not test this.

4.3.3.3 Error Analysis

In the SWRA, it is assumed that SAR variability may be due to speed and direction changes.
The relative quality of VHR and SAR data is gleied in the analysis, taking into account the
information content of the data. Nonetheless)-linearities in the C-band model functions and
inaccuracies in the cost function weight®st, [4u®> andzv?) introduce errors in the wind vector
estimation. As said in section 4.2, the bestieval method (mininim variance, maximum
probability, unbiased) will depend on the erranduced by the non-linearity of the forward
model.

In order to estimate non-karity errors in the SWRA, the follong error analysis is performed.
From a “true” wind vector u,vy) we apply the C-band modeliriction to get a “true” radar
backscatterr °at a mean incidence angle of’2Zhen, we add the Gaussian noise corresponding
to the values dflu,/4v and 4o discussed in section 4.3.3.1 denerate the VHR wind vectors
vi=(u,\{) and the backscatter measuremest®. For each pairVy, o.’] we compute an
SWRA wind vector (see sectich3.3.1). Finally, we computthe bias of SWRA winds with
respect to the “true” wind iapeed and direction components.

This procedure is performedrfdifferent “true” wind speeds ardirections, ranging from 5 to 15
m/s (step size of 5 m/s) and froh @ 180 (step size of 17 [note: the rest of the angles is not
computed because of symmetry].

Figure 4.4 shows the wind speed aection bias results in tr8WRA. A positive bias in wind
speed component denotes an underestimatioredWRA with respect to the “true” wind speed
and vice versa. Both a positive direction bashe range of “true” wind directions-®0° and a
negative bias in the range°908(C° denote a bias towards crosswind (® upwind). In contrast,
both a negative directiobias in the range®®0° and a positive directiobias in the range 90
18C° denote a up/down-wind bias.

The biases in wind speed component are always positive, denoting underestimation, and with a
maximum around crosswind directions. Moreovke, underestimation ineases with decreasing
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wind speeds. At 5 m/s (Figure 4.4a), farar crosswind direction (close to°P0there is a quite
significant underestimation (0.65 m/s).

The biases in the wind direction componerg &bwer than in the speed component and are
mostly towards crosswind directions. The maximeatue is at low speeds and directions ranging
from 50 to 60 and from 110to 130 (equivalent to 0.31 m/s).

These results indicate a systeimdias in the SWRA derivedind fields towards lower wind
speeds and crosswind directions due to effect®oflinearity. The bias is most significant in the
speed component at low speeds and crosswindtidins. We believe that the errors are not
substantial and that the selection of the mmaxn posterior probability @sis of the SWRA) is
appropriate. We expect thatstronger assumptions than in 8A (i.e., assuming no error as in
the method presented in sectio3.2.1) are used in the SAR iietral, then these biases will
generally increase (unless specifically controlled).

a) b) c)
"Trug" Wind Speed = 5 m/s {CMOD—4) "True" Wind Speed = 10 m/fs (CMOD—4 "True' Wind Speed = 16 m/s {CMOD—4
e e e L B LI e B s B R
Qo . .

ok — Speed ]
_____ Direction)] E
0.20F
o4l . F
azr
= = g :
E 0.2 E £ o1ef
3 g ; g
b - B pop 4 @ F
oop 7 a1
0.2 - E
—02r ] -0k
1 1 1 1 1 1 C 1 1 1
Q S0 100 180 Q a0 100 150 0 510] 100 150

"True" Wind Direction (deg)

"True" Wind Direction fdeg)

"Trug" Wind Direction {deq)

Figure 4.4 Bias in the SWRA speeds (solid lines) and equivalent directions in m/s (dashed lines) as a function of the  true”
wind direction for the following “ true” wind speeds: 5 m/s (plot a), 10 nvVs (plot b), and 15 /s (plot c).

4.4 Conclusions

After extensively examining the wind retrievfal no-underdetermined problems in the previous
chapter, we now revise the wind retrievfar underdetermined problems and propose an
alternative to improve the latter.

In SAR, a single-views® measurement is sensitive to, at least, two geophysical parameters, the
wind speed and the wind direatio Therefore, an underdetermination problem occurs while
retrieving winds from SAR backscatter data. relover, inversion is complicated by the non-
linear relationship between the backscatter and the wind.
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A commonly used method, whidombines the SAR image streak information (SWDA) and the
SAR backscatter information (CMOD-4), is fiestamined. The combinat of the SWDA with

the CMOD-4 closes the problem, lides not take account of théfeience in spatial context of
the SAR o0° and the wind streak information. Mmver, uncertainties in wind streak
determination and® are not explicitly used in the wind interpretation.

In addition, the following uncertainties have beeported from the SWDA: a) the direction of
the local wind is not detected in all the wind ca¥gghe accuracy of éhmethod decreases with
increasing wind streak spacing; and c) the wstréaks show some migmment either to the
right or to the left of the “true” wind directn. The C-band model derived wind speed errors are
directly affected by the error in the SWDA derived direction.

In contrast, the more general inversion timeelology, i.e., the GA, commonly used in

meteorological analysis, can be applied toroeme the problems of underdetermination and
non-linearity. An alternative method to tf®WVDA+CMOD-4, the so-called SWRA, i.e., a

simplified version of the GA, is proposed. ltoavs the retrievals of an optimum wind vector

from the best combination of SAR and VHR winformation assuming Gaussian noise errors in
both “measurement” sources. The SWRA resultsa compromise between SAR and VHR
information, and distributes the SAR signal waiiity in a pre-defined way between speed and
direction changes, accordingtteeir respective sensitivities.

The SWRA shows promising results, although in particular cases the wind direction may draw
closely to the VHR model output, due to relatywklw SAR wind direction sensitivity. An error
analysis is performed and a systematic bias vesipect to thé&rue” wind is found in both wind
components. The major bias is produced at\Wind speeds for crosswind directions where the
SWRA underestimates the “true” wind speed B§50m/s. Inaccuracies ithe estimation of the

cost function weights4d?, /Au” and4v?) or even the cost function specification are identified as
the main sources of error of the SWRA. Neveldks, from a theoreticgloint of view, the
SWRA will result in a better wind analysis than the SWDA+CMOD-4.

The validation study has been restricted to only 15 ERS-2 SAR images. Therefore, further
validation of the SWDA + C-band wind field retvals from SAR images is necessary to fully
explore the impact of oceanic and atmosphghenomena other than wind in the retrievals, not
only at 5 km but alsat higher resolutiong-etterer et al. (1998) conclude that SWDA has the
potential to retrieve directions higher resolution although this waset tested yet. In that sense,
higher resolution NWP models like GESIMA (1 kmmr FITNAH (1.5 km) could also be more
useful for validation in some cases.

Further examination of the SWRA also needed. In particular, more sophisticated estimation of
the cost function weights is required in orderimprove the quality of the SWRA winds.
Backscatter sensitivity to wind is variable, imon-linear effects can occur in the inversion, and
requires further investigation. Information framnd streaks may be incorporated in the SWRA,
after further study of their quality and spatighmesentation. A higher resolution SWDA may also
help to improve the quality of the SWRA. Witkspect to the background information, more
aspects like spatial bagtound error correlation could be implemented.

In view of the ENVISAT payload, which is natcluding a wind scatterometer, it is therefore
attractive to improve and dewg an independent SAR wind vectatrieval method. In this
context it should therefore be emphasised that ESA initiated the investigation, development and
testing of a new approach. This SAR wind fieltfieval method is based on the consideration of

the time decorrelation and phase spectra coatpbfrom inter-look proessing of single-look-
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complex (SLC) SAR datalghnsen et al., 1999). With the use of thismethod there is less demand
or need for auxiliary information such as aibed from a high-resolution atmospheric boundary
layer model or from direct wind field observatiomtowever, it does require the availability of
SLC data, which demands special processing techniques.

Although the SWRA works also ith incomplete wind vector information, SAR independent
wind vectors could also be usedthe SWRA after characterizati of their relative errors and
subsequently improve the quality of the SWRA wuadtors. Note also that via integrated use of
SAR observations and model outgue., HIRLAM) in real time, tle initial wind field conditions
can be optimised leading to further improvements in model prediction.

The potential of combining SAR backscatter data and HIRLAM wind information in mesoscale
meteorological studies for coastal regissmshown to be very promising.
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Chapter 5

Quality Control

The quality control (QC) of radar-derived winds dsna very important part of the wind retrieval
process for certain applications, such as dasmilation (see section41l5). As mentioned in
chapter 2, the MLE is essential for @Qrposes, especially in scatterometry.

As discussed in section 2.2.1, the MLE can berpreted as a measure of the distance between a
set of radar backscatter measurements thadsolution lying on the GMF surface. The MLE
therefore indicates how well the backscatter mesgmsants used in the retrieval of a particular
wind vector fit the GMF, which is derived for fair weather wind conditions. A large inconsistency
with the GMF results in a large MLE, whichdicates geophysical conditions other than those
modelled by the GMF, such as for example raonfused sea state, or ice. The MLE therefore
provides a good indication for the djtyaof the retrieved winds.

However, the MLE is a good quality indicator yiwhen the problem is overdetermined. The
reason for this comes from the fact thabider to discriminate good-quality winds from poor-
quality winds, the range of MLEalues as induced bydmoise (i.e., good-quat data) has to be
clearly identified or, in othewords, the MLE has to be a goadise indicator. As discussed in
section 2.3, this only occurs wh#re problem is overdetermined (casemdd of section 1.4.1).
Consequently, the MLE-based QC is not vdtid one-view or two-view measurement systems
(casesa and b of section 1.4.1, respectively), suels the SAR or the outer regions of the
QUIikSCAT swath.

Since no QC procedure was initially set for QuikSCAT, a MLE-based and empirically
determined procedure is presented for such im&nt in this chapter. In order to improve the
QC, a comparison with a QuikSCAT rain flagely developed by JPL is then performed.
Alternatives to perform QC when the problerm@t overdetermined, i.e., for one-view and two-
view measurement systems, are discussed in section 6.2.

Chapter 5. Quality control 103



5.1 KNMI quality control procedure

The MLE-based QC presented in here uses thasRRC parameter since, as discussed in section
2.3, it represents a more stable parameter than the MLE. We hypothesize that the MLE is very
much altered in the case of (for example) ramnd therefore very different from the <MLE>. A

set of backscatter measurements coming from aytaWVC is expected tte inconsistent with

any set of backscatters simulated from the FGMince basic propertiesf the backscatter
measurements such as H-pol to V-pol ratheftz et al., 1999) and the isotropy of scattering at

the ocean surface are expected to be different. In other words, the set of backscatter
measurements coming from a “rainy” WVC is exgekcto be further away from the GMF than a

set of measurements coming from a “windy” W\hich should be condent with the GMF).
Therefore, the MLE is much higher than the <ML&xd the normalized residual is high. This is

true not only for rain but alsior any geophysical phenomena ottiean wind (e.g., confused sea
state, sea ice, etc.), which “hides” the winthted information. In contrast, the MLE of a
“windy” WVC is closer to the <MLE> and conseduly we have Rn values of the order of 1.

We propose to use the Rn as a QC indicatortarampirically determine a Rn threshold, which
separates the good-quality from the poor-qualitynds. In order to do this, we will first
characterize the Rn or, in other words, examirhether the Rn is a gd quality indicator and
whether it allows the definition of the mentionedeghold. Then, a validation, which is also used
to tune the defined threslapl will be performed followe by the examination of a few
meteorological cases where the QC has been dppilieally, the influencef the data processing
(format) on the QC will be investigated.

5.1.1 Collocations

The QC by Rn procedure is empirically derivewt aas such, a set of collocations will be used
during the characterization and wation processes. In particulare collocate a set of 180 orbits
of QUikSCAT HDF data with ECMWF windshd SSM/I rain data. The HDF data correspond to
the preliminary science data producguced by JPL using the NSCAT-2 GMF.

We use the analyses 3-hourda6-hour forecast ECMWF windsn a 62.5-km grid and we
interpolate them both spatially and temporatlythe QuikSCAT data acquisition location and
time respectively.

The collocation criteria for SSM/I rain data are less than 30 minutes time and 0.25° spatial
distances from the QuUikSCAT measurement.

The SSM/I instruments are on board DMSP g#sll We have used DMSP F-13 and F-14
satellites (the mogkcent ones). Most of the collocationgh F-13 were found at low latitudes
(tropics) while collocations with F-14 were found at mid and high latitudes.
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5.1.2 Rn characterization

The way to characterize the Rn is to test giagt a variety of geophysical conditions such as
rain, confused sea state (in wind fronts, centriows, coastal region®r just pure wind cases.
We study the correlations betwettie Rn, the quality of QuikSCAWinds and the rain to define
the already mentioned Rn threshold. [Note th@th the ECMWF winds and the SSM/I rain data,
used as characterization andidation tools, contain uncertainties and obey different space and
time representations than the QuikSCAT winds.]

As QC indicator, we use the Rn of the JPL-sel@dolution; that is, the Rn (see equation 2.10)
computed from the MLE value of the JPL-séal solution and its corresponding <MLE> (see
section 2.3.1). Therefore, if we identify a poor-iyavind selected solution we will assume that
all wind solutions in that pticular WVC are of poor qualityThis means that the QC is
performed on a node-by-node basis. [Noted®s that are accepted may have wind solutions
(others than the selected) with Rnove the threshold. These smos are kept but will be down-
weighted in procedures such as vaoia#il AR or data assimilation proceduf&offelen et al.,
2000).]

We characterize the Rn in the sweatts of the swath. However, as we show in the validation,
the threshold is applicable for the entire inner swath.

Rn as a quality indicator

The first step in the characterization of this @@cedure is to confirnthe correlation between
the Rn and the quality of thdata. The mean RMS of wind vectdifference between the JPL-
selected and ECMWF winds (RMS-ECMWB used as a quality indicator.

Figure 5.1 shows a contour plot of a two-dimsi@nal histogram of RMS-ECMWF against Rn.
We set an arbitrary threshold at RMS=5 mulsich is roughly separating the “good” from the
“poor” quality cases. Figure 5.1a, which represehéswhole collocated ¢k set, shows a clear
correlation between RMS-ECMWF and Rn. Mosttloé low Rn cases, represented by the two
darkest grey-filled contours (remember that thlots are in logarithmic scale), are of good
quality. The RMS-ECMWEF increases as Rn increassch means that, as expected, the quality
of the data is decreasing while Rn mases, i.e., Rn is a good quality indicator.

Figures 5.1b, 5.1c, and 5.1d show a differestdgram distribution with respect to wind speed.
The RMS-ECMWEF increases more rapidly with &rhigher wind speeds. The quality of the data
is poor for lower values of Rn as the retrievédd speed increases. This suggests a Rn threshold
dependent on the retrieved wind speed, withrestiold value smaller at high wind speeds than at
low speeds.
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Figure 5.1 Two-dimensional histograms of RMS-ECMWF versus Rn, for all data (plot a), JPL-selected speeds under
10 m/s (plot b), speeds between 10 and 15 mvs (plot c) and speeds over 15 m/s (plot d). The contouring is in
logarithmic scale (two steps corresponding to a factor of 10 in number density) filled from white (unpopulated areas)
to black (most populated areas).

Quality Control of rain

As said before, the Ku-band signal is known todistorted in the presenad rain. In order to
study this distortion effect, SSM/I collagans are used as a rain indicator.

Figure 5.2 shows both the mean retrieved wirekdp(plot a) and the mean ECMWF wind speed
(plot b) versus the rain rate. The retrievedhdvispeed increases with the rain rate while the
ECMWEF wind speed shows obviously no significant dependence on the rain. As the rain rate
increases, the density and size of the droplets increases and the probability of having a
homogeneous rainy WVC (no patches with absenf rain) increases. Therefore, the wind
information contained in a particular WVC iiscreasingly hidden and the backscatter signal
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becomes more and more “rain-related” insteatirid-related”. From thes plots, one may infer
that the “rainy” WVCs produce highinds in the retrieval process.

a) b)
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Figure 5.2 Mean JPL-selected wind speed (plot a) and Mean ECMWF wind speed (plot b) versus rain rate at
intervals of 3 mm/hr (except for the rain-free mean speed value, included at O mmvhr).

Figure 5.3 shows the two-dimensional histograf RMS-ECMWF versus the retrieved wind
speed for rain-free (plot a) and for different raate intervals (plot® and c). The upper plot
shows a generally horizontal oriatibn of the contour lines whilde bottom plat show mainly

a vertical orientationsuggesting a decline of the dajaality (higher RMS-ECMWF) in the
presence of rain. At rain rates higher than 6/mmmost of the data are above the RMS threshold
of 5 m/s, indicating no useful wil information in them. Howevewhen the rain is lower than 6
mm/hr there is still a significant portion ofefretrieved winds with low RMS and therefore
containing significant wind information in their backscatter signal. We want to define a threshold
capable of removing those “rainy” WVCs with ramtes over 6 mm/hr and those with lower rain
rates but no significant wind informati (high RMS-ECMWEF values) in them.

Rn threshold
Up to now, we have achieved three major conclusions:
a) The Rn seems a good quality indicator

b) When it is rainy, the retrieved wind spaedn general too lasyby an amount which is
proportional to rain rate

c) For SSM/I rain rates above 6 mm/hr the WVCs contain no valuable wind information.

Figure 5.4 summarizes all these points. Thegdkfts correspond to two-dimensional histograms

of Rn versus JPL retrieved wind speeds for different rain rate intervals. The right plots are the
same histograms of Rn but versus ECMWF wineesp In the absence of rain (upper plots), we
clearly discern the significant difference betm the retrieved and BAWF wind speeds at Rn

Chapter 5. Quality control 107



values larger than 4€e speed shift in the canr line), denoting a poaquality of the retrieved
solutions. Thus, in case of no rain, high Rnasmaingly associated with systematically wrong
winds. This wind speed difference at Rn valuggdathan 4 becomes significantly larger (2-3
m/s) in the middle plots while for low Rn (darkest contour) there is no significant difference. This
is denoting that although at ma&hd high winds the wind retrieva not very much affected by

low rain rates, at low winds the sensitivity to rain is so important that even at low rain rates the
quality of the retrievals is poofThis is an expected reswds for low winds you get lower
backscatter than for high winds and therefore lihckscattering from the rain droplets becomes
more significant. Comparing the contours from tiedead the right plots, there is a positive shift

of the left ones with respect to the right olfieslicating a positive biasef the retrieved speeds
with respect to ECMWEF speeds) the rain rate increases. Tlahift becomes excessively large
and unacceptable (more than 10 m/s) for raiesraver 6 mm/hr (bottom plots), denoting again
the poor quality of the retrieved solutions.
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Figure 5.3 Two-dimensional histograms of RMSECMWF versus JPL-selected wind speed for rain-free (plot a),
for rain rates from 0 to 6 mmvhr (plot b) and for rain rates above 6 mnvhr (plot ¢). The contouring is the same as
in Figure5.1.
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Figure 5.4 Two-dimensional histograms of Rn versus JPL-selected wind speed (left plots) and versus ECMWF
speeds (right plots) for rain-free data (plots a and b), for rain rate from 0 to 6 mnvhr (plots ¢ and d), and for rain
rate above 6 mm/hr (plots e and f). The contouring isthe same asin Figure 5.1.
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In the definition of a Rn threshold we would like to achieve the following goals:
* Maximum poor-quality data rejection, including rain;
* Minimum good-quality data rejection.

As said before, the Rn threshold may be depanole the retrieved windpeed. Figures 5.4a and
5.4b (no rain) suggest that the threshold shoutlide and follow the contodines that are very
similar in both plots (showing good-quality dat&bviously, this threhold should become
constant at a certain wind speed. Otherwisewwald start rejecting more and more data for
increasing wind speed, until the threshold reacees at a certain wind epd from where on all
higher retrieved speeds would be rejected. Figbréa and 5.4b do not suggest poor quality of
all high wind speeds. The constant thresholdesdnas to be a compromise between the amount
of high-wind data we want to keep and theoant of “rainy” data we want to reject.

From Figure 5.1, it is obvious that for highernds we should be more critical with the Rn
threshold. Therefore and in order to reject nefshe “rainy” data (see Bure 5.4e), we define a
minimum threshold value of 2 for speeds higher than 15 m/s. From Figures 5.4a and 5.4b, we
define a parabolic threshold with a maximum valud af 5 m/s, which reaches a value of 2 at 15

m/s (see the Rn threshold in black solid linesrigure 5.4). Therefore, the defined threshold
function is:

v<1om/s= y =y, + Alv—-V,)?
v>15m/s=>y=2
where, (5.2)

2
=4 A=———",V, =5,
Yo 100"

v is the retrieved (JPL-selected) wind speedyatiet Rn threshold value.

Note that we have tested different threshatdsuding: 1) different paabolas with maxima and
minima at different Rn / Speed locations; &)constant value for lalvind speeds; and 3) a
constant value for all speeds but with a stepr{ghan value) at differg wind speed locations.

None of them have given better results than the one defined above according to our statistics and
the two previously mentioned goals. Althougfe validation proceder has been used for
threshold testing and tuning purposes, in thd section, we do only presetine threshold with

best validation results, i.e., the abalafined threshold (see equation 5.1).

5.1.3 Threshold validation

We test the defined threshotdjainst the set of ECMWF and S8Mollocations (see section
5.1.1). [Note: we have performed the same validatibh a different set of data and got the same
results]. The test consists of looking at the RthefJPL-selected solutiai any WVC. If the Rn

is lower or equal to the threshold, the WVCaiscepted; otherwise, the WVC is rejected. The
results for the sweet parts of theaglware shown in tables 5.1, 5.2 and 5.3.
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Table 5.1 shows the percentage of acceptedgerdted WVCs from all the WVCs, segregated
by wind speed intervals. 5.6% of data are rejeated the rejection rate is increasing with wind
speed. This is an expected result. As “raigglls result in higher retrieved wind speeds (the
larger the rain rate thHarger the speed bias) and we wangéb rid of thoseells, the amount of
rejections should increase with wind speed. Howeweoyrder to reject rain, we have defined a
threshold that decreases with wind speed (upbton/s where it remains constant) and therefore
we might reject an increasing aomt of “good” solutions as well.

Table 5.2 shows the total and the percentage of the accepted and rejected solutions for above and
below a RMS-ECMWEF threshold of 5 m/s. Fortlotal, accepted and rejected classes, the
different RMS-ECMWEF value is sb shown. On the one hand, thesea very small portion of
rejected data (2.9 %) with RMS values belownt, indicating that most of the “good” quality
solutions have been accepted. On the other haei th a significant percentage of rejected data
(35.2%) with RMS values over 5 m/s, showing ttreg Rn threshold is effective in rejecting
poor-quality data. The difference between the niRBtS of rejected and accepted data is 4 m/s,
showing again the effectiveness of the Rn threshold.

Table 5.3 shows the percentage of the accepted and rejected solutions divided by rain rate
intervals. When there is no rain, the percentaigesjections is 3.4%. If we compare this result
with the total portion ofejections given in table 5.1 (5.6%) wan conclude thah more than
2% of the cases we are rejectinginy” cells. When the rain is over 6 mm/hr, most of the “rainy”
cells are rejected (87.3%), denoting a very goodiehaof the Rn threshold. When the rain is
lower or equal to 6 mm/hr, the percentage (gatons decrease significantly (29.4%) compared
to higher rain rates. As said in the previcestion, at these rain rate® are still getting “fair”
quality winds (with enough wind information) theate may want to keep, but still there is a
significant portion of low winds (see discussion ajue 5.4) of poor qualitthat are rejected. In
this sense, we achieve a good compromise is¢heening of cases in the absence of rain (3.4%
of rejections) and in casef SSM/I rain over 6 mm/hr (87.3% of rejections).

Figure 5.5 shows the two-dimensional histografBRMS-ECMWF versus retrieved wind speed
for different rain intervals. The left plots respond to the accepted solutions and the right plots
to the rejected solutions. It is clear when cormmathe contour lines ahe left with the right
plots that the latter show a much more vertmaéntation with the maximum (darkest contour)
significantly higher than the former (accepted 8ohs). This is a way to show the mean RMS
difference between the accepted and the rejestkdions presented in table 5.2. For rain rates
over 6 mm/hr (see bottom plots) most of the solutions are rejected.

Comparing the distributions of Figures 5.3a &8b (prior to QC) with the distributions of
Figures 5.5a and 5.5c¢ (accepted solutions), it is didderthat either for no ma or for rain rate
lower than 6 mm/hr, the distributions have becdiaier (less vertically oriented) after QC. This
indicates a general decreasdl@d mean RMS and therefore a good performance of the method.

Tables 5.4, 5.5 and 5.6 are the same as tdbles5.2 and 5.3 but for the nadir swath. As
discussed in section 2.2.2, in the nadir swathreths not enough azimuth diversity in tb@
views and the inversion skill is significantly lomeompared to the sweet regions, where there is
good azimuth diversity. In other words, the MLEnddinformation content is not so meaningful
in the nadir swath as it is in the sweet swath. Whlisn turn affect the skill of the QC procedure,
being lower in the nadir than in the sweet regiédmd this is what we see in the results shown in
the tables mentioned above.
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Table 5.1 Accepted and rejected WVCs fraat the WVCs (sweet swath).

Total V<10 10<V<15 V>15
Num. Points (n/a)l 4826841 3796408 859747 170686
Accepted (%) 94.4 95.8 91 81
Rejected (%) 5.6 4.2 9 19

Table 5.2 Relative quality of accepted anegjected WVCs (sweet swath).

RMS<5 RMS>5 Mean RMS (m/s)
Total (n/a) 4429905 396970 2.46
Accepted (%) 97.1 64.8 2.24
Rejected (%) 2.9 35.2 6.24

Table 5.3 Accepted and rejected WVCs by raate intervals (sweet swath).

RR=0 0<RR<6 RR>6
Num. Points (n/a) 1027124 88311 3664
Accepted (%) 96.6 70.6 12.7
Rejected (%) 3.4 29.4 87.3

Table 5.4 Accepted and rejected WVCs fraai the WVCs (nadir swath).

Total V<10 10Vv<15 V>15
Num. Points (n/a)] 2812095 2186477 511131 114487
Accepted (%) 93.7 95.9 88.5 76.2
Rejected (%) 6.3 4.1 11.5 23.8

Table 5.5 Relative quality of accepted anejected WVCs (nadir swath).

RMS<5 RMS>5 Mean RMS (m/s)
Total (n/a) 2483112 329113 2.81
Accepted (%) 96.8 70.6 2.55
Rejected (%) 3.2 294 6.62

Table 5.6 Accepted and rejected WVCs by raate intervals (nadir swath).

RR=0 0<RR<6 RR>6
Num. Points (n/a) 572894 47529 2526
Accepted (%) 96 64.5 14.8
Rejected (%) 4 35.5 85.2

Note: RMS is referred as the mean RMS of vector difference between JPL-retrieved winds and ECMWF winds in
nvs; V isthe JPL-selected wind speed in nmv/s; and RR is the SSVI/I rain rate in mmv/hr.
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Figure 5.5 Two-dimensional histograms of RMS-ECMWEF versus JPL-selected wind speed for the accepted (left
plots) and rejected WVCs (right plots). The top plots correspond to rain-free data, the middle plots to rain rate
from0 to 6 mnvhr and the bottom plots to rain rate above 6 mnvhr. The contouring isthe same asin Figure 5.1.
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Comparing table 5.4 with table 5.1, we see a lapgecentage of rejections in the nadir swath,
which increases with wind speed. At speeds higinen 15 m/s, 23.8% of the data are rejected.
This represents almost 5% more o#iens than in the sweet regions.

Comparing table 5.5 with table 5.2, there is a dyglarger percentage of rejections at RMS-
ECMWF < 5m/s and a smaller percentage of répmst at RMS-ECMWF > 5m/s in the nadir
swath, indicating a slight decreasethe performance of the QC procedure. Although the RMS-
ECMWEF of the accepted solutions is slightiygher in the nadir swath, the RMS-ECMWF
difference between accepted and rejected solui®ise same (4 m/s), showing a comparable
result in both regions.

Comparing table 5.6 with table 5.3, when rain isr@enm/hr there are sliglgtless rejections in

the nadir swath. This shows again a slightly seoperformance in the nadir swath, especially if
we consider that, overall (see tab5.1 and 5.4), this region suffers more rejections (especially at
high winds, where the rain is “lated”). However, the percentage of rejections for rain under 6
mm/hr is about 6% higher in the nadir swattost of these rejections have an RMS-ECMWF
over 5 m/s. This result is unexpedly positive, as even if the aadl portion of rejections with
RMS-ECMWF > 5 m/s (see tables 5.2 and 5.5ab®ut 6% smaller in the nadir swath, the
portion of rejections when the rain is beléwnm/hr is around 6% gher for the nadir swath.

In general, the skill of the QC proceduregsod in both regions dahe swath, although it is
slightly better in the sweet region.

The QC procedure presented in here is basdtieselected solution information. We have also
tested a QC based on the first rank Sotuinformation, i.e., using both thé'tank MLE value
and the <MLE> computed from thé' tank solution in equation 2.18s well as a Rn threshold
based on the*lrank wind speed. It shows similar réésuto the QC based on the selected
solution, although the lattés marginally better. A possiblecglanation for this small difference
is that there is more correlation between apdgsical disturbance artle MLE of the selected
solution rather than with the MLE of the fimank solution. In other words, there is some
correlation between the data quaktyd the number of the windlations and their corresponding
MLE values. Ambiguity removal then picks ethgeophysically most consistent solution.
Therefore, we recommend the usdhef QC based on the selected solution.

5.1.4 Cases

In this section, we show a fewind field examples where the Q@ocedure has been applied.
Figures 5.6, 5.7 and 5.8 show triple collocatedkQGAT-ECMWF-SSM/I data. The arrows in
Figures 5.6a, 5.7a, and 5.8a cormegpto the QuikSCAT JPL-selected wind solutions and the
greyscales represent the accepted (grey) and jibetae (black) solutions by the Rn threshold
(QC). The squares correspondtbe collocated SSM/I rain datashere the size of the squares
annotates rain rate. The an® in Figures 5.6b, 5.7b, and 5.8brrespond to the collocated
ECMWEF winds. The solid lines divide the differeagions of the swatto(ter, sweet and nadir).

In Figure 5.6, there is a case of significant raim o 25 mm/hr) over the &re plot, especially in
the middle-left and upper-right parts. It is clearlgadirnible that most of ¢hareas with rain rate
above 6 mm/hr (mid-large squajeare rejected by the QC.
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At about 12° latitude, there is a “band” of rejen8 going from the centre to the right side of the
plot. This area is dividing a mid and high wisdeed area (south part) from a low speed one
(north part), suggesting the pexce of a wind front. The QC pgrforming well as in the frontal
area, confused sea state is expected (duegtotbmporal wind variability) and therefore poor-
quality wind solutions existThe wind field in Figue 5.6b (ECMWF wind field) does not at all
reflect the spatial detail seen in Figure 5.6a, shgwa potential positive impact of assimilation of
QUuIkSCAT winds into the ECMWF model.

CASE : 02/09/99 1400 UTC
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Figure 5.6 Collocated QuUikSCAT-ECMWF-SSM/I data. Plot a shows QUikSCAT wind field (JPL-selected winds), where
grey corresponds to accepted WVCs and black to rejected WVCs. The size of the squares represent the different rain
rates from O mm/hr (no square) to 25 mnvhr (the largest ones). Plot b shows the collocated ECMWF winds. The solid
lines separate different regions of the swath. In this case, the left side of the plot corresponds to the sweet-1€eft region,
the middle to the nadir region and the right side to the sweet-right region. The acquisition date was September 2 1999
at 14 hours UTC.

Although the low wind speed region shows some erfbitw patterns, most of the wind solutions
have been accepted by the QC. This region iglyntixated in the nad part of the swath. As
said before, in the nadir regions theraikck of azimuth diversity in the® views. As discussed
in chapters 2 and 3, this affecte tkill of the inversion and in tuithe skill of the standard wind
retrieval, in particular at low wind speeds wiehe GMF is less sensitive to wind direction
changes. Our QC will not detect these pointgesithey do not exhibit large Rn. However, an
improved wind retrieval scheme, as shown iapther 3, will produce solution patterns that are
more consistent.
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In Figure 5.7a, the presence of a wind front isrtyediscernible in the middle of the plot, where
again a confused sea state and therefore poomgualids are expecte®VVCs along the front
line are rejected by QC. This @&so the case for the centre of the low at the bottom of the plot,
where there is probably extreme temporal and spedglstate variability aain. At the left side

of the wind front we see a region of sigo#nt rain (above 6 mm/hr), which has been
successfully detected by the QC.
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Figure 5.7 Same as Figure 5.6 but for different date (August 28 1999 at 5 hours UTC) and location. The solid lines
separate the nadir (left side), the sweet-l€eft (middle) and the outer-left (right side) regions.

Although the QC is not expected to work fime the outer regions (see discussion at the
beginning of this chapter), the same procedurelding the threshold flaed in section 5.1.2)

is also applied in such regions this section. As its discernible in Figwer 5.7a, there are very
few rejections in the outer region (right sidetbé plot). This is an expected result (see QC
discussion in section 6.2.1). In general, the Q€sduwot detect much of the poor-quality data in
the outer regions. However, ithis case, the flow looks castent and therefore the QC
apparently seems to work.

The ECMWF forecast (Figure 5.7b) does not adelyaplace the centre of the low and the
associated wind front is not so pronounced akenQuikSCAT plot (Figure 5.7a). This example
illustrates again the potential positive impa€tassimilating QuikSCAT winds into ECMWF
after using our QC.

Figure 5.8 shows a clear pure wind case. No fronts were predicted by ECMWF (plot b) and
almost no rain was observed by SSM/I. Mostle wind solutions have been accepted by the
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QC. Indeed, QuikSCAT winds show a meteorotadly consistent pattern, indicating again a
good performance of this QC.
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Figure 5.8 Same as Figure 5.6 but for different date (August 28 1999 at 10 hours UTC) and location. The solid lines
separate the nadir (left side), the sweet-right (middle) and the outer-right (right side) regions.

5.1.5 Influence of data format

As shown in section 2.4, the MLE afacteristics depend very mueh the data format due to the
different processing. The BUF&® are an average of the HOF per view (see Appendix A)

and, as such, the MLE correlation between HDF and BUFR is small. Since the QC is based on
the MLE, it is important at this stage to exaenthe influence of the data format on the QC
performance.

In the previous sections, we W used the QuikSCAT HDF data set the QC procedure.
Following the same steps as for HDF, we now s=QE for BUFR. Since the goal is to compare
the QC skill of the mentioned data formats, éast of showing the entire procedure again but for
BUFR, we will focus on the differees between the two procedures.
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Differencesin the Rn characterization

As for HDF, the QC in BUFR is based on Rnohder to compute and claterize Rn in BUFR,
we have applied the same procedure as foF Hibwever, a few differences were found which
we think are important to report.

First of all, it is relevant to mention thdte <MLE> surfaces for HDF and BUFR differ (see
detailed discussion on such differences in Apjpe B.2). Therefore, we expect a different
behavior of the BUFR Rn compared to thDF Rn, which is consistent with the MLE
dependence on format reported in section 2.4.

Figure 5.9 shows the contour plot of the twodnsional histogram of RMS-ECMWF against Rn
for two weeks of BUFR data. As in Figuel (same plot but for HDF), the RMS-ECMWF
increases as Rn increases, or in other wdh#sguality of data decreases with increasing Rn.
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Figure5.9 Same as Figure 5.1 but for BUFR data.
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From Figure 5.9b, 5.9¢, and 5.9d we can alsor itifat the RMS-ECMWEF is increasing more
rapidly with Rn at higher wind speeds. However, when comparing Figures 5.1 and 5.9, it is
clearly discernible that the RMS-ECMWEF in HOi€reases more rapidly with respect to Rn for

all wind speeds, suggesting a better behaviotlme@HDF Rn as a quality control indicator.

Nevertheless, we have looked at the samesmstin Figures 5.2 arl3 but for BUFR (not
shown) and they are very similar to HDF. Theref the rain rate sb proportionally increases
the retrieved wind speed and, above 6 mnphoduces undesirable “rainy” WVCs. Moreover,
the same plot as in Figure 5.4tlhor BUFR (not shown) is vergimilar to HDF, suggesting that
the optimal BUFR Rn threshold may be the saas that used for HDF. We therefore test
equation 5.1 for BUFR.

Differencesin the threshold validation

In the same way as in HDF (see section 5.1.3) gafethe defined threshold against ECMWF and
SSM/I collocations. The results for the sweet paiftthe swath are shown in tables 5.7, 5.8 and
5.9, and the results for the nadir parts &@s in tables 5.10, 5.11 and 5.12. Tables 5.7-5.12 are
equivalent to tables 5.1-5.6 (see smtt.1.3), respectively, but for BUFR data.

In general, the results show thlhe BUFR QC is slightly more itical than the HDF QC. This is
consistent with the previous discussion on the Rn behaviour.

Comparing table 5.7 with table 5.1, we note a laggrcentage of rejections in BUFR than in
HDF at all speeds. From tables 5.8 and 5.2 see that the RMS-ECMWF difference between
accepted and rejected solutions is 4 m/s in HDFRlewh BUFR is slightly lower than 3 m/s.
However, this does not indicate a clear bgtenformance of the HDF QC compared to BUFR,
since overall RMS-ECMWF is lower f@UFR (2.26 m/s) than for HDF (2.46 nt/sfrom tables
5.9 and 5.3, the amount of “rainy” W35 rejected is slightly lowdor BUFR, perhaps as a result
of the slightly poorer performance tfe BUFR QC compared to the HDF &®verall, the
results show that HDF and BUFR @@= of comparable performance.

Comparing the BUFR QC (tadd 5.10-5.12) with the HDF QQables 5.4-5.6) in the nadir
region, we can draw similar consions than for the sweparts of the swatlexcept that, in this

case, the total number of rejections in BUFR is comparable to HDF. The reason why the number
of rejections in the nadir swath is not higlier BUFR is that the <MLE> in BUFR is misfit
towards higher values (compared to the fillemmean MLE values) in the nadir parts (see
discussion of Figure B.2 in Appendix B.2). Thrsturn decreases the value of Rn and therefore
decreases the number of rejections.

In general, the BUFR QC works fine and is camgble to the HDF QC. Therefore, the properties
of the MLE as a QC indicator, i.e., the MLE infation content, are almost independent of the
data format used, despite the important déifrces between the MLE distributions, e.g., small
correlation between HDF and BUFB&s discussed in section 2.4.dtiher words, anomalies like

! The selected solution in the BURRoduct is replaced by the DIR sohuii(see section 3.2). Since DIR is
oversmoothing the retrieved field, the BUFR selected fielkpected to be more in agreement with ECMWF than
HDF.

2 |t seems like a Rn threshold for BUFR that produces the same rejection rate as for HDF (i.e., 5.6%) would give
better scores. This has not been tested.
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Table 5.7 Accepted and rejected WVCs fraail the WVCs (sweet swath).

Total V<10 10<V<15 V>15
Num. Points (n/a)l 3005557 2261475 617140 126942
Accepted (%) 93.3 94.9 90.5 79.2
Rejected (%) 6.7 5.1 9.5 20.8

Table 5.8 Relative q

uality of accepted angjected WVCs (sweet swath).

RMS<5 RMS>5 Mean RMS (m/s)
Total (n/a) 2805852 203084 2.26
Accepted (%) 95.5 63.8 2.07
Rejected (%) 4.5 36.2 4.92

Table5.9 Accepted a

nd rejected WVCs by raate intervals (sweet swath).

RR=0 0<RR<6 RR>6
Num. Points (n/a) 647292 56939 2904
Accepted (%) 95.3 72.7 16.1
Rejected (%) 4.7 27.3 83.9

Table5.10 Accepted

and rejected WVCs from all the WVCs (nadir swath).

Total V<10 10Vv<15 V>15
Num. Points (n/a)|l 1744647 1290254 372353 82040
Accepted (%) 93.9 95.9 90.3 79.1
Rejected (%) 6.1 4.1 9.7 20.9

Table5.11 Relative quality of accepted and rejected WVCs (nadir swath).

RMS<5 RMS>5 Mean RMS (m/s)
Total (n/a) 1585453 160703 2.48
Accepted (%) 96.1 72.3 2.29
Rejected (%) 3.9 27.7 5.49

Table5.12 Accepted and rejected WVCs by raate intervals (nadir swath).

RR=0 0<RR<6 RR>6
Num. Points (n/a) 360953 28150 1536
Accepted (%) 95.9 70.7 19.4
Rejected (%) 4.1 29.3 80.6

Note: RMSisreferred as the mean RMS
V isthe JPL-selected wind speed in nvs;

of vector difference between JPL-retrieved winds and ECMWF winds in nvs;
and RRisthe SSM/I rain rate in mm/hr.
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rain cause similar effects in both HDF and BU&Rproducts, that is, HDF and BUFR MLEs are
strongly correlated in such cases.

5.2 KNMI quality control versus JPL rain flag

In the presence of extreme weather events, thihida of rain is relatively high and the QC of
SeaWinds particularly important, accordingti® KNMI experience #h NRT processing of
SeaWinds data_(http://www.knmi.nl/scatteromgteklthough the KNMI QC is effective in
rejecting rain-contaminated data, additional infation on rain may be needed. In this respect,
since May 2000, the SeaWinds data productsudict) the NRT data distributed by the National
Oceanic and Atmospheric Adminidtia (NOAA), have a rain flagJPL, 2001). Since both the
KNMI QC and the JPL rain flag are used in NRRrocessing, it is useful to compare them in
order to improve the quality control for SeaWindis this section, we test the JPL rain flag
against our QC.

Also since May 2000, JPL wind retrievals hdeen produced using a new GMF called QSCAT-

1 (see Appendix C). In order to perform a consistent comparison with the JPL rain flag (set
simultaneously to QSCAT-1 GMF), the new data should be used. Therefore, the QC performed in
section 5.1 needs to be revised floe new data. This is done in Appendix D. In summary, the
MLE characteristics do not signiatly change and it is themee concluded that the same QC
procedure (i.e., same <MLE> surface and Rn tiole§ can be used with the new QuikSCAT
data (produced with the QSCAT-1 GMF).

5.2.1 JPL rain flag description

In January 2000, JPL incorporated in the QuikSCAT products two different rain flags based on
the mp_rain_probability and the nof rain_index respectively. However, since May 2000, JPL
merged both techniques into a single rain flags Thin flag procedure is actually based on the
mp_rain_probability and called the MUDH (Midimensional Histogram) rain algorithm
(Huddleston and Stiles, 2000). The nof_rain_indexMears et al., 2000) is incorporated as an
additional parameter in the MUDHinaalgorithm, but itis currently not beig used (zero weight

is assigned to this parameter) in the computation of the rainJhg Z001).

Briefly, mp_rain_probability is the probability of emantering a columnar ramate that is greater

than 2km*mm/hr. This probability value is read directly from a table based on several input
parameters including average brightness tempexrgboth H-pol and V-pol), normalized inter-
view ¢° difference, wind speed, wind directionatve to along track,rad a normalized MLE.

The space spanned by these parameters can detect whether the%ealags used in wind
retrieval contain a noteworthy component credtgdome physical phenomenon other than wind
over the ocean’s surface, assuming that the most likely phenomenon is rain.

The final rain flag deduced from the MUDH raimgatithm is also incorporated in the QuikSCAT
products and can be found in the wvc_quality flag variable.
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5.2.2 Comparison

The JPL rain flag separates “raifrain rate above 2km*mm/hr)dm “no rain” (rain rate below
2km*mm/hr) cases and the KNMI QC separates casg®arf quality to be rejected (above Rn
threshold) from those of good qualitylte accepted (below Rn threshold).

Both the JPL rain flag and the KNMI QC are meant to separate the usable data from the non-
usable data. Therefore, the user should use only “no rain” data according to JPL rain flag and
reject the “rain” dataln the same way, the user should acaepteject data according to KNMI

QC, and therefore a study of the differencbehaviour of both procedures is of interest.

In order to make a consistent comparison, veee processed two weeks of HDF data and
classified the results in four different categoriés:JPL Rain Flag - No Rain” and “KNMI QC -
Accepted”; B) “JPL Rain Flag - Rain” and “KNIMQC - Accepted”; C) “JPL Rain Flag - No
Rain” and “KNMI QC - Rejected”; and D) “JPL RaFlag - Rain” and “KNMI QC - Rejected”.

In line with the previous pagaaph, categories A and D showndarities and categories B and C
show discrepancies between the two procedures.

In tables 5.13-5.15, we present the hssaf collocating 2 weeks dpuikSCAT HDF data (sweet
regions only) with ECMWF winds and SSM/I radtata. [Note: we have performed the same
comparison in the nadir swath and got similar results]. In total, there are about 5.2 million
collocations with ECMWEF and 1.1 million collocations with SSM/I. We refer to rain data when
SSM/I surface rain ta (RR) value is above 2 mm/hr, atwdrain-free datavhen SSM/I surface

rain rate value is below 2 mm/hr.

Table 5.13 shows, by category, the percentagtotal data, the QuikSCAT mean speed, the
ECMWF mean speed, the mean bias (QuikS@#nus ECMWF wind speed), the mean RMS of
wind vector difference (RMS-ECMWF), the percegaaof data with rain (RR>2 mm/hr), and the
percentage of all rain points (RR>2 mm/hr).

The results in table 5.13 show very good agesgmhetween both proceds;, as 94% of the data
corresponds to categories A and D (91.1% in A and 2.9% in D). Moreover, category A shows
good-quality (0.5 m/s bias and 2.2 m/s RMS) raeef(only 0.1% of data a rain contaminated)
data while category D shows very poor-qualfstl m/s bias and.8 m/s RMS) and rain-
contaminated (31.9% of data are rain contaminated) data.

Categories B and C contain 6% of the data@rdespond to the differences in behaviour of both
procedures.

Comparing both categories in tegraf SSM/I rain detection, categoB contains 13.9% of all the
rain data while category C onlywtains 2.4%. Therefore, the JiPin flag is more efficient as
rain detector since only.6% (5.2% in A and 2.4% i€@) of all raindata is not rejected, while the
KNMI QC accepts 19.1% (5.2% in A and 13.9% in B) of rain data.

In terms of quality of the data, both categoriestain data of poor quality, with similar bias (2.4
m/s in B and 1.7 m/s in C) and RMS (4.8 m/8Bimand 4.1 m/s in C) values. The KNMI QC is
more efficient in rejecting poor-quality data than the JPL rain flag since category C contains
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twice as much data as category B (4% in C; 2®B)inrHowever, the JPL rain flag seems to work
reasonably well as a QC flag as categories B astidw that only 27% of that data (13.6% in B
and 31.9% in D) are rain contaminated data aedetbre the rest are rafree data but still of
poor quality.

Table 5.13 Comparison for all data.

JPL Rain Flag JPL Rain Flag
No Rain Rain
Number of data (%): 91.1 | Number of data (%): 2.0

QuikSCAT Mean Speed (m/s): 7.6 | QUikSCAT Mean Speed (m/s): 14.2
KNMI QC ECMWF Mean Speed (m/s): 7.1 | ECMWF Mean Speed (m/s): 11.8

Accepted Bias-ECMWF (m/s): 0.5 | Bias-ECMWF (m/s): 2.4
RMS-ECMWE (m/s): 2.2 | RMS-ECMWEF (m/s): 4.8
Rain > 2 mm/hr (%: 0.1 Rain > 2 mm/hr (%: 13.6
Rain > 2 mm/hr (%): 5.2 | Rain > 2 mm/hr (%: 13.9
Number of data (%6): 4.0 | Number of data (%): 2.9

QUIkSCAT Mean Speed (m/s): 9.1 | QuikSCAT Mean Speed (m/s): 12.3
KNMI QC ECMWF Mean Speed (m/s): 7.4 | ECMWF Mean Speed (m/s): 7.2

Rejected Bias-ECMWF (m/s): 1.7 | Bias-ECMWEF (m/s): 5.1
RMS-ECMWF (m/s): 4.1 | RMS-ECMWF (m/s): 8.2
Rain > 2 mm/hr (%: 1.0 | Rain > 2 mm/hr (%: 31.9
Rain > 2 mm/hr (%: 2.4 | Rain > 2 mm/hr (%: 78.5

: % of data in this category with rain (RR> 2 mm/hr)
: % of all rain points (RR>2mm/hr)

Tables 5.14 and 5.15 are similar to table 5.13 dmily for rain-free data and rain data
respectively. Table 5.14 contains aboutrillion data and table 5.15 about 17000 data.

Table 5.14 shows very similar results to table 5Tt#& most significant resuls that for rain-free
data, categories B and D contain poor-quality dasaseen from the highasi (2.2 m/s in B and
4.4 m/s in D) and RMS (4.4 m/s in B and 7 m/sDjp This confirms the JPL rain flag as a
Quality Control flag as well.

Table 5.15 shows clearly the effect of rain in thuality of the data. Alcategories have larger
bias and RMS values compared to tables 5riiBml14. In particular, category A contains 5.2%
of rainy data, which are clearly of poor qual{8:4 m/s bias and 5.5 m/s RMS). Neither the JPL
rain flag nor the KNMI QC detects these data.
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Table 5.14 Comparison for rain-free data.

JPL Rain Flag JPL Rain Flag
No Rain Rain
Number of data (%): 92.7 | Number of data (%): 1.3

KNMI QC QUIkSCAT Mean Speed (m/s): 7.0 | QuikSCAT Mean Speed (m/s): 12.2
ECMWF Mean Speed (m/s): 6.5 | ECMWF Mean Speed (m/s):  10.0

Accepted | - _
Bias-ECMWF (m/s): 0.5 Bias-ECMWF (m/s): 2.2
RMS-ECMWEF (m/s): 2.0 RMS-ECMWEF(m/s): 4.4
Number of data (%): 3.5 | Number of data (%): 2.5
KNMI QC QUIkSCAT Mean'Speed (m/s): 7.8 | QuikSCAT Mean Speed (m/s): 10.3
Rejected ECMWF Mean Speed (m/s): 5.9 ECMWF Mean Speed (m/s): 5.9
Bias-ECMWEF (m/s): 1.9 Bias-ECMWF (m/s): 4.4
RMS-ECMWE (m/s): 4.2 RMS-ECMWE (m/s): 7.0

Table 5.15 Comparison for rain data.

JPL Rain Flag JPL Rain Flag
No Rain Rain
Number of data (%): 5.2 | Number of data (%): 13.9

KNMI QC QUuIkSCAT Mean Speed (m/s): 10.8 | QUikSCAT Mean Speed (m/s): 13.7
ECMWF Mean Speed (m/s): 8.4| ECMWF Mean Speed (m/s): 9.0

Accepted _ _
Bias-ECMWEFE-(m/s): 2.4 | Bias-ECMWF (m/s): 4.7
RMS-ECMWF (m/s): 5.5 | RMS-ECMWE (m/s): 8.2
Number of data (%): 2.4 | Number of data (%): 78.5
KNMI QC QuikSCATMean Speed (m/s): 9.9 | QUIkSCAT Mean Speed (m/s):. 14.4
Rejected ECMWF Mean Speed (m/s): 6.6 | ECMWF Mean Speed (m/s): 6.4
Bias-ECMWF (m/s): 3.3 | Bias-ECMWF (ml/s): 8.0
RMS-ECMWE.(m/s): 6.1 | RMS-ECMWE (m/s): 11.2

The results clearly show that the category B aimst poor-quality data, including a significant
amount of rainy data. Therefore, it seems a goed to incorporate the JPL rain flag to the
KNMI QC in order to improve the Quality Control of QuikSCAT data. However, according to
the results in tables 5.13-5.15, the ECMWF wind sp@&edategory B are igeneral significantly
higher (up to 4.7 m/s higher) than those in thieer categories. This means that category B
corresponds to dynamically active situations. Theeefit could well bethat this category
systematically corresponds to frontal omwlpressure system areas where the discrepancy
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between ECMWF and QuikSCAT is indeed of valeahterest, in whicltase, these data should
be kept and not rejected.

In order to determine the convenience of incorporating the JPL rain flag in the KNMI QC, some
meteorological cases need to be examined.

5.2.3 Cases

Many meteorological cases were examined. Indeede |ystematic effects were found that help

in understanding the statistical results oftisec5.2.2. In this section, we show two wind field
examples, which are representative of the entire set of examined cases. Figures 5.10 and 5.11
show QuikSCAT winds where both the KNMI Q@dathe JPL rain flag have been applied. The
arrows in Figures 5.10a and 5.11a correspondetddhkSCAT JPL-selected wind solutions and

the colors represent categories A (green), B (yellow), C (blue) and D (red). Figures 5.10b and
5.11b are the same as Figures 5.10a and 5.11a, respediivt arrows belonging to categories C

and D are substituted by dots.

In Figure 5.10, the presence of a low-pressustesy in the western North-Atlantic Ocean is
clearly discernible in the middle-right part oktplot. A wind front is partly visible going from
northeast to south of the low. The KNMI QC hasatgd data in the vicinity of the low and along
the front line where a confused sea state is eggdgskee red and blue arrows). We can also see
KNMI QC rejections at low-wind areas (blue am® at bottom part of the plot), where the
QUuikSCAT retrieved wind flow iglearly inconsistent. As anticifea in the previous section,
category B winds (yellow arrows) are migifocused in the most dynamical area.

Looking at the same case but only showing categoand category B winds (accepted winds
after KNMI QC most of the yellovarrows show a spatially consistent flow which should be kept.
Moreover, the closest Meteosat image (not stjote the QuikSCAT pass reveals no clouds
(therefore no rain) south of the low (where mgedtow arrows are located). We discern very few
undesirable yellow arrows in the vicinity of tlev (most likely poor-quality winds). Therefore,
since the consistent category B winds (yell@s@ located in the sweetrt of the QuUikSCAT
swath, it seems that the KNMI QC works fine in these regions.

Figure 5.11 shows a front line inehmiddle of the plot associatavith a low-pressure system,
which is not observed by QuikSCAT, presumably located arouhdNd&th and 314 East. The

red arrows in the centre of Figure 5.11a clearly show the presence of rain bands along the front
line. This is confirmed by SSM/I (not shown), it detected significant ira (rain rates above 6
mm/hr) in this area. As in the previous case,dhsgra large number of consistent winds rejected

by the JPL rain flag (yellow arroywsn the sweet region (left sid# the long blacksolid line).

Some of these winds are rain-contaminated but the rain rate, according to SSM/I, is around 2
mm/hr. In section 5.1.2, we show no significanteetfon the quality of gh winds at these rain

rates.

Looking at the same case but only for the atambplata after KNMI QQFigure 5.11b), some
inconsistent winds are still visible (yellow aws), which are most likely rain contaminated
(unfortunately no SSM/I observatis available but Meteosat shewhick clouds over that area)
and therefore undesirable. These arrows are logatde nadir region of the swath (between the
black solid lines), where KNMI QC is expectedperform less well thamm the sweet regions.
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CASE : 14/02/01 2200 UTC
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Figure 5.10 QuUikSCAT wind fields. The colors represent the different categories. green is category A, yellow is B,
purpleis C, and red is D. Plot a shows all retrieved winds while plot b shows only KNMI QC accepted winds. The
black solid lines separate different regions of the swath. In this case, the left side of the plot corresponds to the
sweet-right region, the middle to the nadir region and the right side to the sweet-left region. The acquisition date is
February 14 2001 at 22 hours UTC.
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Figure 5.11 Same as Figure 5.10 but for different date (January 20 2001 at 20:30 hours UTC) and location. As in
the previous figure, the black solid lines separate the sweet-right (left side), the nadir (middie) and the sweet-left
(right side) regions QuikSCAT wind fields.
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As explained in section 5.1.3, the reason for thesgmce of inconsistemtind data lies in the
nature of the QC. The QC is based on MLE amdlefore on the quality of inversion. In contrast
with the sweet regions, in the nadir regiorrehis poor azimuth diversity among observations,
which in turn leads to a decsaain the quality of inversionde section 2.2.2). Subsequently, not
only the KNMI QC but also the standard wind retrieskalls are lower in th nadir region than in
the sweet regions of the swath. The lower qualityhef standard retrievals is indicated in the
right middle top part of Figure 5.11b, where savénconsistent winds, which are accepted by
both KNMI QC and JPL rain flag (green arrowaje discernible (see chapter 3 for an improved
wind retrieval scheme).

From the meteorological cases examined, we caclade that category B winds are primarily
located in dynamically active areas and in many cases they show very consistent wind flows,
notably in the sweet swath. However, there also several rain-contaminated cases and poor-
guality winds in the nadir region, which belotg category B (and thefore not detected by
KNMI QC) and are undesirable.

Figures 5.10b and 5.11b clearly shthat rejecting category B wina®n significantly reduce the
synoptic-scale information content in some meitgical situations. Nevéheless, in the areas
where the azimuth diversity poor and therefore the quality bbbth the inversion and the KNMI
QC is lower, the rejection @ategory B winds is necessary.

Therefore, for QUIkSCAT QC purposes, we mooend the use of the KNMI QC in the sweet
parts of the swath. In ¢hnadir regions however, the combinesk of the JPL rain flag and the
KNMI QC procedure is recommended.

5.3 Conclusions

A MLE-based QC procedure, which followsetiQC procedure investigated for NSCAHida

and Stoffelen, 2000) and the QC applied to the ERS scatterom@taffefen, 1998a), is set in this
chapter. In contrast with ERS scatteromeld8CAT and SeaWinds are sensitive to volumetric
rain absorption. As such, QC rejection for ER8ny activated in case of confused sea state, ice
occurrence, etc, whereas in the case of QUKT and NSCAT also rain is eliminated.

Collocations of QuikSCAT data with ECMWF windsd SSM/I rain were used to characterize
and validate the QC (by Rn) for both the HD#lahe BUFR formats. The empirically derived
QC by Rn procedure proposedtiis chapter, althoughpplied for QuikSCAT data, is generic
and, as such, can be appliedatoy overdetermined (i.e., three or more views) scatterometer
system.

The results show a good correlation betw#sn RMS-ECMWF (mean RMS of wind vector
difference between ECMWF and QuikSCAT wih@nd the Rn. The data quality, as measured
by the inverse of RMS-ECMWEF, decreases wittréasing Rn, and the decrease rate becomes
sharper for increasing retrieved wind speed (i.¢a daality becomes poor at medium Rn values
when retrieved speeds are higher).
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The presence of rain artificially increases the reékewinds, proportionallyo the rain rate. For
rain rates over 6 mm/hr, the backscatter measemés contain insufficient wind information but
rather rain information, leading to poor-djtiaretrieved winds of typically 15-20 m/s.

We defined a Rn threshold dewent on wind speed, which @ptimized to separate the good-
quality cases from those of poguality (including rain) in the inner swath (nodes 9 to 68). For
HDF, the results show a RMS-ECMWEF differencéwsen accepted and rejected data of 4 m/s,
most of the SSM/I “rainy” cells rejected, antbre than 97% of good-quality data (low RMS-
ECMWEF) accepted.

The effectiveness of this QC procedure is thated with a few typical examples. Cases with
meteorologically inconsistent spatial wind patterns are generally removed, while important
information on the dynamical structures is kepttd?as that are meteongically consistent are

kept in general.

The QC procedure works well in the entire inswath although the skill in the sweet regions,
where the MLE is most meaningful, is slightlytiee than in the nadir geon. In terms of data
format, the QC procedures in HDF and BUFR @reomparable skilldenoting that although the
MLE characteristics change with the format MLE information content does not significantly
change, as discussed in chapter 2.

A comprehensive comparison of our (KNMI) QC and the JPL rain flag is performed in order to
determine an improved QC procedure for Q@AT. Again, the set of collocations with
ECMWEF winds and SSM/I rain data is used for this comparison. The KNMI QC detects 4% of
poor-quality and almost rain-free data, which ao¢ detected by the JPL rain flag. On the other
hand, the JPL rain flag detects 2% of poor-qualitg partially rain-contaminated data, which are
not detected by the KNMI QC. The KNMI QC risore effective as QC indicator while the JPL
rain flag is more effective as a rain detector.

The KNMI QC is based on the MLE parameter, which turns out to be a very good QC parameter.
The JPL rain flag is based not only on the MLE d&lsb on other paramese which are identified

to be sensitive to rain, such as the brightness temperature, the intersvitfference, the wind
direction and others. However, these parameters are not related to the quality of the data, which
explains why the KNMI QC works better as quality indicator.

The results also show that the JPL rain flagdgeto reject many daia rain-free dynamically

active areas. We have illustrated this by two déiféimeteorological casds. both cases, there is

an excess of consistent wind rejections by the rdiflflag, especially ithe sweet parts of the
swath. In the nadir region, the inversion skiidaconsequently the KNMI QC efficiency are
lower than those in theweet regions due to tip@or azimuth diversity. Ithis area the JPL rain

flag is able to detect some flow-inconsistent and rain-contaminated winds, which are not detected
by the KNMI QC.

For the QC of QuikSCAT data, we recommenel tise of the KNMI QC. In the sweet swath, the
KNMI QC suffices. However, the combination of the JPL rain flag and the KNMI QC is
recommended in the nadir region.
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Chapter 6

Discussion and Outlook

In this thesis, the wind field retrieval for satellite remote-sensing radar systems has been
investigated, with special focus on two differeystems: the QuikSCAT scatterometer and the
ERS SAR. New methods have been proposeachpoove the wind retrieval for both determined
(especially, in areas with poor azimuth divefsiand underdetermined problems. Moreover, a
generic MLE-based and empirically derived methodology is presented for QC purposes.

In the concluding sections of the previous chagptamany conclusions have been drawn together
with several recommendations for future workthie previous chapters, however, several aspects
of the work presented in thisdakis have been intentionallyigged or need some additional
clarification. In this chapter, a brief and firdiscussion on some relevant aspects of this thesis
together with a more general outlook is provided.

6.1 Wind retrieval

A general discussion on the windrreval procedures proposed in this thesis is presented in this
section.

6.1.1 Multiple solution scheme versus general approach

The wind retrieval procedures proposed in chap8and 4, i.e., the multiple solution scheme
(MSS) and the general approach (GA), respelgtivage conceptually vg similar although they
are presented in a different way. The GA (or morparticular, the SWRA) is related to the most
general equation of the Bayesian approach g¢segon 2.1.1) and consists of minimizing a cost
function with two terms: the observation and trackground. The MSS uses a more constrained
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solution of the Bayesian approach, the MLE (seetion 2.1.2), for inversion. However, for AR
purposes, it uses a variational scheme, which dsnsisninimizing a cost function that includes
the departures from the inverted solutions (observation term) and the departures from a NWP
model (i.e., background term). Both wind retriepeocedures are therefore minimizing the same
type of cost function.

Moreover, the MSS and the GA are flexible enough to accommodate different levels of
determination of the problem, as shown inittlerresponding cost functions. The MSS cost
function uses a variable number of wind solutiansording to the level of determination of the
problem. That is, the more determined the problem (better azimuth diversity), the smaller the
number of solutions in the observation term.r&taver, for each solution a probability of being
the “true” wind is assigned anded in the cost function. Thus, the more determined the problem,
the smaller the number of solutions with compbegdrobability. The MSS is therefore consistent
with the level of determinatioaf each WVC, allowing more infence of the background term as
the problem becomes less determined, i.e., theddhg number of solutions with comparable
probability in the observation term, the largee thwerall weight of the background term in the
cost function.

The mentioned flexibility is also present in the GA cost function. Now, the observation term
allows large (infinite if you wish) numbers oflsbons with equal probality (see isolines of
Figure 4.3 in section 4.3.3.1), whichliwesult in a larger influencef the background term in the
cost function, as expected from an underdeterthgystem. However, the GA is flexible enough,
such that it allows additional wind information to be included whenever it is available. For
example, in the case of SARgtlwind direction information can sometimes be derived from the
image (i.e., wind streaks) and, after a compreherms$igeacterization of the trgeval errors, it can

be included in the observatiterm of the GA cost functiorthus improving the retrievals.

Therefore, the MSS and the GA are complementatiat the former assumes that the problem

is overdetermined but allows a decreasethia level of determination, as caused by the
degradation of the azimuth diagy, i.e., as the QuUIkSCAT nads approached, and the latter
assumes that the problem is underdetermined anslsa#lo increase in the level of determination,
as provided by the instrument capabilities, i.e., wind direction information derived from the SAR
image pattern.

The main difference between the two procedliessin the space of the observation term. The
wind domain is used in the MSS, while the GA is using the backscatter ddsicdiden and
Anderson (1997a) show that, for scatteretar data assimilation (similém variational AR), it is
better to use the wind domain in the observatiom tdan the backscatter domain. The reason is
that the uncertainty in the wind domain behawvea Gaussian way and it is therefore easy to
characterize the observation dmatkground error, whereas in thackscatter domain, due to the
highly non-linear transformation (GMF), the uncertgiar noise is more fficult to characterize.

In the GA, however, the wind domain canrm used because of the underdetermination
problem. In other words, while ¢hMLE inversion provids certain amount of wind solutions to
the observation term of the MSS, no wind solwican be provided to the same term of the GA
(“standalone” inversion not possible becausaunflerdetermination) and therefore backscatter
information is used instead.

One could alternatively assume teém degree of determination in SAR and apply the MSS. The
inversion of a single backscatterould produce a flat (null) MLE cost function, i.e., a large
number of solutions (144, for a NH_cost function step size of 2)5with identical probability.
These solutions, which lay on the solid line ajuie 1.8a, lay as well dhe highest probability
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ellipse (thick line) of Figure 4.3. In other wardf we only consider these wind solutions, the
MSS and the GA are equivalénStrictly speaking, this altertige is not taking into account the
underdetermination problem. Howeyedt could well be that its implementation provides fair
results. In such case, we could unify the satethgar wind retrieval methods described in this
thesis. It is therefore recommendedést the MSS for SAR wind retrieval.

6.1.2 QuIikSCAT outer regions

In chapter 3, we revise the wind retrieval fotedlmined problems and focus our work on the new
challenges posed by the new instrument geometries, that is, on improving the wind retrieval over
poor-azimuth diversity areas. The methodologsoposed is actuallymplemented in the
QUuIkSCAT inner swath and thereforalid for any overdetermined problem.

The QuikSCAT outer regions are characterized by an instrument geometry, which is similar to
the Seasat SASS, i.e., twoews. As discussed in sectidm.1, for a two-view measurement
system, i.e., casl, the wind retrieval problem is determad. Moreover, the wind accuracy of
such systems is comparable to that of overdeihed systems with good azimuth diversity, e.g.,
QuikSCAT sweet regions, provided that there exastpod AR scheme that is able to cope with
the large ambiguity problem of such ysis (see section 2.2.2). As already mentioBSeffelen

and Cats (1991) show the potential contribution®tasat SASS winds in NWP data assimilation,
and therefore the usefulnesstwb-view measurement systems.

The QuikSCAT outer region case differs somehow from the SASS case. The difference is in the
azimuth diversity. While the SASS has an optimal azimuth separation, i.e., two vie\wpa30

(see sections 1.3.1 and 1.4.1), the azimuth separar QuikSCAT monotonically decreases as

we approach the edges of the outer swath (see Figure 1.9 in section 1.4.3). In chapter 3, we
propose a method, the MSS, which allows a Wianumber of solutions from inversion,
according to the level of determination or azimdiversity, to be used for AR purposes. It seems
reasonable to apply the same methodology (MS8)a®@uikSCAT outer regions. Moreover, the
variational analysis AR used by the MSS shouldkngignificantly better for QuikSCAT than for
SASS, since, in the case of QuikSCAT, theyéa(i.e., 1400-km wide) and almost unique wind
information (i.e., low ambiguity) of the inner swatan be easily extrapoéal to the few nodes of

the outer regions, while for SASS, the ambiguitgblem is over the entire swath, i.e., only two
views available (see section 1.3.1).

Therefore, the methodology used in chapter 3 cemlad applied to the QuikSCAT outer regions.
However, as seen in chapter 2, the characteristitlse MLE change with the dimension of the
measurement space. That is, the MLE distrdngi of two-view and four-view measurement
systems differ. This means that the MSS is iapple to the QuikSCADuter regions, provided
that the solution probability is re-computeding the outer-swath MLE information and the
observation term of the AR taned to the outer regions.

As discussed in section 1.4.3, the edges ef tluter swath (node4-2 and 75-76) are
characterized by the presence of single-view nreasents or by a very poor azimuth separation
between the two views, i.e., equivalent to a single-view measurement. These areas present an

! As for GA, a wind streak term could also be incoaped to the MSS cost function for SAR wind retrieval.
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underdetermination problem similar to the SAR and, as such, the methodology proposed in
chapter 4 could be adapted for QuIkSCAT asdduin such areas for wind retrieval purposes.
However, these areas (4 WVCs) represent a vea)l grortion of the total QUIkSCAT swath (76
WVCs) and the effort may not be worthwhile. A&L] the wind retrieval isisually not performed

in these WVCs.

It is important to say that, as shown in chaptea comprehensive QC is needed to successfully
derive winds from radar data. However, desp5 does only provide a QC procedure for
overdetermined systems. The QC for single-vaawl two-view systems igddressed in section
6.2.

6.1.3 MLE norm

The MLE, as defined in equation 2.9 (see secf.1.2), is usually computed with one of two
different norms: a measurement error variance (Kp) proportional to the GMF simulated
backscatterds’) or a Kp proportional to #h backscatter measurement,{). As discussed in
section 2.4.3, using a Kp proportionaldg causes bias in the wind solutions (Seefelen and
Anderson, 1997b). This is less true foa Kp proportional tam,° since the MLE norm remains

fixed during the inversion process. However, there is no prior way to determine what is the best
choice and usually tests are conducted for such purpose.

In this thesis, we use Kp proportionaldg to compute the MLE at 25-km resolution since this is
recommended/used by JPL (see equation 2.9) andftré work described in this thesis uses

the JPL inversion information (e.g., the QC work described in chapter 5 uses the JPL-selected
MLE information). However, recent experimerdgsem to indicate that, for Seawinds, a Kp
proportional tooy” is slightly better tan a Kp proportional tas® at 100-km resolution
(Portabella and Soffelen, 2002). As such, the former is used in section 3.3.

A fixed norm has been successfully used to invert ERS wigtdglen and Anderson, 1997c).
The use of such MLE norm has not yet beeretefir SeaWinds and therefore recommended.
Note that this is relevant for inversion butedanot strongly impact QGjnce the latter is based
on a parameter which is supposed to remove theeimce from the norm, that is, the normalized
residual.

6.1.4 Data assimilation experience

In chapter 4, a wind retrieval method derived fritie GA with a constrained set of assumptions,
i.e., the SWRA is used to retrieve winds fr&@AR observations. A simplistic set of assumptions
is used, notably no spatial correlation in theckground errors. The latter is assumed to allow
local minimization of the cost function, i.e.,mmization in a WVC-by-WVC basis. However, as
concluded in section 4.4, the wind retriewady improve by implementing a background term
where spatial correlatn errors are included.

As discussed in section 6.1.1, theraiparallelism between the MSS and the GA. In patrticular,
the background term is much the saméalgh its implementation depends on the spatial
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resolution of the observing system. The baokgd term of the 2D-Var cost function (MSS)
includes spatial error correlati information. The latter is dged from data assimilation
schemes, such as 3D-Var or 4D-Var, and tuned for QuUikSCAT AR purposes. The experience on
data assimilation and the 2D-Var could be useskta background term to the SWRA applicable

for higher resolutions. In suclase, additional effort would beqg@red in the tuning, since the
SWRA is used at a higher resolution (ieefew km) than the 2D-Var (i.e., 50-100 km).

6.2 Quality control

In this section, a general discussion on the QC for radar systems is presented, focusing on
alternatives to the procedypeoposed in chapter 5 for casesanthe latter is not valid.

6.2.1 QuikSCAT outer regions

The MLE-based QC procedure (see section &1pot effective for two-view measurement
systems (cask of section 1.4.1), such #éise Seasat SASS or the IRBECAT outer regions. The
MLE is used to invert two parameters, the wspked and the windirdction. Therefore, the
minimum number of independentews needed for wincetrieval is two (se section 1.4.1). As
discussed at the beginning of chapter 5, seotto discriminate good-quality winds from poor-
quality winds, the MLE has to be a good noisdicator. Thus, to se the MLE for QC, an
additional backscatter vieweli, at least three independent vieiss)eeded to enable the retrieval
of a third parameter, i.e., the noise. Thisc@mprehensively illusttad in Figure 1.8 (see
discussion on the effects of noise faraaying number of views in section 1.4.1).

However, the MLE-based procedure can be usettiénouter regions as a first step to remove
pairs of grossly inconsisteftackscatter data. For such pusppwe can use the extrapolated
<MLE> computed in section 2.3.1 to compute theifRthe outer swath. Adiscussed in section
1.4.1, in such regions the wind vector is not overdetermined and generally multiple wind speed
and direction combinations exist that exacitytie measurements. Then the MLE is going to be
zero or very close to zero in most of the casagardless of the quality dfie data. Only for the
exceptional case when the MLE is substantiallydatgan our extrapolated <MLE> we can infer

that the data are of daquality in these parts dhe swath. This means that our QC procedure is
going to be characterized by a small number ofctiges in the outer ggons. As such, our QC

can be used to provide a gross check.

The limitations of a MLE-based QC can be méel from Figure 2.3 (section 2.2.2). [Note: the
MLE-based QC presented in chapter 5 has beetieg in section 2.2.2; in the outer swath, the
same QC as in the nadir swath, i.e., a comtnatf KNMI QC and JPL rain flag, is used].
Although the outer regions (bottonogd) show comparable accuraoythat of the sweet regions
(top plots}, the former shows a bias at high windesgs (note how the contour lines are not

! This is only true if we are able to successfully rerrireslarge ambiguity in the outer swath (see discussion in
sections 2.2.2 and 6.1.2).
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centered on the diagonal anymore), not present in the latter (compare Figures 2.3a and 2.3c),
which denotes possibly rain contamination (seeatsfof rain on wind retrieval in section 5.1.2).

Additional efforts to QC the outer-region datandze done in the AR part of the wind retrieval
procedure. As seen in chapter 3, the MSS aseariational analysis AR, i.e., 2D-Var, which
consists of minimizing a cost function witlvo terms, the observation and the background.
Assuming that the background error informatioa igood reference, large discrepancies between

the wind solutions provided bydhMLE inversion and the analydise., output from variational

AR) can be interpreted as poor-tityaretrieved soltions. After a comprehensive validation, a
threshold, which relates these discrepancies to the quality of the observations, can be set. This
gross error check is trs®-called variational QC.

A variational QC has not yet been tested. Wkcgrate that the wind \ator consistency checks
in the 2D-Var (i.e., variational QC) will be aifective complement for the MLE-based QC in
the outer swath. Its developmestherefore strongly recommended.

6.2.2 QUuikSCAT low resolution

An important aspect of the 100-km product propasezhapter 3, which needs to be examined, is
the QC. Up to now, the 100-km product is usthg MLE-based QC at 25-km resolution (see
chapter 5) in the following way: if there ssifficient information on the 100-km WVC after QC
(at least half of the 25-km WVCs withingl100-km WVC), the wind retrieval is performed.

The problem of using such QC proceduréllisstrated in Figure 3.5 (section 3.2). Figure 3.5b
shows the effects of using the recommende#r@5QC (see chapter 5), i.e., KNMI QC + JPL
rain flag in the nadir and KNMI QC in sweet regs, in comparison witRigure 3.5a, where only
the KNMI QC has been applied. On the one hand, as discussed in section 5.2.3, the JPL rain flag
is rejecting a considerbBbamount of consistent winds, as saethe Northern part (nadir region)

of the wind flow (see WVCs with consistemind solutions in Figure 3.5a removed in Figure
3.5b). On the other hand, the 25-km QC (using JiLftfag) is able to reject several WVCs of
poor quality, probably rain contaminated (see tiadir region WVCs with inconsistent solution
pattern, both in speed and diiea, in the lower half of Fjure 3.5a, removed in Figure 3.5b).
These poor-quality WVCs show zero probabilitytie direction of thdlow (not shown) and
therefore it is of great importance to identityese cases and reject them, regardless of the
solution scheme, i.e., the standard procedureeoM8S (see chapter 3), we use. However, even
if the 25-km QC is able to remove most of ghoor-quality WVCs, a few of them still remain in
Figure 3.5b (notice the absence of solutions alignédthe mean flow in a few nadir WVCs).

An alternative would be to use a variational (e section 6.2.1). Th{3C would reject large
discrepancies with the control variable andsash, many of the inconsent nadir winds would

be rejected. Moreover, in contrast with the JRin flag, it would genefly keep the consistent

wind flow. However, the rejectionf discrepancies with the anailysould lead to a retrieved

field too close to the background and, as such, not useful in data assimilation, i.e., the impact of
assimilating observations that are well in agreametin the NWP background is expected to be
negligible. Consequently, an extensivditesis required prior to using such QC.
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Another possibility is to satp a QC procedure for 100-km resolution in a similar way as it was
done for 25 km, i.e., defining a Rn (at 200km) aetting an optimal thrésld (see section 5.1).
The 100-km QC would be able teject the 100-km WVCs thdespite they contain good-quality
25-km information (after 25-km QC), they rdtsim poor-quality 100-km winds; for example, a
100-km WVC crossed by a front line, whichllstontains enough quality controlled 25-km
WVCs for wind retrieval. More work needs to bene in order to define the best strategy to
guality control low resolution retrieved windsotably at 50-km and 100-km resolution.

Finally, as discussed in section 3.3.1, the MSS sslesztlutions with low probability values, i.e.,
below 10*, are of poor quality. As shg¢ a higher probability thrésld than the one used (i.e.,
2x107) by the MSS could be used for QC purposes. However, by increasing the probability
threshold, we will also decreatiee number of MSS ambiguousl@iions (see action 3.2). This

may lead to some additional noise in the nadiath, i.e., the lower the range of solutions the
larger the number of cases witb solution aligned with the “tai direction. Nevertheless, large
discrepancies with the mean flow will mostngeally occur when the observation is of poor
quality. Therefore, a variational QC couldthen used to remove such poor quality cases.

In order to define the best strategy for 100-kpC further investigation of the procedures
discussed in this section is required. A comtiamaof some of these procedures may be more
appropriate.

6.2.3 QUuIKSCAT rain flags

The presence of rain is known to affect the quaiftthe retrieved winds in radar remote sensing,
especially for Ku-band (and shorter wavelengthsjesys. In chapter 5, a MLE-based procedure,
i.e., KNMI QC, is set to QC the (Ku-band) QBKAT data, including the rejection of rain-
contaminated WVCs. A rain flag specifically tuhtor QuikSCAT, i.e., JPL rain flag, is tested

and used as a complement to the KNMI QC in certain areas of the swath, where additional rain
information is needed. In this respect, thare (up to now) two additional rain detection
procedures for QUIkSCAT:

e The first uses the noise measuremeofs QuikSCAT, which are ocean view
measurements without a signal return, as radtensignals with an accuracy of about 10-
15 K to detect the rain. Although it may wdrke in the Tropics, ahigher latitudes the
temperature contrast betwedre sea surface and the clodplets is not sufficiently
large to be discriminated by such system. Apotproblem here is the large footprint of
the radiometer of about 75 kridofes et al., 1999).

» Another recent rain flag parameter baseaoreEmpirical Normalized Objective Function
(Mears et al., 2000), i.e., the nof_rain_index, hasedén included in the JPL product,
although it is not used in the JPL raflag computation (see section 5.2.1). The
nof_rain_index is based upon a simplified version of the standard GMF to determine a
MLE and a wind speed for each WVC. The MLE is based upon the sum of the squared
differences between the setaf that were used to retkie winds and the corresponding
GMF o° that would generate the ambiguity with the smallest MLE (i%rahk). The
wind speed is based upon a modifietl which is specifically calculated to be less
sensitive to rain. The simplified MLE is normalized by a tabular empirical estimate for the
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95th percentile of the squared differencdribstion. These tabular values are indexed by
beam polarization, cross-trad&cation in the swathral wind speed. The normalized
MLE is then divided by the number of in the WVC, multiplied by thirty, and rounded
to the nearest integer valu&€he resulting nof_rain_indeis most effective for wind
speeds under 10 m/s but not very effective fard\dpeeds greater than 15 m/s. This is a
major constraint since, as discussed in each.1.2, most of the significant rain (above 6
mm/hr) results in a radar backscatterresponding to a 15-20 m/s wind.

These rain flags have not been used in chapter 5 because of their mentioned limitations.
However, if any new rain flag for QuikSCAT is satthe future, it could be incorporated in the
QC procedure following the same steps of section 5.2.

6.2.4 SAR case

As for two-view measurement systems, theBvbased QC procedure (see section 5.1) is not
valid for single-view measurement systems (@eésection 1.4.1), such as the SAR. In contrast
with the two-view measurement systems, wtbeeQC procedure can be used as a gross quality
check, the MLE concept cannot be used for sivg& measurement systems at all. The MLE is
not a valid inversion parameter since the wintdiaeal problem is underdetermined (see chapter
4). The MLE value is always zero, i.e., for agle measurement there is always a wind solution
that fits the GMF, regardless of the qualitytieé observation. Thus, the MLE cannot be used for
QC purposes in systems like SAR.

The SAR images contain information of the state of the surface roughness, which in turn can be
used to derive estimates of the integrat@gture of processes and features in the upper ocean
and in the atmospheric boundary lay@lpérs, 1995, Johannessen et al., 1991). Moreover, from

the form and the location of the roughnessquatbne can in the majority of cases determine
unambiguously whether it arises from predominantly oceanic or atmospheric processes and
features Johannessen et al., 1996; Alpers et al., 1998). Therefore, most of the geophysical
effects, which are known to disturb the “winsignal (see section 1.4.5)ctuas rain, sea ice, or
fronts, can be identifeék by looking at the SAR image (a comprehensive interpretation of SAR
images can be found dlmhannessen et al., 1994b). As such, a “manual” QC can be performed on
SAR data.

The spatial resolution of the retrieved winds is also relevant for QC purposes. As such,
Portabella (1998) concludes that, at 300-500 meter Itggm, the presence @oint targets such

as ships or oil platforms can strongly influenithe radar backscatteigsal and therefore the
quality of the retrieved winds. pAractical way (i.e., other than manually) to solve such problems
is to decrease the resolution. That is, the imitgeof point targets on the average backscatter
signal at pixel sizes of a few km is negligible.dmapter 4, the wind retrieval is performed at a
resolution of 5 km, thus avoiding this problem.

Up to now, however, there is no automatic wa@t© SAR data. In this respect, efforts towards
an automation of QC tasksearecommended, notably for apgonal use of SAR retrieved
winds.
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6.3 General aspects

In this section, several issues concerning rtteghodology and the radar systems used in this
thesis are briefly discussed.

6.3.1 NWP data versus in-situ observations

In the work described in this thesis, the RWata, i.e., ECMWF and HIRLAM, are repeatedly
used for many purposes, including validationaretcterization, compaos, and wind retrieval.
Observations (other than radar), i.e., SSM/I rain data, are only used in chapter 5 to characterize
the Rn and define a threshold for QC purpoktseover, in-situ observations, e.g., buoys, ships,
etc., are not used at all for SAR nor for scatterometer related work.

The use of NWP and/or in-situ data is of pathc importance for calilation and validation in
scatterometry offelen, 1998a). Moreover, the optimum way textract information from radar
systems such as the SAR is to combine thdth NWP models and/om-situ measurements
(McNider and Pielke, 1984; Gudiksen et al., 1992).

There are a few reasons for not using in-situ measmts in this thesis. First of all, the in-situ
measurements are often too coarse andnfalistance from radar acquisitionSefterer et al.,
1998; Stoffelen, 1998a), leading to uncertainties or errarsthe results. Moreover, the accuracy
of the tuning, the calibration or the validation dege very much on theumber of independent
collocations. The collocations with mesoscale RiWiodel data can be precisely performed both
in space and time and, since NWP data are available everywhere on the globe, the amount of
collocations is much larger compared to theamations with in-situ masurements. For instance,
the ERS scatterometer produces almost a mill&rCs per 2.5 days, scattered over the world’s
oceans. On the other hand, if we put one katdyre equator for comparison purposes, measuring
continuously in time, and allow a collocation nagliof 50 km, then itvould take the same 2.5
days to obtain one collocation with the scatterom&effélen, 1998a).

Another reason for not using in-sitneasurements is related te thpatial representation of the
observations. As such, satellite radar observati@present a spatial average. While NWP data
also represent a spatial average of companasielution (compared to the radar observations),
the in-situ measurements are often taken ah@lesipoint in space. Deriving the differences in
spatial representativeness represents an additional effort, which is often not tak&ufémagh,
1998; Bentamy et al., 2002). In this respectSoffelen (1998b) shows a comprehensive way of
deriving such differences using triple collocations of buoy, scatterometer and NWP data.

Nevertheless, the in-situ measurements are @sful for calibratiorand validation purposes.
Soffelen (1998a) discusses the important rolene$itu measurements in NWP: on the one hand,
the NWP models use all kind of meteorologicadetvations (including in situ) through their data
assimilation schemes to produce their best analgaishe other hand, the in-situ measurements
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are used very effectively to characterize NWiBdel errors. The NWP aoalel output is in turn
used for the type of work presented in this thesis.

6.3.2 Spatial resolution

In the preceding chapters, several spatial resolutiaxs been used for wind retrieval and QC. In
particular, 100-km resolution is used by the M8SQuUIkSCAT wind retrieval (chapter 3), 5-km
resolution is used by the SWRA for SAR wind retak(chapter 4), and 25-km resolution is used
by the KNMI QC for QuikSCAT QC (chapter .5Yhe choice of spatial resolution is done
according to optimization and/or practical reasdi. example, in the case of QuikSCAT wind
retrieval, the 100-km product turned out to &ssl ambiguous and more accurate compared to the
25-km product (see section 3.1.3). For SAR; Bikm resolution was selected low enough to
remove speckle, wave modulation and point-tagffetcts (see sections 1.2.2 and 6.2.4), and to be
comparable with the resolution of the VHRIthough, as seen in chapter 4, the effective
resolution of the VHR is much lower than 5 km}ich is used by the SWRA for wind retrieval.
In the case of QUIkSCAT QC, the 25-km resaatis used to accommodate the QC procedure to
the actual resolution (i.e., 25 km) of theiIK®RCAT data products delivered by JPL.

However, the methodology presented in this thiesiot dependent on the resolution. That is, the
MSS and the SWRA are proposed to solve theadlraliscussed levels of determination of the
problem in radar remote sensing. In a similay, the KNMI QC methodolgy can be applied to
any overdetermined radar system. In the case anabelution is required for any of the already
mentioned procedures, additional tuning, e.g.,oregutation of weights and probabilities in the
cost function, may be performed and differenidation tools, e.g., diffrent observation types,
or different complementary information (for wimdtrieval), e.g., different NWP models, may be
used, but the basic methodology would not vary.

6.3.3 Radar bands and polarizations

As discussed in chapter 1, the Bragg scattering amesin is the major contributor to the radar
backscatter signal. The gravity-cdgil waves are almost instantaneously in equilibrium with the
local wind and therefore their detection verytaoie for wind retrieval. As such, a centimetre
wavelength beam is required in order to getggracattering from such waves, i.e., the gravity-
capillary are centimetre wavegsee section 1.2.2). The radar bangsed in this thesis are
obviously within the centimetre walength range, i.e., about 5 dor C-band and 2 cm for Ku-
band. Nevertheless these are not thg bahds suitable for wind retrieval.

In order to determine the range of wavelésgsuitable for wind retrieval, there are a few
atmospheric and oceanic constraitd take into account. On tle@e hand, the smaller the radar
wavelength, the more significant the atmosphefiects on the radar signal. As discussed in
chapter 5, the Ku-band is already significantiieeted by rain and, as such, it gives a bottom
limit to the mentioned range of wavelengths,, ighorter wavelengths than Ku-band (2 cm) are
too much affected by atmospheric phenomenath@rother hand, the longthe wavelength, the
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less instantaneously the ocean wave will bequildrium with the local wind. This will in turn
affect the quality of the retrievals. The uppienit of wavelengths should therefore take into
account the energy transfer time-delay betweeshioeter and the longer waves. Waves of up to
several decimetres are considered to be alnmsttntaneously (in terms of scatterometer
footprint scale) in equilibum with the local wind i{omen et al., 1994). An important constraint
for the upper limit is the limitation of antenna sikze,, the higher the wavelength, the larger the
antenna size to keep beamwidiid signal-to-noise ratiealues. Satellite radar systems operating
at a few decimetres wavelength d&easible, as shown by the L-bareR(2 dm) SAR onboard
JERS-1. Therefore, wavelengthsger than 5 cm, i.e., C-bandpudd also be used by satellite
radars for wind retrieval purposes. In this respect, some efforts have been made to develop a
GMF for S-band#9 cm) and L-band radarbal et al., 1991).

As discussed in section 1.4.1, the paiation is very important fowind retrieval. The V-pol, for
example, has a good upwind-crosswind modaoitatiwhich favours accurate wind retrieval.
However, it has a poor upwind-downwind asynmypewhich in turn produces an ambiguity
problem. In contrast, the H-pol has a smaillpwind-crosswind modulain but a considerable
upwind-downwind asymmetry, thus potentiallgueing the ambiguity problem. A combined use
of V-pol and H-pol is therefore strolygecommended in radar remote sensing.

Lately, there have been some efforts to tesptitential of a polarimetricadar. The polarimetric
radar is not only emitting and receiving in the sgokrization, i.e., V-pol or H-pol, but has also
cross-polarization capabilities, i.e., emitting in V-pol and receiving in H-pol and vice Yeeba.

et al. (2001) show that a polarimetric radaasha strong potential for improving the wind
direction accuracy by removing almost comgietdne ambiguity. Moreover, the accurate and
unambiguous wind direction information derivearfr the polarimetric da is of particular
importance in areas of poor azimuth diversity such as the QuikSCAT nadir region. A problem
encountered in the experimermgsthat the signal is weakénan predicted by theoryigeh et al.,

2001). In this respect, ESA is investigating tleasibility of including polarimetric modes in the
RFSCAT systeml(in et al., 2002).

The Department of Defense (DoD) WindSaission, to be launched in 2003, carries a multi-
frequency polarimetric microwave radiometer,ievhwill provide wind vector and sea surface
temperature observations. The experience on WindSat polarimetric measurements can be very
useful for designing future satellite radar missions.

6.4 Outlook

The methods proposed for satellit@dar wind retrieval and Q@nd applied to two different
systems (i.e., QUuikSCAT and ERS SAR) in tthiesis have produced rnyepromising results.
They take account of both urrdetermined and determined prefls in general, including the
azimuth sampling, a new challender satellite radar wind teeval after the launch of
QuikSCAT. As such, the methodology presented is generic and can be applied to any past,
current or future satellite rertesensing radar system (see radatrument description in section
1.3). Therefore, the MSS (see chapter 3) could be applied to future scatterometers, e.g.,
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SeaWinds-2 or ASCAT, as well as the SWRA (sbapter 4) to future SAR systems, e.g.,
Advanced SAR (ASAR)or the Radarsat-2 SAR.

The SeaWinds-2 on ADEOS-2 will particularlyradit from the MSS since it has areas of poor
azimuth diversity (i.e., SeaWinds-2 is a replafaSeaWwinds). In adtion to SeaWinds-2, the
ADEOS-2 payload will include a microwave radieter, i.e., the Advanced Microwave Scanning
Radiometer (AMSR), which will provide cloudgliid content and rain measurements precisely
collocated with SeaWinds-2 data. AMSR datél therefore be of paicular interest for
SeaWinds-2 QC. As such, an AMSR-based fag based on AMSR data could be set and
incorporated to the QC procedure of chafie On the other hand, the passive microwave
radiometer also provides information onretlsea-surface wind speed. As such, a combined
algorithm SeaWinds-AMSR can be sebtatain more accurate wind fieldd/éntz et al., 2001).

The MSS has also shown promising results diier QUIkSCAT good azimuth diversity areas,
i.e., sweet regions (see section 3.3), especiallpvatwinds, denoting its possible usefulness in
optimal geometry systems, such as ASCAT.

The SWRA prepares the grounds for the asstioilaof SAR data in high-resolution NWP
models like the VHR HIRLAM. The large coveragEASAR and Radarsat-2 (i.e., about 500-km
wide swaths) make them partictjaattractive for operational use.

In terms of an optimal satellite remote-sensiagar system for windetrieval purposes, the
proposed RFSCAT (see section 1.3.1) is promisingontains the capabilities that have been
identified as optimal for wind retrieval througtetbxperience acquired over the last two decades:

it has a large coverage (comparable to SeaWinds); and it would probably use C-band (not
affected by rain as Ku-band) and dual polarizaian, V-pol and H-pol). A polarimetric mode is

under investigation. It is relevamb say that, similar to SeaWinds, the RFSCAT is a rotating
scatterometer and, as sucheas of poor azimuth diversity gpeesent in the swath. In particular,

by using a fan beam instead of a pencil beam, the RFSCAT reduces the extension of such areas
(see RFSCAT instrument geometrylim et al., 2002) in comparison to SeaWinds. In order to
avoid poor azimuth sampling, aomrotating scatterometer coullternatively be designed.
However, rotating scatterometers present a sotislig larger coverage, which is of great
importance for most scatterometer applications, compared to non-rotating systems. Moreover, as
shown in chapter 3, reasonably a@eta wind field information cahe derived ovepoor azimuth
diversity areas by using the MSS.

Finally, an alternative tmonostatic radar could testatic radar. Such radar system should locate
the antenna receiver with respeatthe antenna transmitter such that the former receives the
forward reflection of the incidenmtadiation (transmitter in locatn “1” and receiver in location

“2” of Figure 1.3a in section 1.2.2). Tl of such system would b@ainly dominated by the
specular reflection. As scatterometer and SAResyst since the look angie away from nadir,

the o° would not only be sensitive to wind spelegt also to wind direction. Therefore, wind
vector retrieval is theoreticallgossible with such a system. practice, the implementation of a
satellite bistatic radar system is rather complica@airjson et al., 1998; Komjathy et al., 2000).

ESA is studying the possibility of sending a famtenna receivers into space and use the existing
Global Positioning System (GPS) satellites as radar transmiReffen{ et al., 1999). For such
system, a wide variety of views, i.e., differemimber of measurements and azimuth resolution, is

! Envisat was successfully laurschon March 1, 2002. The data distributisrexpected to begin in December 2002,
after the calibration/validation period.
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expected. As such, the wind retral methodology implemented inighthesis could be further
explored for bistatic radar use.
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Appendix A

QuikSCAT Data Products

There are two QuikSCAT data products: the Bliehical Data Format (HDF) and the Binary
Universal Format Representation (BUFR). The foromrally takes a few weeks to be delivered
and is used for broad scientific purposes; thedasta near-real time (NRT) product and, as such,
takes only a few hours to be delivered, contamsehow reduced information (compared to the
former product), and is used for operationaipmses (e.g., data assimilation). A full description
of the HDF and BUFR data products can be foundHAb (2001) andLeidner et al. (2000),
respectively.

The work described in this thess focused on the Level 2A and Level 2B HDF Science products
and on the NRT BUFR product. The LeveA contains theradar backscatterof) related
information and the level 2B the surface wind related information, while the BUFR product
contains both the® and the wind information.

The main difference between the HDF and the BUydtuct is related tthe spatial resolution

of a°. In each WVC, th@° of a particular view (fore-inner, fe-outer, aft-inner, aft-outer) in the
BUFR product is an average of afls of that particular view ithe HDF product, which fall in

the same WVC.

The SeaWindg°s can be either “eggs” or slicda.a particular WVC, an “eggt° is the radar
backscatter from the whole pulsefootprint whose centre falls in that WVC. The “egg” can be
subdivided in individual range-relstion elements or slices; thgices of a particular “egg”
whose centre fall in the same WVC are weighteraged (the weighting factor is directly
dependent on the noise of each slicee&surement”) to become a pulse-composite The
antenna footprint or “egqg” is agllipse approximately 25-km in azimuth by 37-km in the look (or
range) direction. The slices are 25-km in azintha variable range resaion of approximately

2 to 10 km (the nominal width is 6 km).

The HDF data are given in “eggésolution. Therefore, althoudhe size of the WVC is 25 km,
the actual resolution of the mds retrieved from the “egg®®s is approximately 40 km.
Composites enhance the wind resiolo mainly in range direction down to 25 km, and have little
effect on azimuth resolution. The BUFERs are weighted average of pulse-composites or WVC-
composites.
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Figure A.1 shows a schematic illustration of dfeprocessing. For example, tbé information
for a single view (fore-inner, aft-inner, fore-eutr aft-outer) at the top-right WVC is: tvads,
which correspond to the two right-most “eggs”, for HDF; and @hevhich corresponds to the
WV C-composite of the (fouarkest slices, for BUFR.

Figure A.1 The dlices for three pulses or footprints (“ eggs’) of a single view are shown along with four WVCs
(squares). The dices are shaded differently depending on which WVC contains the dlice centroid. Sices with
centroids outside the four WVCs are not striped. All slices with the same shading from a single pulse contribute to
the pulse-composites for that pulse and VWWC. Similarly, all slices with the same shading contribute to the W\/C-

composite (Figure 6 from Leidner et al., 2000).
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Appendix B

Expected Maximum Likelihood Estimator

B.1 <MLE> surface fit for the 25-km JPL-retrieved winds in HDF format

In order to fit a 2D faction to the filtered mean MLE sade (see Figure 2.5b), we first fit a
function for the MLE dependence on wind speed atertain node. Then we assume that the
shape of this function isearly constant over all nodestoe inner swathrad we compute the
variation of its mean vatiover the node number domain.

Figure B.1a shows the fit ofelfiltered mean MLE versus wind speed for node number 25 with a
Gaussian + ¥ order polynomial function. The dotted linepresents the extrapolated values for
wind speeds higher than 20 m/s. It is clearly disibde that the fit is very accurate for that
particular node.

Figure B.1b shows the averaged MLE overwihd speeds and normalized with the speed
dependent function (fit on Figure B.1a) versisiode number in the innswath. The fit is 2™
order polynomial function (node dependent funttiorhe dotted line shows the extrapolation
over the outer swath.

The fact that we have found a 2iinction which fits reasonablyell to the computed mean MLE
makes our assumption of considering the shaplkeeo$peed dependent function constant over the
node domain valid.

The 2D function that fits the filtered mean_® surface is simply the product of the speed and
the node dependent functions. The expression is the following:

<MLE >, = f (v) F '(n) (B.1)
LvA

fW=AR? * +A+AT+AT (B.2)

f'(n)=B,+B,h+B, M ;On0[L76] (B.3)
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wheref is the wind speed dependent functibnis the node dependent functionis the wind
speed and the node number.

The coefficient values are the following:
Ao=0.78519A1= 1.47396 A, = 2.91577
A3=0.31881A4=-4.2426E-3As= 6.9633E-5
Bo=1.37840B;:=-0.027138,= 3.4853E-4

a) b)

Mean MLE vs Wind Speed (Node : 25)
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Figure B.1 Filtered mean JPL-selected MLE versus JPL-selected wind speed (plot a) for node number 25 (stars),
where the solid line shows the function fit and the dotted line the extrapolation for wind speeds higher than 20 my/s;
and averaged JPL-selected MLE over all JPL-selected wind speeds, normalized with the speed dependent function
(fit on plot a),, versus the node number (plot b) in the inner swath (stars), where the solid line represents the
function fit and the dotted line the extrapolation for the outer swath.

B.2 <MLE> calculation for the 25-km JPL-retrieved winds in BUFR format

Following the methodology descet in section 2.3.1, we computhe <MLE> for the 25-km
JPL-retrieved winds in BUFR format. Inishsection, we summarize the mentioned <MLE>
computation, emphasizing the differences wiith <MLE> in HDF format (see section 2.3.1 and
Appendix B.1).

The <MLE> is also computed from 60 orbitsrefl data (BUFR in thisase). From the mean
MLE surface versus wind speed and node numbernthse is filtered using the same iterative
process as for HDF. However, the MLESs rejeceslthree (or more) times higher than the mean
MLE instead of two times as for HDF. This is ddonekeep consistency ihe filtering procedure
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in terms of rejecting a small amount of data eodserving the shape ofetloriginal function (see
discussion in section 2.3.1).

Figure B.2a shows the filtered mean JPL-selected MLE versus JPL-selected wind speed and node
number for BUFR. Comparing this surface witte one for HDF (Figure 2.5b), both are very
similar although the BUFR surface looks monegular for speeds higher than 7 m/s. These
irregularities make the two-dimensional functifih (see below) tothe BUFR surface less
accurate. As said in section 2.3.1, the functiomsftequired for extrapolation purposes. Figure

B.2b shows the function fit (or <MLE> surface).idtclearly discernibléghat the irregularities

seen in Figure B.2a are filteredit in the fit, but the main sipe of both surfaces remains the
same and therefore the accuracy of the resuRimgs not expected to decrease significantly.

Both surfaces in Figure B.2efor speeds lower than 20 nasd for the inner nodes. The two-
dimensional function fit is used in the sameyves in HDF to extrapolate the expected MLE
surface for winds higher than 20 m/s and the outer nodes.

<MLE> surfacefit

Looking at the filtered mean MLE surface (segufe B.2a), it is @arly discernible that
assuming a constant shape of the MLE dependence on wind speed over all nodes of the inner
swath (as in Appendix B.1$ not valid anymore.

In this case, we fit a Gaussian ¥ @rder polynomial function to the filtered mean MLE for each
node of the inner swath septely. Then, we fit a"™ order polynomial functin to the evolution

of each coefficient of the previous function wregsspect to the node number. Therefore, the 2D
function that fits the filtered mean MLE surface is the following:

1AL
<MLE> = AR * +A+AN+AN (8.4)
A= Ao+A+A, M 0 D[08],0n0[176] ®.5)

where MLE> is the expected MLE (see Figure B.2W)js the wind speed and the node
number.

The coefficient values are the following:

Aoo= 0.55000A01= 0.00000Ax2= 0.00000
Aqo= 1.50000A;:= 0.00000A;>= 0.00000
Axo= 2.75000A2:= 0.00000A22= 0.00000
Aszp= 0.21210As;1= -2.49E-3A32,= 3.02E-5
A= -7.41E-3As1= 3.13E-4As2=-4.08E-6

Aso= 1.18E-4As1=-4.76E-6As2= 6.24E-8
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Figure B.2 “Filtered” mean JPL-selected MLE (plot a) and Expected MLE (plot b) versus JPL-selected wind

speed and node number for the inner swath nodes. The speed binning is 1 m/s and the node binning is 1.
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B.3 <MLE> calculation for the 25-km KNMI-retrieved winds in BUFR format

As in Appendix B.2, we follow the methoaagy described in section 2.3.1 to compute the
<MLE> for our KNMI-inverted winds. In contrastitkh the <MLE> used in chapter 5, we use the
1% rank MLE and wind speed information tmmpute the <MLE> since we do not have
information on the “selected” solution (no KNMI XBa AR at this stage). However, as discussed
in section 5.1.3, the Rn based on therank solution is comparable to the Rn based on the
selected solution in terms of Q&Rill. Therefore, it is irrelevanvhether we use an <MLE> based
on the selected or thé'tank solution for computing the solution probability.

Figure B.3a shows the “filtered” mean KNMf' tank MLE as a function of node number and
KNMI 1% rank wind speed for QuikSCAT BUFR datat, the inner swath. In contrast with
Figures 2.5b and B.2a, there is no straightboovway to fit a two-dimensional function (see
Appendices B.1 and B.2) to this surface. \émld directly use this surface as <MLE> by
creating a table. However, there is some remgimoise in the surface, especially at low and
high winds that we would like to meove. It is also important to remove this noise if we want to
consistently extrapolate the <MLE> for windggheér than 20 m/s. Therefore, we have fit a
Gaussian +? order polynomial function in the speed d@imfor every node ahe inner swath.
Since it is not practical to use 60 differenné€tions (one for everynner swath node) and the
mean MLE is rather constant for high winds, heve created a two-dimensional array (table)
with speed bins of 1 m/s and node bins oivthiich ranges from nodes 1 to 76 and from speeds 0
m/s to 20 m/s. For any wind speed higher tham&) the <MLE> value used is the one at 20 m/s
for that particular node numbefrhere are not yet plans to uge Rn in the outer swath and
therefore no attempt to extrapolate the <MLE>ha outer swath has been made. However, as a
first guess, we have copied the <MLE> valuethatedges of the inner swath to the outer swath
nodes. Figure B.3b shows the kB> surface derived from theMLE> array, over the inner
swath. The surface compares well with the mean MLE surface (Figure B.3a).

B.4 <MLE> calculation for the 100-km KNMI-retrieved winds in BUFR format

The <MLE> for 100-km is computed in a similar way to the Rn for 25-km (see Appendix B.3).
Figure B.4a shows the “filtered” mean KNMT' tank MLE surface as a function of the KNMf 1
rank wind speed and the node number for 1004solution inverted winds. [Note that the 100-
km node numbers 4 to 16 correspond to mosh®fQuikSCAT inner swath]. As in Figure B.3a,
there is no straightforward way to fit a two-dims@éonal function to the surface. Therefore, we
compute a table in a similar way as for thek@bproduct <MLE> (see Appendix B.3). However,
as we can see in Figure B.4a, no significant nigiggesent in the surface. Therefore, we do not
even perform a function fit in the speed dom as it is done for the 25-km surface (see
Appendix B.3), but rather leave the surface as.iWe only perform an average over the last
three speed bins (wind speeds from 17 m/s tm&) to filter the remaining noise at high winds
and therefore be able to consistently extrapofat winds higher than 20 m/s. Therefore, the
<MLE> table (shown in Figure B.4b) is almastcopy of the mean MLE surface (Figure B.4a).
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Figure B.3 “ Filtered” mean KNMI 1% rank MLE (plot a) and Expected MLE (plot b) as a function of node number

and KNMI 1% rank wind speed for BUFR data (inner swath), at 25-km resolution. The speed binning is 1 m/s and

the node binning is 1.
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Figure B.4 “ Filtered” mean KNMI 1% rank MLE (plot a) and Expected MLE (plot b) as a function of node number
and KNMI 1% rank wind speed for BUFR data (inner swath), at 100-km resolution. The speed binning is 1 m/s and
the node binning is 1.
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Appendix C

Inversion Tuning

Although the QuikSCAT inversion problem discussedection 2.2 is inherent of the inversion
process and therefore not solvable at this stafygtteer examination of such process is desirable
in order to optimize it for QUIkSCAT.

NSCAT-2 versus QSCAT-1

Since May 2000, the JPL QuikSCAT winds are ested using the QSCAT-1 GMF. This is the
first empirically derived GMArom QuikSCAT measurementBrilich et al., 2002), as the one
used before the mentioned date, NSCAT-2, was derived from NSCAT Watéz @nd Smith,
1999). Since we have had access to both the NB€A&nd the QSCAT-1 tables (remember that
the GMFs are tabulated for computational @éfincy purposes), it seems reasonable to compare
them, using the KNMI inversion software, in orde choose the most popriate for QUIkSCAT
wind retrieval. A set of 12 hours of QuikSCATtdas collocated witECMWF winds and used

in here for reference.

Figure C.1 shows the wind direction distributions witispect to the satellite flight direction of
ECMWEF winds (solid lines) and QuikSCAT retrieveodlutions closest to ECMWF (dotted lines).
The QuikSCAT winds from the top plots ardrieved using NSCAT-2 GMF; the ones from the
bottom plots are retrieved using QSCAT-1 GMF. Itiscernible from the left plots (i.e., wind
direction distributions for WVC number 20) that the QSCAT-1 wind direction distribution fits
better the ECMWEF distribution than the @QAT-2 distribution, where some unrealistic
accumulations are discernible (see peaks arouhdl@®® and 230 in Figure C.1a). Looking at
the direction distribution®ver the entire inner swath (right plots), we still see a better fit of
QSCAT-1distributions, denoting that the QSCATrihd directions are somewhat more realistic
than NSCAT-2 directions.

This result is in line with the RMS diffemee values between QuikSCAT and ECMWF wind
directions. As expected, the RMS differencenimd direction is lower for QSCAT-1 than for
NSCAT-2 in both the sweet andetihadir swaths (see table C.1).

Appendix C. Inversion tuning 153



WVC Number: 20 inner swath
0.040

0.030

0.02
0.020

Normalized histogram
Normalized histogram

0.010] ~

0.00 0.000
0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360
Wind direction (degq) Wind direction (degq)
C) d)
WVC Number: 20 inner swath
0.040

0.030

0.02
0.020

Normalized histogram
Normalized histogram

0.010]|

0.00 0.000
0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360
Wind direction (degq) Wind direction (degq)

Figure C.1 Wind direction (with respect to the satellite flight direction) histograms of ECMWF winds (solid lines)
and QuikSCAT-retrieved solutions closest to ECMWF (dotted lines) for WAVC number 20 (left plots) and for the inner
swath (right plots). The QuUikSCAT winds have been retrieved using NSCAT-2 GMF (top plots) and QSCAT-1 GMF
(bottom plots). Non-smoothing and 3D interpolation have been used in the inversion.

Tables C.2 to C.5 show the percentage of “seddelutions (closesto ECMWEF) stratified by
number of solutions and rank. The number dfitsans corresponds to the number of minima in
the MLE cost function and the solution rankingegdrom the deepest to the shallowest cost
function minimum in ascending order. The first roarresponds to the numbef data stratified

by number of solutions. Tables C.2 and C.&espond to the NSCAT-2 GMF selected solution
distributions of the sweet and nadir swathsspectively. Tables .€ and C.5 correspond to
QSCAT-1 GMF selected solution distributionstioé sweet and nadir swaths, respectively.

As discussed in section 2.2.2, th& rank skill shows the ambiguity or uncertainty of the
inversion. In these tables, th& dank skill is shown by the pegntage of selections of rank 1
solution. As we see in the tables, in general theahk skill is higher for NSCAT-2 than for
QSCAT-1 in the sweet swath and comparable enrthdir swath (see overall results in the last
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column of the tables). Moreover, the numlwdrsolutions given by the NSCAT-2 GMF is
significantly smaller than the number given by@d-1 in both the sweet and the nadir swaths
(see the relative accumulation of data for 3 dndolutions of QSCAT-1 tables compared to
NSCAT-2 tables). This shows that NSCATGMF produces a mucless ambiguous wind
product than QSCAT-1.

Table C.1 Statistics for NSCAT-2 and QSCAT-=1

NRMS

RMS in Speed (m/s
NSCAT-2/QSCAT-1

RMS in Directionf)
NSCAT-2/QSCAT-1

NSCAT-2/QSCAT-1

Sweet swath

1.57/1.66

21.39/19.36

0.4953/0.5113

1.67/1.73

29.14 / 27.56

0.5359/0.5619

Nadir swath

! Non-smoothing and 3D interpolation have been used in the inversion.

Figure C.2 shows the two-dimensional histogsaof the QuikSCAT retrieved wind solution
closest to ECMWEF versus the ECMWF winds fonal (left plots) and maional (right plots)
components. The QuikSCAT winds from the tpts are retrieved using the NSCAT-2 GMF,;

the ones from the bottom plots are retrievetigishe QSCAT-1 GMF. As discussed in section
2.2.2, the quality of the closest gives an idd#athe accuracy of th retrieved winds. No
significant difference is discernible whenngparing NSCAT-2 (top) and QSCAT-1 (bottom)
plots. However, if we look at the legend we see slightly lower SD values for NSCAT-2 compared
to QSCAT-1. [Note: these histograms correspaadthe sweet parts of the swath; similar
conclusions can be derived from the nadiagwhistograms (not shown)]. Although the RMS
difference in direction is lower for QSCATthan for NSCAT-2 winds, the RMS difference in
speed is lower for NSCAT-2 than for QSCAT-1 (see table C.1), leading to an overall comparable
accuracy, slightly higher for NSCAT-2 winds.

Soffelen et al. (2000) computed a more realistic RM8ference in wind direction, called the
normalized RMS (NRMS). Using the actual RMSidi#ion, the more ambiguous solutions are
provided by the inversion, the smaller the 8MWiill be, because the chance that one of the
solutions will be close to the wind reference wnlitrease. In the limit of an infinite amount of
observations, the RMS will even be zero, while tHermation content of the set of solutions in
reality decreases with an increaginumber of solutions, because there is no a priori way to say
which of the solutions is the correct one. In order to solve this problem, they normalize the RMS
with an expected valueyhich is dependent on the angle agpion of the nghboring solutions

of the closest solution to reference (E@M in this case). For more details, steffelen et al.
(2000). If we compute the NRMS, we get lowalues for the less ambiguous NSCAT-2 product
than for QSCAT-1 (see table C.1).

Both the RMS and the NRMS parameters are retrile and only way to look at the accuracy of
the retrieved winds. Moreover, the ECMWEF is jasteference. Therefore, it is difficult to say
precisely from the results, which of the two GMFs produces more accurate winds. However, it is
clear that both GMFs produce winds of comparable accuracy.
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Table C.2 Solution distribution for NSAT-2 GMF (sweet swath)

1 Solution| 2 Solutions| 3 Solutions| 4 Solutions| All Solutions
Number of Datd 378 62856 44029 61172 168435
Rank 1 100 90 81 79 84
Rank 2 - 10 14 16 13
Rank 3 - - 5 3 2
Rank 4 - - - 2 1
Table C.3 Solution distribution for NSCAT-2 GMF (nadir swath)
1 Solution| 2 Solutions| 3 Solutions| 4 Solutions| All Solutions
Number of Datgd 6877 48382 30943 8303 94505
Rank 1 100 81 79 64 80
Rank 2 - 19 16 19 17
Rank 3 - - 5 9 2
Rank 4 - - - 8 1
Table C.4 Solution distribution for QSAT-1 GMF (sweet swath)
1 Solution| 2 Solutions| 3 Solutions| 4 Solutions| All Solutions
Number of Datd 29 45139 48795 74473 168436
Rank 1 100 94 81 74 81
Rank 2 - 6 14 18 14
Rank 3 - - 5 5 4
Rank 4 - - - 3 1
Table C.5 Solution distribution for QSCAT-1 GMF (nadir swath)
1 Solution| 2 Solutions| 3 Solutions| 4 Solutions| All Solutions
Number of Datgd 4000 45806 36279 8413 94498
Rank 1 100 82 78 70 80
Rank 2 - 18 16 20 17
Rank 3 - - 6 6 3
Rank 4 - - - 4 0

! Non-smoothing and 3D interpolation have been used in the inversion.
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In summary, the NSCAT-2 provides a less ambiguymosluct than QSCAT-1 without decreasing
the quality of the wind retrieval. In other vas, in comparison with QSCAT-1, NSCAT-2 is
capable of removing a significant amount ofaalistic ambiguous wind solutions. Moreover, as
discussed in Appendix D, the NSCAT-2 GMF befits the backscatter measurements than the

QSCAT-1 GMF. Consequently, the NSCAT-2 GM#l be used for deriving QuikSCAT winds.
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Figure C.2 Two-dimensional histogram of the closest KNMI-retrieved wind solution to ECMWF wind versus
ECMWF wind for QuikSCAT winds derived with the NSCAT-2 (top plots) and the QSCAT-1 (bottom plots) GMFs.
The left plots correspond to the zonal wind component and the right plots to the meridional wind component (bins
of 0.4 m/s for both components). The legend and the contour lines are the same as in Figure 2.2. Non-smoothing
and 3D interpolation have been used in the inversion.
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Smoothing versus interpolation

The MLE cost function is often noisy (imagineryesmall peaks and troughs in Figure 2.1). This
leads to the detection of excessimaima close to each other in the inversion process, especially
in the nadir swath where the minima tend tdb@ad. A common way to solve the problem is to
apply a smoothing technique over the cost function. The idea is to define a smoothing window
whose size is determined by the number of éasttion points below a certain threshold. This
threshold can be defined for example as a faatdhe minimum MLE value, the minimum Rn
value, or the difference between the maxamand the minimum MLE values in the cost
function. Here we test a coupdé smoothing techniques, whose imdifference is the resulting
window sizes, and compare them to a non-shingtinversion (smoothg window size is zero).
Figure C.3 shows the smoothing window size distion over the mentiownkel2-hour period of
QUuIkSCAT data and the entire inner swath foo thfferent techniques. Since we use the same
wind direction step size as tbae defined in the table (2)5to compute the MLE cost function,
the latter has a totalf 144 points. The number of pointsedsin the smoothing is = 2 x window
size + 1. The difference betweethnique | (Figure C.3a) and ketque Il (Figure C.3b) lays in

the window size distribution, whose mean valuareund 1-2 in the formend 4-5 in the latter.
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Figure C.3 Normalized histograms of the smoothing window size for the smoothing techniques | (plot &) and Il
(plot b) over the entireinner swath.

Figure C.4 shows the same wind direction distidns as Figure C.1la but for no smoothing (plot
a), smoothing technique | (plot b) and smoothieghnique Il (plot c). It is clearly discernible
from the plots that there is an increase of ums@garetrieved wind directions as we increase the
window size (see evolutn of peaks centered around’602C¢ and 230 from Figures C.4a to
C.4c). This shows how sensitive can be the shngtto the quality of the retrieval. As we
increase the smoothing window, the MLE césihction changes shape and the minima are
therefore shifted. Due to the nongiarity of the cost function, somend directions are favoured

in the smoothing process, leading to an incredserealistic accumulatiorest certain directions
as shown in Figure C.4b and C.4c.
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Figure C.4 Same as Figure C.1a but for no smoothing (plot a), smoothing technique | (plot b) and smoothing
technique |1 (plot ). The 1D interpolation scheme has been used in the inversion.

An alternative to the smoothing is the integi@n of the GMF LUT. As mentioned in section
2.2, to compute the MLE cost function, we sedarha minimum in the speed domain and then
we repeat this operation for the entire wind direction spectrum. This is usually performed at the
LUT resolution level for speed (0.2 m/s) and direction“2.8nd only the incidence angles are
interpolated (the step size i§ th the LUT). However, the GMF is also sensitive to speed and
direction changes and this may lead to inaacies in the selection of the minimum, which in
turn can produce noise in the MLE cost fuaosti Therefore, we perform a three-dimensional
linear interpolation in the incidence angkpeed and direction domains. Since the GMF is
especially sensitive to speed changes, we réfiseminimum search in speed to a resolution of
0.02 m/s. [Note that tests at a higher resoluti@ncsein the speed domain, up to 0.001 m/s, have
been performed with similar results].

Figures C.4a and C.la show the retrieved winection distributions (compared to ECMWF) for
interpolating in 1D (only incidece angle) and in 3D (incidence angle, speed and direction),
respectively. The QuikSCAT wind direction distributions look almost identical. In contrast with
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smoothing, the 3D interpolation is not addimgy unrealistic accumulation of retrieved
directions. This is an expected result, sirthe interpolation is looking for a more precise
minimum but not changing the shape of the MLE cost function.

Tables C.6 and C.7 are similar to the tab®2 and C.3 respectively. In the former, 1D
interpolation has been used, while 3D interpolation is used in the latter. The 3D interpolation
scheme has much less number of solutions {lseedecrease in the number of data with 4
solutions in the 3D tables compared to the 1D tables) and a highank skill (see higher
percentages of rank-1 solutiong the 3D tables compared toetiD tables), redling in a less
ambiguous product compared to the 1D producthénnadir region, since ¢hminima tend to be
broad, the noise in the cost function is expedtegproduce more ambiguity than in the sweet
swath where minima are steeper. Notice the significzstuction of ambiguityn the nadir of the

3D scheme with respect to the 1D scheme, tieg@ clear reduction of the cost function noise.

Table C.6 Solution distribution for NEAT-2 GMF (sweet swatf)

1 Solution| 2 Solutions| 3 Solutions| 4 Solutions| All Solutions
Number of Datg 132 50786 40677 76835 168430
Rank 1 100 92 77 73 80
Rank 2 - 8 18 18 15
Rank 3 - - 5 6 4
Rank 4 - - - 3 1

Table C.7 Solution distribution for NSCAT-2 GMF (nadir swath)

1 Solution| 2 Solutions| 3 Solutions| 4 Solutions| All Solutions

Number of Datg 571 18900 20599 54437 94507
Rank 1 100 81 71 42 56
Rank 2 - 19 24 23 22
Rank 3 - - 5 18 12
Rank 4 - - - 17 10

! Non-smoothing and 1D interpolation have been used in the inversion.

Table C.8 is similar to the left column (NBT-2 results) of table C.1. Again, the former
corresponds to the results of the scheme, and the latt® the result®f the 3D scheme. When
comparing the two tables, we notice no significant differences, and therefore no significant
difference in the quality of both interpolation schemes. The speed RMS values are almost
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identical and the direction RMS is somewlhegher in the 3D scheme compared to the 1D
scheme. In contrast, the NRMS of the 3D sch&rewer compared to that of the 1D scheme,
especially in the nadir region, agpected from the lower ambidy of the 3D scheme already

mentioned.

Table C.8 Statistics for NSCAT-2

RMS in Speed (m/s) RMS in Directionf) NRMS
NSCAT-2 NSCAT-2 NSCAT-2
Sweet swath 1.57 20.89 0.5095
Nadir swath 1.65 25.57 0.8422

! Non-smoothing and 1D interpolation have been used in the inversion.

If we go back to the discussion on the smoothing, the smoothing technique | produces similar
ambiguity, speed RMS and NRMS values (not siothan the 3D scheme. However, the RMS

in direction for the smoothing technique |18% higher than for the 3D scheme due to the
unrealistic direction accumulatis already discussed. The sniing technique Il produces the

least ambiguous product of all. Thssreflected in only a small decrease of the NRMS (drop of
2% in the sweet swath and 5%tire nadir region) in comparisaevith the 3D scheme. However,

the direction RMS difference of the smoothing teqghei Il is about 20% bher than that of the

3D scheme.

Therefore, we can say that the 3D scheme is the only examined scheme, which considerably
reduces the ambiguity of the retrieved winds withaf@cting their quality in comparison to the

flat scheme (1D interpolation). The smoothiteghniques are meant to remove undesired wind
solutions. However, this is not evident for QuUIkSCAT at low winds, where the solution pattern
(we have examined many cases) is very naisy does not show clegrindesirable solutions,

which may be removed by smoothing, with the sEquent decrease in quality. [Note that the
smoothing techniques have also béested in combination with ¢h3D interpolation resulting in

similar problems than when combined with the ibi2rpolation]. Therefore, for QUIKSCAT, it is

better to keep all the informationd smoothing) and use the 3D scheme.

Appendix C. Inversion tuning

161



162 Wind field retrieval fronsatellite radar systems



Appendix D

Quality Control with QSCAT-1

The QC procedure of section 5.1 is based enMi.E information derived with the NSCAT-2
GMF. If we invert winds usig a different GMF, i.e., QSCAT-1, we will get different MLE
values. Although these differences are not expected to be significant, it may well be that Quality
Control is affected and theret it needs to be revised.

Assuming no major changes, we first computeRm (see equation 2.10) using the new QSCAT-
1 GMF MLE data and the existing <MLE> surfgee., computed from NSCAT-2 GMF data in
Appendix B.1). The test is performéat two weeks of QuikSCAT HDF data.

Rn Characterization

As in section 5.1.2, we colloca@uikSCAT data with ECMWF winds and SSM/I rain data and
look at the same kind of plots asFigures 5.1 to 5.4 in order tdharacterize the Rn. The plots
show very similar features as in section 5.1.2. dhly difference is a giiht increase in the Rn
values.

Figure D.1 shows the contour ploft a two-dimensional histegm of RMS-ECMWF against Rn.
As in Figure 5.1 (same plot but for the NSCRTGMF), the RMS-ECMWEF increases (quality of
data decreases) as Rn increases and the RMS-BEMWcreasing more rapidly with Rn at
higher wind speeds (see plots b, ¢ and d)wéler, when comparg both Figures, it is
discernible that the distributions (see contouedinin Figure D.1 are slightly shifted towards
higher Rn values compared to Figure 5.1. Thet shitmore significant at mid and high wind
speeds (see plots ¢ and d of both Figures).

As we have used the same <MLE> surfacedmpute the Rn, the above-mentioned shift means
that in general the MLE values coming out frahe inversion are slightly higher using the
QSCAT-1 GMF than using the NSCAT-2 GMF.i3hs an indication that the NSCAT-2 GMF
better fits the backscatter measusnts than the QSCAT-1 GMEde chapter 2). Therefore, if
we keep the same Rn threshold as in section 5.1,omédvexpect to have more rejections in this
case.
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Figure D.1 Same as Figure 5.1 but for the QSCAT-1 GMF-.

Threshold Validation

Similar to section 5.1.3, we test the sametiReshold as defined in section 5.1.2 (see equation
5.1) against ECMWF and SSM/I collocations. Tlesults for the sweet parts of the swath are
shown in tables D.1, D.2 and D.3, and the redaltshe nadir part are shown in tables D.4, D.5

and D.6. Tables D.1-D.6 are in the same forasatables 5.1-5.6 (see section 5.1.3), respectively.
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Table D.1 Accepted and rejected WVCs fraai the WVCs (sweet swath).

Total V<10 10<V<15 V>15
Num. Points (n/a)l 5170647 3922963 982175 265509
Accepted (%) 93.0 95.2 88.9 77.1
Rejected (%) 7.0 4.8 11.1 22.9

Table D.2 Relative q

RMS<5 RMS>5 Mean RMS (m/s)
Total (n/a) 4726341 444378 2.49
Accepted (%) 95.9 62.1 2.24
Rejected (%) 4.1 37.9 5.83

Table D.3 Accepted and rejected WVCs by raate intervals (sweet swath).

RR=0 0<RR<6 RR>6
Num. Points (n/a) 1188320 89416 4742
Accepted (%) 95.7 60.9 9.0
Rejected (%) 4.3 39.1 91.0

Table D.4 Accepted and rejected WVCs from all the WVCs (nadir swath).

Total V<10 10Vv<15 V>15
Num. Points (n/a)] 3006927 2295287 555318 156322
Accepted (%) 92.1 95.0 85.9 71.1
Rejected (%) 7.9 5.0 14.1 28.9

Table D.5 Relative quality of accepted angiected WVCs (nadir swath).

RMS<5 RMS>5 Mean RMS (m/s)
Total (n/a) 2634399 372757 2.85
Accepted (%) 95.5 68.0 2.56
Rejected (%) 4.5 32.0 6.23

Table D.6 Accepted and rejected WVCs by raate intervals (nadir swath).

RR=0 0<RR<6 RR>6
Num. Points (n/a) 670388 48638 3370
Accepted (%) 95.0 57.9 12.9
Rejected (%) 5.0 42.1 87.1

uality of accepted angjected WVCs (sweet swath).

Note: RMSis referred as the mean RMS of vector difference between JPL-retrieved winds and ECMWF winds in
nvs; V isthe JPL-selected wind speed in m/s; and RRis the SSM/I rain rate in mm/hr.

Appendix D. Quality control with QSCAT-1

165



Comparing table D.1 to table 5.1, wppreciate a larger percentagaejections in the former at
all speeds, and more in particular at midl dhigh winds. From tables D.2 and 5.2, we see a
considerable amount of this ess of rejections concentratbdlow the RMS value of 5 m/s,
which in turn makes the RMS-ECMWEF slightiynaller. The RMS-ECMWEF difference between
accepted and rejected solutions is slightly smatiéable D.2 (3.6 m/s) compared to table 5.2 (4
m/s). This indicates a somewhat better perforreaof the HDF QC using the NSCAT-2 GMF.
However, this excess in rejections is positivebntributing to rain detection. From tables D.3
and 5.3, the amount of “rainy” WVCs rejectedhigher in the former, eggially at rain rates
below 6 mm/hr where there is 9.7% more of rejections.

Comparing the HDF QC using the QSCAT-1 GMRlie nadir (tables D.4- D.6) with the HDF
QC using the NSCAT-2 GMF (tables 5.4-5.6), we daaw the same conclusions than for the
sweet parts of the swath. In tegrof quantitative results, the only significant differences with
respect to the sweet psaudre the following: the excess of rejens is 1.6 % in total (see tables
5.4 and D.4) while in the sweetrpais 1.4% (setbles 5.1 and D.1); andelexcess of rejections
for rain rates below 6 mm/hr is 6.6% (see taigsand D.6) compared to the 9.7% in the sweet
parts (see tables 5.3 and D.3).

In general, the results show that with the QIEIAGMF the QC rejects more data than with the

NSCAT-2 GMF. However, this gives a positive iagb on rain detection, especially for rain rates

below 6 mm/hr. Therefore, we believe theing the same QC procedure (i.e., same <MLE>
surface and Rn threshold) assiction 5.1 for the new GMF (QSCAT-1) is appropriate and there
is no need to tune the QC procedure to the new data.
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Resumen (Summary in Spanish)

1 Introduccion

La mayoria de los sistemas radar embarcados en satélites y utilizados en teledeteccion son
capaces de proporcionar informacion sobre el campoetdoven la superficie del mar. Esta tesis
revisa los métodos de obtenciérextraccién del vienta partir de las mediciones de dichos
sistemas y propone nuevos métodos para mejaraalidad de las ésacciones en los casos
donde la metodologia actual es insuficiente.

1.1 Importancia de las observaciones del viento en superficie

El flujo atmosférico esta determinado por los pamde viento y de masa (o densidad) de aire.

Las mediciones de viento son particularmente imambes para definir la circulacién atmosférica

a cualquier escala en los tropicos y fuera de ellos a escalas sub-sindpticas. En este sentido, el
sistema de observacién global (GOS), queluye observaciones de distintas variables
meteoroldgicas (por ejemplo presion, tempeeator viento) provenientes de sistemas de
observacion en superficie (estaciones metégioas terrestres, boyas, plataformas petroliferas,
barcos, etc.), aéreos (radiosondas o0 aviones)aciedps (satélites), tiene éstos ultimos una de

las mayores fuentes de informacion del vientoc&mcreto, la mayor fuente de informacion del
viento sobre la superficie marina, que represairededor de un 70% dea superficie terrestre,
proviene de las observaciones derbares embarcados en satélites.

Los campos de viento (observaciones) olesia partir de mediciones de radar tienen
numerosas aplicaciones tanto en meteorologia cemaceanografia. Asi, la prediccion del
tiempo a corto y medio plazo, la modelizacién ldecirculacion oceana o de las olas, la
modelizacién de la interaccion enteesuperficie marina y el aire, la climatologia o estudios mas
locales como las brisas o los flujos cataldticon ejemplos de aplicaciones de dichas
observaciones. Sin duda, una dg &plicaciones mas importantesdte tipo de observaciones es

la integracion de datos en modelos numéramgprediccion del tiempo. Como se sabe, muchas

de las borrascas de latitudes medias o fendbmenos meteoroldégicos mas extremos como las
tormentas tropicales o los huracasesoriginan en el océano. Essaglen tener un gran impacto

tanto social como econémico, en ocasiones admapar las predicciones imprecisas o erroneas.
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La integracién de datos de viento en superfijguede ayudar a mejorar la prediccion de la
intensidad y posicion de dichos fenbmenos.

1.2 Relacién entre la sefial de radar y el viento

El radar (transmisor) emite radion electromagnética en lagi@n de las microondas hacia la
Tierra. Esta radiacion, tipicamente de una itmagde onda de unos pocos centimetros, es
dispersada y reflejada por la superficie rugosaina de forma que una fraccién de la potencia
emitida sera detectada por el radar (receptoredta region de las microondas, la absorcion de
radiacion por parte de la atmésd es pequefia. En la ecuaciodara que determina la relacion

entre la potencia emitida y la recibida, el coeficiente que hace referencia a la rugosidad de la
superficie se llama seccion eficaz del rade).(En el caso de radares monostaticos (emisor y
receptor en el mismo lugar), que son los Uniamares embarcados eatélites utilizados en
observacion de la Tierra hasta la fechag esieficiente se suele mmmninar coeficiente de
retrodispersion.

La resolucion del radar se obtiene por mediciorree magnitudes: ehdulo, la distancia y la
velocidad. La primera hace referencia a lahana (angular) del haz electromagnético y, por tanto
depende del tipo de antena; la satpure refiere al calculo del retrad® la sefial; y la tercera, al
calculo de la velocidad relativa entre el radar guperficie “iluminada”. Los radares de apertura
real (RAR) utilizan la discriminacion en angwoen distancia, mientras que los radares de
apertura sintética (SAR) utilizan la discriminaciém distancia y en velocidad. Asi, la resolucion
tipica de los dispersémetros (un tipo de RAR)de 25-50 km mientras que la de los sistemas
SAR es tipicamente de unos cuantos metros.

El coeficiente de retrodispersion, basicamergado a la rugosidad del mar, est4 caracterizado
fundamentalmente por dos fenébmenos: la disped#dBragg (mecanismo de resonancia entre la
onda incidente y las olas de longitud de onda sinekadecir, las olas de capilaridad-gravedad) y

la reflexion especular (efecto “espejo” que depehdie la orientacion dias olas respecto al

radar). El viento, a su vez, interacciona corsugerficie del mar. Edecir, cuando el viento
empieza a soplar sobre el mar, las olas de capilaridad-gravedad se forman instantaneamente.
Parte de la energia del viento es absorbideeporar y es transferida ecial y temporalmente

de las olas mas pequefias (olas de capilaridacdmd) a las olas de gravedad (decimétricas) y
sucesivamente a las mas largas (métricas, €agnto mayor sea el modulo del viento mayor

sera el tamafo de olas que se formaran. La rugosidad del mar consecuentemente dependera
sobretodo del viento. La relacion entre la saf@lradar y el viento epues indirecta y viene
determinada por el efecto del viersobre la rugosidad del mar cusu vez tiene un efecto sobre

la sefial electromagnética incidente. Estacréfg denominada funcion del modelo geofisico o

GMF (Geophysical Model Function) es muy dificil de modelar teééamente entre otros motivos

por la compleja interaccion entre las olas derdnte tamafio (que forman la rugosidad marina).

Sin embargo, la modelizacién empirica es una baéirenativa para determinar dicha relacion.

La GMF empirica que relaciona el vector vieatd0 metros (sobre el mar) y el coeficiente de
retrodispersion se formula generalmente de la siguiente manera:

0° = By[1+ B,cos@) + B, cos@y)|’ (1)
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dondeg es la direccion del vientap€0° cuando el viento sopla en la direccion del radar), y los
coeficientes B B; y B, dependen del médulo del viento del angulo de incidencia, la
polarizacion y la frecuencia del haz del radar. El valor del expomgnéé niimero de arménicos
(la ecuacién 1 puede contermmonicos adicionales) depen del método de determinacion
empirica utilizado. Asi pues, existen varias IE&Mmpiricas para los distintos radares.

1.3 Tipos de radares en teledeteccion espacial

Existen varios tipos de radares embarcados elitsatéutilizados en observacion de la Tierra.
Sin embargo, para la obtencion de la diretaél viento se necesitan radar cuyo haz no sea
vertical sino inclinado (dngalde incidencia entre los 1§ los 70). Asi pues, existen dos tipos
de radar capaces de observar el campo de \8ebte el mar: los dispersometros y el SAR.

En términos de la geometria de las antenaglikpersémetros se puedbwidir en dos tipos: los

de “mirada” lateral y los de rotacién. Los peros tienen las antendgas y por tanto la
orientacion relativa de los diferentes hacemeariable. Los segundos, tienen uno o varios haces
en rotacion, lo cual produce una orientacidlatiea de los haces quiepende de la posicion
perpendicular a la traza del satélite. Actualraesitlo hay un radar de cada tipo en érbita: el
SCAT, de “mirada” lateral, embarcado en el gt&uropeo ERS-2, y 8eaWinds, de rotacion,
embarcado en el satélite americano QuikSCAMmbos tipos de dispersOmetros tienen ya
garantizada su continuidad con misionesragucomo ASCAT embarcado en METOP (2005) o
SeaWinds-2 embarcado en ADEOS-2 (fin del 2002), respectivamente

En cuanto al SAR, actualmente hay varias mesoen Orbita, como ERS-2, Envisat o Radarsat-1.
En cuanto a futuras misiones SAR, Radarsadtd programado pasar lanzado en el 2004.

1.4 Obtencion del viento

El proceso de obtencién del vector viento a partir de las mediciones o coeficientes de
retrodispersion del radar consiste en dos pasesrsion y eliminaciorde la ambigtedad. El
primer paso es calcular el vector viento a partiedenediciones con la ayuda de la ecuacion (1).
Puesto que para ello se debeteduinar el médulo y la direccididos incégnitas)se necesitaran

al menos dos mediciones independientes par&lggistema esté determinado. Ademas, y debido

a la alta no linealidad de la GMF y a los ersocaracteristicos de estagdiciones, la inversion

suele dar hasta cuatrdwtiones posibles del vector viento.iAsles, el segundo paso consiste en
utilizar informacion adicional sobre el campo dentd (normalmente proveniente de modelos de
prediccion) asi como criterios de balance metidgico (por ej., gedsofia) y consistencia
espacial para seleccionar una ae doluciones de la inversiormao el vector viento observado.

! Nota: SeaWinds se suele denominar QuikSCAT para diferenciarlo de SeaWinds-2, aunque ambos instrumentos son
idénticos.
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La separacion angular (o azimutal) entre losirdiss haces del radar es muy importante a la hora
de invertir el viento. Dos haces que obseruanmismo lugar en la superficie con muy poca
separacidén angular son en la piGe equivalentes a un solo h&d.grado de independencia de
los haces dependera entonces de la separaogiaa La polarizacion de los haces también es
importante. Dos haces con polarizacién vertical separaddssb®0equivalentes a un solo haz,
mientras que si los haces tieriarizacion horizontal el grado de dependencia de los dos haces
es menor. Otro aspecto importante de la invers® el numero de haces disponibles. Como ya
hemos dicho, con un solo haz, el sistema é@stleterminado. Como veremos en el proximo
capitulo, con dos hacesdependientes la inversion preseataproblema de ambigledad y sélo
es a partir de tres haces indepentes que la inversion pueder 6ptima. Para estudiar el
problema de la obtencién del viento a partirddos radar, SeaWindss el instrumento mas
adecuado ya que la separacién aagde sus haces asi como el péonde haces varia a lo ancho
del campo de observacion. Como se puede veadigura 1, el campo de observacion de
QuikSCAT, que esté subdividido en 76 celdas deplacion del vector viento de 25 km x 25 km
de resolucion (centradas en posiciones perpeladésia la traza del saté), se puede dividir en
diversas regiones atendiendo a los criteriosindersion anteriormente expuestos: la region
exterior (celdas 1-8 y 69-76), con sélo daxds; la region 6ptima (celdas 9-25 y 49-68) con
cuatro haces y buena diversidad azimutal (amgulda region ndir (celdas 26-48), con cuatro
haces pero poca diversidad azimutal. En esta tesis también se estudiara a fondo el problema de la
obtencion del viento en un sistema indetermdina&omo el SAR (un solo haz). Para ello
utilizaremos el SAR del satélite ERS-2.
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Figura 1 Separacion azimutal media entre los haces delantero y trasero de QuUikSCAT por nimero de celda (o nodo)
de observacion para unas cuantas revoluciones de datos. La linea sdlida representa la separacion de los haces
exterioresy la linea punteada |a separacién de los hacesinteriores.

Ademas de la inversion y de la eliminacion a®bigledad, otro aspecto importante en la
obtencion del viento es el control de calidi@dlas observaciones. La relacion enttg el viento
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a 10 metros (ecuaciéon 1) esta basada en el etildral entre el vienty el estado del mar.
Efectos como la presencia de hielo marino o el estado ambiguo del mar (en las proximidades de
frentes o centros de bajas presiones, por ejerppleden afectar a la calidad de las extracciones.
Otro fendbmeno importante que afecta sobretodo elteres de alta frecuencia como QuUikSCAT
(banda Ku, es decir, unos 2 cm de longitucdbdda) es la presencia de llaviAsi pues, en esta

tesis también se estudiara ehtrol de calidad, con especiaéation a los datos QuUikSCAT por

su mencionado problema con la lluvia.

2 Estimacion de maxima verosimilitud

Existen diversos métodos de inversion maagnitudes fisicas a partir de mediciones en
teledeteccion. El mas utilizado y que, a kz,yvconstituye el acercamiento mas general al
problema de la inversion es el método Baymsi En la aplicacion de este método existen
diversas técnicas de optimizacion, entre lasagi@ la estimacion de maxima verosimilitud, que
es la mas utilizado en la obtencién dento a partir de datos radar.

2.1 Definiciéon

El método Bayesiano viene de la aplicaciontdefema de Bayes al problema de la inversion.
Este teorema dice que la probabilidad condicidealque ocurra el suceso) A dado (el suceso) B
(probabilidad a posteriori) es proporcional a la probabilidad de B dado A, multiplicado por la
probabilidad a priori de A. Si A es el vectoento que queremos invertir y B son las mediciones
(0°), y desarrollamos el teorema asumiendo quedaabilidad a priori de A es constante y que
los errores son gaussianosuf@sones a menudo usadas en dspeetria), nos encontramos que

la solucién al problema de la inversion pasa por maximizar la siguiente ecuacion:

P.(x) O eXp[‘%{yo —k, 00} (O +F) ™ {y, —k,(x)}] )

dondex es el vector vientogy, las mediciones,kla GMF, yO y F representan las matrices de

covarianza o errores de las mediciones y deN#-, respectivamente. Asi pues, maximizar la
probabilidad de obtener elento “verdadero” (x)) es equivalente a minimizar el exponente de
la ecuacién (2) que en dispersometria se denoetiagstimador de maxima verosimilitud o MLE

(Maximum Likelihood Estimator) y se define como:

N [¢} o )2

— 1 (Umi _Us)
MLE—N%: —r 3

donde N es el nimero de mediciones,®° son los coeficientes de retrodispersiod, es el
coeficiente de retrodispersion silado con la GMF para diferentealores del vector viento, y
Kp(os) es la varianza (error) de las mediciori®lSMLE se puede interpretar como una medida
de la distancia entre el conjunto de las miedies y la solucion que yace en la superficie
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bidimensional de la GMF, en un espacio obsgoral en el que cada eje estad escalado por
kp(os’) (Soffelen y Anderson, 1997¢).

2.2 Funcién coste

El proceso de minimizacion die ecuacion (3) es muy costosmmputacionalmente. Teniendo en
cuenta que el comportamiento de la GMF es dirgesal en el dominialel modulo del viento, se

suele minimizar primero en este espacio. Es decir, se considera la direccion del viento constante y
se busca el valor del médulo que minimiza la ecua@jrEste proceso se repite a intervalos de
unos pocos grados (tipicamente °2.para todo el espectro deraficiones, de modo que el
resultado es una funcién constituida porwvator minimo del MLE para cada direccién, que
denominaremos la funcidn coste (ver figuraE). el procedimiento estandar de obtencion del
viento (en dispersometria), los minimos déulacion coste constituyelas soluciones ambiguas

gue se enviaran al proceso de eliminaciérambigiedad mencionado en la seccion 1.4.

Como hemos explicado anteriommte, el MLE es equivalente a faobabilidad de obtener el
viento “verdadero”: cuanto mas pequefo sea leinadel MLE, mayor es la probabilidad de que
esa solucion sea el viento “verdadero”. De estelo, la forma de la funcion coste nos puede dar
mucha informacion sobre la calidad de las extoaes en el procedimiento estandar. Asi, cuando
los minimos tienen valores similares, existe pinblema de ambigiedad significativo en la
extraccion, puesto que las solucioapsrtadas por la inversion son equiprobables. Si, en cambio,
los minimos son poco definidos (anchos), la isién del viento obtenido disminuira puesto que
los puntos de la funcidon costercanos al minimo (solugip no son considerados como
soluciones pese a tener probabilidades similares al minimo.

MLE along line of minima

MLE

| | | |
0 60 120 180 240 300 360
Wind Direction (degrees)

Figura 2 Ejemplo de funcién coste para la celda de observacién nimero 33 de QuUikSCAT. Los simbolos diamante
indican la localizacion de los minimos en el proceso de obtencién del viento.
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Utilicemos como ejemplo las distintas regioes campo de observacion de QuikSCAT. En la
region exterior, donde solo se dispone de duse$, la funcidon coste tiene tipicamente cuatro
minimos bien definidos con valores idénticos wyrsimilares, lo cual deriva en un problema de
ambigiedad. En la region 6ptima, que constauddro haces con buena diversidad azimutal, la
funcion coste presenta minimos bien definidotodeque uno o dos suelen presentar valores muy
inferiores a los demas, reduciendo significatigate el problema de la ambigtiedad. A medida
gue nos aproximamos hacia el madk| satélite (entre las celda8 y 39) la diversidad azimutal
va disminuyendo (ver figura 1). Asi pues, la éeghadir esta caracterizada por unos minimos
poco definidos (anchos) en la funcidon cogtepduciendo asi un problema significativo de
precision en la obtencion del viento.

2.3 Residuo normalizado

El MLE representa una distancia “normalizada” pberror de medicion (ver ecuacion 3). De

este modo, el MLE deberia comportarse wte modo uniforme a lo ancho del campo de
observacion y para cualquier condicién veatdsin embargo, a menudo presenta dependencias

no deseadas cuya razén principal es la estimacion erronea de los errores de medicion. Para
eliminar estas dependencias esasaria una segunda nalizacion, es deciencontrar un valor
esperado del MLE que normaliceMLE de la siguiente manera:

Rn = MLE / <MLE> (4)

donde el MLE representa cualquier punto de la funcién coste de una determinada celda de
observacion; <MLE> es el valor esperado del MLEapsta celda y viento observado; y Rn es el
residuo normalizado.

Para determinar el <MLE> es necesaria urfarimacion precisa del error de medicién. Hay
dispersometros como NSCAT (dispersometro d¢ASA) para los que un modelo de errores fue
desarrolladoCavanié, 1997) y utilizado entre otras cosas para determinar eFrRya fy Soffelen,

2000). En el caso de QuikSCAT, nadie ha desarrollado un modelo de errores y por tanto hay que
buscar una alternativa padaterminar el Rn. Estse halla precisamente en el estudio del mismo
MLE. La idea es que, como el MLE representaagicepto de distancia entre las mediciones y la
solucion o GMF (ver seccion 2.¥)esta distancia no es nula dibiprecisamente al error de
medicién, el comportamiento medio del MLE nos es mas que el comportamiento medio del error
de medicion. De este modo, usalucion practica y sencilla @a determinar el <MLE> de
QuikSCAT consiste en procesar un numemgnigicativo de observaci@s (en esta tesis se
utilizan 60 orbitas) y daular el valor medio del MLE pardistintas condicioes de viento y
celdas de observacion. Como veremos en los capi®uy 5, el Rn es un parametro muy util para

la obtencién del viento y el control de calidad, respectivamente.
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2.4  Caracterizacion del MLE

En dispersometria, los datos se distribuyen a menudo en dos formatos distintos: uno que suele
tardar varias semanas en llegdrusuario y que contienmformacion exhaustiva para uso
cientifico y otro, que suele tardar unas poeamas, y que contiene informacion mas reducida
(respecto al primero) y que se usa de un modaatper(por ejemplo, integracion en modelos de
prediccion). Para QuikSCAT, el primero se denomina HBFerérchical data format) y el
segundo BUFRRinary universal format representation). Como se puede observar en la figura
3a, la correlaciéon entre los MLE de uno yrooformato es bajajndicando que sendas
distribuciones del MLE son significativamentefedentes. EI motivo principal de ello es el
diferente procesamiento de lo$ en los mencionados formatos, siendo ddsdistribuidos en
BUFR promedios de las°® distribuidos en HDF. Asi, en BUFR hay un maximo dg f¢or celda

de observacion, mientras que en HDF puede llagaaber hasta 40. En agesis, demostramos

con un sencillo ejemplo tedrico la significativdtdade correlacién entre una funcion “distancia”
(equivalente al MLE) bidimensnal (dos mediciones) y otmnidimensional (una medicion),
donde las mediciones del primer caso han gidamediadas para obtener la medicion del
segundo. Para confirmar que el caso tedrico ksafe a un mayor nimero de mediciones, se
realiza una simulacion de lag en HDF y en BUFR, asumiendo que la Unica diferencia entre
ambos es el promedio de las medicionesizatido un nidmero de mediciones y unos errores
realistas. Como se observa lanfigura 3, existen algunas difa@as entre las distribuciones
reales (figura 3a) y las simulasl (figura 3b), pero en lineas generales son comparables. Mas aun,
los valores de correlacién son muy singkrindicando la validez del ejemplo tedrico.

a) b)
MLE HISTOGRAM MLE HISTOGRAM
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2.0F . 2.0F 1
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N=1114381 MLE - HDF N=1105137 MLE - HDF
mx= 0.57 my= 0.28 mx= 0.67 my= 0.45
m(y—x)= —0.30 s(y—x)= 0.46 m(y—-x)= —-0.22 s(y—-x)= 0.39
cor_xy= 0.55 cor_xy= 0.54

Figura 3 Graficos de contornos correspondientes a los histogramas bidimensionales del MLE en BUFR frente al
MLE en HDF, con datos reales (a) y ssimulados (b). N es el nimero de datos; mx y my son los valores medios a lo
largo de los gjes x e y respectivamente; m(y-x) y s(y-xX) son las desviaciones (con respecto a la diagonal) media y
tipica, respectivamente; y corx_y esla correlacion entre las distribuciones de los ges x e y. Las lineas de nivel estan
en escala logaritmica en base 2 (el nivel mas bajo corresponde a N/4000).
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Pese a la poca correlacion entie Histribuciones de MLE de aos formatos (HDF y BUFR),

en esta tesis se demuestra que tanto la calidas dentos observados como la eficiencia de los
controles de calidad en HDF y en BUFR son caraples. Asi pues, se concluye que la reduccion
de la informacion contenida en las observaci@meBUFR respecto a las observaciones en HDF
no es significativa y por tanto no afeelgproceso de obtencion del viento.

3 Obtencion del viento en sistemas determinados

Como ya hemos visto en la seccion 1.4, QuikSCAT es el dispersometro mas adecuado para
estudiar los distintos problemas de inversion \dehto que planteara$ distintas geometrias
relativas de los hacesldmadar. El caso mas interesante, por el hecho de ser inédito, es el que
plantea la regién nadir de QuikSCAT, dondeetzasa diversidad azimutal es la causante de la
poca precision de los vientos obtenidos medianpeosledimiento estandar. Las regiones exterior

y Optima, en cambio, no presentan problemas signifeatie imprecision y el tipo de geometria

gue presentan tiene precedentes (instrumentos como el SASS embarcado en Seasat, los SCAT
embarcados en ERS-1 y ERS-2 0 el NSCATABEOS-1) y por tanto ha sido ampliamente
estudiado y optimizado en el pasado.

En este capitulo, describiremos el procedinto de extraccion estandar utilizado en

dispersometria y lo aplicaremos a Ilakatos QuikSCAT. Ademas, propondremos un

procedimiento alternativo para mejorar la calidadas extracciones, especialmente en la region
nadir de QuikSCAT. Ambos procedimientos sexéalidados y comparados con la ayuda de
informacion independiente procedente de un modelo de prediccion.

3.1 Procedimiento estandar

Como hemos explicado en lacgion 1.4, el procedimiento detexccion del viento consiste
primero en invertir las mediciones y posteriorteealiminar la ambigliedad de las soluciones
aportadas por la inversion. La inversion, basada en el MLE (ver seccién 2.1), se implementa en la
practica con el calculo de la funcidn coster(gecion 2.2). En el procedimiento estandar, los
minimos de la funcién coste representan dakiciones ambiguas del viento posteriormente
utilizadas en el proceso de eliminacion de la ambigiedad.

Como paso previo a la eliminacion de labégiedad, los valores del MLE de las soluciones
suelen convertirse en valores de probabilidadetteel viento “verdadefolLa relacion entre ésta
y el MLE puede inferirse de las ecimnes (2) y (3) y es la siguiente:

plv] o) = e, ©)

dondev representa el viento “verdadera¥ el conjunto de las medicioneskyun factor de
normalizacion de la probabilidad (constante). Estacion tedrica puede sufrir en la practica
ligeras variaciones, entre otros motivos, pacahportamiento no uniforme del MLE comentado
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en la seccion 2.3. Asi pues, en esta tesipleimentamos el método empirico desarrollado por
Soffelen et al. (2000) para encontrar la mencionada relacion en los datos QuikSCAT. El Rn es
utilizado en la ecuacion (5) en lugar del Mp&r ser un parametro mas estable (ver seccién 2.3).
La relacion empiricamente det@nada entre la probabilidagl el Rn es una exponencial del
mismo tipo que la ecuacion (5) cuyo expondieiee como denominador 1.4 (en lugar de 2).

Existen dos procedimientos generalmente ailas en la eliminacidne la ambigtedad. El
primero consiste en pasar un filtro med#l(, 2001) por un campo de viento que ha sido
inicializado con una de las dos soluciones pré@bables (la mas cercana al viento dado por un
modelo de prediccidén que se utiliza como refadenen cada celda de observacion invertida. En
este procedimiento, la probabilidad se utilida un modo implicito en la inicializacion y
posteriormente en el filtrado, pero nuncaugemodo explicito. El segulo procedimiento es el
analisis variacional, método mgeralmente utilizado en la integracion de observaciones en
modelos de prediccibn numéricos. Estensiste en combinar informacion de fondo
(generalmente de un modelo de prediccion)lasmmediciones, asumiendo que ambas fuentes de
observacion tienen errores y éseésdan bien caracterizados, patdener un andlisis (campo de
viento) consistente espacial y meteoroldgicamente. Este analisis es utilizado para eliminar la
ambiguedad, seleccionando la solucién mas proximaadlisis en cada celda de observacion. En
este procedimiento, la probabilidad de cada séluop sélo es utilizadaxplicitamente sino que
ademas juega un papel muy importante en la eliminacion de la ambigledad.

3.2 Procedimiento de solucion maltiple

La obtencidon del viento por el procedimiergstandar en la region nadir de QuikSCAT es
substancialmente imprecisa (ver seccion 2.2in&ivo principal es que Unicamente los minimos
de la funcion coste son considerados comocsmhes ambiguas. En la region nadir, la funcion
coste presenta minimos poco definidos (anchds)modo que la eleccion del punto minimo
como Unica solucion posible, descartando todopumsos de alrededor cuymobabilidad de ser

el viento “verdadero” es comparable a la dehimb, no parece apropiada. Si, por el contrario,
seleccionamos estos puntos como soluciondsgaas, estaremos transfiriendo una informacion
mas realista al proceso de eliminacion de ambiguedad.

Existe un procedimiento de solucién mdultiple (inatado a cuatro soluciones o minimos como el
estandar) desarrollado p8tiles et al. (2000). El problema de este método es que usa un filtro
medio para eliminar la ambigluatiaZComo ya se ha mencionadolarseccion 3.1, el filtro medio

no utiliza explicitamente el valor de laopabilidad de las sotibpnes ambiguas. Como
consecuencia de ello los campos de viergaltantes a menudo presentan poco variabilidad (mas
cerca de la variabilidad de los campos de viento de un modelo de mesoescala que de un
dispersémetro) y son poco realistas.

En esta tesis, proponemos una alternativa que tergisutilizar un procedimiento de solucién
multiple en combinacién con un analisis vammel. Puesto que el analisis variacional esté
condicionado siempre al balance meteoraogipodemos asegurar que este método producira
vientos realistas.
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3.3 Comparacion entre los procedimientos estandar y de solucion multiple

Tanto el procediminento estandar (PE) comdeekolucion multiple (PSM) utilizan el andlisis
variacional para la eliminacién de la ambidéé. Los términos observacional y de fondo del
analisis variacional estan repeasados por las observaciones @QAT (esto es, la informacién
sobre las soluciones ambiguas dadas por cada ulus geocedimientos) y las salidas (esto es,
viento en superficie) del modelo NCEP, redpacnente. En la comparacion se utilizan las
salidas del modelo dprediccién del centro europeo geediccion a plazo medio (ECMWF)
como referencia.

Los resultados muestran que los vientos P8Mmas precisos (esto es, parecidos a ECMWF)
gue los PE, tanto en la regién éptima como en la regién nadir. En esta ultima, la mejora es
significativa y se produce en gran parte por la mejarka calidad de laitccion del viento. Este

es un resultado esperado, puesto que en lamremadir, el PSM permite un nimero mayor
(respecto al PE) de soluciones que se caractepaamalores similares en modulo y dispares en
direccion. Asi pues, la probabilidad de encontmaa solucion alineada con el flujo “verdadero”

es mayor en el PSM que en el PE.

Otro resultado destacado es que la calidad sleitmtos del modelo NCEP es menor que la de
los vientos tanto del PSM como del PE. De sbodeduce que el andlisigriacional asigna un

peso mayor a las observaciones (mediciones de QuikSCAT) que a la informacion de fondo
(NCEP). De este modo, los métodos de obtendginviento (PE y PSM) no depeden de forma
significativa de la calidad de la informacionfoado. Esto es muy importante puesto que se trata
de obtener campos de viento de la forma imdspendiente (basados les observaciones radar).

a) b)
10 m/s

Standard procedure (selected solution) MSS procedure (selected solution)
T A A 77 7 777 4 A7

‘%///%

LAT
LAT

Figura 4 Campos de viento del PE (a) y del PSM (b). La fecha de adquisicion es €l 3 de Febrero de 2002 a las 2 horas
UTC. Las lineas sdlidas separan las distintas regiones del campo de observacion de QUikSCAT: region Optima derecha
(parteizquierda), region nadir (parte central) y regién 6tptima izquierda (parte derecha).
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La figura 4 muestra las diferencias entre el RIERSM. EI campo de viento del PE (figura 4a) es
sustancialmente inconsistente en la region n&dir.el contrario, el campo de viento del PSM
(figura 4b) es espacialmente consistente tanto esgi@n nadir como en la éptima. Asi pues, el
PSM es capaz de filtrar el “ruido” que hay ervieinto del PE manteniendo al mismo tiempo la
informacion dinamica existente (la intensidad pdsicion de la borraseon iguales en las dos
figuras).

En esta tesis, se han examinado un gran niumero de casos meteoroldgico. En general, el PSM
produce campos de viento mas consistentes staalque el PE, especialmente en la region
nadir. Asi pues, los vientos PSM resultan ipalhrmente interesantes en el campo de la
integracion de datos en modelde mesoescala como ECMWF.

4 Obtencion del viento en sistemas indeterminados

Los sistemas radar con un solo haz o owisien principio presentan un problema de
indeterminacién a la hora de invertir el vectmnto (ver seccion 1.4). Este sentido, el SAR es
pues el sistema adecuado paradiar este tipo de problemas pwegtie solo dispone de un haz
lateral de vision fija. Como hemos visto ks capitulos precedentes, el MLE es un parametro
valido para la inversion en problemas deieados. Sin embargo, es obvio que en caso de
indeterminacién se neces#a informacion adicional para intE el vector viento. Esta
informacion adicional puede a veces extraersasi@ropias imagenes SAR y/o de modelos de
prediccién o boyas. En este capitulo comparaseapns métodos de obtencién del viento. El
primero, habitualmente utilizado, supone qu8A&R es un sistema determinado y por tanto capaz
de extraer el vector viento de un modo inaepente. El segundo, propuestn esta tesis como
alternativa al primero, supone que el SAR es un sistema indeterminado y esta basado en un
método estadistico que combina las informacialesSAR y de un modelo de prediccion para
obtener el vector viento.

4.1 Algoritmos de obtencion del viento para SAR

Hoy en dia existen tres algoritmos comunmentézatibs en la obtencion ldéento a partir de
imagenes SAR: el modelo CMOD-4, el SWD®AR wind direction algorithm) y el SWA (SAR
wind algorithm).

El CMOD-4 es la GMF (ver ecuacion 1) mas utilizaah la inversion del viento a partir de datos
del dispersémetro SCAT de los satélites ERSpriablema de la inversién en SAR es que su
unico haz es sensible tanto a la direccion commdadulo del viento (dos incognitas), lo cual
conlleva problemas de ambigiiedad e indeterminacion.

El SWDA es un algoritmo de obtedai de la direccion dieiento. Esta basaden la deteccion de
expresiones lineales (sobrereér) en la imagen SAR, que a menudo estan asociadas rbn
streaks o wind rows. Estos ultimos son manifestaciones (emagen) de vortices circulares que
se forman en la capa limite plased y que estan aproximadameali@eeados con el viento local.
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El SWA es un algoritmo de obtencién del modulbwdento. Estd basado en la deteccion de las
olas mas grandes a partir del espectro de la im8§&n Estas olas, al estar en equilibrio con el
viento local, nos dan informacién sobre el médulbuilento en superficieEl equilibrio de las

olas con el viento local se rompe en aguas pocfundas, dando lugar a eres significativos en

la estimacion del viento por parte del SWA. Como las imagenes SAR utilizadas en esta tesis
estan localizadas en aguas poco profunda§SWA sera descartado y nos centraremos en el
CMOD-4 y el SWDA.

4.2 Método estadistico

Al margen de las limitacionede los algoritmos presentados knseccion anterior, hay un
problema importante que es inherente al sistenabservacion SAR. Tanto la direccién como el
modulo del viento estan present mismo tiempo y no puedeistinguirse del todo. Asi pues,

un método que combine estos algoritmos con indaiém adicional externa pddrser la solucion

a este problema. Para ello, el método tendria aque® & cuenta las caracteristicas espaciales, las
limitaciones y la precision de todas las fuentes de informacion.

En esta seccion, presentamos urtati@ estadistico utilizado pdworenc (1986) para resolver
problemas de inversion en analisis metamimo. Esta basado en el método Bayesiano
presentado en la seccion 2.1. La diferencia es gliggan de considerar la probabilidad a priori
de A (vector viento) como constante, en este saadtiliza la informacion de fondo de una fuente
externa para caracterizar taencionada probabilidad, deodo que la ecuacion (2) se puede
escribir ahora de la siguiente forma:

P,(x) O exp[—%{yo K, (9} (O +F) ™y, -k, ()} —%(x %) B (X=%,)] ©)

dondexy,, es la informacion de fondo del campo de toefpor ejemplo, lasalidas de un modelo
de prediccion), \B representa la matride covarianza o errores de la informacion de fondo. Del
mismo modo que para la ecuacion (2), mazanila probabilidad de obtener el viento
“verdadero” (R(x)) es equivalente a minimizar los dos téros del exponente de la ecuacion (2),
también denominados términos observaaidel primero) y de fondo (el segundo).

4.3 Evaluacion de dos métodos de obtencién del viento para SAR

En esta seccion, se evallan dos métodos diferentastelecion del viento de alta resolucion (5

km) a partir de imagenes SAR. El primero, gelmeeate utilizado para SAR, esta basado en la
combinacion de los algoritmos SWDA y CMOD-4. El segundo es un método nuevo basado en el
método estadistico presentado en la seccion 4.2 y llamado S{®RR wind retrieval
algorithm). En esta evaluacion se wtdin 15 imagenes SAR vy las salidas de muy alta resolucion
(VHR, Very-high resolution) del modelo de prediccion HIRLAM (High resolution limited area
model).
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M étodo SWDA+CMOD-4

El método consiste en extraer primero léoimacion sobre la direccion del viento con el
algoritmo SWDA. Con esta informacion, se puede ritivelirectamente el médulo del viento

utilizando CMOD-4 (ver ecuacion 1). De este mos®,puede obtener el vector viento de un
modo independiente, es decir, giflizar informacién adicional.

La evaluacion de este método revela sin ega&arios problemas. En primer lugar, el SWDA
detecta la direccion del viento con una resdiigio mayor de 25 km. Adipda la variabilidad

entre 25 km y 5 km es asignada (erroneameadtenddulo del viento. Ademas, el SWDA no
siempre detectaind streaks y estos Ultimos en cualquier caso no estan perfectamente alineados
con el viento, afiadiendo mas incertidumbre ankdicion del viento. Es importante destacar
también que la precision del SWhsminuye con la distancia entnénd streaks. Por altimo, el
problema mas importante es que el método adasealgoritmos como perfectos, de modo que

los errores en la estimacion del modulo del viento (CMOD-4) estan directamente afectados por
los errores en la estimacion de la direccion (SWDA).

M étodo SWRA

El SWRA consiste en aplicar el método estimbisal caso del SAR, utilizando asunciones
simples. Asi, si utilizamos el modelo CMODzdmo GMF, el VHR comanformacion de fondo,

y asumimos que no hay correl@gciespacial de los erroré3«F y B son matrices diagonales), el
exponente de la ecuacion (6) se puede escribir ahora como:

o -a°\ (u, -u) (v, -v\’

o E ) ) ”
Ao Au Av

donde g’ es el coeficiente de retrodispersion del SAR para una celda de observacion
determinadayy y vy son las componentes del vector viento “observado” por el \AdRAu y
Av son los errores gaussianos de las matdeesovarianza obtedfos empiricamenta) y v son
las componentes del vector viento que buscamos (o sea, que minimice 8) gastes el valor
del coeficiente de retrodispabsi correspondiente al vectorewmto (u,v) y determinado por

CMOD-4 (ver ecuacion 1). El primer término de la ecuacion (7) se denomina término SAR y los
otros dos se denominan término VHR.

A diferencia del método anteriog] SWRA garantiza la obteidn de un campo de viento y no
considera las fuentes de informacion comogmtsls (exentas de errores). Este método permite
extraer el campo de viento 6ptimo, productdalenejor combinacion de las informaciones del
SAR y del VHR. En este sentido, el SWRA resuitay prometedor. Sin embargo, la variabilidad
del viento resultante (basicamente aportadal@danformacion SAR) esta distribuida de una
forma predefinida entre el méduy la direccion, de acuerder las respectivas sensibilidades
del modelo CMOD-4. Como se observa en la tabla variabilidad del viento del SWRA es un
compromiso entre las variabilidades del VHR y S8R para el médulo del viento. Sin embargo,
no ocurre lo mismo con lardiccion. Esto es debido a quengelmente CMOD-4 tiene mayor
sensibilidad (més del da®)l a cambios en el ddulo que en la direan. Para evitar que la
direccién resultante esté demasiado dominpde el término VHR, se recomienda afadir
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informacion sobre deteccion dend streaks (SWDA) en el término SAR, tras una exhaustiva
caracterizacion de los errores y la precision del SWDA.

Tabla 1. Comparacion de la variabilidad.

Componentes del vient Variabilidad Variabilidad en Variabilidad en
en VHR SWRA SAR

0.55 0.75 1
0.45 0.45 1.65

! Los valores de la direccion estan dados ereguiévalentes, es decir, teniendo en cuenta la
intensidad del viento en la cudittacion del error en la direccion.

Modulo (m/s)

Direccion (m/s)

5 Control de calidad

El control de calidad (CC) de las extracciones de campos de viento a partir de datos radar es de
una gran importancia en aplicaciones como tagracion de datos en modelos de prediccion.
Para lograr establecer un CC eficiente, el MLE resulta ser un parametro muy util.

Como ya hemos mencionado en la seccion 28 se puede interpretar como una medida de
la distancia entre las mediciones y la solucite gace en la GMF. El MLE por tanto indica en
gué medida las mediciones se ajustan a la @M superficie se ha calculado empiricamente
con distintas condiciones de viento. Asi puespmsistencias entre las mediciones y la GMF dan
como resultado valores altos de MLE, indicapao tanto condiciones geofisicas distintas a las
modeladas por la GMF como la lluvia, eta® de mar ambiguo o el hielo marino. De este
modo, el MLE nos da una buena indicacioriadealidad de las ¢vacciones del viento.

En este capitulo, nos centraremos en establegerogedimiento de CC basado en el MLE. Este
mismo principio se ha utilizaden el pasado para estableceiCé de radares como SCAT o
NSCAT. Sin embargo, no existe todavia un g&a QuikSCAT cuyo problema con la lluvia
hace del CC un elemento indispensable para lanobte de vientos de buena calidad. Es mas, en
la actualidad, no existe ningun métogenérico de CC aplicable a cualquier radar. Asi pues, en
esta tesis desarrollaresrxan método de CC genérico, a partir de los datos QuikSCAT. Dado que
existe un método de deteccion devia desarrolldo por el JPL Jet propulsion Laboratory) para
datos QuikSCAT, en la segunda parte de esiéuta efectuaremos una comparacioén de nuestro
CC, desarrollado en el KNMI (Instituto Metetdgico Holandés), con ehencionado método del
JPL con el fin de mejorar el control de calidad, en este caso, de QuikSCAT.

5.1 Procedimiento genérico de CC

El procedimiento basado en el MLE que présemos a continuacion utiliza el Rn como
indicador de la calidad de las extracciones lggar del MLE), puesto que es un parametro
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sensiblemente mas estable que el MLE (ver éac2i3). De acuerdo con la relacion entre el Rny

el MLE (ver ecuacion 4), cuando la retrodispersion de una celda de observacion esta
“contaminada” por otros efectos geofisicos que no séaiento, el Rn tendra valores altos; en
cambio, cuando la retrodispersion esta dominadalpefecto geofisico deliento, el Rn tendra

valores cercanos a la unidad. Asi pues, @bdté consiste en la determinacion empirica de un
umbral de Rn que separe los vientos de buena calidad de los de mala calidad. Para ello, se
utilizaran co-localizaciones de datos QuikSCA®n los campos de viento del modelo de
ECMWEF y las observaciones diivia obtenidas por el SSM/ISfecial sensor microwave

imager) embarcado en el satélite DM3Pefense meteorological satellite program).

Como paso previo a la determinacion del umbecatacterizamos el Ra, en otras palabras,
examinamos la relacién ga el Rn y la calidad de las extcaanes para determinar la existencia
del mencionado umbral. Los resultados muestnaa clara correlacion entre la calidad de las
extracciones y el valor de Rn. La calidad disminayaedida que el Rn aumenta, siendo el ritmo
de tal disminucion mayor cuanto mas fuerte sesdieito. La presencia de lluvia incrementa
artificialmente el valor del médulo del vientotebido. Para cantidadele lluvia superiores a 6
mm/hora, la informacion predominante en la sef@tdqdispersion) nes el viento sino la lluvia,
gue a su vez produce unos (falsos) vientos de 15-20 m/s en el proceso de extraccion.

A continuacion, se define un unatbrque depende del médulo deéwio obtenido. El umbral se

ajusta en un proceso de validacion que consiste en utilizar las co-localizaciones mencionadas
anteriormente para determinar la calidad dedktss aceptados (con valor de Rn inferior o igual

al umbral definido) y rechazadoso(cvalor de Rn superior al doral) por nuestro CC. El umbral
optimo en términos de rechazo mayoritarioddéos de baja calidad y aceptacion mayoritaria de
datos de buena calidad es el siguiente:

v<1om/s= y =y, + Alv—-V,)?
v>15m/s=>y=2
donde, (8)

v es el médulo del viento obtenidy el valor umbral de Rn.

Los resultados de la validacidon muestran que, para el umbral definido en la ecuacién (8), el 97%
de los datos de buena calidad son aceptades/ittad de los datos rechazados es muy baja con
respeto a la calidad de los datos aceptagloe mayoria de las celdas de observacion
“contaminadas” por lluvia son rechazadas por nuestro CC.

Los resultados de aplicar el CC en datos QGKT se pueden ver en la figura 5. Esta muestra
los campos de viento co-localdms de QuikSCAT (figura 5a) ge EMWEF (figura 5b) para una
situacion meteoroldgica determinada. En la peetgral del campo de viento hay un frente bien
definido donde generalmente el estado del m®m ambiguo y por tanto la calidad de las
extracciones es baja. Como se puede observir,laxgo del frente, el CC ha rechazado la
mayoria de las celdas de obsmidn (flechas rojas). Lo mismaxcurre en las proximidades del
centro de bajas presiones situaiola parte baja del graficdpnde probablemente hay una alta
variabilidad temporal y espacial del estado det.rha parte izquierda del frente presenta una
region sensiblemente afectada fgode lluvia (valores superige 6 mm/hora), como lo indican
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los datos SSM/I co-localizados (ver cuadradgse ha sido detectada por el CC (ver flechas
rojas).

Las implicaciones de un CC eficiente como el presentado aqui quedan patentes en este caso
meteoroldgico. Como se observa al comparéiglaas 5a y 5b, las predicciones de ECMWF han
errado significativamente en la localizacién del ced&rdoajas presiones y de su frente asociado.

Asi pues, el impacto potencialmente positivoimtegrar los datos QuikSCAT en modelos de
prediccibn como ECMWF después de aplieste CC queda claramente ilustrado con este
ejemplo.

CASO : 02/09/99 1400 UTC

a) b)
10 m/s
FCMWF winds
T T, s
56
54l
= =
S2p

LON

Figura 5 Co-localizaciones de datos QUikSCAT, ECMWF y SSVI/I. El gréafico (a) muestra el campo de viento obtenido a
partir de datos QuikSCAT, donde las flechas de color gris corresponden a los vientos aceptados por € CC y las de color
negro a los vientos rechazados por el CC. El tamafio de los cuadrados representa la cantidad de Iluvia observada por el
SSMI/I, desde 0 mnvhora (no hay cuadrado) hasta 25 mmvhora (los cuadrados mas grandes). El gréfico (b) muestra el
campo de viento co-localizado dado por ECMWF. Las lineas solidas separan las distintas partes del campo de
observacion: la parte izquierda del grafico corresponde a la region nadir, la central a la regién éptima y la parte
derecha a la region exterior. Las observaciones fueron adquiridas el 2 de Septiembre de 1999 a las 14 horas UTC.

5.2 Comparacion entre los procedimientos de CC del KNMI y de deteccion de
[luvia del JPL

Como se ha visto en feccion precedente, la deteccion deueidl es de gran importancia para el
CC de los datos QuikSCAT. En este sentido, el JPL ha desarrollado un procedimiento de
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deteccion de lluvia para QuikSCAT. Este métoda bsisado en una sede parametros que son
identificados como sensibles a la lluvia. Bstparametros son, entre otros, la diferencia
normalizada entre las retrodispersiones de los thstimaces, el médulo y la direccién del viento
obtenido y el MLE.

Con el fin de mejorar el CC para QuikSC/ASE, realiza una comparacidel CC propuesto en la
seccion precedente con el métodaldeeccion de lluvia del JPL. Reello se utilizaran de nuevo
datos ECMWF y SSM/I co-localizados. La compabace realiza en las regiones nadir y 6ptima.

Los resultados muestran que el CC del KNMI dietérechaza) un 4% de datos que son de mala
calidad y en su mayoria no contaminados ptioléa y que no han sido detiados por el método
del JPL. Este, por su parte, detecta un 2% tesdie mala calidad y parcialmente contaminados
por la lluvia y que no han sido detectados @oCC del KNMI. De este modo, el CC es mas
eficiente como indicador de cadlid (en general) mientras quenettodo del JPL es mas eficiente
como indicador de lluvia.

El CC del KNMI esta basado en el MLE, quesulta ser un buen parametro para el CC. El
método del JPL esta basado no so6lo en el MLE sino también en otros parametros, que son
identificados como sensibles a la lluvia copachemos mencionado anteriormente. Sin embargo,
estos otros parametros no estan relacionados colidadcde los datos, loual explica por qué el

CC del KNMI funciona mejor como indicador de calidad.

Aun asi, se puede apreciar que hay una parte @vabld de datos de mala calidad, parcialmente
contaminados por la lluvia, que son detectgutmsel método del JPY no por el CC del KNMI,
sugiriendo que ambos métodos son complean&®t y que su combinacion podria mejorar
sensiblemente el CC de QuikSCAT. Sin embalg®resultados también muestran que el método
del JPL tiende a rechazar muchos datos enszginamicamente activas y no contaminadas por la
lluvia.

La calidad de los datos se determina por comparacion con los datos del modelo ECMWEF. En las
zonas dinamicamente activas, es precisamente dan@spera que los modelos de prediccion
sean mas imprecisos y por tanto donde las estatisdobre la calidad de los datos puedan ser
menos fiables. De modo que es necesario rmecal examen direto de situaciones
meteoroldgicas para determinar si la calidacestes datos rechazados por el JPL es realmente
mala.

Después de examinar numerosos campos ddoyise observa que en la regién Optima de
QuikSCAT, hay un exceso de vientos fuertepaeml y meteorolégicamente consistentes, que
son rechazados por el método del JPL. Enda&renadir, donde la eficiencia del CC del KNMI
es menor comparada con la eficiencia en ladregptima, el método del JPL es capaz de detectar
algunos vientos de mala calidad, contaminadodapltuvia, que no son dectados por el CC del
KNMI.

Asi pues, se recomienda el w CC del KNMI para los datos @$CAT. En la region 6ptima,
el CC del KNMI es suficiente; sin embargo, emdgion nadir, se recomienda el uso combinado
del CC del KNMI y el método de deteccién de lluvia del JPL.
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Acronyms

2D-Var
3D-Var
4D-Var
ADEOS
AER
AMSR
AR
ASAR
ASCAT
ATSR
BUFR
CERSAT
CDTI
CMOD-4
CMOD-Ifr
DIR
DIRTH
DMSP
DNMI
DoD
DWL
ECMWF
EM
ENSO
ENVISAT
ERS
ESA
ESRIN
ESTEC
EUMETSAT
GA

GMF
GOMOS
GOS
GPS
GTS

Two-dimensional Variational Analysis
Three-dimenenal Variational Analysis
Four-dimensional Variational Analysis

Advanced Earth Observation Satellite
Atmospheric Environmental Research Inc.
Advanced Microwave Scanning Radiometer
Ambiguity Removal

Advanced SAR

Advanced Scatterometer

Along Track Scanning Radiometer

Binary Universal Format Representation

Centre ERS d’Archivage et de Traitement
Centro para el Desarrollo Tecnolégico e Industrial
ESA C-band GMF for the ERS Scatterometer
Ifremer C-band GMF for the ERS Scatterometer
Direction Interval Retrieval

DIR + TN

Defense Meteorological Satellite Program
Norwegian Meteorological Institute

Department of Defense (USA)

Doppler Wind Lidar

European Centrerfedium-range Weather Forecasts
Electromagnetic

El Nifio Southern Oscillation

Environmental Satellite

European Remote Sensing Satellite

European Space Agency

European Space Research Institute

European Space Research and Technology Centre
European Meteoragjical Satellite Organization
General Approach

Geophysical Model Function

Global Ozone Monitoring by Occultation of Stars
Global Observing System

Global Positioning System

Global Telecommunication System

Acronyms
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HDF Hierarchical Data Format
HIRLAM High-Resolution Limited Area Model

HIRS High-Resolutiomnfrared Radiation Sounder

H-pol Horizontal Polarization

IFREMER Institut Francais de Resiche pour 'Exploitation de la Mer.
JERS Japanese Earth Resources Satellite

JPL Jet Propulsion Laboratory

KNMI Royal Netherlands Meteorological Institute

LOS Line of Sight

LUT Look-up-table

MBL Marine Boundary Layer

MEC Ministerio de Educacion y Ciencia

METOP Meteorological Operational Polar Satellites

MLE Maximum Likelihood Estimator

<MLE> Expected MLE

MSS Multiple Solution Scheme

MUDH Multidimensional Histogram

NASA National Air and Space Administration (USA)
NCEP National Centre for Atmospheric Prediction (USA)
NOAA National Oceanographic and Atmospheric Administration (USA)
NRMS Normalized RMS in wind direction

NRCS Normalized Radar Cross Section

NRT Near Real Time

NSCAT NASA Scatterometer

NSCAT-2 NASA Ku-band GMF for NSCAT

NWP Numerical Weather Prediction

OVWST Ocean Vector Wind Science Team

PBL Planetary Boundary Layer

PDF Probability Density Function

PRI Precision Image

QC Quiality Control

QSCAT-1 NASA Ku-band GMF for QuikSCAT
QUIKSCAT NASA satellite dedicated the first SeaWinds instrument

RAR Real Aperture Radar

RFSCAT Rotating Fan-beam Scatterometer

RMS Root-Mean-Squared

RMS-ECMWF Mean RMS of vector diffemee between JPL-selected and ECMWF winds
Rn Normalized Residual

RR Rain Rate

SAF Satellite Application Facility

SAG Science Advisory Group

SAR Synthetic Aperture Radar

SASS Seasat-A Scatterometer System

Seasat Sea State Satellite

SeaWinds NASA Ku-band rotating pencil-beam scatterometer
SD Standard Deviation

SLC Single-look complex

SSM/I Special Sensor Microwave Imager

SWA SAR Wind Algorithm

SWDA SAR Wind Direction Algorithm
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SWRA
SWT
TN
UKMO
USA
UTC
V55
VHR
V-pol

WMO

Statistical Wind Retrieval Approach
Science Working Team

Thresholded Nudging

United Kingdom Meteorological Office
United States of America

Universal Time Coordinated
Operational (55 km resolution) HIRLAM
Very High Resolution HIRLAM
Vertical Polarization

Wind Vector Cell

World Meteoological Organization

Acronyms
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