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In studies of the turbulent air flow over water waves it is usually assumed that the effect of
viscosity near the water surface is negligible, i.e. the Reynolds number, Re � u � λ

�
ν, is considered

to be high. However, for short waves or low wind speeds this assumption is not valid. Therefore,
a second-order turbulence closure that takes into account viscous effects is used to simulate
the air flow. The model shows reasonable agreement with laboratory measurements of wave-
induced velocity profiles. Next, the dependence of the dimensionless energy flux from wind to
waves, or growth rate, on Re is investigated. The growth rate of waves that are slow compared
to the wind is found to increase strongly when Re decreases below 104, with a maximum around
Re � 800. The numerical model predictions are in good agreement with analytical theories and
laboratory observations. Results of the study are useful in field conditions for the short waves in
the spectrum, which are particularly important for remote sensing applications.

1. Introduction
The air flow over water waves and the consequential growth of the waves are a permanent sub-

ject of investigation. The main reason for this is that numerical model predictions of wave growth
rates are consistently lower than indicated by measurements (Belcher & Hunt 1998; Mastenbroek
et al. 1996). Observed growth rates were compiled by Plant (1982) and plotted as a function of
c

�
u � , where c is the phase velocity of the wave and u � the friction velocity of the air flow. Con-

siderable scatter is present, which suggests that other parameters may be necessary to explain
variations in the growth rate. Such a parameter, which has received little attention so far, is the
Reynolds number, Re � u � λ

�
ν (here λ is the wavelength and ν the kinematic viscosity of the

air). In most studies it is assumed that Re is high enough that dynamic effects of viscosity can be
neglected. However, this assumption breaks down for short waves or low wind speeds.

The purpose of the present article is to investigate numerically the influence of the Reynolds
number on the structure of the air flow over water waves. This impact is not only important for
a proper interpretation of laboratory experiments, but also in the field the assumption that Re is
high is sometimes violated, as was concluded in an analysis by Harris, Belcher & Street (1996)
of experiments by Snyder et al. (1981). Furthermore, Re is especially low for short waves, which
are always present on the sea surface. They support a large part of the momentum flux from the
atmosphere to the sea (Makin, Kudryavtsev & Mastenbroek 1995) and are important for remote
sensing applications.

In numerical simulations of the air flow above waves, the choice of the turbulence closure
scheme is crucial. Belcher & Hunt (1993) applied the theory of rapid distortion of turbulence
to the description of the flow over hills and waves. From their work it follows that turbulence
closures based on an eddy viscosity concept overestimate stress perturbations in the so-called
outer region of the flow. Mastenbroek et al. (1996) confirmed this by comparing numerical results
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from different turbulence models with laboratory observations. They recommended the use of a
second-order Reynolds stress closure.

A numerical study taking into account viscous effects was carried out by Harris et al. (1996).
They used a linear model with an e-ε turbulence closure and performed calculations for both
coupled and uncoupled air water flow. The eddy viscosity was damped in the outer region to
avoid overestimation of the stress perturbations. Simulating the flow over hills they found that
the form drag increases considerably when Re drops below 2 � 104.

In this work we solve full nonlinear equations for the air flow and employ a low-Re second-
order turbulence closure scheme (Craft & Launder 1996). The numerical model is thought to be
general enough to describe the important features of the air flow. In comparison with Harris et
al. our approach has the advantage that no artificial adjustments to the model have to be made.
The model computations are compared with observations performed by Stewart (1970). This
experiment is particularly suited for the present investigation, because it was conducted at low
Reynolds numbers and covered a wide range of wave ages. Next, growth rates following from the
low-Re model are compared with experiments, analytical theories and other numerical models.
It is concluded that viscous effects are important when Re � 104 and lead to enhanced wave
growth.

2. Numerical model
The flow of air over a train of monochromatic water waves is investigated. The waves, propa-

gating in x-direction, give a surface elevation η, which is assumed to be

η � acos � kx � ωt ��� (2.1)

where a is the amplitude and ω the angular frequency of the wave; k is the wave number and t
is time. The wind also blows in x-direction and the water surface is taken to be invariant under
translations in the y-direction, so that the remaining problem is two-dimensional. For a wave in
deep water the dispersion relation gives

ω2 � gk � γ
ρw

k3 � (2.2)

where g is the gravitational acceleration, γ the surface tension of water and ρw the water density.
Finally, the air flow is considered to be statistically steady, incompressible and neutrally stratified.

2.1. Governing equations and turbulence modelling

The air flow is governed by the Reynolds-averaged Navier–Stokes equations:

∂ ūj
∂x j

� 0 � (2.3)

∂ ūi
∂t
� ūj

∂ ūi
∂x j

� � 1
ρ

∂ p̄
∂xi
� ∂

∂x j

�
ν

∂ ūi
∂x j

� u 	iu 	 j 
�� (2.4)

Here � u1 � u2 � u3 ��
�� u � v � w � denotes the velocity vector, � x1 � x2 � x3 ��
�� x � y � z � is the spatial coor-
dinate, p the pressure, ρ the air density and ν the kinematic viscosity of the air. Bars represent
Reynolds-averaged quantities and primes denote turbulent fluctuations. In the remainder of this
paper the bars above the velocity components and pressure will frequently be dropped for nota-
tional convenience.

The above set of equations contains the Reynolds stresses u 	iu 	 j, which need to be parame-
terised. In second-order closure schemes, conservation equations are solved for these turbulent
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stresses:
∂u 	iu 	 j

∂t
� ūk

∂u 	iu 	 j
∂xk

� Pi j � di j � Πi j � εi j � (2.5)

where the terms on the right-hand side denote production, diffusion, pressure-velocity correla-
tions and dissipation respectively. Additionally, an equation is solved for the dissipation rate, ε,
of turbulent kinetic energy. Most terms in these equations require modelling. In this study a clo-
sure scheme (Craft & Launder 1996) is used which is valid down to the viscous sublayer close
to the air-sea interface. This model will be referred to as the low-Reynolds model. It is outlined
in detail in the Appendix.

To assess the impact of the Reynolds number, control runs are performed with a second-order
model (Launder, Reece & Rodi 1975) that does not take into account viscous effects and is
called the high-Re model in this paper. Results obtained with this model were already presented
in Mastenbroek et al. (1996). In § 3 it is explained why such advanced closure schemes are used.

2.2. Computational setup

For solution of the conservation equations (2.3), (2.4) and (2.5), the coordinates � x � z � are trans-
formed to wave following coordinates � χ � ξ � : χ � k � x � ct � �

2π, where c � ω
�
k is the wave phase

velocity, and ξ � � z � η � � � h � η � , where h is the height of the computational domain.

2.2.1. Boundary conditions

The length of the computational domain is one wavelength λ � 2π
�
k. Periodic conditions

are applied at the up- and downstream boundaries. The height of the domain is normally taken
as h � λ. At this height the wave-induced perturbations are negligible. Therefore, at the upper
boundary the horizontal velocity component is specified and the vertical component is set to zero.
For the turbulent moments the vertical gradient is set to zero. In boundary layers the dissipation
ε is inversely proportional to the distance from the surface. Thus a proper boundary condition is
∂ � εz � �

∂z � 0.
At the lower side of the domain, the orbital velocities of the wave, u0

� aωcos � kx � ωt � and
w0

� aωsin � kx � ωt � , are imposed. For the remaining flow variables the numerical treatment of
the lower boundary is different in the low-Re and the high-Re model. In the former, the homoge-
neous dissipation rate and the Reynolds stresses are set to zero. In the latter, synthetic boundary
conditions have to be used, which require specification of the roughness length z0. Via z0 the lo-
cal tangential surface stress along the wave surface is calculated and, subsequently, equilibrium
values for the turbulent stresses and the dissipation are imposed. Details on the implementation
can be found in Mastenbroek (1996).

2.2.2. Numerical method and discretization

The conservation equations listed in § 2.1 comprise a set of ten coupled nonlinear partial
differential equations for ten flow variables, subject to the boundary conditions described in
§ 2.2.1. They are solved in the following way. The momentum equations are rewritten to obtain
a Poisson equation for the pressure. This equation is solved using the successive over-relaxation
method with Chebyshev acceleration. The conservation equations are then iteratively integrated
forward in time with a second order predictor–corrector method, where at every timestep an
updated value for the pressure, as obtained by the above method, is used. The difference between
integration with a first- and second-order accurate method is used to estimate the optimal size
of the next time step. The calculations start from an initial condition and proceed until a steady
state is reached.

For the spatial discretization of the conservation equations a second-order finite difference
method is used. The grid is staggered: the pressure is calculated at cell centres, the other vari-
ables at cell edges. To obtain a sufficient resolution near the surface, non-uniform meshes are
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used in which the grid points are closely spaced near the air-water interface and distributed log-
arithmically away from the surface. Thus the spacing between two subsequent vertical layers
increases with a constant factor. Meshes are chosen such that at least some grid points are within
the viscous sublayer, bounded by z � � zu �

�
ν � 5. A typical mesh has 60 points in vertical and 32

(uniformly spaced) in horizontal direction. With these grids the solution is found to be indifferent
to a further increase of the resolution. More detailed information on the numerical implementa-
tion can be found in Burgers & Makin (1993).

2.3. Representation of the data

In § 4 model results are compared with experimental data. This comparison concerns the vertical
profiles of wave-induced perturbations. Let q̃ denote the wave-induced part of a quantity q:

q̃ � q̄ � �
q̄ � � (2.6)

where
� � represents horizontal averaging over a wavelength, in the remainder of this paper also

denoted by capitals (e.g. U � �
ū � ). Wave-following coordinates are used in the model, but the

averaging can be performed both in Cartesian and in wave-following coordinates.
For the analysis it is convenient to look at the amplitude q̂ of the first harmonic of q̃:

q̃ � 1
2

�
q̂e2πiχ � q̂

� e � 2πiχ � � harmonics � (2.7)

where χ is the wave-following horizontal coordinate and q̂ � denotes the complex conjugate of q̂.
The complex amplitude is a function of z only. The real part Re � q̂� gives the amplitude in phase
with the wave elevation; the imaginary part Im � q̂� the amplitude in phase with the wave slope.
A positive value of Im � q̂� corresponds to an enhancement of q above the windward slope of the
wave.

2.4. Dimensionless parameters

At this point it is worthwhile to note which dimensionless parameters determine the solution
of the above described problem. The first parameter is the steepness of the wave, ak. When
the steepness is low (ak � 0 � 1), the first-order perturbations induced by the wavy surface are
of primary importance, and nonlinear effects are small. This means that the growth rate (see
§5) is then independent of ak, which was confirmed e.g. by Gent & Taylor’s (1976) numerical
simulations. In this paper we will focus on waves with a low steepness.

The ratio of the phase velocity of the wave to the wind speed is the second parameter. It
is represented by the wave age, c

�
u � . The third parameter is dependent on the model that is

used. In the case of the low-Reynolds model, the dynamic effects of viscosity are important.
Hence, the actual value of the velocity, which is non-dimensionalised in the Reynolds number,
is important. From the various possible definitions of the Reynolds number, we will use in this
article Re � u � λ

�
ν, as was mentioned before. In the high-Re model the Reynolds number is

assumed to be so large that its actual value does not matter. In exchange, another parameter must
be considered: the roughness. While in the low-Reynolds model a smooth surface is assumed,
the high-Re model captures roughness elements on the surface by employing the dimensionless
roughness length kz0. From the above it may be clear that the applicability of the low-Re model
is limited. The computational requirements increase with the range of scales that have to be
resolved, from the smallest ν

�
u � to the largest λ, and this range grows exactly with the Reynolds

number.
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3. Characterisation of the wave boundary layer
In this section we briefly repeat the framework of the rapid distortion theory of turbulence, as

introduced by Belcher & Hunt (1993) for the flow over water waves. Special attention will be
paid to the inclusion of viscosity into their scaling arguments.

3.1. Wave-induced turbulence

For a proper description of turbulence in the air flow above waves two time scales are relevant.
Firstly, the advection time scale TA � λ

���
U � z � � c

�
represents the time it takes for a turbulent eddy

to pass over a wave. On this time scale, turbulent eddies feel changes in the velocity gradient
of the mean flow. The second time scale TL (Lagrangian time scale) characterizes the time it
takes for an eddy to come into equilibrium with the local velocity gradient. It is the ratio of the
typical size, κz, and velocity scale, u � , of an eddy: TL � κz

�
u � . Here κ � 0 � 41 is the Von Karman

constant.
The wave boundary layer is now divided into an inner and an outer region, where TA � TL and

TA � TL respectively. The location of the top of the inner region, lH , is given by TL � TA and it is
defined with a proportionality constant such that:

klH � 2κ
u ��

U � lH � � c
� � (3.1)

In the inner region close to the water surface, eddies adjust to local conditions before they are
substantially transported. On the other hand, in the outer region they have no time to come into
equilibrium with the mean shear; they are rapidly distorted. This implies that the turbulent shear
stress perturbations decay quickly in the outer region, because advection smoothes out stress
variations over the wave. In § 4 it will be outlined that the shear stress perturbations in the inner
region produce asymmetries in the air flow, which finally cause growth of the wave.

This division has consequences for turbulence modelling. In the inner region, where produc-
tion and dissipation of turbulence are locally in balance, the use of an eddy-viscosity closure is
appropriate. However, in the outer region advection of turbulent moments has to be taken into
account and this can be done by using a second-order scheme. It was shown by Mastenbroek et
al. (1996) that with such a closure the effects of rapid distortion can be modelled, whereas eddy-
viscosity closures fail to reproduce correctly the wave-induced turbulence in the outer region.
For this reason a second-order Reynolds stress model is used in this study.

3.2. The role of viscosity

In a viscous layer perturbations to the shear stress decay on a scale

z �
�

2ν
k
�
U � z � � c

� 
 1
2 � (3.2)

This fact can be used to generalize (3.1). A rough estimate for the mean horizontal velocity
profile is needed. It is obtained by integrating

∂U
∂z

� u2�

ν � νt
� (3.3)

with the turbulent viscosity νt defined as

νt � z � � κzu � fD � z � � (3.4)

Here fD � z � � 1 � exp � � z � �
A � � , with A � � 28, is the Von Driest damping function (e.g. Baldwin

& Lomax 1978). Now the definition of the inner region depth can be generalized to:

kl �
�

2 � ν � νt � l � � k�
U � l � � c

� 
 1
2 � (3.5)
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FIGURE 1. Location of layers in the wave boundary layer as a function of wave age: ����� , inner region
depth kl; ����� , critical height kzc; � � � , depth of viscous sublayer kzν. Symbols represent Re � 250 ( � ),
Re � 1500 (

�
) and Re � 8000 ( 	 ).

This equation describes the height at which the combination of viscous and turbulent stress per-
turbations decays.

In figure 1 the inner region depth following from (3.5) is plotted as a function of the wave age
for three different Reynolds numbers. The height of the viscous sublayer, given here by z �ν � 30,
is also shown. For Re � 8000, the larger part of the inner region is outside the viscous layer.
This means that asymmetry in the flow is mainly created by turbulent stresses. By contrast, when
Re � 250, the inner region falls completely within the viscous layer and thus molecular forces
are responsible for wave growth.

The critical height, zc, is also plotted. It is the height where the wind speed equals the phase
velocity of the wave: U � zc � � c � 0. For waves that are slow compared to the wind, zc is low. In
contrast, fast waves have a large critical height. It follows from figure 1 that when Re decreases,
the range of wave ages for which a wave is considered to be slow, gets smaller.

4. Comparison with experiment
In this section model calculations are compared with Stewart’s (1970) experiment. In this

experiment detailed observations of the velocity field above water waves were performed. The
observations are particularly suited for comparison with the present model, since the Reynolds
numbers are low: Re � 870–3000. Additionally, the flow can be considered smooth. An indicator
for this is the roughness Reynolds number, Rer

� z0u �
�
ν, which is approximately Rer

� 0 � 24 in
Stewart’s experiment, while an ideally smooth surface would give Rer

� 0 � 11. A wide range
of wave ages is covered, which allows a detailed investigation of wave-age dependence. Other
laboratory observations of the air flow over water waves include those by Hsu & Hsu (1983) and
Mastenbroek et al. (1996). However, these are less appropriate for the present purposes, because
their Reynolds numbers are fairly high (6000 � Re � 13000 for Hsu & Hsu and 8700 � Re �
13000 for Mastenbroek et al.).
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Case U∞ [m s � 1] u � [m s � 1] Re c
�
u � Uλ

�
c kl kzc kzν

1 2.27 0.117 3015 6.83 3.46 0.11 0.02 0.06
4 1.02 0.058 1487 13.9 1.58 0.49 0.27 0.13
7 0.56 0.036 867 23.8 0.86 0.03 24 0.22

TABLE 1. Parameters for selected cases of Stewart’s experiment.

4.1. Experimental setup

Stewart’s measurements were carried out in a wind–water tunnel, which was 5.90 m long, 59 cm
high and 57 cm wide and contained 21 cm of water. The waves were created by a submerged flat
plate, hinged at the bottom. They had a wavelength λ � 40 � 8 cm and an amplitude a � 0 � 64 cm
(steepness ak � 0 � 1). The waves were short enough not to feel the bottom of the tank, so that the
deep-water dispersion relation gives c � 79 � 6 cm s � 1. A fan at the downwind end of the tunnel
produced a variable wind speed. From the seven reported cases, we pick three to compare with
the numerical model. An overview of the free stream velocities U∞ for these cases is given in
table 1. The instruments were located at 3.96 m from the entrance and 2.74 m from the wave-
maker. At this location the boundary-layer depth was about 10 cm. The velocity measurements
were performed with hot-wire anemometers.

4.2. Error estimation

Stewart gives a detailed estimate of the errors in the observations. The first class of error sources
includes the inaccuracy of the electronic measurements, the temperature dependence of the hot-
wires and the inaccuracy of the calibrations. These lead to an accuracy of the mean velocity
within 1 � 5%. Next, there are geometrical errors in resolving the velocity components, so that
part of the horizontal velocity can appear as a vertical velocity. These errors are particularly felt
in the wave-induced velocities ũ and w̃. These quantities are thought to be resolvable to 1% of
the mean horizontal velocity. The measurements of the spectra of the wave-induced velocities
include contributions from turbulent fluctuations. However, these contributions are found to be
small and thus cause little error. The influence of fluctuations in U∞ on the results was tested
by repeating the measurements several times. The magnitude of q̂ was found to vary about 20%
and the phase about 10o. Finally, the error made in retrieving the data from the plots in Stewart’s
article is small enough to be ignored. The error bars in figures 2 to 4 show the largest of the
errors above mentioned. However, at the lowest wind speeds, notably in case 7, the accuracy of
the hot-wire anemometers is questionable and the error may be larger.

4.3. Setup of the simulations

In the simulations we attempt to approximate the experimental conditions as closely as possible.
Special care is necessary for the wind speed. In the model, an open boundary layer is simulated
and the flow is driven by Uλ, the mean horizontal wind speed at height z � λ. In contrast, the
experiment is in a tunnel and the flow is forced by a pressure gradient. To define the model runs
a value for Uλ is obtained by extrapolating the logarithmic part of the mean horizontal velocity
profile of the measurements to the height λ. This leads to the values listed in table 1.

Of course one has to be cautious when comparing confined flow experiments with open bound-
ary layer calculations. However, it can be argued (e.g. Yaglom 1979) that the influence of the
pressure gradient in a channel flow may be neglected when z � δp, where δp is the pressure
gradient length scale, which equals the channel half-width. In the experiment δp

� 19 cm and
measurements were taken at z � 8 cm.
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FIGURE 2. Vertical profiles of the wave-induced amplitudes of the horizontal and vertical velocity for
case 1: � � � , low-Re model; � ��� , high-Re model; 	 , measurements (Stewart 1970).

Another parameter to be specified in the high-Re model is the surface roughness z0. It is ob-
tained from the logarithmic fit through the mean velocity data.

4.4. Results

In figures 2 to 4 the observed vertical profiles of the amplitudes of the wave-induced velocity
are compared with those computed by the numerical model. The amplitudes are scaled with the
wave steepness ak and the velocity at the centre of the channel U∞. The vertical axis gives the
dimensionless height kz above the mean water level.

Figure 2 shows the results for the highest wind speed. This case is typical for a relatively slow
wave. The models predict almost the same vertical profiles for the real part of the horizontal,
Re � û � , and the imaginary part of the vertical velocity perturbation, Im � ŵ� . These two components
form the part of the flow in phase with the wave, i.e. in phase with the orbital movement of the
water. Compared to the measurements Im � ŵ � is slightly overestimated. The components Re � ŵ �
and Im � û� are created by the work of viscous and turbulent stresses in the inner region. This
can be clarified with the out-of-phase part of the momentum conservation equation (2.4) for the
wave-induced perturbations, which reads in Cartesian coordinates:

� � U � c � Im � û � � Re � ŵ � dU
dkz

� 1
ρ

�
Im � p̂ � � dRe � τ̂ �

dkz 
 ; (4.1)

� U � c � Re � ŵ � � 1
ρ

� � dIm � p̂ �
dkz

� Re � τ̂ � 
�� (4.2)

Here the shear stress τ is the sum of a viscous and a turbulent contribution:

τ � ρν
�

∂u
∂z
� ∂w

∂x 
 � ρu 	 w 	 � (4.3)

Normal turbulent and viscous stresses have been left out for convenience. If there is no stress
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FIGURE 3. As figure 2, but for case 4.

perturbation acting as a forcing in these equations, then no Re � ŵ � and Im � û� will be formed. This
is the case in inviscid flow. However, a shear stress related to the components Re � û� and Im � ŵ �
produces asymmetry in the flow. The energy flux from the air to the waves can be derived directly,
when we note that it is mainly provided by the pressure–slope correlation Im � p̂� at the surface
(see § 5.1). This component is found by integrating (4.2) from zero to infinity:

Im � p̂ � z � 0
�
� ∞

0
ρ � U � c � Re � ŵ � dkz � � ∞

0
Re � τ̂ � dkz � (4.4)

The component Re � ŵ � , which is formed in the thin inner region, decays exponentially in the outer
region, where it contributes to the slope-correlated pressure according to the first integral on the
right-hand side of (4.4). As was noted before, the shear stress perturbations are almost zero in the
outer region and thus the contribution of the second integral to the growth rate is normally small.
Hence, the magnitude of Re � ŵ � gives a good indication of the growth rate. In figure 2 it can be
seen that the low-Re model predicts a larger Re � ŵ � than the high-Re model. This corresponds to
a higher growth rate at this Reynolds number (Re � 3000). The measurements are not precise
enough to favour one of the two models.

Case 4, which has Re � 1500 and c
�
u ��� 14, is presented in figure 3. The model predictions for

the part of the flow in phase with the wave are similar and in agreement with the measurements.
The observations further indicate that Re � ŵ � is zero, which corresponds to hardly any growth.
This is clearly reproduced by the low-Re model. However, the high-Re model predicts large
values for this component. According to this model a wave with c

�
u � � 14 is in the intermediate

regime, i.e. it is in the transition range between slow and fast. For these waves the highest growth
rates are predicted, and thus a large value for Re � ŵ � is found. From figure 1 it can be seen that
when Re gets lower, the region of intermediate waves shifts to lower wave ages. Therefore, the
low-Re model treats this wave as a fast wave, meaning no growth and almost zero Re � ŵ � . Notice
that the predicted profile of Im � û � also shows good agreement with the measurements.

In figure 4 the wave-induced velocity profiles for case 7 are plotted. This case concerns a fast
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FIGURE 4. As figure 2, but for case 7.

wave. Here the wave-induced air flow is practically inviscid. The orbital velocities are dominat-
ing, and the part of the flow out of phase with the wave is almost zero. This feature is shown by
both models. In this case the way in which stresses are parameterised has hardly any influence on
the wave-induced velocity profiles. Therefore, the results from both models are almost the same.

It is unclear why the computations for Im � ŵ � differ so much from the observations. The mea-
surements seem to violate continuity. This can be explained by regarding the in-phase part of the
continuity equation (in Cartesian coordinates):

Re � û� � � dIm � ŵ �
dkz � (4.5)

While the observations show that the derivative of Im � ŵ � goes to zero near the surface, Re � û � is
large and negative. Possibly this discrepancy is due to the fact that the wind speed is very low and
thus the accuracy of the hot-wire measurements breaks down. The existence of a secondary flow
may be a different explanation. Such a secondary flow can arise in the flow over smooth wavy
surfaces (Gong, Taylor & Dörnbrack 1996). When it is present, continuity in two dimensions is
of course not obeyed.

5. Growth rates
In this section some results will be presented concerning the growth rate. This quantity reflects

the energy transfer from wind to waves and is crucial as input in wave models. The energy flux,
Ė, per square metre water surface from the air to a wave can be written as:

Ė � � � p � w � ηxu � � τ � u � ηxw � � ξ � 0 � (5.1)

with ηx
� ∂η

�
∂x. A contribution of normal turbulent and viscous stresses to the growth is also

present, but it has been left out here for convenience, as it is small for all wave speeds. For
slow waves the flux is formed mainly by the pressure-slope correlation, while for fast waves the
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FIGURE 5. Growth rate as a function of Reynolds number. � � � , low-Re model; � � � , high-Re
model; � � � , van Gastel et al. (1985). Symbols show measurements of Larson & Wright (1975): � ,
u � � 0 � 12 m s � 1; 	 , u � � 0 � 18 m s � 1;

�
, u � � 0 � 24 m s � 1; � , u � � 0 � 53 m s � 1.

contribution via the shear stress is dominant (see Mastenbroek et al. 1996). The energy flux is
normally scaled with the energy, E, of the wave per unit surface area. For a sinusoidal wave
E � 0 � 5ρwkc2a2.

Results will be presented in the form of the growth rate coefficient β, which is defined by

Ė
ωE

� ρ
ρw

� u �

c � 2
β � (5.2)

While (5.1), plus the normal stress contribution, is used to calculate β from the model results, for
low steepness it provides insight to linearize (5.1), which leads to:

β � � Im � p̂ � � Re � τ̂ � � ξ � 0

akρu2� � (5.3)

5.1. Impact of Reynolds number on growth rate

First, attention will be paid to the impact of the Reynolds number on the growth rate of rela-
tively slow waves (c

�
u � � 5). In figure 5 predictions of the low-Re model are compared with

measurements by Larson & Wright (1975) and with the analytical model of van Gastel, Janssen
& Komen (1985). They presented the growth rates in dimensional form as a function of k for
constant u � . Then analysis is complicated because the dimensional growth rate increases quadrat-
ically with the friction velocity. We present the data in the non-dimensional form of β, as defined
in (5.2). The low-Re model results were obtained for low steepness waves (ak � 0 � 01). The indi-
vidual curves show results for a constant u � . Between the curves u � varies from 0.14 to 0.9 m s � 1.
The fact that they almost coincide indicates that the Reynolds number is indeed the most impor-
tant explaining parameter; variations in the wave age cause only slight differences for these slow
waves.

Van Gastel et al. (1985) described analytically the growth of gravity–capillary waves using
linear instability theory. With asymptotic methods they solved the governing Orr-Sommerfeld
equation for the perturbations to a given basic flow, both in the water and in the air. Viscos-
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ity was taken into account, but turbulence was neglected. They presented net growth rates; i.e.
including dissipation due to the viscosity of the water. To compare with our model, we add to
their growth rate results (see their figure 2) the viscous dissipation term 4νwk2, where νw is the
kinematic viscosity of water. The curves, which were obtained for u � varying between 0.14 and
0.25 m s � 1, reasonably coincide. The agreement between our model and their analytical results is
excellent. This confirms the validity of our numerical model in the very low Re range. Although
van Gastel et al. neglected turbulence, the agreement is perhaps not so surprising, since at these
low Reynolds numbers growth is mainly created by viscosity.

Larson & Wright (1975) measured growth rates in a laboratory wave tank using microwave
backscatter. Their radars were aligned to respond to waves with wavelengths in the range 0.7–
7 cm. To isolate the growth due to wind, they added to the measured values the viscous dissipation
term, as described above. To non-dimensionalise their growth rates we use other values of u �
than those reported. Donelan et al. (1987) pointed out that the reported values are too large,
since they were measured at steady state after the wave spectrum had attained its fetch limit. The
exponential growth of the waves under consideration, though, took place in the first seconds,
when the fetch limit had not yet been reached. Therefore, they proposed alternative values, as
listed in the figure caption. Although some scatter in the measurements remains, the general
agreement between model and observations is good.

The predicted growth rate shows a maximum β � 35 at Re � 800. Towards higher Reynolds
numbers β decreases and at Re � 104 the difference between low and high-Re model disappears.
Therefore, we conclude that for Re � 104 the influence of viscosity near the water surface may
be neglected. Note that the high-Re model is in principle not dependent on the Reynolds num-
ber. However, we used z0

� 0 � 11ν
�
u � and thus Re influences the calculations indirectly via the

roughness length. From figure 5 it is clear that this influence is small.
The differences between the high- and low-Re model are shown in more detail in figure 6.

The figure gives vertical profiles of wave-induced perturbations in wave-following coordinates
for Re � 1000, which is near the peak of the predicted growth rates. The enhanced growth rate of
the low-Re model can directly be inferred from the imaginary part of the pressure perturbation.
The maximum of Re � ŵ � is also clearly much higher in the low-Re model. The reason for the
increased growth is not completely clear. The maximum around Re � 800 is also observed for
the form drag of hills (see §5.2). There we will discuss possible explanations.

5.2. Form drag on a smooth hill

We now turn to the limiting case of the flow over smooth stationary rigid waves. In the notation
of this article this case is represented by c � u0

� w0
� 0 m s � 1. The form drag, S, on such hills

is the equivalent of the growth rate parameter for waves. It is defined as

S � 2π
�
pηx � ξ � 0

ρu2� � ak � 2 � (5.4)

Harris et al. (1996) found that the form drag on a hill increases strongly when the Reynolds num-
ber gets low, as is shown in figure 7. They solved, apart from the base flow, linearized equations
for the wave-induced perturbations. Turbulence was modelled by the e-ε scheme. This closure
is based on an eddy viscosity and thus, as was noted before, overestimates Reynolds-stress per-
turbations in the outer region. To solve this problem Harris et al. damped the eddy viscosity in
the outer region. Both the present model and Harris et al. show an increase of S for low Re. This
again gives evidence that viscous effects need to be taken into account; the high-Re model cannot
reproduce the trend of enhanced form drag.

The low-Re model predicts a peak of the form drag for Re � 800; at lower Reynolds numbers
S decreases again. For β, in case of a slowly moving wave, this was also noticed and found in
experiments (see § 5.1). In contrast, Harris et al. (1996) found no reduction of the form drag
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FIGURE 6. Vertical profiles of wave-induced perturbations above a slow wave (c
�
u� � 2) at Re � 1000:

����� , low-Re model; � � � , high-Re model. The heights of the critical layer, inner region and viscous
sublayer (z �ν � 30) are indicated by horizontal bars.

FIGURE 7. Form drag on a smooth hill as a function of Reynolds number: ����� , low-Re model; � � � ,
high-Re model; � � � , Harris et al. (1996); � � � , Harris (update);

�
, Zilker & Hanratty (1979); � , Henn &

Sykes (1999); 	 , Sullivan et al. (1999).
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FIGURE 8. Inner region depth in flow over hills: � � � , kl from (3.5); ��� � , kl H from (3.1); � � � , z � � 10;
symbols denote half the height where max

�
Re � ŵ� �

u��� is located, from low-Re ( � ) and high-Re (
�

) model.

towards low Reynolds numbers. However, recent calculations, represented by the dotted line in
figure 7, with their model for Re � 600 did lead to such a reduction (J.A. Harris, personal commu-
nication). The updated drag values are slightly lower since the definition of their eddy-viscosity
damping function was modified to take into account the actual value of the mean velocity profile.
Certainly they are considerably higher than predicted by our model, yet a similar trend is found.

In figure 7 the form drag from an experiment by Zilker & Hanratty (1979) is also plotted. It is
in good agreement with our low-Re model predictions. Recently, Henn & Sykes (1999) presented
results of their large-eddy simulations of the flow over hills. They found drag values more than
twice as large as Zilker & Hanratty. They then claimed that Zilker & Hanratty’s form drag was
not consistent with an integration of the measured surface pressure data and should therefore
be treated with caution. However, Henn & Sykes performed their simulations at a much lower
Reynolds number than Zilker & Hanratty. According to the present model results this explains
the discrepancy of the form drag values. Sullivan, McWilliams & Moeng (1999) conducted direct
numerical simulations of the flow over waves at Re � 260. The form drag resulting from their
model appears to confirm that S decreases towards very low Reynolds numbers.

An interesting question concerns the existence of a maximum form drag around Re � 800.
First of all we note that a critical layer does not exist over hills, so this can be excluded from
our considerations. The depth of the inner region and of the viscous sublayer are expected to be
important scales.

The inner region depth is supposed to be related to the height where the maximum of Re � ŵ � is
located, since Re � ŵ � is formed in the inner region and decays exponentially in the outer region,
where the shear stress perturbations vanish. Thus, it is useful to compare this height with the
estimates for kl, (3.1) and (3.5), given in § 3. These estimates were derived from scaling argu-
ments and are fixed except an O(1) factor. Hence, they are plotted in figure 8 together with half
the height of the maximum of Re � ŵ � found in the numerical calculations. A good agreement is
found, except at the highest Re. This indicates that the kl-estimates are in general consistent with
the numerical calculations.

The scale of the viscous sublayer is also plotted. It is defined here at z � � 10, where the
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FIGURE 9. Growth rate as a function of wave age: � � � , low-Re model for Re � 260 ( � ), Re � 1000 (
�

)
and Re � 4000 ( � ); � � � , high-Re model (kz0

� 10 � 4); 	 , direct numerical simulation at Re � 260 by
Sullivan et al. (1999).

(continued) linear and logarithmic part of the mean velocity profile intersect. Around Re � 103

the inner region and the viscous sublayer are of comparable depth. For lower Re the inner region
is located inside the viscous layer. This means that mainly viscous stresses are responsible for
creating asymmetry in the flow. In contrast, for higher Re the viscous layer is a negligible part of
the inner region, so that turbulent stresses cause asymmetry. Around Re � 103 both mechanisms
are active in establishing the form drag. This combination appears to be very effective, leading
to a maximum drag.

5.3. Impact of wave age on growth rate

So far, we have discussed the flow over hills and slowly moving waves. Now the growth of faster
waves is investigated. In figure 9 the growth rate is shown as a function of the wave age. The
predictions of the high-Re model were already presented in Mastenbroek et al. (1996). They
give rise to the following picture of wave growth (see Belcher & Hunt 1998). Slow waves, with
c

�
u � � 10, have a critical height that is so low that it plays no dynamical role. Growth is caused

by the work of stresses in the inner region. With increasing wave age the inner region thickens
and the critical layer height increases. Apart from the asymmetry created by turbulent stresses,
additional asymmetry could be provided by the critical-layer mechanism (Miles 1957). However,
the details of the role of the critical layer in the inner region, which is not inviscid, remain to be
clarified. When the wave age increases even further, negative growth from the reverse flow below
the critical height becomes important. This explains the sharp drop of β around c

�
u � � 19. In

(4.4) this effect is seen in the term of Re � ŵ � : below zc its contribution is negative. Finally, fast
waves, with c

�
u � � 20, have effectively a reverse air flow, which damps the wave. The critical

height is so large that it plays no role.
The same picture also seems to be valid when the low-Re model results are regarded. There

are two differences, though. Firstly, the growth rate curves shift to lower wave ages, when the
Reynolds number decreases. This shift must be related to the fact that the critical layer height
increases, when Re gets lower (see figure 1). Thus, the definition of slow, intermediate and fast
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wave regimes, should be altered likewise. Secondly, the magnitude of β for slow waves is higher
according to the low-Re model, as was already pointed out in § 5.1. This result is in agreement
with the parameterisation of Plant (1982), who concluded on the basis of various experimental
data that for slow waves β � 32 � 16.

In figure 9 the growth rate values found in Sullivan et al.’s (1999) direct numerical simulations
are represented by squares. They are in excellent agreement with our calculations at Re � 260,
except that, for unclear reasons, we predict a much stronger damping of fast waves.

6. Conclusions
Laboratory observations of the air flow above water waves show that high-Re turbulence mod-

els cannot correctly reproduce this air flow when its Reynolds number is low. Therefore, cor-
rections are necessary to include effects of viscosity close to the water surface. In this paper a
turbulence closure scheme (Craft & Launder 1996) is applied that takes into account such effects.

In comparison with laboratory observations of the wave-induced velocity field above waves by
Stewart (1970) the low-Reynolds model in general leads to an improved agreement. In the case
with the highest wind speed the high-Re and low-Re model perform similarly. In an intermediate
case observations show that the velocity components out of phase with the wave are suppressed.
In contrast to the high-Re model this is reproduced by the low-Re version. Finally, a case with
a very low wind speed, and a relatively fast wave, again leads to similar predictions by both
models. Here the wave-induced air flow is practically inviscid, and thus the way in which stresses
are parameterised is not so important for the velocity perturbation profiles.

A quantity directly following from the velocity, stress and pressure distributions above waves
is the growth rate. It is shown that the growth rate of slowly moving waves increases when the
Reynolds number becomes smaller than 104, with up to a factor 2 for Re � 800. For smaller
Re the growth rate drops again. A similar maximum is also found for the form drag on smooth
stationary waves. It seems to be related to the relative depths of the inner region and the viscous
sublayer. These are comparable near the location of the maximum, meaning that viscous and
turbulent stresses both play a role in creating growth.

Observed growth rates, e.g. those compiled by Plant (1982), are larger than predicted by ad-
vanced turbulence models and exhibit an amount of scatter that is not taken away by a wave age
dependence. The present modelling work indicates that the Reynolds number is necessary to ex-
plain the growth rates of short laboratory waves. This is confirmed by a comparison with Larson
& Wright’s (1975) microwave-backscatter experiments. In the field the enhanced growth also has
an impact. If for example the wind speed is around 10 m s � 1, corresponding to u � � 0 � 4 m s � 1,
then viscous effects will be important for the waves in the spectrum with λ � 40 cm. The waves in
this range support most of the momentum flux from the atmosphere to the sea and are important
for remote sensing applications.
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Battjes for his interest in this work. J.F.M. was financially supported by the Netherlands Organ-
isation for Scientific Research (NWO), division Earth and Life Sciences (ALW). V.M. acknowl-
edges the Office of Naval Research (ONR grant N00014-98-1-0437, PR 98PR04572-00) and the
International Association (reference INTAS 96-1817 and INTAS/CNES 97-0222). Finally, we
are grateful for the many useful comments made by the referees.

Appendix. Description of the low-Reynolds model
The formulation of the second-order turbulence closure for low Reynolds numbers applied in

this work follows Craft & Launder (1996). Modifications include the neglect of terms that are not
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important for the flow we consider. A special feature of the closure is that no wall-normal vectors
are used. To still be able to identify near-surface effects, the flatness parameter, A, is introduced.
It is defined as

A � 1 � 9
8
� A2 � A3 � � (A 1)

where A2
� ai jai j and A3

� ai ja jkaki are the second and third invariant of the dimensionless
stress anisotropy, ai j, respectively:

ai j
� u 	iu 	 j

e
� 2

3
δi j � (A 2)

where e � u 	iu 	i �
2 is the turbulent kinetic energy. The flatness parameter is one in isotropic tur-

bulence and vanishes near a surface, where the turbulent fluctuations reduce to a two-component
form.

The closure of the terms in (2.5) for the Reynolds stresses is as follows.� The production term needs no parameterisation:

Pi j
� � � u 	iu 	k ∂ ūj

∂xk
� u 	 ju 	k ∂ ūi

∂xk

 � (A 3)� The diffusion term reads

di j
� ∂

∂xk

�
ν

∂u 	iu 	 j
∂xk

� u 	iu 	 ju 	k � � (A 4)

The triple correlation appearing in this expression is modelled as

u 	iu 	 ju 	k � � cs
e
ε

�
u 	iu 	l ∂u 	 ju 	k

∂xl
� u 	 ju 	l ∂u 	ku 	i

∂xl
� u 	ku 	l ∂u 	iu 	 j

∂xl
� � (A 5)

with cs
� 0 � 11.� The pressure correlation term is modelled as in Craft, Ince & Launder (1996). It is split

into two parts: Πi j
� φi j � d p

i j. Here the pressure-diffusion term, d p
i j, is incorporated in di j. The

pressure–strain correlation, φi j, reads

φi j
� p 	

ρ

�
∂u 	i
∂x j

� ∂u 	 j
∂xi
� � (A 6)

For modelling it is split into:

φi j1
� � c1ε̃ � ai j � c 	1 � aikak j � 1

3
A2δi j 
�� � ε̃Aai j (A 7)

and

φi j2
� � 0 � 6 � Pi j � 1

3
δi jPkk 
 � 0 � 3ai jPkk

� 0 � 2
e
� u 	ku 	 j u 	lu 	i � ∂ ūk

∂xl
� ∂ ūl

∂xk

 � u 	lu 	k � u 	iu 	k ∂ ūj

∂xl
� u 	 ju 	k ∂ ūi

∂xl

�� (A 8)

� c2 � A2 � Pi j � Di j � � 3amian j � Pmn � Dmn � � �
Here

Di j
� � � u 	iu 	k ∂ ūk

∂x j
� u 	 ju 	k ∂ ūk

∂xi

 (A 9)
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and the coefficients are

c1
� � 3 � 75A

1
2
2 � 1 � A � c 	1 � 0 � 7 � c2

� 0 � 6 �
The homogeneous dissipation rate ε̃, appearing in (A 7), is related to the kinematic dissipation
rate ε by

ε̃ � ε � 2ν

�
∂e

1
2

∂x j
� 2 � (A 10)� The stress dissipation, finally, is taken to be:

εi j
� fε2ε

ε 	i j

ε 	kk
� � 1 � fε � 23εδi j � (A 11)

where

ε 	i j
� ε

u 	iu 	 j
e
� 2ν

�
u 	lu 	n

e
∂e

1
2

∂xl

∂e
1
2

∂xn
δi j � u 	lu 	i

e
∂e

1
2

∂x j

∂e
1
2

∂xl
� u 	iu 	 j

e
∂e

1
2

∂xi

∂e
1
2

∂xl
� � (A 12)

The coefficient fε manages the transition from isotropic dissipation in the fully turbulent part of
the flow to anisotropic dissipation towards the surface. Following Launder & Li (1994) we take

fε
� exp � � 20A2 � � (A 13)

To close the system, the following conservation equation for the homogeneous dissipation rate is
solved:

∂ε̃
∂t
� ūk

∂ε̃
∂xk

� cε1
ε̃Pkk

2e
� cε2

ε̃2

e
� c 	ε2

� ε � ε̃ � ε̃
e� ∂

∂xl
� �

νδlk � cεu 	lu 	k e
ε � ∂ε̃

∂xk
� (A 14)

� cε3νu 	iu 	 j e
ε

∂2 ūk
∂xi∂xl

∂2 ūk
∂x j∂xl

�
where the coefficients are

cε1
� 1 � 0 � c 	ε2

� 1 � 0 � cε3
� 1 � 75 � cε

� 0 � 18 �
cε2

� 1 � 92

1 � 0 � 7AdA
1
2
2

� Ad
� max � 0 � 2 � A � �

The constant cε3 was used to tune the model such that it reproduces the law of the wall for a flat
plate boundary layer. Its value is somewhat higher than mentioned in Craft & Launder (1996),
which can be explained by the omission of their cε4 term.
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GONG, W., TAYLOR, P. A. & DÖRNBRACK, A. 1996 Turbulent boundary-layer flow over fixed aerody-
namically rough two-dimensional sinusoidal waves. J. Fluid Mech. 312, 1–37.

HARRIS, J. A., BELCHER, S. E. & STREET, R. L. 1996 Linear dynamics of wind-waves in coupled
turbulent air–water flow. Part 2. Numerical model. J. Fluid Mech. 308, 219–254.

HENN, D. S. & SYKES, R. I. 1999 Large-eddy simulation of flow over wavy surfaces. J. Fluid Mech. 383,
75–112.

HSU, C.-T. & HSU, E. Y. 1983 On the structure of turbulent flow over a progressive water wave: theory and
experiment in a transformed, wave-following coordinate system. Part 2. J. Fluid Mech. 131, 123–153.

LARSON, T. R. & WRIGHT, J. W. 1975 Wind-generated gravity–capillary waves: laboratory measurements
of temporal growth rates using microwave backscatter. J. Fluid Mech 70, 417–436.

LAUNDER, B. E. & LI, S.-P. 1994 On the elimination of wall-topography parameters from second-moment
closure. Phys. Fluids 6(2), 999–1006.

LAUNDER, B. E., REECE, G. J. & RODI, W. 1975 Progress in the development of a Reynolds-stress
turbulence closure. J. Fluid Mech. 68, 537–566.

MAKIN, V. K., KUDRYAVTSEV, V. N. & MASTENBROEK, C. 1995 Drag of the sea surface. Boundary-
Layer Meteorol. 73, 159–182.

MASTENBROEK, C. 1996 Wind–wave interaction. PhD thesis, Delft Techn. University.
MASTENBROEK, C., MAKIN, V. K., GARAT, M. H. & GIOVANANGELI, J. P. 1996 Experimental evidence

of the rapid distortion of turbulence in the air flow over water waves J. Fluid Mech. 318, 273–302.
MILES, J. W. 1957 On the generation of surface waves by shear flow. J. Fluid Mech. 3, 185–204.
PLANT, W. J. 1982 A relation between wind stress and wave slope. J. Geophys. Res. 87(C3), 1961–1967.
SNYDER, R. L., DOBSON, F. W., ELLIOTT, J. A. & LONG, R. B. 1981 Array measurements of atmo-

spheric pressure fluctuations above surface gravity waves. J. Fluid Mech. 102, 1-59.
STEWART, R. H. 1970 Laboratory studies of the velocity field over deep-water waves. J. Fluid Mech. 42,

733–754.
SULLIVAN, P. P., MCWILLIAMS, J. C. & MOENG, C.-H. 1999 Simulation of turbulent flow over idealized

water waves. J. Fluid Mech., to appear.
YAGLOM, A. M. 1979 Similarity laws for constant-pressure and pressure-gradient turbulent wall flows.

Ann. Rev. Fluid Mech. 11, 505–540.
ZILKER, D. P. & HANRATTY, T. J. 1979 Influence of the amplitude of a solid wavy wall on a turbulent

flow. Part 2. Separated flows. J. Fluid Mech. 90, 257–271.


