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Abstract. The air flow above breaking monochromatic Stokes waves is studied using a numerical
nonlinear model of the turbulent air flow above waves of finite amplitude. The breaking event (spilling
breaker) is parameterized by increasing the local roughness at the downwind slope of the wave, just
beyond the crest. Both moderate slope waves and steep waves are considered. Above steep breaking
waves, a large increase (typically 100%) in the total wind stress — averaged over the wave profile — is
found compared to nonbreaking moderate slope waves. This is due to the drastic increase of the form
drag, which arises from the asymmetrical surface pressure pattern above breaking waves. Both increase
of wave slope (sharpening of the crest) and increase of local roughness in the spilling breaker area
cause this asymmetrical surface pressure pattern. A comparison of the numerical results with the recent
experimental measurements of Banner (1990) is carried out and a good agreement is found for the
structure of the pressure pattern above breaking waves and for the magnitude of enhanced momentum
transfer.

1. Introduction

A large part of the total wind stress above the sea surface can be formed by wave-
induced stress. Under high wind conditions the short waves (length less than 1 m)
are strongly involved in breaking processes. The mechanism of momentum and
energy transfer to breaking waves is complicated and not fully understood (see
e.g., discussion in Banner (1990)). Wave breaking at sea occurs within a full
spectrum of wave components, making measurements and analysis very difficult.
Considerable simplification to study the breaking waves can be achieved in labora-
tory conditions, where a monochromatic breaking wave pattern can be generated.

A detailed experimental study of air flow above breaking monochromatic waves
was recently reported by Banner (1990). The pressure distribution was measured
above a “stationary breaking wave configuration” and above a train of continu-
ously b,reaking mechanically triggered waves. The results showed pressure phase
shifts and patterns of wave pressure distribution which are closely paralleled.
Banner’s results indicate that the breaking event (spilling breaker) influences the
distribution of the wave-induced pressure field just above the wave surface. He
reports a large increase (typically 100%) of the total wind stress above breaking
waves. this increase being due to the increase of wave-coherent momentum flux
(form drag) associated with actively breaking waves. The form drag is formed by
the correlation of the pressure field with the wave slope. A highly asymmetrical
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wave pressure pattern was found above the breaking wave, this being the reason
tor the dramatic increase of form drag.

An additional insight into how breaking waves influence the overlying air flow
can be provided on the basis of nonlinear numerical models of turbulent air flow
above waves of finite amplitude (Gent and Taylor, 1976; Makin, 1979). The
numerical simulation of several laboratory experiments by Makin and Chalikov
(1979), Makin (1980b), Makin and Panchenko (1983), Simonov (1982) and
McLean (1983) show good quantitative agreement between measurements of vel-
ocity and pressure wave fields above waves and the numerical results. In this
study, we shall limit ourselves to air flow above monochromatic waves under
external forcing conditions being close to Banner’s experiment.

The total wind stress at the surface (7) is formed by the turbulent shear stress
() and form drag (#), i.e., the correlation between wave-induced pressure
perturbation and wave slope. Under laboratory conditions, the turbulent shear
stress is produced by small-scale irregularities of the water surface, e. g., wind-
driven ripples. It is well known that for the air flow above waves travelling much
slower than the wind, the relation zo = 30h, is a good estimate (Kitaigorodskii,
1973). Here, h, is the characteristic height of the small-scale waves, and z, is the
local roughness length. This flow corresponds to turbulent flow above immobile
roughness elements, and the local drag coefficient (C,) can be calculated with the
usual logarithmic profile:

Cl =K [ln 'A_Z:|
2o

-2

Here, Az is the distance above the surface. The resulting shear stress can be
calculated from a quadratic drag law: 7*= C, Au|Au|, where Au denotes wind
speed difference over a vertical distance Az.

The form drag is produced by large-scale wave motions, which are represented
in the mentioned experiment by the mechanically generated monochromatic
waves. The form drag can be calculated explicitly from surface pressure measure-
ments. Without mechanically generated waves, the air flow in the laboratory is
well described by the logarithmic profile:

U(z) = “*1n(z/20) .
K

where the friction velocity u, is by definition equivalent to 72 = (+)2, as
7 =0. The air flow above the mechanically generated waves will produce an
additional momentum flux, the form drag, resulting in an increased friction veloc-
ity. as 7' = (7' + #7)!”. Keeping the mean wind speed far above the wave surface
constant and assuming that the profile will stay logarithmic, this results in an
increased roughness parameter zo. This roughness parameter is usually referred
to as aerodynamical roughness, as it results from both turbulent friction (described
by the local roughness length) and form drag.
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We further assume that monochromatic nonbreaking waves do not affect the
local roughness. This means that the local roughness length is constant along the
wave profile of the monochromatic wave as in the case in which these large-scale
waves are absent. For breaking waves, however, we assume that the distribution
of small scale irregularities is affected, i.e., the local roughness varies along the
profile of the large-scale wave. This assumption is based on the visual impression
one gets from a spilling breaker (Kawai, 1982; Bonmarin, 1989, Figure 2: Banner,
1990, Figure 2). The region just beyond the crest is covered with foam, the micro-
scale form of the wave profile being highly irregular. Associating these micro-scale
irregularities with ‘‘roughness elements”, we can conclude that the spilling breaker
region must have a drastically enhanced local surface roughness.

As the spilling breaker rides at the top of the monochromatic wave, whose
phase speed is still a fraction of the wind speed (characteristic values of Ulc
considered here are between 4 and 8, typical for Banner’s experiment), the local
roughness in the spilling breaker region can still be estimated by 1/30 of the
characteristic height of the local irregularities. This will be specified in Section
3.2. The breaking event (spilling breaker) which occurs at the downwind slope of
the wave in the region just beyond the crest will thus be parameterized in the
model by increasing the local roughness in this region. ‘In fact, we allow the
turbulent stress to increase in the spilling region of the breaker.

First we studied the effect of wave steepness, as it is well known that breaking
waves have sharpened crests. Even with a uniform local roughness distribution
along the wave profile, we found an important increase of the wave-induced stress
(form drag).

Secondly, we pursued the parameterization of the spilling breaker described
above. Our results indicate that this mechanism augments the total stress, and it
strongly affects the ratio of the wave-induced fluxes to the total flux (which is
defined as the coupling parameter «), and the wave growth rate.

The numerical results obtained indicate the increase of total wind stress above
steep breaking waves to be of the order of 100%, which is due to the highly
asymmetrical pressure pattern which is formed above steep waves and especially
above breaking waves. Our results confirm the conclusion of Banner (1990) that
the increase of total wind stress above steep breaking waves is due to the increase
of form drag, and they are in good quantitative agreement with his measurements.
We conclude also that the increase of form drag is due to a highly asymmetrical
pressure pattern above the breaking wave, the formation of which can be explained
from the increase of steepness of the breaking wave and of the local roughness in
the spilling region.

2. Description of the Two-Dimensional Numerical Model

The approach is to consider a two-dimensional air flow over periodic progressive
waves. Turbulence is parameterized in terms of eddy viscosity models. We calcu-
late a stationary solution in a frame of reference moving with the wave form,
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including the influence of surface roughness and wave form. During the time
integration, we pass a transient state starting from an assumed logarithmic velocity
profile. The model is based on the full nonlinear Reynolds equations for the air
flow. derived in the curvilinear coordinate system (x, €= (z — n)/(h — 7)). Here,
x denotes the horizontal coordinate, z is the height above the mean water level,
n(x.r) the water surface elevation. ¢ denotes time and % is the height of the
atmospheric boundary layer. We shall use the notation H =4 — 7. Details of
averaging the Navier-Stokes equations can be found in Chalikov (1978). We
prefer to use the equations in nondimensional form. The velocity scale is U,
denoting the mean wind speed at the upper boundary (z = k; £=1), where the
influence of the waves has been smoothed (4 > Nmax). We further use the acceler-
ation of gravity g and the air density p to construct the other scales. For length,
we use U?/g, for time U/g, for pressure and turbulent stresses pU?. The Reynolds
equations become:

L P T RS L PR (1)
ot H ot ax  ox Y
a—w+—1—£{w+F‘Jv+F;=—?f. (2)
ot Hat Y

In (1) and (2), Fy, and F%, are the advection terms:
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The turbulent terms F;, and F’, represent:
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The variable P denotes the deviation from the hydrostatic pressure, and u'u’,
u'w’. w'w’ are the turbulent stresses. The continuity equation takes the form:

wH o 01|
o +a§[w u(l .f)ax:I 0. (8)
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2.1. PARAMETERIZATION OF TURBULENCE

The single-point second-order moments in (6) and (7) are usually expressed in
terms of the deformation tensor components of the velocity field ®; and the
isotropic coefficient of turbulent viscosity K:

u,{u} = %eS,'j - Kq)’l . (9)

Here, e represents the total turbulent kinetic energy per unit mass, oy is the
Kronecker delta and (u,, u) corresponds to the vector (u, w).

_2[auH _mo _]

., H[ax =),

e L[ owH oo ]

Bp; = b, H[a§+ - - ). (10)
_ 2w

22 Hoe

We assume that the production of turbulent energy in the boundary layer is
balanced by its dissipation to heat:

Prod = K(; ®,®;) 11)
Dissipation € = K3[™* (12)

where /= k¢h is the length scale for turbulence, and « = 0.4 the von Karman
constant. From this assumption, we immediately find an expression for K:

K=P(30,d,)". (13)

Note that over a flat surface in a logarithmic boundary layer, (13) simply transforms
to K = I*|ou/dz|. Thanks to this expression for K (13), we do not need to solve
the equation for the evolution of turbulent kinetic energy (Chalikov, 1986) because
the pressure in (1) and (2) can be redefined as p = P + 3e.

To calculate the turbulent fluxes at the surface &= 10, we use the square friction
law, which can be derived in the curvilinear coordinate system assuming the local
turbulent fluxes of momentum and 7, and 7. to be constant in a thin sublayer
0 =< &< £7, where ¢7 is of the order of the height of the molecular viscous sublayer.

——  IM—— 2 97
Tw=—uw +—uu ——e—,
ox 3 ox (14)
0N — 2
T)t='w'w'+—nu’w’——e
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The turbulent viscosity in this region can be expressed as:

K=cC/?-1, (15)
where

G=mEl] (16)

20

is a local drag coefficient and z, the local roughness parameter, which is allowed
to vary along the x-axis. Integrating (14) over ¢ and using (15) and (16), we find:

2
T, = C,IAu|<Au - a—nAw + 2<§ﬂ> Au) ,
ox ox (17)

2
Ty = C,lAu|<2Aw - a—nAu + <6_n> Aw) :
ox ax

Here the operator A denotes the difference between the value at the level &= ¢*
and the value at £ = 0.

2.2. WAVE SURFACE, BOUNDARY AND INITIAL CONDITIONS

It is possible to represent a wave surface as a sum of many modes to simulate the
sea waves (Makin, 1987). Here, we are interested in the flow pattern above an
individual (disturbed) wave. We prescribe the wave surface as a monochromatic
Stokes wave to order (a”), travelling with a constant phase speed c.

7(x') = a- cos(kx') + 3 a*k - cos(2kx") , (18)

where x’ = x — ¢t

In (18). a denotes the wave amplitude, k = 27/A is the wave number and A is
the wave length, related to frequency w by the dispersion relation for deep water
gravity waves. In terms of our nondimensional variables, this relation is:

w?=k. (19)

To solve the set of Equations (1),(2),(8), we need the following boundary
conditions. At the wave surface:

E=0(z=mn): U=uy, w=wy. (20)
At the upper boundary:
E=1(z=h): u=1, w=0. (21)

We assume periodicity over the horizontal domain, so we shall use cyclic boundary
conditions for x. The components of wave orbital velocity at the surface (uo, wo)
corresponding to the wave surface (18) are:
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uo(x') = aw - cos(kx")
wo(x') = aw - sin(kx')[1 + ak - cos(kx")] . (22)

In order to reduce the number of external parameters, we set the height of the
boundary layer equal to the length of the water wave (h = A), so the velocity scale
is U, = U(z = h). One may set the upper boundary height equal to A, because the
wave-induced stress has vanished there. Model tests with upper boundary height
set to 0.5 - A and to 2 - A showed very small differences. Banner (1990) mentioned
that in his experiments, the presence of an open or a closed roof section appeared
to have only a minor influence on the wave-induced pressure field. Also in his
Figure 9b, the wave-induced pressure is practically zero at z = 13 cm, while the
corresponding wavelength is 21 cm.

The solution depends on three external nondimensional parameters: C. - the
initial drag coefficient, U,/c — the inverse wave-age parameter (equivalent to
nondimensional wave frequency ), and wave slope ak. Note that the drag coef-
ficient is not a fixed parameter. C. is only used to specify the roughness length z
by assuming a logarithmic profile:

2= Yingnizy) | (23)
K

and to calculate the initial value for the friction velocity:
u,=C¥. (24)

Only zo, ak and U, /c are kept constant during a simulation run. Here, z, represents
the local roughness which is used in (16), The initial conditions are:

1=0: u=5-1n(§ﬁ>; w=0. 25)

K Z0

In fact, this initial condition matches the laboratory airflow in the case of an
absence of mechanically generated waves. So, z, is only connected with the small-
scale roughness elements (ripples). More details on the numerical solution can be
found in Chalikov (1986) and in Makin (1989). Here, we shall only mention two
major characteristics of the method. We use the new coordinate x’ =x — ct to
search for a stationary solution. We increase the vertical resolution near the
surface (the most important region for wind-wave interaction) by transformation
of the vertical coordinate &:

+
£ = 1n<§—1‘9> . (26)
Xo
The shrinking parameter y, was set to 0.025. The size of the numerical grid is
16(horizontal) x 21(vertical) points.
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2.3. MOMENTUM FLUXES

We can introduce the averaging procedure:

1
ey => f fx. ) dx, @7)

so that:

flx. & =(f(&) + f(x. &) (28)

where f is any field above waves, (f) its mean and f denotes wave fluctuations.
Applying (27) and (28) to (1) provides the evolution equation for the mean
horizontal momentum flux.

d(uH) _9

” (r'+ 7+ 7+ 7). (29)

The vertical mean fluxes in the right-hand side of (29) are due to mean turbulent
stress:
= —=u'w'), (30)

mean wave turbulent stress:
3 _
7= <—77 (1- §)u’u’> , (31)
ox

mean wave advection:
= —(aW), (32)

and mean correlation of wave pressure field and wave slope:
»_ /07 <
7= 1-8p). (33)
0x

We define the total wave flux as:
F=7F+ 7+ 7. (34)

In the steady state, the total momentum flux must be constant over the boundary
layer.

= 7'+ 7= const. (35)
At the upper boundary, the wave flux vanishes: 7, = 0. From (35) then follows:

const. =r=7i=—(uwh =Cp. (36)
Note that for the initial logarithmic boundary layer, the total flux is:

r=7"=C,, 37
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constant over the boundary layer. Due to the development of wave fluxes, C. is
not equal to the final drag coefficient Cp.

It should be noted that we do not solve the equations for water motion, and
therefore we don’t have a direct dynamic coupling between wind and waves. The
feedback from the waves, however, is expressed in the reconstruction of the
vertical structure of the total momentum flux, due to the formation of mean wave-
induced fluxes (Equations (29)—(33)). The eddy viscosity coefficient is also allowed
to be influenced by waves (Equations (10), (13)). Both mechanisms also influence
the distribution of the mean velocity profile.

At the surface, 7 = 0 because W, = 0 due to the kinematic boundary condition:

am on

AR Wo=0). 38
ot o axuo (Wo ) (38)

The wave-induced flux and the total momentum flux at the surface can thus be
written as:

Tp = To + 75 - (39

To=To+ To- (40)
Their ratio can be considered as a coupling parameter:

a=fyl. (41)

Makin and Chalikov (1986, 1991) found that for an old wind sea, « is in the range
0.1-0.2. For a young wind sea, « is between 0.5 and 0.8.

The energy flux to the waves, associated with the momentum flux to the waves,
is used to calculate the growth rate of the waves. This wave growth rate or Miles
parameter B is defined as:

0|
_p ol (42)
pv Ew
where 9E/d:|" is the rate of change in wave energy due to wind, which is defined
as —{po an/dt), p,, is the water density and w is the angular wave frequency. £
denotes the total wave energy: E = (7).

3. Application of the Model to Disturbed or Breaking Waves

The model is suitable for investigating air flow over disturbed waves, because
several characteristics like wave form and roughness length can be adapted. Ex-
perimental evidence from Banner (1990) led us to vary the local roughness length
along the wave surface and the steepness of the breaking wave. We shall present
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our results in terms of a (coupling parameter), (growth rate) and Cp/C, (ratio
of final and initial drag coefficient).

3.1. WAVELIKE ROUGHNESS DISTRIBUTION

At first, we prescribed a sine-wave distribution of the roughness length z, along
the wave, with the same wavelength as the water wave and amplitude 0.5zo,. The
roughness length thus ranged from 0.5z, to 1.5z,,, where Zo, 1S the mean and
reference value. This method was used to get an idea about the influence of
variation of z, and to find out which part of the wave is the most sensitive for
enhancement of the surface roughness. The distribution function is given by:

o(x")=zo {1 + Acos(kx' —¢)) A=0.5, (43)

where z,, denotes the reference roughness calculated from C.. The maximum
values for B were found for a two or three gridpoint phase shift (¢ = 51 or 77 deg)
between 7 and z, (ak = 0.1), depending on U,/c. The value ¢ = 77° corresponds
to Ux/e =2, ¢=51°to U,/c =3, 5 and 10. We define a reference value Bo for
the undisturbed case (A = 0). The ratio Bnax/By Was found to decrease slightly
with increasing U,/c: from 1.50 at U,/c =2 to 1.27 at Uy/c =10 (C, = 0.003).
Also. Buax/ By increased with increasing zo,: from 1.32 at C, = 0.002 to 1.50 at
C.=0.003 (Up/c = 2).

The most important conclusion from these calculations is that enhancing the
wave surface roughness influences the momentum and energy fluxes to the waves
considerably. and that the part of the wave surface between the crest and the first
downwind zero-crossing is the most sensitive part. It is interesting to notice that
this most sensitive wave phase quadrant coincides with the place where whitecaps
are usually observed. As a result, we presume that a sudden increase in z, in this
area must have a large impact on the vertical momentum flux.

3.2. SUDDEN ROUGHNESS JUMP

The second approach is based on the pure visual impression one gets from a
spilling breaker. The region just beyond the crest is characterized by small-scale
irregularities and must have a drastically enhanced local surface roughness. Quan-
tifying this increase is not easy, but using the laboratory results from Banner
(1986), we can have an estimate of the increase of the roughness in the spilling
region of the breaker.

The local roughness length z, can be connected with the characteristic height
of the surface irregularities h,: zo = h,/30 (see e.g., Kitaigorodskii, 1973). As-
suming that /1, = h,,, which is the characteristic spilling breaker height (reported
bv Banner (1986) to be 1/50 of the wave length), we found an estimate for the
local roughness of the spilling region: zo = 0(10™* m). For cases with wind ripples
only. z, is found to be 0(107°m). The increase of the local roughness in the
spilling region should thus be about one order of magnitude.

As a result. we decided to set the local roughness length to ten times its initial
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breaking wave
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Fig. 1. Surface pressure distribution for a breaking wave. Comparison between laboratory measure-
ments and numerical model calculations. Surface elevation with spilling area.

value at three gridpoints, corresponding to 77 deg of the wave phase, starting at
the wave crest, extending downstream. We think that increasing zo in the spilling
region by one order of magnitude is realistic. It also turned out that the model is
not very sensitive for the factor of zo increase. We did a few runs with zo set equal
to five times the reference value and found that the effect was not significantly
weaker.

An important result of this locally stepwise enhanced surface roughness is that
we found a very pronounced asymmetry in the pressure distribution just above
the surface of a wave with a spilling region. Banner (1990) measured the pressure
close to the surface of a spilling breaker in a laboratory wave tank. The pressure
distribution he measured shows the same characteristic pattern we found from the
numerical model calculations. In Figure 1 we compare the results from Banner
(1990) (his Figure 10) with our calculations for ak = 0.3, U,/c =5 and C, = 0.002.
These values approximate the laboratory stationary breaking wave conditions,
although the circumstances are not fully compatible. Differences to be mentioned
are: asymmetric wave profile in the wave tank. and only one spilling breaker,
while in the model we have in fact an infinite row of breaking waves, due to the
horizontal cyclic boundary condition. Nevertheless, the basic boundary conditions
are similar. As a result, we were encouraged when we found that the calculated
pressure distribution compared rather well with the experimental one. It is clear
that this pressure distribution considerably enhances the form drag 7. which
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TABLE I

Numerical model results. The suffix 3 refers to breaking wave, r refers to reference run (see text), and
0 refers to the undisturbed case

C,- UA/C 104[33 10487 10430 CD3/C, CD,/CT CD()/C.,— [s 53 [s 39 Qg
ak = 0.1
2 3.55 1.8 1.8 1.39 1.21 1.06 0.09 0.06 0.06
3-107° 5 38.8 18.3 17.6 1.42 1.24 1.09 0.15 0.09 0.09
5% 36.5 18.0 17.6 1.38 1.19 1.09 0.14 0.09 0.09
10 175 87.4 82.9 1.46 1.26 1.10 0.16 0.10 0.11
X 2 3.13 1.55 1.5 1.40 1.19 1.08 0.12 0.07 0.08
2-1077 5 28.2 14.7 14 1.46 1.23 1.11 0.16 0.10 o0.11
10 123 68.5 65 1.51 1.25 1.13 0.17 012 0.12
L-1077 2 1.48 1.04 0.99 1.28 1.18 1.11 0.12 0.09 0.10
10 54.7 45.2 44 1.37 1.28 1.20 0.16 0.15 0.15
ak = 0.3
3-107F 5 24.5 17.8 16.8 2.08 1.79 1.63 0.58 0.51 0.53
10 114 86.4 80.2 2.30 1.97 1.79 061 056 0.57
2-107° 5 19.8 14.4 13.9 2.41 1.99 1.89 061 055 0.56

*: Zo in the spilling area set to 5 times the undisturbed value.

implies that the total stress must also increase. We investigated how this phenome-
non shows up in the values of the total stress, the wave growth rate 8 and the
coupling parameter a.

It should be noted that the value for z;, is caiculated from the initial condition
C,. Afterwards, the roughness is locally enhanced. The mean local roughness (not
to be confused with aerodynamic roughness, which is associated with the total
stress, including form drag) thus also increases, which will also enhance the total
stress. In order to separate this effect from the asymmetry effect (which causes
enhanced form drag), we also carried out reference runs with a uniform but
enhanced roughness distribution. The new value for the initial drag coefficient,
C, . was made to fit the same local roughness length as in the simulation of a
spilling breaker. In order to achieve the same value for the turbulent stress 7* as
in the breaking wave case, we should use the same value for (In(z,)), where (. .)
denotes the average, as defined in Equation (27). This provides, for example,
C,.=3.45-107>if C,=3-107" and z, is set equal to 10 times its standard value
at 3 gridpoints.

In Table I the calculated values for a, 8 and total stress are shown, also for the
reference runs with uniform roughness. The suffix 0 refers to the undisturbed case,
the suffix r to the reference run with enhanced uniform roughness and the suffix
3 refers to the breaking wave simulation with z, set equal to 10 times the
undisturbed value at 3 gridpoints. In Figures 2 and 3, the distribution of surface
pressure is shown for undisturbed, reference and breaking cases for the moderate
slope wave with ak = 0.1 and for the steep wave with ak = 0.3.

From Table I and Figure 2 it is clear that the wave-induced stress increases
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Fig. 2. Surface pressure distribution for a moderately steep wave. Comparison between undisturbed
wave, reference run (uniformly enhanced roughness) and spilling breaker.

significantly over a breaking wave with moderate slope ak = 0.1. The coupling
parameter a was found to decrease slightly when the roughness was uniformly
enhanced («, In Table I). This can be explained from the increase of turbulent
stress due to the enhanced roughness, while there is still no mechanism to increase
the wave-induced stress proportionally. The «; values as well as the B; values,
however, are significantly higher than the uniform roughness cases. Obviously,
the strong asymmetry effect of the breaking region has a large impact on the wave-
induced stress.

The total drag coefficient is also clearly enhanced up to a 35% increase over
breaking waves, but this is partly caused by the uniformly enhanced roughness
(reference run). If we consider the total stress only, the asymmetry effect is not
very important, but looking in more detail, we can conclude that for the wave
growth rate, a phase shift between the pressure and the wave pattern is extremely
important. From comparison with the undisturbed wave (Table I), it follows that
the increase of momentum transfer is partly due to the augmentation of the mean
local roughness. However, only the asymmetrical pressure pattern associated with
enhanced roughness in the spilling region of a breaking wave is responsible for
the drastic increase of the B parameter. In the case of a uniformly enhanced
roughness (reference run) the wave momentum flux is small (small ) and the
enhanced momentum flux must disappear into currents.
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Fig. 3. Surface pressure distribution for a steep wave. Comparison between undisturbed wave,
reference run (uniformly enhanced roughness) and spilling breaker.

TABLE II
Phase shift between pressure extremum and crest/trough (deg)
Uile=5 %o @ @3
ak=0.1 max-trough 13 13 39
C.=2-10" min-crest 13 13 39
ak=03 max-trough 64 90 90
C.=3-10"° min-crest 13 13 39

We found the phase shift of the pressure maximum relative to the trough to be
about 39° (see Table II). For the undisturbed case as well as for the reference
run, the phase shift is only 13°. From Table II it is evident that the phase shift of
the pressure minimum from the crest above a spilling breaker (13° for a nonbreak-
ing wave and 39° for a breaker) increases the correlation between pressure and
wave surface. With decrease of U,/c and C,, the effect on energy and momentum
fluxes becomes less pronounced.

The case with steep waves is different (see Figure 3). Even for the undisturbed
case, the sharpening of the wave crest leads to a drastic increase of the total
wind stress and an asymmetrical pressure pattern is formed. The spilling breaker
contributes about 10% to the increase of a and about 30-40% to the increase of
B. compared to the reference case. The phase shift of the pressure maximum for
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steep breaking waves is 90°, while Banner (1990) reports for the same slope about
60-75°. So it is clear that for steep breaking waves, the effect of enhanced wave
slope on the wave-induced stress is rather important: steep waves cause a consider-
able form drag. The increased local roughness in the spilling area further increases
the stress and 8. although the effect is less pronounced than for moderately steep
waves. This supports the conclusion of Gent and Taylor (1976) that the etfect of
varying z, decreases with increasing wave slope, although we did not find that the
effect on B is negligible for steep waves.

From Table II it can be seen that the increase of form drag because of a spilling
breaker is due to the phase shift of pressure minimum from the wave crest, being
about 39° for the breaking wave and only 13° for the reference and nonbreaking
wave. So the spilling breaker shifts the pressure minimum away from the crest.
while the pressure maximum is shifted away from the trough by the increase of
wave steepness. It is clear that both phase shifts strongly enhance the correlation
between pressure and wave slope and thus enhance the wave momentum flux to
the waves. The typical value for a, the ratio of the wave momentum flux to the
waves and the total stress, was found to be about 0.6, while Banner (1986) reports
0.4.

4. Conclusions

The breaking event (spilling breaker) usually occurs at the downwind slope of
steep waves, just beyond the sharpened crest. We studied the air flow above
breaking waves using a nonlinear numerical model. The breaking event was par-
ameterized by enhancing the local roughness and changing the wave slope. We
found that both mechanisms influence the form drag and the total wind stress.
Our calculations indicate that sharpening of the crest of the breaking wave leads
to the formation of a highly asymmetrical pressure pattern, the phase shift of the
pressure maximum relative to the trough being 90°, while for nonbreaking waves
of moderate slope, it is only 13°. This leads to a drastic increase of form drag and.
as a result, of the total wind stress, the increase of the latter being typically 100%.
The increase of local roughness in the spilling breaker shifts the pressure minimum
from the crest. which further increases the form drag and contributes 30 to 40%
to the enhancement of B in the case of steep waves.

If the breaking event takes place at a wave of moderate slope, the total stress
increases typically by 30%, which is partly due to the increase of mean roughness.
The spilling breaker also forms asymmetrical pressure patterns, shifting the pres-
sure minimum from the crest because of the increase of local roughness. This
drastically increases the form drag and typically doubles the B parameter. Note
that only the wave part 77 contributes to wave growth.

Comparison of our numerical results with the measurements of Banner (1986,
1990) shows good agreement on the form of the pressure pattern above steep
breaking waves and on the estimates of the form drag and total wind stress. Our
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study confirms the conclusion of Banner (1990) that the drastic increase of total
wind stress above steep breaking waves is mainly due to the asymmetrical pressure
pattern, acting through the increase of form drag.

Knowing the probability function of breaking waves at sea, which will depend
on several parameters, it is possible to parameterize the phenomenon by modifying
the B parameter. Introducing this modified B parameterization into the integral
models of the boundary layer above the sea (Janssen, 1989; Chalikov and Makin,
1991) will lead to improvement of estimates of the drag coefficient and the energy
input to the waves, especially for a young wind sea.

The further improvement of the study of breaking waves in the scope of the
model presented above needs a more accurate description of the breaking wave
form, description of a wave train containing only one or several breaking waves,
and clarifying the velocity boundary condition for breaking waves.
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