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ABSTRACT

Probable changes in mean and extreme precipitation in East Africa are estimated from general circulation
models (GCMs) prepared for the Intergovernmental Panel on Climate Change Fourth Assessment Report
(AR4). Bayesian statistics are used to derive the relative weights assigned to each member in the multimodel
ensemble. There is substantial evidence in support of a positive shift of the whole rainfall distribution in East
Africa during the wet seasons. The models give indications for an increase in mean precipitation rates and
intensity of high rainfall events but for less severe droughts. Upward precipitation trends are projected from
early this (twenty first) century. As in the observations, a statistically significant link between sea surface
temperature gradients in the tropical Indian Ocean and short rains (October–December) in East Africa is
simulated in the GCMs. Furthermore, most models project a differential warming of the Indian Ocean during
boreal autumn. This is favorable for an increase in the probability of positive Indian Ocean zonal mode
events, which have been associated with anomalously strong short rains in East Africa. On top of the general
increase in rainfall in the tropics due to thermodynamic effects, a change in the structure of the Eastern
Hemisphere Walker circulation is consistent with an increase in East Africa precipitation relative to other
regions within the same latitudinal belt. A notable feature of this change is a weakening of the climatological
subsidence over eastern Kenya. East Africa is shown to be a region in which a coherent projection of future
precipitation change can be made, supported by physical arguments. Although the rate of change is still
uncertain, almost all results point to a wetter climate with more intense wet seasons and less severe droughts.

1. Introduction

The chemical composition of the atmosphere is
changing owing to human activities, triggering numer-
ous studies aimed at understanding the sensitivity of the
climate system to rising greenhouse gas concentrations
(Houghton et al. 2001; Solomon et al. 2007, and refer-
ences therein). Although the increase in greenhouse
gases is relatively uniform around the globe, the re-
sponse in a myriad of climate variables inevitably ex-
hibits spatial inhomogeneities. For this reason, many

studies have focused on possible impacts of climate
change on selected climate variables in specific regions
of the globe, especially those variables considered eco-
nomically and socially significant (e.g., Gillett et al. 2004a;
Karoly and Braganza 2005; Hegerl et al. 2006; van Ulden
and van Oldenborgh 2006; van den Hurk et al. 2006;
Beniston et al. 2007).

Considerable effort has been devoted to investigating
possible changes in mean climate, and increasingly also
to changes in variability and extremes, in the Northern
Hemisphere continental areas. This is related to the
availability of expertise and reliable data in these areas.
By comparison, many of the least developed countries,
especially in Africa, suffer from both a lack of high-
quality data and a lack of research attention and ca-
pacity. Hence, there are far fewer climate analyses for
these regions, especially in relation to variability and
extremes. Impact analyses show that such variability and
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extremes disproportionally affect the poorest countries
and the poorest people (e.g., United Nations Poverty–
Environment Initiative 2003).

Trying to address that gap, Shongwe et al. (2009,
hereafter referred to as Part I) presents an analysis of
projected precipitation changes for southern Africa. In
this paper, a similar approach is applied to East Africa
(EAF), defined as the area of 108S–48N, 288–428E. The
region experiences a semiannual rainfall cycle with two
major rainfall peaks in boreal spring [March–May (MAM),
also known as long rains] and autumn [September–
December (SOND), also known as the short rains].
During the latter season (short rains), atmospheric dy-
namics in the first month (September) differ from the
rest of the season [October–December (OND)]. Also,
teleconnections with large-scale features such as the El-
Niño–Southern-Oscillation (ENSO) are different be-
tween September and OND (Mutai and Ward 2000). It
is common practice therefore to omit September when
referring to the short rains in East Africa (e.g., Clark
et al. 2003; Anyah and Semazzi 2007). We adopt the
same convention in this paper. Some portion of the
selected area has one rainfall maximum during boreal
winter–spring months (November–April).

Traditionally, climate change studies in which Africa
is featured have tended to focus on likely precipitation
changes during boreal summer and winter (Solomon et al.
2007). Much less is known about the transition seasons
(i.e., boreal autumn and spring), which are the rainy
seasons in East Africa. Furthermore, there has been a
tendency to focus on large regions within Africa or in
some cases on the Giorgi regions (Giorgi and Francisco
2000). While this approach is useful in diagnosing the
climate change signal on rainfall as a first step, it tends
to overlook the effect of local features such as East
Africa’s varied topography (e.g., mountain ranges and
rift valleys) and large water bodies (e.g., Lake Victoria)
on the large-scale signal. Although most of these local
controls are not yet adequately represented in low-
resolution climate models such as those used here, the
homogenous subregions identified by Indeje et al. (2000)
are used to show that rainfall response to global warming
is not uniform across the region.

In recent years, East Africa has suffered frequent
episodes of both excessive (e.g., Webster et al. 1999;
Latif et al. 1999) and deficient rainfall (e.g., Hastenrath
et al. 2007). In particular, the frequency of anomalously
strong rainfall causing floods has increased. Our analysis
of data from the International Emergency Disaster Data-
base (EM-DAT; http://www.em-dat.net/), reveals that
there has also been an increase in the number of re-
ported hydrometeorological disasters in the region, from
an average of less than 3 events/year in the 1980s, to over

7 events/year in the 1990s, and almost 10 events/year from
2000 to 2006, with a particular increase in floods; from an
average of less than one event per year in the 1980s to
seven events per year between 2000 and 2006. In the
period 2000–06, these hydrometeorological disasters
affected on average almost two million people per year.
In addition, they have severe impacts on economic per-
formance and poverty alleviation (e.g., Hellmuth et al.
2007).

Furthermore, we note that many of the region’s epi-
demics, which dominate the remainder of the reported
disasters in the EM-DAT database, are also affected
by climatic conditions. While part of the trend is due to
better reporting, it also reflects a rising vulnerability to
natural hazards and, potentially, an underlying trend in
climate variability and extremes. These rising risks are
receiving increasing attention from policy makers, for
example, in the Decision and Declaration on Climate
Change and Development adopted by the African Union
Head of State Summit in January 2007 and in new efforts
by East African governments to better manage climate
risks. In Kenya for instance, the Kenya Adaptation to
Climate Change in Arid Lands (KACCAL) project aims
to address the increasing risk of both floods and droughts
(World Bank 2006).

In this context, there is an obvious need for better
analyses of the likely response of extreme climate events
in this region to global warming, to inform disaster pre-
paredness and development planning. Such demands
provided the motivation for the present study. The pri-
mary aim is to assess how the intensity of seasonal pre-
cipitation extremes is likely to change in the region,
against the backdrop of probable changes in mean pre-
cipitation. A secondary aim is to assess the spatial in-
homogeneities in the model projections. We also present
physical mechanisms that may explain the simulated
changes in the precipitation probability distribution.

2. Data and methods

a. Model simulations and observations

A brief description of the datasets used and the anal-
ysis methods applied are given below. Further details
can be found in Part I. The models used in the Inter-
governmental Panel on Climate Change (IPCC) Fourth
Assessment Report (AR4) (Solomon et al. 2007) form
the major input to the analysis of changes in precipitation
patterns. The output has been made available as part of
the World Climate Research Program (WCRP) Coupled
Model Intercomparison Project, phase 3 (CMIP3). We
have chosen model projections driven by the inter-
mediate Special Report on Emissions Scenarios (SRES)
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A1B scenario, a standard emission scenario currently
roughly corresponding to observed CO2 concentrations.
In this scenario, there is no drastic reduction of CO2

emissions up to 2100, when concentrations reach twice
their preindustrial levels. After 2100, experiments have
been continued with constant CO2 concentrations at this
level.

A subset of 12 coupled general circulation model
(CGCM) simulations has been selected from the data
available at the time of first submission (January 2008).
The selection was based on a pattern comparison of
the seasonal cycle in the simulations for the twentieth
century (20c3m) with the Climate Research Unit (CRU
TS2.1; New et al. 2000) gridded precipitation. The 12
selected CGCMs were among the six best-performing
models (as measured by the mean of the monthly cor-
relation coefficient and root-mean-squared difference
with the analysis) over at least one of four domains of
sub-Saharan Africa: southern Africa, East Africa, North–
East Africa, and West Africa. We also demanded that
enough data at high CO2 concentrations was available to
be able to compute return levels. Further details of the
selection procedure can be found on the Royal Nether-
lands Meteorological Institute Africa scenarios Worldwide
Web site (www.knmi.nl/africa_scenarios) under techni-
cal details.

The selected CGCMs, their spatial resolutions, ensem-
ble sizes, and references are given in Table 1 of Part I.
The model simulations are linearly interpolated to a
common 1.258 3 ;1.248 latitude–longitude grid, cor-
responding roughly to T95 resolution. As in Part I, two
subsamples have been selected from the model simu-
lations. The 1901–2000 and 2051–2200 periods define
the present (20c3m) and future climate, respectively.

In addition to monthly CMIP3 precipitation, the hori-
zontal wind vector and pressure vertical velocity (v) fields
are used. These variables are used to estimate the
strength and structure of the Eastern Hemisphere zonal
(Walker) circulation and their projected changes. Three
of the models1 used in the precipitation change analysis
have been omitted in the analysis of the zonal circu-
lation. The CGCM background Walker circulation is
compared with that obtained from the 40-yr European
Centre for Medium-Range Weather Forecasts Re-
Analysis (ERA-40) (Uppala et al. 2005).

Observed twentieth-century precipitation used in this
study was taken from the CRU TS2.1 gridded station
data. Unlike in Part I, a dearth of station observations
in the Global Historical Climatology Network (GHCN)
data precluded delineating homogenous rainfall zones.
For this reason, the climate zones defined by Indeje et al.
(2000) have been adopted in this study. These zones are
shown in Fig. 1. The western zones of Indeje et al. are
combined into one zone (Zone III, Fig. 1) to allow a
larger spatial sampling. In most models used here, pre-
cipitation in these areas have similar probability density
functions (PDFs, not shown). The CRU TS2.1 grid points
falling within each zone are averaged. All the zones ex-
cept much of Tanzania (Zone IV) have a semiannual
cycle. In Zone IV, the annual cycle of area-averaged
precipitation showed a peak during austral summer–
autumn months (November–April). The CMIP3 sim-
ulated precipitation is spatially averaged analogous to
the CRU TS2.1 data. The coastal region, the central re-
gion of Kenya, and the Lake Victoria area are small
enough to be adequately resolved by some low-resolution
CGCMs. These regions have therefore been omitted in
the analysis.

Monthly precipitation from the CRU TS2.1 gridded
station and CMIP3 data are accumulated into seasonal
totals for each rainfall season of East Africa. Mean pre-
cipitation rates (mm day21) in a given season are calcu-
lated by dividing the seasonal totals by the number of

FIG. 1. Location map of the East Africa climatic zones adopted
from Indeje et al. (2000). Region III on the west is a combination
of two of the Indeje et al. (2000) original zones. Regions that
are not large enough to be adequately resolved by the lowest-
resolution AR4 CGCMs (shown by XX) have been omitted in our
analyses.

1 The ECHO-G model has been omitted because horizontal
wind and pressure velocity fields are not available on the IPCC
AR4 archive in both their 20c3m and SRES A1B runs. For the
CSIRO Mk3.0, the vertical velocity fields are not available. For the
third climate configuration of the Met Office Hadley Centre Uni-
fied Model (HadCM3), SRES A1B horizontal wind and vertical
velocity fields are not available.
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days within that season. Climatologically wettest seasons
are defined as those with the highest mean precipitation
rates. On the other hand, the driest seasons, charac-
terizing meteorological droughts, have the lowest mean
precipitation rates.

b. Extreme value analysis

The peak over threshold or generalized Pareto dis-
tribution (GPD) is used in this study to represent the
distribution of observed and simulated extreme seasonal
precipitation rates. A description of GPD and its appli-
cations is found in Coles (2001). The quality of the GPD
fit is then assessed using Anderson–Darling goodness-of-
fit tests (Laio 2004). Details of how the GPD has been
applied in our work, including statistical tests, are dis-
cussed in Part I.

Return levels are estimated from the fitted GPD.
Return levels are frequently used in extreme precipita-
tion studies in climate research (e.g., Kharin and Zwiers
2000; Meehl et al. 2005; Kharin et al. 2007) because of
the simplicity of their interpretation. The return level
(zp) is the threshold likely to be exceeded in a given year
with probability p, or the level likely to be exceeded
once in every 1/p years. In this study 10-, 20-, 50-, and
100-yr return levels have been estimated. The return
values are computed for each homogenous zone (Fig. 1)
in both OND and MAM seasons. Owing to the small
sample size of threshold excesses, only results based on
the least biased 10-yr return levels are presented in this
paper. These GPD quantiles (10-yr return levels) are
obtained from an interpolation rather than an extrapo-
lation. Results obtained using 100-yr return levels are
available on the KNMI Africa scenarios Worldwide Web
site (http://www.knmi.nl/africa_scenarios/).

When modeling dry extremes following the approach
discussed in Part I, a problem is encountered during
extrapolation to much longer return periods because
these extremes are by definition constrained by zero
above (i.e., dry extremes have a finite upper bound). In
practice, almost all GPD fits used in this study have a
negative shape parameter j and the resulting finite re-
turn level for infinite return times are, in fact, positive.
The finite upper bound of dry extremes is therefore not
a concern in this study.

c. Multimodel ensembling

Uncertainties are inherent in long-term climate model
simulations. These can be attributed to natural climate
variability, different model responses to a given forcing
(such as increases in greenhouse gas concentration), and
those associated with the emission scenarios used to
force the climate models. In climate change studies de-
voted to precipitation extremes and their possible future

changes, it has become common practice to use simu-
lations from a range of climate models (e.g., Kharin et al.
2007). Research on how best to combine simulations
from several climate models through objective weight-
ing is ongoing (e.g., Giorgi and Mearns 2002, 2003;
Tebaldi et al. 2004, 2005).

Using the Bayes theorem and making certain as-
sumptions, it is possible to objectively assign weights to
different climate models leading to a probability distri-
bution of future climate change. These assumptions de-
tailed by Tebaldi et al. (2005) relate to model bias, model
independence, and the similarity of physical mechanisms
determining the unforced and future climate. This method
has been adopted in the present study. We note here
that equal weighting of the models yields similar mean
results to the Bayesian weighing method used to obtain
the results presented in section 3. However, the credi-
bility intervals obtained by the Bayesian method are
smaller due to, among other things, downweighting ob-
vious outliers. It should be noted that there is the possi-
bility that this makes the method overconfident.

For comprehensive details of this method, the reader
is referred to Tebaldi et al. (2005). The Bayesian method
requires that the input variables have Gaussian likeli-
hoods. Mean precipitation taken over sufficiently long
periods (100 or 150 years in this study) meet this re-
quirement from the central limit theorem. To fulfill this
requirement in the case of extreme quantiles, the first
step involved estimating the GPD parameters from
maximum likelihood. After checking for model quality
and inverting the GPD to obtain the 10-yr return levels,
we then use the delta method described by Coles (2001)
to estimate the uncertainty on the return levels. We ver-
ified that the 95% credibility interval obtained using this
method is very similar to the interval computed with
a nonparametric bootstrap method. More details of the
methodology used to obtain the GPD quantiles can be
found in appendix A of Part I.

To summarize, in the Bayesian framework used, the
ratio of the conditional posterior mean of future climate
(n) to control climate (m) simulations is used to define the
relative precipitation change (DP) as

DP 5 100

!
n

m
2 1

"
. (1)

For mean precipitation rates and 10-yr wettest events,
DP . 0 is indicative of an increase in their intensity.
An increase in the severity of 10-yr driest events is in-
dicated by DP , 0. As previously mentioned, these
changes compare statistics computed using data for the
1901–2000 (present) period with their counterparts in
the 2051–2200 (future) period.
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3. Changes in mean and extreme precipitation

The Bayesian method adopted in this study enables
an estimation of the posterior distribution of the pa-
rameters of interest (Tebaldi et al. 2005). The uncer-
tainties associated with these parameters are then
inferred from their posteriors. It should be kept in mind
that these depend on the prior and the availability of
GCM data and, as such, only give an indication of the
uncertainties in the return levels. In the following sub-
sections, we present the 95% credibility interval of DP as
obtained from the Bayesian method for each zone and
rainy season of East Africa. We present the results on maps
to allow a concise visual interpretation and an easy assess-
ment of the spatial pattern of the projected changes.
When the 95% credibility interval shown in the maps
excludes zero (i.e., no change), the percentage changes
are shaded gray. When zero is outside the 99% credi-
bility interval of DP, this is denoted by two asterisks.

a. Short-rains season (October–December)

Mean OND precipitation increases are simulated
almost everywhere in East Africa (Fig. 2a). Over the
semiarid areas in northern Kenya (Zones I and II; Fig. 1),
in the western parts, which include Rwanda and Burundi
(Zone III), mean precipitation is projected to increase
by more than ;10%. These increases, thus achieved,
exclude zero from the 95% credibility interval almost
everywhere, and zero is excluded from the 99% credi-
bility interval to the north. Over much of Tanzania (Zone
IV), the model projections provide evidence in sup-
port of an increase in precipitation rates during austral
summer–autumn months (November–April). While most

models show an increase in mean OND precipitation,
the Hadley Centre Global Environmental Model ver-
sion 1 (HadGEM1) model shows decreases in rainfall
almost everywhere in the area. The convergence cri-
terion used in the Bayesian weighting (Tebaldi et al.
2005) treats this model as an outlier and down weighs it.

A reduction of the severity of the 10-yr driest sea-
sons is found over almost the entire East African region
(Fig. 2b). The magnitudes of the simulated reduction in
the severity of these OND dry extremes are comparable
with those of the mean precipitation rates. Larger re-
ductions (;32%), are found in northern Kenya and
Uganda (Zone II). Elsewhere in the north, the projected
lessening of the 10-yr droughts severity is not statistically
significant. Austral summer–autumn 10-yr droughts are
becoming less severe in much of Tanzania by about 14%.

In common with changes in the mean precipitation
rates, widespread increases in the intensity of 10-yr wet-
test OND seasons are simulated (Fig. 2c). Significant in-
creases exceeding $10% are found in Kenya, Uganda,
and the western parts. In northeastern Democratic Re-
public of Congo (DRC) and much of Tanzania (Zone
IV), increases in the 10-yr wettest austral summer seasons
average ;15%.

b. Long-rains season (March–May)

Changes in mean precipitation during the long-rains
season (MAM) have generally the same sign and mag-
nitudes as those simulated for the short rains (Fig. 3a).
The Bayesian weighted model simulations project more
than ;15% increase in mean precipitation rates over
much of East Africa. The upper credibility limit exceeds
;25% over a large area to the north and west. However,

FIG. 2. Projected changes (%) in OND (short rains) (a) mean precipitation rates, (b) 10-year driest events, and (c) 10-year wettest events
in each climatic zone. In much of Tanzania (Zone IV, Fig. 1) the displayed precipitation changes are for the austral summer–autumn
(November–April) season. In each case, three values are plotted. The middle number gives the mean projected change preceded by its sign
(positive for increase and negative for decrease). The number above (below) the mean change, preceded by a positive (negative) sign gives
the distance to the upper (lower) critical value of the 95% credibility interval. Projected changes that exclude zero from the 95% (99%)
credibility interval are shaded in gray (shown by two asterisks).
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in contrast to the short rains, the models perform poorly
in simulating the twentieth-century climate during this
season. During the model preselection process, relative
to the OND season, correlation between the monthly
CRU and model-simulated MAM precipitation was
found to be low while the rms error (RMSE) scores were
found to be higher (not shown). The difficulty in mod-
eling precipitation during the long rains has been found
in seasonal climate predictability studies and is due to
a dominance of internal atmospheric variations (not
probably connected to other components of the climate
system; Mutai et al. 1998). The uncertainty associated
with these patterns is higher than in the short-rains
season. The models show a reduction in the severity of
10-yr droughts almost everywhere except over eastern
Kenya (Fig. 3b). In eastern Kenya, where changes in dry
and wet extremes have opposite signs, an increase in
interannual rainfall variance is implied. Changes in the
10-yr wettest seasons are of the same sign as those of
mean precipitation rates, implying that floods are likely
to become more intense (Fig. 3c). However, we place
less emphasis on these projections owing to their lower
reliability. Again, the HadGEM1 simulations that simu-
late a drying trend everywhere has been downweighted
by the convergence criterion.

c. Time-series analysis

Time-series plots for East Africa precipitation during
the twentieth (observed and simulated) and twenty-first
centuries (simulated) and in each rainy season are shown
in Fig. 4. Unlike in Figs. 2 and 3, where the CGCMs are
subjected to a Bayesian weighting, the models are equally
weighted in these plots. Despite the wider intermodel
dispersion in their twenty-first-century projections [caused
mainly by the outlying HadGEM1 (dry) and the Model
for Interdisciplinary Research on Climate 3.2 (MIROC3.2)
(wet) CGCMs], there is substantial evidence in sup-
port of an increase in the amount of rainfall. The sharp

precipitation increase in East Africa emerges from the
early part of the twenty-first century and in most cases
is a reversal of drier conditions experienced during
much of the last century. We note however that in some
regions (e.g., Burundi, Rwanda, and Tanzania; Figs.
4c,d), the observed trend over the last decades of the
twentieth century is opposite the long-term CGCMs
simulated trend. This can be due to decadal variability
that happens to be opposed to the long-term trend in the
models or due to the CGCM deficiencies in the small
regions considered in our study. Further modeling work
to distinguish between these possibilities is required.

A trend toward predominantly positive precipitation
anomalies is also present in the long-rains twenty-first
century time series (Figs. 4e–f). However, the signal-to-
noise ratio in these projections is low.

Noteworthy, the results from the Bayesian weighted
and unweighted simulations are broadly similar. By
downweighing outlying CGCMs, the Bayesian procedure
offered the additional value of reducing the model dis-
persion by about a factor of 2, particularly in the twenty-
second-century simulations when the model spread is
largest.

4. Projected changes in large-scale forcing

The robust climate change signal in East Africa pre-
cipitation presented above prompts us to endeavour to
diagnose likely physical mechanisms and forcings. There
is considerable consensus between observational, theo-
retical, and modeling studies with regard to an increase
in vertically integrated atmospheric water vapor as the
climate warms (Zveryaev and Chu 2003; Trenberth et al.
2005; Zveryaev and Allan 2005). Related to this is a ro-
bust projection of precipitation increase in the deep
tropics, which has been detected in the current climate
(Zhang et al. 2007). The zonal mean precipitation in
the tropics increases because the 7% 8C21 increase in

FIG. 3. As in Fig. 2 but for the March–May (long rains) season.
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precipitable water, which follows the Clausius–Clapeyron
relationship, is not completely compensated by a slow-
down of the tropical circulation (Held and Soden 2006;
Vecchi and Soden 2007).

The increase in precipitation in the tropics is not
zonally uniform, with East Africa precipitation pro-
jected to increase more than the zonal mean in the
multimodel mean. These zonal asymmetries in tropical
precipitation response to global warming suggest that
other mechanisms also exert a significant influence.
These partly stem from the atmospheric dynamic re-
sponse, which is not zonally symmetric and leads to a
horizontal redistribution of water vapor.

To understand this we turn to the well-understood
interannual variability in the region. Our hypothesis is

that the climate change signal will be communicated to
the rainfall field partly through the same factors that
control interannual rainfall variability in the present
climate. At interannual time scales, Hastenrath et al.
(1993) discussed atmospheric forcing on the Indian
Ocean hydrosphere. A number of papers documenting
atmosphere–ocean coupling have appeared in litera-
ture (e.g., Webster et al. 1999; Saji et al. 1999; Goddard
and Graham 1999). It has been found that atmospheric
anomalies of pressure and wind typically precede sea
surface temperature (SST) anomalies (Hastenrath and
Polzin 2005). Subsequent SST anomalies, in part forced
by wind stress anomalies, feed back to the atmosphere,
further reinforcing atmospheric anomalies (Goddard
and Graham 1999), which often result in precipitation

FIG. 4. Time series of observed and simulated precipitation anomalies (std dev, s) with reference to the 1961–90
climatology: (a)–(c) time series for OND rainfall; (d) the series for much of Tanzania (Zone IV, Fig. 1) during austral
summer–autumn (November–April; NDJFMA); the series for MAM precipitation in (e) eastern Kenya (Zone I) and
(f) northern Kenya and Uganda (Zone II). The black vertical lines terminated by circles display the observed
twentieth-century precipitation from CRU data. The white line shows the ensemble average; the darker and lighter
gray shadings indicate 50% ([q0.25, q0.75]) and 95% ([q0.025, q0.975]) of the distribution, respectively.
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anomalies. Against this background, modeled changes
in SST and atmospheric circulation during the short-
rains season are examined in this section.

a. Projected OND Indian Ocean SST pattern
and rainfall relationship

Observational and modeling studies have linked East
African high-frequency rainfall variability during boreal
autumn to SST anomalies (Goddard and Graham 1999;
Black et al. 2003). Earlier studies aimed at understand-
ing the link between East Africa precipitation and equa-
torial Pacific Ocean SSTs associated with ENSO (e.g.,
Hastenrath et al. 1993; Indeje et al. 2000). It was found that
ENSO exerts some influence on East Africa short rains
such that rainfall is enhanced (suppressed) during warm
(cold) events in the eastern equatorial Pacific Ocean.

It has been shown that the Indian Ocean is one of the
pathways through which the ENSO signal propagates
into East Africa precipitation. Often, the west Indian
Ocean warming lags that of the eastern equatorial Pa-
cific by a few months (Klein et al. 1999). However, evi-
dence has been presented supporting the existence of
an Indian Ocean mode of SST variability independent
of ENSO (Saji et al. 1999; Webster et al. 1999). In fact
OND 1961, one of the wettest in the twentieth century,
was not related to ENSO (figure not shown). The models
used in this study do not give a robust signal with respect
to changes in the mean state of ENSO (not shown).
Based on these findings and the fact that changes in
ENSO properties are unlikely to exceed natural vari-
ability (van Oldenborgh et al. 2005), possible changes
in Indian Ocean SST patterns are investigated in this
paper. This is motivated by results from studies that
found Indian Ocean SST anomalies to be the dominant
factor controlling East Africa short rains (Latif et al.
1999; Goddard and Graham 1999; Black et al. 2003;
Clark et al. 2003; Behera et al. 2005; Washington and
Preston 2006).

In this study, the 1901–2000 CGCM-simulated East
Africa short and long rains were subjected to a stan-
dard empirical orthogonal function (EOF) analysis (see,
e.g., van den Dool 2007). The first EOF is a monopole
pattern describing the largest source of interannual vari-
ability in this region, particularly during the short rains.
The corresponding principal component series are then
regressed on simultaneous Indian Ocean SSTs from
each model. The regression of the first principal com-
ponents (PC 1) on Indian Ocean SSTs is displayed in
the first and last columns of Fig. 5. Areas with signifi-
cant regression at the 5% level (from a two-sided local
t test) are shaded.

A statistically significant positive link is found with
SSTs in the western tropical Indian Ocean (WTIO), west

of ;808E in most models. In some models [e.g., the
Commonwealth Scientific and Industrial Research Organi-
sation Mark version 3.0 (CSIRO-Mk3.0), ECHAM5–Max
Planck Institute Ocean Model (MPI-OM), Geophysical
Fluid Dynamics Laboratory Climate Model version 2.0
(GFDL CM2.0), GFDL-CM2.1, and Meteorological
Institute of the University of Bonn, ECHO-G Model
(MIUB ECHO-G)] the ocean area with significant posi-
tive association with precipitation extends into the Bay
of Bengal. Negative regression coefficients are found in
the southeastern Indian Ocean off the coast of Sumatra
in almost all models. The figures demonstrate that wet-
ter conditions in East Africa in the CGCMs during bo-
real autumn often occur when SSTs are warmer in the
western Indian Ocean and cooler close to the Maritime
Continent. These results are broadly similar to previ-
ous findings on Indian Ocean–East Africa rainfall re-
lationships in observational and modeling research work
(Black et al. 2003; Clark et al. 2003). The major atmo-
spheric response to the anomalous zonal SST gradients
relevant for East Africa short rains is a perturbed Indian
Ocean Walker cell (Behera et al. 2005). Low-level east-
erly anomalies south and close to the equator are a
prominent feature in this perturbed local Walker cir-
culation. These moisture-laden winds feed the diabatic-
heating-induced anomalous convection close to the
warm SST anomaly, with the obvious consequence of
enhanced precipitation.

There is no similarly significant link between the long
rains (MAM) and simultaneous Indian Ocean SSTs in
the models (last column of Fig. 5). Even in models that
show some association [e.g., Centre National de Recherches
Météorologiques Coupled Global Climate Model, ver-
sion 3 (CNRM-CM3), MIROC3.2, ECHAM5–MPI-OM,
MIUB ECHO-G, and GFDL-CM2.0], the remarkable
rainfall link to tropical Indian Ocean SST gradients
found during the OND season is not present. We do not
know of any documented external control (from other
components of the climate system) for the long-rains
interannual variability. For this reason, our discussion
will focus on the SST patterns likely to influence OND
rainfall.

Having established the existence of the Indian Ocean
SST signal on rainfall, the model-simulated SST differ-
ences (2051–2200 minus 1901–2000) are examined. Bo-
real autumn (OND) Indian Ocean SST differences are
displayed in the middle column of Fig. 5. Statistically
significant (at the 1% level) basinwide warming is found.
Although SSTs warm throughout the tropical Indian
Ocean basin, zonal asymmetries in the warming are evi-
dent in most models. The western part of the basin is
generally projected to warm more than the eastern.
These results are in qualitative agreement with Vecchi
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FIG. 5. Regression [positive (solid lines) and negative (dashed lines)] of model-simulated 1901–2000 OND precipitation EOF 1 on
simultaneous Indian Ocean SSTs (first column). For each model (name in the title), the second column displays the simulated OND SST
difference (8C), that is, 2051–2200 minus 1901–2000. The third column shows the same statistics as column 1, but for the MAM season. In
each case, regression coefficients that are statistically significant at the 5% level are shaded gray. Rectangles show areas used to define the
Indian Ocean zonal mode index.
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FIG. 5. (Continued)

15 JULY 2011 S H O N G W E E T A L . 3727



and Soden (2007), who show a tendency toward upwell-
ing (downwelling) along the eastern (western) equatorial
Indian Ocean in the twenty-first century (their Fig. 15).

A similar differential warming is observed in inter-
annual variability. It stems from wind–evaporation–SST
and wind–thermocline–SST feedbacks which cool the
ocean surface in the southeast Indian Ocean (SEIO) from
boreal summer to fall before giving way to basinwide
warming from around December (Shinoda et al. 2004).
Vecchi and Soden (2007) argue that atmospheric anom-
alies drive changes in tropical ocean dynamics and hence
the ocean thermal structure in the twenty-first century.
The simulated differential warming and associated anom-
alous zonal SST gradients have implications for the east–
west Indian SST dipole that occasionally peaks during
boreal fall months (Behera et al. 2005). As demon-
strated above, enhanced rainfall in East Africa is often
associated with anomalously warm (cold) SSTs in the
WTIO (SEIO).

We proceed by defining an index WTI expressed
as average SST in the rectangular domain to the west
(108N–108S, 508–708E) and another index SEI for the
box in the eastern extremity (08–158S, 908–1008E). The
Indian Ocean zonal mode index (IOZMI), which rep-
resents zonal SST gradients across the near-equatorial
Indian Ocean, is then defined as IOZMI 5 WTI–SEI.
These boxes are indicated in the first two columns of
Fig. 5.

Probability density functions of IOZMI are shown in
Fig. 6. Almost all the models displayed in the figure
show a clear shift in the PDFs toward a higher proba-
bility of positive IOZM phases. This enhanced proba-
bility translates to a higher probability of excessive short
rains in East Africa in the future climate. These findings
are consistent with the results presented in section 3a.
On average, the IOZM shift contributes to ;30% [95%
confidence interval is (12, 49)] of the overall precipi-
tation change (results not shown).

b. Changes in Eastern Hemisphere Walker
circulation

In this section, we investigate the circulation changes
that give rise to the correlation between the OND In-
dian Ocean zonal SST gradient and simultaneous pre-
cipitation in East Africa. The main changes are in the
Walker circulation, which are shown for much of the
Eastern Hemisphere stretching from 208W to 1608E. To
define the Walker circulation, we employ the approach
used by Chen (2005), and many others, to define atmo-
spheric overturning circulations. In this approach, the
first step involves decomposing the horizontal wind vec-
tor into its divergent and rotational components. A

zonal (meridional) cell is then defined from the zonal
(meridional) component of the divergent wind and the
vertical velocity.

The tropical zonal circulation plotted in Fig. 7a show
three overturning cells. 1) A narrow cell featuring
strong ascending motion to the west and subsidence to
the east is found in East Africa extending toward the
western Indian Ocean. The descending branch of this
cell coincides with the semiarid areas in East Africa.
The ascending branch corresponds to the major source
of diabatic heating over Congo. We refer to this as the
East African Walker cell. 2) A shallower East Atlantic
cell is found on the west flank of the East African Walker
cell. 3) To the east, the East African cell is flanked by
a broader Indian Ocean cell. In most models used here,
the background zonal circulation is broadly similar to that
found in the ERA-40 reanalysis despite the differences in
the analysis period considered [1901–2000 and 1958–2000
for the Program for Climate Model Diagnosis and Inter-
comparison (PCMDI) and ERA-40 data, respectively].

A dominant feature in projected changes in atmo-
spheric upward vertical velocity is a weakening of the
ascending branch of the East Atlantic Walker cell over
central Africa. A reduction in v exceeding 2 3 1024

hPa s21 is found in most models in the middle to upper
troposphere. Almost all of the CGCMs show positive
differences in the omega velocities over the descending
branch of the narrow East African Walker cell. Al-
though not statistically significant in some of the models,
these changes imply a weakening of the climatological
subsidence over the eastern semiarid regions. These
results are in qualitative agreement with Vecchi and
Soden (2007), who used different metrics to measure the
intensity of the zonal circulation than are used here.

The future behavior of the Eastern Hemisphere Walker
circulation shows a tendency toward positive IOZM-
like state, consistent with the results presented in section
4a, suggesting that the IPCC AR4 models have physical
parameterizations of convective processes that respond
realistically to the changes in forcings found here. Vecchi
and Soden argue that atmospheric thermodynamics are
the principal drivers behind the weakening of the Indo-
Pacific Walker circulation. Investigating the cause of the
weakening is not the objective of the present study. The
aim of our analysis has been to diagnose physical factors
underlying the modeled precipitation changes.

5. Discussion and conclusions

In this study we investigated possible changes in the
intensity of mean and extreme precipitation rates in
East Africa from the CMIP3 multimodel dataset. Evi-
dence in support of a future positive shift in the rainfall
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distribution under global warming has been presented
for most models, with only a single model simulating
a trend to less rain. Increases in both mean precipita-
tion rates and the intensity of 10-yr wettest events are
simulated almost throughout the region, while dry ex-
tremes are becoming less severe. This is the case even
in the semiarid climate in northern Kenya and south-
ern Somalia. The presence of a dipole between southern
Africa (cf. Part I) and East Africa in the precipitation
response, a robust feature of interannual rainfall vari-
ability in the climate system (e.g., Goddard and Graham
1999), is particularly reassuring. A prime example of
this feature is the 2006/07 austral summer season. Un-
precedented wet conditions in East Africa (Kenya) in
November preceded one of the worst droughts in much
of southern Africa. The qualitative agreement with pre-
vious findings (Kharin and Zwiers 2000; Giorgi and
Mearns 2002, 2003; Tebaldi et al. 2004) provides an
additional reassurance.

A robust feature across the CGCMs is an increase in
atmospheric-column-integrated water vapor during the
transition seasons (autumn and spring), particularly in
the tropical region. Despite discrepancies in the mag-
nitudes of the linear trends, all models show upward
trends in precipitable water in the future climate (not
shown). Although the increase in water vapor in a

warmer atmosphere is offset to some extent by a slow-
down of the tropical circulation (Vecchi and Soden
2007), this trend alone is favorable for an increase in
the precipitation almost everywhere in the tropics by
about 3% (Held and Soden 2006). Dynamical effects,
however, force spatial inhomogeneities in the global-
warming-induced tropical rainfall increases. For in-
stance, projections for rainfall in East Africa are higher
than the zonal mean. This is in part caused by anoma-
lous moisture flux convergence over East Africa (dis-
cussed on the KNMI Africa scenarios Worldwide Web
site).

Most models show a stronger boreal autumn warm-
ing in the western tropical Indian Ocean relative to the
southeastern part of the ocean. This is favorable for
a higher probability of positive IOZM events. An im-
portant attribute of the positive phase of the IOZM is
that it forces excessive short rains in East Africa. It is
physically reasonable, therefore, to conclude from this
ocean–atmosphere coupling pattern that global warm-
ing could enhance the likelihood of anomalously strong
short rains. In most subregions of East Africa, dynam-
ically driven rainfall increases, which contribute up to
about 30%, are likely to work in concert with other
mechanisms to force an overall increase in mean pre-
cipitation.

FIG. 6. Probability distribution functions of the IOZM simulated by the selected CGCMs (name given in the title) in the twentieth century
(solid line) and future climate (2051–2200; dashed line).
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Related to changes in the tropical Indian Ocean
zonal SST gradients are changes in the structure of the
Eastern Hemisphere Walker circulation. Climatological
subsidence over East Africa and the neighboring ocean
area is projected to weaken. Boreal fall ascent over the
Congo Basin is projected to become either shallower or
slower. These features resemble a positive IOZM-like
state of the Walker cell, which has been found to com-
municate the IOZM signal to East Africa precipitation.

The presence of such a pattern in the future climate
suggests that climate change will to a large extent re-
semble interannual variability in this regard.

The higher frequency of flooding observed in East
Africa in recent years could give indications that the
CGCM-simulated precipitation responses are already
occurring. Although the time series of the simulated
precipitation show upward trends from early in the
present century, parts of East Africa could still be

FIG. 7. OND meridionally averaged (108S–48N) divergent zonal wind uD (m s21) and negatively transformed pressure vertical velocity v
(hPa s21) in the (a) ERA-40 reanalysis 1958–2000 and (b)–(h) selected IPCC AR4 models. The model names are shown in the titles.
Future (2051–2200) minus present (1901–2000) differences in 2v are superimposed, contour interval 1 3 1024 hPa s21. Positive (negative)
differences are shown by the solid (dashed) lines. Statistically significant differences at the 5% level (from a z test) are shaded (color bar
units are 31024 hPa s21). The approximate locations of East Africa and the Maritime Continent are indicated at the bottom of each panel.
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experiencing drier conditions. For example, local trends
in Rwanda and Burundi (region III) have been negative
over the last decades of the twentieth century, either
because of natural variability or model deficiencies in
this complex region. From an applications perspective,
there have also been reports of continued decline in
streamflow and water levels in, for example, Lake Vic-
toria, which may seem paradoxical given the recent high
frequency of flooding in East Africa. We note that river/
dam levels are also determined by other factors (e.g.,
water use, drainage, and evaporation), which have not
been considered in this paper. Despite the overall pos-
itive shift in the rainfall distribution projected in East
Africa, the implications of climate change for water re-
sources in this region can only be assessed on the basis of
the pattern of precipitation minus evaporation (P 2 E),
and its possible spatial and temporal variance, all of
which deserve further investigation.

The projected increase in the intensity of 10-yr wettest
events translates into rising flood risks for the region,
with implications for disaster management, development
planning, and local livelihoods. In addition, both the ris-
ing temperatures and the higher risk of excessive rainfall
have implications for the health sector, for instance, by
shifting and/or extending the areas affected by vector-
borne diseases such as malaria or the Rift Valley fever.
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