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ABSTRACT 

 
Wind scatterometry is an important technique for retrieving high-resolution near-

surface wind information in ocean areas where other techniques provide sparse coverage. 

Scatterometer winds are principally ambiguous in wind direction. In this paper a 

variational method for ambiguity removal, named 2DVAR, is presented. 2DVAR 

performs an incremental analysis based on the ambiguous scatterometer wind vector 

solutions and a model forecast, and selects the ambiguity closest to the analysis as 

solution. The correctness of the 2DVAR implementation is demonstrated to machine 

precision. The merits of 2DVAR are shown in a number of case studies and in a more 

general statistical comparison. SeaWinds observations at 25 km resolution are known to 

be noisy, especially in the nadir part of the swath, due to the observation geometry. It is 

shown that the noise is effectively suppressed by application of 2DVAR in combination 

with the Multi Solution Scheme (MSS). MSS retains the local wind vector probability 

density function after inversion, rather than only a limited number of ambiguous 

solutions. The effect of MSS is to increase the influence of the background. This can be 

decreased again by adjusting the parameters in the observation wind error model. A case 

study on an extratropical hurricane observed with SeaWinds shows that reliable wind 

estimates can be obtained wind speeds more than 40 m/s. ASCAT has a better 

observation geometry than SeaWinds and therefore the MSS is not needed, but a case 

study on a tropical cyclone shows that the 2DVAR error model should be tuned right to 

reproduce the correct circulation patterns.  



 

1. Introduction 

Wind scatterometry is a widely used technique for measuring global ocean 

surface winds from space. Current operational applications include assimilation into 

global models for numerical weather prediction like that of the European Centre for 

Medium range Weather Forecasting (ECMWF) (Hersbach, 2007) and detection of 

tropical and extratropical hurricanes for marine warning (Sienkiewicz et al., 2007). At 

this moment three scatterometers are operational: SCAT, ASCAT, and SeaWinds. SCAT 

and ASCAT are three-beam instruments operating at C-band with VV polarization and 

45° separation in azimuth angle between the beams. SeaWinds is a rotating fan HH and 

VV polarized scatterometer at Ku-band. The advantage of SeaWinds over ASCAT is a 

larger swath width, but its disadvantages are increased rain sensitivity and swath-

dependent measurement geometry, which is particularly unfavourable in the nadir part 

and the outer parts of the swath. 

Scatterometer measurements are assumed to be described by a Geophysical 

Model Function (GMF), an empirical function that gives the radar cross section as a 

function of wind speed and direction at 10 m anemometer height, incidence and azimuth 

angles, radar frequency, and polarization. Numerical inversion of the GMF yields the 

scatterometer wind measurement. Due to the nature of the GMF, this procedure generally 

produces more than one solution. These multiple solutions are referred to as ambiguities. 

If the scatterometer observations are to be assimilated in a numerical weather prediction 

(NWP) model, the ambiguities and their a-priori probabilities can be fed into the 

variational data assimilation scheme of that model to be combined with other 



observations (Stoffelen and Anderson, 1997). If, on the other hand, the scatterometer 

observations are intended as stand-alone information source, it is necessary to select the 

solution that is most likely the correct one. This is done in the ambiguity removal (AR) 

step. A number of ambiguity removal methods has been proposed. A simple method is 

the first rank method where the solution with the highest a-priori probability is selected. 

Another simple method is the closest-to-background method. This method requires the 

presence of a NWP wind field, and the solution closest to the model prediction is 

selected. The closest-to-background method runs into difficulties in cases where the 

model prediction is wrong. 

Several more sophisticated AR schemes were evaluated before the launch of the 

first European Remote Sensing (ERS-1) satellite (Graham et al. 1989). A scheme called 

CREO (Cavanié and Lecomte, 1987) was selected and implemented by the European 

Space Agency (ESA). CREO constructs two antiparallel fields (since ERS scatterometer 

data generally contain two ambiguities per Wind Vector Cell, WVC) and selects the field 

with the most first rank selections. Stoffelen and Anderson (1995) showed that CREO has 

severe shortcomings. As an alternative, they proposed the PreScat scheme (Stoffelen and 

Anderson, 1997) which is based on the SLICE scheme (Offiler, 1987). PreScat uses a 5 

by 5 WVC box filter to choose the wind direction at the centre as the most likely 

weighted average of the surrounding ambiguities. The method is initialised with the 

closest-to-background solution. The Jet Propulsion Laboratory of the National 

Aeronautics and Space Administration (NASA-JPL) developed an ambiguity removal 

method for SeaWinds, called Directional Interval Retrieval with Threshold Nudging 

(DIRTH). This method combines the backscatter measurements into likely wind direction 



intervals (rather than solutions) by accounting for their probabilities. A NWP model 

guess and a constraint of wind direction continuity is subsequently used to construct a 

consistent wind field (Stiles et al., 2002). 

The ambiguity removal problem can also be solved within a variational approach. 

This requires availability of a model prediction of the wind field (background). An 

analysis wind field is constructed from the observations and the background by 

minimizing a cost function which may contain constraints on smoothness, statistical 

consistency, physical consistency, etc. The solution closest to the analysis is selected (so 

such methods may as well be referred to as closest-to-analysis). 

The VARscat algorithm was developed for processing scatterometer 

measurements (Roquet and Ratier, 1986; Leru, 1999) and to improve the operational 

scheme used at the Institute Français de Recherche pour l’Exploitation de la Mer 

(IFREMER) (Quilfen and Cavanié, 1991). It is a variational method minimising a 

heuristic cost function. Another variational method is the successive corrections 

ambiguity removal (SCAR) developed at the Danish National Meteorological Institute 

(DNMI). Hoffman et al. (2003) present a two-dimensional variational method with a cost 

function consisting of seven terms for filtering and dynamical consistency. The 

minimisation problem is not preconditioned: minimisation is done in position space in 

terms of the wind analysis increments. It is also possible to input 0σ  values, so inversion 

may be included in this method. It compares well to a median filter ambiguity removal 

technique when applied to data from the National Aeronautics and Space Administration 

(NASA) Scatterometer (NSCAT) as shown by Henderson et al. (2003). 



The PreScat, VARScat, SCAR and 2DVAR methods were compared for ERS-1 

data by Stoffelen et al. (2000). These authors concluded that on average VARScat had 

best performance. PreScat was generally best in the tropics, SCAR in the Northern 

Hemisphere during winter, and VARScat on the Southern Hemisphere during summer. 

Two tunable properties, i.e., activity and spatial scope, in each ambiguity removal 

scheme were compared and shown to strongly affect the results. It was recommended to 

make spatial scope geographically dependent and to tune activity of the AR schemes in 

order to improve its performance. Since tuning of 2DVAR is both methodically and 

practically relatively simple, the 2DVAR parameters were tuned in order to improve AR 

performance. Moreover, its formulation and implementation were reviewed thoroughly 

and some errors were corrected. 

In this paper 2DVAR is presented, a two-dimensional variational ambiguity 

removal technique that takes the a-priori probabilities of the ambiguities and the known 

error characteristics of observations and background into account. The advantage of 

2DVAR is that it leads not only to spatially consistent wind fields that satisfy basic 

physical laws, but also to statistically consistent fields in which a WVC solution with 

high a-priori probability is more likely to be selected than one with low probability. The 

main differences of 2DVAR with respect to other similar methods are: 

• minimalisation is performed in spectral space, thus optimising all spatial scales 

simultaneously; 

• the problem is preconditioned, so inversion of the background error correlation matrix 

is trivial; 



• the a-priori probabilities of the ambiguities are properly taken into account into the 

cost function, and therefore the selection probability increases with a-priori 

probability. 

As stated before, the observation geometry of SeaWinds changes along the swath. 

In the nadir part, this leads to broad minima when inverting the GMF. To account for 

this, the Multiple Solution Scheme (MSS) retains the local wind vector probability 

density function after inversion, rather than only a limited number of ambiguous 

solutions at the local minima (Portabella, 2002). 

The aim of the paper is twofold: presentation of the 2DVAR method and 

investigation of its behaviour and sensitivity to changes in the underlying error model for 

different types of scatterometer. The 2DVAR method is described in section 2, but more 

details can be found in (Vogelzang, 2007). Section 3 describes two tests that prove the 

correctness of the current 2DVAR implementation: the single observation test and the 

edge analysis. The single observation test is a case involving only one observation. The 

minimalization problem can now be solved analytically, and the analytical solution is 

reproduced to machine accuracy. The edge analysis shows that the incremental analysis 

does not suffer from under- or overfitting. A dataset consisting of on month of SeaWinds 

data is analysed in section 4. The data were processed with the SeaWinds Data Processor 

(SDP) version 1.5 with and without the MSS and using as background the winds 

predicted by the National Centers for Enviromnental Prediction (NCEP) and the 

ECMWF. It is shown that the choice of background has little effect and that 2DVAR in 

combination with the MSS effectively reduces the noise known to be present in the 

SeaWinds measurements. The noise level is estimated quantitatively for each WVC by 



extrapolation of the autocorrelation function. Section 5 contains three case studies to the 

effect of the parameters in the 2DVAR error model. The first study is of a cyclone with a 

strong front observed by SeaWinds in the southern Pacific. The second case is that of an 

extratropical hurricane with wind speeds over 40 m/s, also observed by SeaWinds in the 

northern Pacific. The last case study deals with an ASCAT observation of a tropical 

cyclone east of India. The paper ends with the conclusions in section 6. 

 

2. 2DVAR 

a. Definitions 

The basic idea behind 2DVAR is to fit the scatterometer observations and a model 

prediction (background) in a weighted field (analysis), and to select that local ambiguous 

solution that lies closest to the analysis. Such a procedure, basically following the 

approach of Daley (1991), requires knowledge on the error characteristics of observations 

and background. The observation error has been treated by Stoffelen (1998). Moreover, 

Portabella and Stoffelen (2004) show how local scatterometer wind vector ambiguities 

can be assigned an a-priori probability based on their distance to the Geophysical Model 

Function (inversion residual). The error characteristics of the background are known and 

monitored on a routine base at NWP centres (e.g., NWPSAF web site). 

Level 2 scatterometer observations are processed onto a regular grid called swath. 

Ambiguity removal is usually done on a limited set of scatterometer observations. In 

2DVAR such a set, referred to as a batch, measures 1900 km in the across track direction 

and 2200 km along track. The equidistant two dimensional batch grid follows the Earth’s 

surface. Moreover, the batch grid is extended in both directions to have the observations 



surrounded by empty grid cells, resulting in a total size of 3200 km in both directions. 

Note that 2DVAR operates in a local coordinate scheme with its x-axis perpendicular to 

the satellite moving direction and its y-axis parallel to it. In this section we will consider 

the wind vector components perpendicular and parallel to the satellite moving direction, 

t  and l , respectively. The local rotation angle of the 2DVAR batch grid can be found 

with sufficient precision from the known positions of the WVC’s (Vogelzang, 2006b). 

 

b. Formulation of the problem 

Suppose that inversion and quality control resulted in a set of possible 

scatterometer wind solutions (ambiguities) at all WVC grid points stored in a state vector 

k
ov  with ambiguity index k . Suppose also that the background information is contained 

in a state vector bx . The conditional probability that x  expresses the true state of the 

surface wind field given the ambiguities k
ov  equals )( k

o
P vx . This can be related to the 

background as (Lorenc, 1986) 

,)()()( b
k
o

k
o PPP xxxvvx ∝  (1) 

where )( xv k
oP  is the conditional probability that the ambiguous scatterometer wind 

solutions k
ov  are observed given the state vector x  and )( bP xx  is the conditional 

probability that x  represents the surface wind field given bx . The most likely state vector 

x  is the analysis. It is found by maximizing (1), or, equivalently, minimizing the cost 

function J  given by 

.)(ln2)(ln2),,( b
k
ob

k
o PPJ xxxvxxv −−=  (2) 



To increase the computational efficiency of 2DVAR, analysis increments xδ  are used 

rather than the state vector x  itself (incremental formulation), 

,bxxx −=δ .b
k
o

k xvv −=δ  (3) 

For each scatterometer observation the background field is assumed to be known at the 

same position and time, if necessary from interpolation. The cost function (2) can be 

rewritten as 

,)(),(),( xxvxv δδδδδ b
k

o
k JJJ +=  (4) 

with oJ  the observational term and bJ  the background term. 

 

c. Definition of the cost function 

In terms of the analysis increments on the batch grid in the spatial domain, the 

observation cost function reads (Stoffelen and Anderson, 1997) 
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with ),( ji  the indices of the batch grid cell, 1N  and 2N  the number of batch grid cells 

parallel and perpendicular to the satellite moving direction, respectively, and ijM  the 

number of ambiguities in cell ),( ji . Further, ijtδ  and ijlδ  stand for the components of the 

analysis increments at cell ),( ji  perpendicular and parallel to the satellite moving 

direction, respectively. Similarly, )(
,
o
kijtδ  and )(

,
o
kijlδ  stand for the observation increments of 

the ambiguity with index k . In (5) tσ  and lσ  stand for the expected standard deviation 

of the error in the scatterometer wind components. Both for SeaWinds and ASCAT 



== lt σσ 1.8 m/s. The inversion and quality control procedures give kP , the a-priori 

probability of ambiguity number k  being the correct solution (see also section 2e). The 

parameter λ  is an empirical parameter that gives optimal separation between multiple 

solutions for 4=λ . 

Assuming that the errors in the background wind field are Gaussian, the 

background term of the cost function can be written in state vector representation as the 

quadratic form 

,)()()( 1 CJ T
b += − xBxx x δδδ δ  (6) 

with xBδ  the matrix of background wind error covariances, the subscript indicating that it 

is defined in the spatial domain. The superscript T  indicates the transpose of a vector or 

matrix. Note that the transpose suffices here since xδ  is a real vector. In the general case 

the Hermitian conjugate (complex conjugate of the transpose) should be taken. The 

constant C  may be neglected during minimalization. Evaluation of (6) requires inversion 

of  xBδ , which may be time consuming since it is not diagonal. It is more efficient to 

transform the background cost function to the spatial frequency domain with a Fourier 

transformation F and to express it in terms of stream function and velocity potential 

increments using an inverse Helmholz transformation 1−H . This leads to  

,)()( 1* ξBξ ξ δδ δ
−= T

bJ  (7) 

with xFHξ δδ 1−= . In this representation, the background error correlation matrix is 

(approximately) block-diagonal and can be factorized into error variances Σ  and error 

correlations Ρ  by ΡΣΣB T*=δξ  with 
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Since Σ  and Ρ  are real, it is possible to condition the problem by writing 

ΣΡΡΣB ξ
2/12/1T=δ  and defining the preconditioned state vector .2/11 ξΡΣς δδ −−=  The 

relation between ςδ  and xδ  is now given by the conditioning transformation  

,12/11 xFHΡΣxΖς δδδ −−−==  (9a) 

with inverse transformation 

.2/111 ςΣHΡFςZx δδδ −− ==  (9b) 

This reduces the background error correlation matrix in terms of the conditioned state 

vector ςδ  to the identity matrix, and the background part of the cost function simply 

reads 

.)()( 2* ςςς δδδ == T
bJ  (10) 

 

d. Minimalization and gradient 

The minimalization is done with routine LBFGS, a limited-memory quasi Newton 

routine written by J. Nocedal (Liu and Nocedal, 1989). This routine proves to be fast and 

accurate. In 2DVAR good results are obtained with an initial step size of 130 −∇ tt JJ , 

with tJ  the total initial cost function and tJ∇  its gradient with respect to the control 

vector components. A typical batch requires less than 100 function evaluations to 

converge. See Vogelzang (2007) for detailed information. Note that 2DVAR uses the 

same minimization algorithm as Hoffman et al. (2003). 



The minimalisation procedure starts with 0=ςδ , so the initial analysis equals the 

background, and uses the gradient of the cost function with respect to the control 

variables. For the background part the gradient simply reads ςδ2=∇ bJ . For the 

observation part the state vector is transformed to the spatial domain using the inverse 

conditioning transformation (9b). The gradient is evaluated in the spatial domain by 

differentiating (5) to tδ  and lδ , packing the derivatives into a state vector, and 

transforming this state vector back to the spectral domain using the adjoint (complex 

conjugate of the transpose) of the inverse conditioning transformation, see, e.g., (Errico, 

1997; Giering and Kaminski, 1998). 

At this point it should be remarked that the control vector used in the actual 

minimalisation is not necessarily equal to the state vector (Hoffman et al., 2003). In the 

spatial domain the state vector xδ  is real with 212 NN  components and equals the control 

vector. In the spectral domain, the state vector ςδ  is complex and has twice as much 

components. However, only components with nonnegative spatial frequency are 

independent (Press et al., 1988). The number of independent components remains 

212 NN , but an additional packing/unpacking transformation is needed to go from state 

vectors to control vectors and vice versa in the spectral domain. 

 

e. Error model 

The stream function and the velocity potential are not observable quantities, but 

their error variances and error correlations can be derived from the wind field, either from 

theory or from measurements (or a combination of the two). The background error 



correlations in the velocity potential and stream function in the spatial domain, χχρ  and 

ψψρ , are modeled as Gaussian functions following Daley (1991), 

,)1()(
22 /222 ψ
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where ψσ  and χσ  stand for the standard deviation of the error in ψ  and χ , respectively, 

2ν  for the ratio of the rotational and the divergent contribution to the wind field, and ψR  

and χR for the correlation lengths, the length scales that determine the extent of the error 

correlations. These parameters have a physical meaning and can not be varied arbitrarily. 

Moreover, they are not independent, since the impact on the analysis is determined by the 

ratio of the error standard deviation and the correlation length (de Vries and Stoffelen, 

2000). The scaling parameters ψL  and χL  in (11) are defined as 
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Equation (12) holds for any form of the error correlation function. For the Gaussian form 

(11) one readily finds 2
2
12

ψψ RL =   and 2
2
12

χχ RL = . 

The background error correlation model is readily Fourier transformed,  either 

numerically or analytically, to the spectral domain where it remains Gaussian. The 

default values for the parameters were found by de Vries and Stoffelen (2000) and are 

listed in table 1. These values were obtained after the intercomparison of 2DVAR with 

other variational methods mentioned before. The correlation length in the Tropics is 

higher than in the Extratropics to account for the general large scale convective 



circulation structures around the equator (but with exception of tropical cyclones, see 

section 5e). In the Extratropics the circulation is more rotational as reflected in the 

smaller value for 2ν . 

The a-priori probability kP  of ambiguity k being the correct solution in (6) 

follows from the inversion step as (Portabella and Stoffelen, 2004) 

,
22 / RR

k
MLENeP −=  (13) 

where MLER  is the distance from the ambiguity to the scatterometer measurement in 

observation space and R  an empirical constant. The normalization N  guarantees that the 

sum over the a-priori probabilities of all ambiguities in a WVC equals one. The 

probability model (13) can be extended by including gross error probabilities (GEP’s) 

with a constant probability distribution  GEP  over a finite domain such that (Lorenc, 

1986) 

,
22 / RR

GEk
MLEeNPP −′+=  (14) 

with the normalization of the Gaussian part adapted to ensure that the sum over the a-

priori probabilities of all ambiguities in a WVC remains one. The gross error probability 

imposes a minimum value to the a-priori probability which implies that from a certain 

threshold the magnitude of MLER  no longer matters. The default value of GEP  is 0.0075. 

 

f. Variational Quality Control 

The results of 2DVAR can be used to assess the quality of the ambiguity removal. 

In the present 2DVAR formulation the Variational Quality Control (VQC) flag is set for 

each WVC where the contribution of oJ  exceeds the threshold value of 12. This happens 
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for WVC’s where the a-priori probability of each ambiguity equals the gross error 

probability.  

 

3. Tests 

In this section two tests are described that demonstrate the correctness of the 

current 2DVAR implementation. The first one is the single observation test. It involves 

only one observation and the minimization problem can be solved analytically. This test 

shows that all normalizations are correct. The second test is the edge analysis, showing 

that the analysis increments do not suffer from severe over- or underfitting. 

 

a. Single Observation Test 

In case there is exactly one observation, the 2DVAR problem can be solved 

analytically. Suppose that at some 2DVAR batch grid point ),( ji  there is one observation 

),( oo lt . Starting with zero background increment and zero analysis increment field, the 

only contribution to the cost function and its gradient originates from this observation. 

From (6) this contribution reads 
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with lto σσσ == . Now the 2DVAR problem reduces to an optimal interpolation problem 

(Daley, 1991) with solution 
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where ψχ σσσ ==b  is the standard deviation of the background error. At the solution, 

the gradient of the total cost function should be zero, since the total cost function is 

minimal there, so 

.ob JJ −∇=∇  (18) 

The background potential field can now be retrieved. The analysis wind at the 

observation point satisfies 
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Note that the background error model parameters ν , χR , and ψR  do not enter (19) 

explicitly. However, they do appear in the full expression for the analysis wind field 

(Vogelzang, 2007). 

Figure 1 shows the resulting wind fields for ),( oo lt  equal to (0,1) m s-1 and ν  

equal to zero (purely rotational) or one (purely divergent). The observation is located in 

the centre of the grid, x  and y  equal to 1600 km .The correlation lengths ψR  and χR  

are both equal to 300 km. The standard deviation of both the observation error and the 

background error was set equal to 1.8 m s-1. The wind speed at x  and y  equal to 1600 

km should equal half of the observed speed. This is satisfied with an accuracy better than 

5102 −⋅ . The circulation patterns in figure 1 form the basic building blocks from which 

2DVAR constructs its analysis increments. The single observation test proved to be of 

crucial importance in fixing all normalizations and getting the definition of the control 

vector right. 



 

b. Edge analysis 

The 2DVAR batch grid should be large enough for the analysis increments to go 

to zero at the edges. Figure 2 shows the extreme (minimum and maximum) values of the 

analysis increments perpendicular and parallel to the satellite direction. Since the 

correlation length of the background error differs for the Tropics and the Extratropics, see 

table 1, the curves in figure 2 have been separated accordingly. The curves in figure 2 

were obtained with SDP version 1.5 without applying the MSS at 25 km resolution with 

the ECMWF wind field as background, using all SeaWinds data from December 2004 

(see section 4). 

The batch grid has a width of 32 points. With a cell size of 100 km, the batch grid 

is 3200 km wide. The width of the free zone around the observations is defined as 5 cells, 

or 500 km. Since the SeaWinds swath is 1800 km wide, there are 4 cells remaining. 

These are inserted at the right hand side of the batch grid as an additional free zone. 

Moreover, SDP version 1.5 does not process the outer swath, so there is an extra strip of 

200 km without observations at each side. Therefore the region with observations across 

the batch grid, marked with the vertical black dashed lines in figure 2, extends from cell 7 

( 600=x  km) to cell 22 ( 2100=x km). 

Figure 2 shows that the analysis increments in the Extratropics (dotted curves) are 

generally a bit higher than in the Tropics (dashed curves). It also shows that the analysis 

increments go to zero at the edges, faster in the Extratropics than in the Tropics. This is 

according to expectation, since the background error correlation length is 300 km in the 

Extratropics and 600 km in the Tropics. The free zone should be two or three times larger 



than the background error correlation length, so it is large enough in the Extratropics, but 

a bit tight in the Tropics. 

However, the most important conclusion from figure 2 is that there are no clear 

signs of over- or underfitting: the curves in figure 2 are not too smooth and neither too 

wildly varying. Moreover, they approach zero at the edge of the batch grid at a rate that 

agrees with the value of the background error correlation length. Application of the MSS 

and/or using the NCEP wind field as background yields similar results and the same 

conclusion. In the next section the edge analysis is revisited. 

 

4. Statistical validation 

a. Introduction 

In this section 2DVAR is tested using some statistical methods using SeaWinds 

data from December 2004. The dataset contained all orbits that started in this period, 

orbits 28388 up to and including 28829. Some orbits turned out to be incomplete and 

were rejected for further processing, leaving a dataset of 434 full orbits. The NOAA 

BUFR files were processed with SDP version 1.5 using as background the NCEP model 

wind field (which is available in the NOAA BUFR product) or the ECMWF wind field. 

The NCEP model wind field is a 24 hour forecast of the 1000 mb wind. The ECMWF 

wind field is a 3 – 9 hour forecast of the wind speed at 10 m anemometer height, and is 

therefore expected to compare better with the scatterometer winds which are also at 10 m. 

Processing was done with and without application of the MSS. To investigate 

how the analysis increments behave at the edges of the batch grid, the final 2DVAR 



analysis increments perpendicular and parallel to the satellite direction, tδ  and lδ , 

respectively, were dumped during processing. 

As SeaWinds is a rotating fan-beam scatterometer, its observation geometry 

varies across the swath. At 25 km resolution there are 76 WVC’s, and the swath is 

divided in three parts: the outer swath (WVC 1-10 and 67-76), the mid swath or “sweet” 

swath (WVC 11-30 and 47-66), and the nadir swath (WVC 31-46).  

 

b. Wind field comparison 

The datasets described above were intercompared by calculating the statistics of 

the differences in wind components for the zonal components, u , and the meridional 

components, υ . Tables 2a and 2b show the standard deviations of the differences in zonal 

wind component, uσ , and meridional wind component, υσ , respectively. Model wind 

vectors were only considered when the associated scatterometer wind vectors were valid 

in order to prevent contamination of the NCEP and ECMWF model wind vector 

comparison by land pixels. 

The largest differences occur between the selected wind without MSS and the 

NCEP model ( ≈uσ 2.5 m/s; ≈υσ 2.2 m/s). It makes little difference whether the selected 

winds were obtained using the NCEP winds or the ECMWF winds as background. Note 

that the differences between the selected winds and the ECMWF model ( ≈uσ 1.9 m/s; 

≈υσ 1.8 m/s) are smaller than those between the selected winds and the NCEP model 

( ≈uσ 2.5 m/s; ≈υσ 2.4 m/s). This means that the scatterometer winds are closer to the 

ECMWF model than to the NCEP model. As the ECMWF First Guess wind is better than 



the NCEP + 24 hour 1000 mb wind, it is concluded that the scatterometer observations 

yield useful information. 

This is corroborated by the results for the MSS winds. Now the 2DVAR method 

has more freedom in selecting the optimal wind vector, and the influence of the 

background field becomes slightly more important. The difference between the MSS 

wind field and the NCEP model is rather large when using the ECMWF winds as 

background ( ≈uσ 2.2 m/s; ≈υσ 2.1 m/s) and somewhat smaller when using the NCEP 

wind as background ( ≈uσ 2.1 m/s; ≈υσ 2.0 m/s). Compared to the ECMWF winds, the 

differences are smaller: ≈uσ ≈υσ 1.5 m/s with NCEP background; ≈uσ 1.5 m/s and 

≈υσ 1.4 m/s with ECMWF background. 

Note that the difference between the selected winds with NCEP background and 

ECMWF background is small, but slightly larger for MSS ( 6.0≈≈ υσσ u m/s). This is 

consistent with the notion that without MSS the ambiguity removal method has limited 

choice between the (four at most) solutions found by the inversion algorithm. The details 

of the background field appear rather unimportant. 

Using the NCEP field as background, application of MSS reduces the standard 

deviation of the error with respect to the ECMWF model with 

96.0)51.1()79.1( 22 =− m/s for u  and with 90.0)50.1()75.1( 22 =− m/s for υ . This 

once more shows the added value of scatterometer information derived with MSS. Note 

that the selected winds (no MSS) based on the NCEP wind field actually add variance to 

the ECMWF-NCEP difference, thereby degrading the wind field. 

The results in tables 2a-b were obtained for those wind vectors for which the 

VQC flag (see section 2f) was not set. The number of valid vectors may therefore differ 



slightly for each of the sets, between 18.8 million and 19.2 million, a variation of 2% that 

may influence the statistics. However, inspection of all histograms of the wind 

differences revealed that their distributions are well behaved without significant outliers.  

 

c. Noise estimation 

Figure 3 shows the autocorrelation in the zonal wind component u at 25 km 

resolution obtained from the ECMWF field and from the SDP results with and without 

MSS. The left hand panel shows the full curves; the right-hand panel an enlargement at 

short distances. The autocorrelation at zero distance equals 1 by definition. The SDP 

result without MSS (black curve) shows a clear discontinuity at short distances, while the 

SDP result with MSS (blue curve) and the ECMWF result (red curve) approach 1 

continuously. This discontinuity is caused by an uncorrelated noise component adding 

only variance. The size of the discontinuity can be estimated by extrapolating the curve to 

zero distance (dashed black curve). The extrapolated curve crosses the y-axis at a−1  

rather than 1. It is easy to show that the standard deviation of the noise, nσ , satisfies 

(Vogelzang, 2006a) 

.asn σσ =  (20) 

where sσ  is the standard deviation of the total signal. 

Figure 4 shows the standard deviation of the noise for the SDP wind components 

at 25 km and 50 km resolution processed without MSS. At coarser resolutions the noise 

level reduces and the extrapolation distance increases, leading to larger uncertainties in 

the noise estimate. The extrapolation may even overshoot the autocorrelation, leading to 

an extrapolated autocorrelation larger than 1 at x=0 and, hence, a negative noise variance 



estimate. This happens at 50 km resolution in the mid swath and at 100 km resolution all 

over the swath. Such points have been excluded from figure 4. 

Figure 4 shows that the noise level decreases as the resolution becomes coarser. 

At 100 km resolution the noise estimates are invalid, indicating negligible noise 

contribution. At 25 km resolution the standard deviation of the noise may exceed 1 m/s 

for υ  and 1.5 m/s for u. These figures agree well with the overall reduction in standard 

deviation of the difference between the scatterometer winds and the ECMWF background 

when switching on MSS as presented in the previous section. When MSS is applied the 

noise component disappears and no valid noise estimates are obtained. 

 

d. Analysis statistics 

Some statistics of the analysis increments were already presented in section 3.2 to 

show that 2DVAR exhibits no signs of severe overfitting and that the free edge is 

sufficiently large in the Extratropics but rather tight in the Tropics. Figure 5 shows the 

results for the average absolute value of the analysis increment across the 2DVAR batch 

grid. This figure shows that in all cases the average absolute analysis increment is smaller 

when applying MSS (dashed curves). This is no surprise, since 2DVAR is expected to 

find a solution with reasonable probability not too far from the background in this case. 

Without MSS (dotted curve) the ambiguities are further away from each other, leading to 

larger analysis increments. A second reason lies in the more noisy character of the 

scatterometer winds without MSS. 

Figure 5 also shows that the average absolute analysis increments in the Tropics 

(left panels) do not approach zero properly, again indicating that the free edge is rather 



tight. In the Extratropics (right panels) the free edge is sufficiently large. Note also that 

the average absolute analysis increments are higher with the NCEP wind field as 

background (lower panels) than those with the ECMWF wind field as background (upper 

panels). When using the NCEP background in the Extratropics, tδ  shows some mild 

signs of overfitting around 400=x km and 2400=x km. 

 

5. Case studies 

In the previous sections it was shown that 2DVAR performs well in a statistical 

sense. In combination with MSS it suppresses the noise component in SeaWinds data at 

high resolution. In this section three cases will be studied in more detail in order to 

support the conclusions drawn from the statistical analyses in the previous section and to 

gain more insight in the role of the parameters in the error model. 

The first case is a SeaWinds observation of a cyclone with a strong front in the 

southern Pacific on August 6, 2006. There is a clear mismatch in the position of the 

cyclone and the front between the observations and the NCEP background. The second 

case is a SeaWinds observation of a severe hurricane over the northern Pacific on 

December 30, 2004 with wind speeds over 40 m/s. The third case is an ASCAT 

observation of a tropical cyclone in the Indian Ocean which is not present in the ECMWF 

background. The effect of changing 2DVAR settings will be illustrated. 

 

a. Case Pacific cyclone and front 

Figure 6 shows the NOAA result for SeaWinds measurements recorded on 

August 6, 2006 in the Pacific Ocean off the coast of Chile. A deep low pressure area 



located approximately at 80° W and 45° S is accompanied with an extended frontal area 

on its northern and northeastern side. The front has an irregular shape around 75° W in 

figure 6 where a large number of cells have their rain flag set (orange arrows). To the 

north of the front a few erroneous wind vectors can be seen. This shape is not present in 

the NCEP model field shown in figure 7. Moreover, the NCEP model locates the front 

more to the south (the grid point 80° W, 30° S is a suitable reference), and the centre of 

the cyclone more to the west. 

The SDP wind field without MSS is shown in figure 8. The wind field is noisy 

and the eastern part of the front is not very clearly visible because many points there are 

flagged as rain points and therefore rejected for further processing by SDP. The VQC 

flag (see section 2f) is set in a number of WVC’s along the front and near the centre of 

the cyclone (purple arrows). The location of the cyclone agrees with the NOAA result, 

figure 6, while the location of the front agrees with the NCEP background, figure 7. Note 

the strong convergence in the region 30° S-35° S, 75° W-80° W. This structure seems not 

realistic. 

Figure 9 shows the result when MSS is applied. The wind field is now smooth, 

also north of the front, because the noise has been filtered out. The front appears 

smoother and extends more to the east. No WVC’s are flagged in the frontal zone. 

Southwest of the front line some wavy structures appear in the wind field. The 

convergence in the region 30° S-35° S, 75° W-80° W has disappeared, and the centre of 

the cyclone has moved slightly to the west, indicating larger influence from the 

background. 



The influence of the background increases with decreasing background error 

standard deviation. Figure 10 is obtained with a background error standard deviation of 1 

m/s (left) and 3 m/s (right), while the standard value is 2 m/s, see table 1. In the left hand 

panel of figure 10, a few WVC’s along the front now have their VQC flag set, and the 

centre of the low moved slightly further to the west, more in agreement-with the 

background field in figure 7. In the right hand panel the observations have more weight. 

The front is more clearly defined and the centre of the low lies more to the east. 

The influence of the background increases with increasing background error 

correlation length. Figure 11 is obtained with a background correlation length of 250 km 

(left) and 350 km (right), whereas the standard value for the Extratropics is 300 km, see 

table 1). In the left hand panel of figure 11 the influence of the background is smaller 

than in the right hand panel: the front is more clearly defined and the centre of the low is 

more to the east. Note the similarity between the left hand panel of figure 10 and the right 

hand panel of figure 11, and between the right hand panel of figure 10 and the left hand 

panel of figure 11. 

 

b Case Pacific hurricane 

On December 30, 2004, a strong hurricane raging over the northern Pacific was 

observed by SeaWinds. Figure 12 shows the SDP result with ECMWF background and 

MSS applied to reduce the noise. WVC’s flagged as contaminated by rain have been left 

out of figure 12, while VQC flagged wind vectors are drawn in purple. Observations and 

background give the same position for the centre of the hurricane, but the observed wind 

speeds around the centre are higher than the modelled ones, especially to the south of the 
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centre where the VQC flags are set in figure 12. This is no surprise: it is well known that 

NWP models tend to underestimate the strongest winds in hurricanes. 

Figures 13 shows the centre of the hurricane. Now the VQC flagged wind vectors 

are in black, while the other arrow colours indicate the wind speed range. The left hand 

panel of figure 13 shows the same results as figure 12, but the right hand panel is 

obtained without using the Gross Error Probabilities (GEP). With GEP (standard value 

0.0075 for all WVC’s) the wind directions south of the centre are obviously wrong. 

Without GEP the black arrows fit well in the overall circulation pattern. The wind speeds 

south of the centre of the hurricane exceed 40 ms-1. 

The GEP’s effectively impose a maximum on the observation part of the cost 

function. In cases where ambiguities and background are far apart, the a-priori 

probabilities becomes constant and 2DVAR can only distinguish the ambiguities by their 

distance to the background. As a result, 2DVAR starts behaving like closest-to-

background and will select the ambiguity with its direction closest to the background (in 

MSS all ambiguities in a WVC have similar speeds). This is what happens in the left 

hand panel of figure 13. When the GEP’s are turned off, the a-priori probabilities 

influence 2DVAR’s selection process, resulting in selections that may deviate more from 

the background as in the right hand panel of figure 13. 2DVAR now selects ambiguities 

with a high a-priori probability which fit better into the general circulation pattern and 

have a somewhat higher speed. Note that the VQC flag is set more often, because of the 

large difference with the background. 
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This case shows that the VQC flag does not necessarily imply that the selection is 

wrong. It may also indicate errors in the background. Anyhow, such cases should be 

handled with care. 

 

c. Case Indian cyclone 

The last case considered here is an ASCAT observation of a tropical cyclone on 

August 31, 2007, east of India. Standard processing (no MSS, 2DVAR settings from 

table 1, using the ECMWF wind as background and 25 km resolution) clearly shows the 

cyclone, see the upper left panel of figure 14. Some WVC’s near the centre of the cyclone 

have their MLE flags set due to rainfall and are shown in orange. The cyclone is on the 

southern hemisphere, so the circulation direction is clockwise. Closer inspection of the 

upper left panel of figure 14 reveals that the wind direction is off by about 180° in an area 

north to northeast of the centre. This suggest a problem in 2DVAR. 

The background wind field is shown in the upper right panel of figure 14. The 

reason for the failure of 2DVAR is obvious: the cyclone is not present in the background. 

Instead, the background shows a frontal structure. This is rather surprising, since ASCAT 

data were already assimilated in the ECMWF model in August 2007. The most likely 

explanation is that earlier ASCAT observations missed the cyclone because spatial 

coverage near the equator is about 75% per day, considering both ascending and 

descending orbits. Note that the ECMWF background is the most recent prediction before 

the scatterometer data of figure 14 were assimilated. Predictions after inclusion of the 

data of figure 14 do show the cyclone, though at a slightly different position (Hersbach, 

2007, private communication). 



Application of MSS (lower left panel of figure 14) does not improve the wind 

field. Because 2DVAR has more solutions to choose from, it is likely that a solution with 

lower a-priori probability close to the background is preferred over one with slightly 

higher a-priori probability further away. As a result, the influence of the background 

increases. This leads to a compromise between the observations and the background in 

which the cyclone is visible with the right circulation direction everywhere, but too weak 

and at a wrong position. 

The right circulation direction can be obtained by increasing the influence of the 

observations relative to that of the background. This can be achieved by increasing the 

error variance of the background or decreasing that of the observations. However, 

unrealistically large or small values have to be adopted in order to remove the directional 

discrepancy. Another possibility is to decrease the background error correlation length. 

This seems more plausible, since the standard 2DVAR value for the background error 

correlation length in the Tropics is 600 km. Such a large value performs well in fitting the 

large scale circulation patterns generally found in the Tropics, but fails for small 

rotational structures. This is shown in the lower right panel of figure 14, which was 

obtained without MSS and using a reduced background error correlation length of 300 

km, the value it attains in the Extratropics. This removes the error in wind direction. 

 

d. Resume 

The relative balance between observations and background in 2DVAR is 

controlled by the error model. In the present implementation it contains the parameters 

listed in table 3. The effect of changing the parameter value is also shown. It should be 



kept in mind that the parameters have a physical meaning, so their values can not be 

changed arbitrarily, and that they are not independent. This is shown in particular by the 

case studies of the ASCAT observation of a tropical cyclone, where good results were 

obtained by reducing the background error correlation length to a value consistent with 

the size of the observed structure. The case of the extratropical hurricane observed with 

SeaWinds on December 30, 2004, shows that the gross error probability is better 

switched off when MSS is applied. This particular case also raises some questions 

regarding the interpretation of the variational quality control (VQC) flag. In the present 

version of 2DVAR it is set when the observation cost in a WVC exceeds a threshold 

value of 12. This does not necessarily mean that the selected solution is incorrect – it may 

very well be that the control state is incorrect because of mislocated structures in the 

background or that the winds are very high locally (very small structures). 

The MSS offers 2DVAR more ambiguities to choose from. In case of broad 

minima in the distance between the observation and the GMF, as is the case for 

SeaWinds in the nadir part of the swath, 2DVAR is able to select a solution with 

reasonable a-priori probability that is spatially consistent with the neighbouring WVCs. 

Also, the influence of the background on the final selection increases, as is clearly shown 

in the case studies. 

 

6. Conclusions 

In this paper a new method for ambiguity removal named 2DVAR is presented. It 

is a generic method applicable to SeaWinds and ASCAT (or ERS) data. 2DVAR 

constructs an incremental analysis from the background and the observations, taking the 



a-priori probabilities of the latter into account. The minimalization problem is fully 

conditioned and solved in the spectral representation of stream function and wind 

potential. The selected ambiguous solution is the one closest to the analysis. The present 

implementation satisfies the single observation test, a nontrivial case with analytical 

solution, and shows no clear signs of under- or oversampling. 

2DVAR in combination with MSS proves effective in removing the noise in 

SeaWinds data at 25 km resolution. Especially in the nadir part of the SeaWinds swath 

MSS allows 2DVAR to choose from more solutions with comparable a-priori probability. 

As a result, MSS here increases the influence of neighbouring WVCs and the 

background. The latter is not always a desirable property, notably when the background 

is in error or when little noise is present. ASCAT data at 25 km resolution contains little 

noise due to the more favourable observation geometry and low rain sensitivity and is 

therefore being processed without MSS. The noise level can be estimated using a simple 

and robust method based on extrapolation of the autocorrelation to zero distance. For 

Seawinds at 25 km resolution the noise standard deviation exceeds 1.5 m/s in the zonal 

wind component u  and 1.0 m/s in the meridional component υ . 

The influence of the background can be controlled by the parameters of the error 

model in 2DVAR. It is decreased by increasing the background error variance, decreasing 

the observation error variance, increasing the background error correlation length or 

decreasing the gross error probabilities. These parameters are not independent and have a 

physical meaning, so they can not be varied arbitrarily. This is shown by the ASCAT 

observation of a tropical cyclone which is well reproduced when the background error 

correlation length is adapted to the size of the cyclone. Another example is the SeaWinds 



observation of an extratropical hurricane where winds exceeding 40 m/s are reproduced 

well when limiting the background influence by switching off the gross error 

probabilities off. Further experimentation with 2DVAR to optimise these settings is 

recommended. Moreover, multiple-loop iteration may be required to fit small-scale 

tropical cyclones in a rather large-scale background. 

The 2DVAR software is being developed and freely distributed in the context of 

the NWP Satellite Application Facility (SAF). 2DVAR provides a simplified framework 

to test improvements to a more complete 3D- or 4D-Var data assimilation of ambiguous 

scatterometer data. 2DVAR may further be used to process winds from the forthcoming 

Indian and Chinese scatterometers, for instance to aid in marine and coastal warnings. 

The current 2DVAR implementation is rather rigid with respect to the size and 

dimension of the grid on which the analysis increments are calculated. This can be 

improved by implementation of a mixed-radix Fourier transform. 
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FIG. 1. Results of the single observation test for ν=0 (left) and ν=1 (right). 

 

FIG. 2. Extreme values of the analysis increments as a function of the distance across the 

batch grid. Batch grid cells containing observations are located between the black vertical 

dashed lines. 

 

FIG. 3. Autocorrelation of the zonal wind component u from the ECMWF model and 

from SDP with and without MSS. 

 

FIG. 4. Standard deviation of the noise in the zonal and meridional wind components u 

and v obtained by SDP at 25 km and 50 km resolution. 

 

FIG. 5. Average value of the analysis increment components perpendicular and parallel to 

the satellite direction as a function of distance across the 2VAR batch grid. Upper panels: 

ECMWF background; lower panels: NCEP background; left panels: Tropics; right 

panels: Extratropics. 

 

FIG. 6. Original NOAA wind field. 

 

FIG. 7. NCEP model field. 

 

FIG. 8. SDP without MSS. 



 

FIG. 9. SDP with MSS. 

 

FIG. 10. SDP with MSS. Left: background error standard deviation of 1 m/s; right: 

background error standard deviation of 3 m/s. 

 

FIG. 11. SDP with MSS. Left: 250 km background error correlation length; right: 350 km 

background error correlation length. 

 

FIG 12. Hurricane wind field in the northern Pacific obtained with SDP with MSS. 

 

FIG. 13. Centre of the hurricane on December 30, 2004. The arrow colors indicate the 

wind speed range (yellow: 0-10 m/s, green: 10-20 m/s; cyan: 20-30 m/s; blue: 30-40 m/s) 

and the setting of the variational quality control flag (black). Left: with Gross Error 

Probabilities; Right: without. 

 

FIG. 14. Tropical cyclone east of India on August 31, 2007 observed with ASCAT at 25 

km resolution. Upper left: standard processing result without MSS; upper right: ECMWF 

background; lower left: result with MSS; lower right: result without MSS and with 300 

km background error correlation length. 
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TABLE 1. Default 2DVAR parameters for the background error correlation model  

Zone Latitude χψ RR =  χψ σσ =  2ν  

Northern Hemisphere > +20° 300 km 2 m2/s 0.2 

Tropics (-20°,+20°) 600 km 2 m2/s 0.6 

Southern Hemisphere <-20° 300 km 2 m2/s 0.2 

 

 

TABLE 2a. Standard deviation of the differences in the zonal wind component. Rows and 

columns labeled “Model” pertain to model wind, “No MSS” to scatterometer wind 

without MSS, and “MSS” to scatterometer winds with MSS. 

NCEP ECMWF 
uσ (m/s) 

Model No MSS MSS Model No MSS MSS 

Model -- 2.53 2.14 1.79 2.54 2.22 

No MSS 2.53 -- 1.21 1.93 0.59 1.27 NCEP 

MSS 2.14 1.21 -- 1.52 1.29 0.60 

Model 1.79 1.93 1.52 -- 1.94 1.48 

No MSS 2.54 0.59 1.29 1.94 -- 1.22 ECMWF 

MSS 2.22 1.27 0.60 1.48 1.22 -- 

 

 

 

 

 



TABLE 2b. As table 2a, but for the differences in the meridional wind component. 

NCEP ECMWF 
υσ  (m/s) 

Model No MSS MSS Model No MSS MSS 

Model -- 2.22 1.95 1.75 2.22 2.07 

Sel 2.22 -- 1.06 1.76 0.43 1.09 NCEP 

MSS 1.95 1.06 -- 1.50 1.08 0.55 

Model 1.75 1.76 1.50 -- 1.75 1.41 

No MSS 2.22 0.43 1.08 1.75 -- 1.06 ECMWF 

MSS 2.07 1.09 0.55 1.41 1.06 -- 

 

 

TABLE 3. 2DVAR error model parameters and their effect after decreasing its value. 

 
Parameter name Symbol Effect of decreasing the parameter value 

Observation error 

standard deviation 
lt εε ,  

Increases influence of observations 

relative to background 

Background error 

standard deviation 
ψχ εε ,  

Increases influence of background relative 

to observations 

Background error 

correlation length 
ψχ RR ,  

Increases influence of observations 

relative to background 

Gross Error Probabilities GEP  
Increases influence of observations 

relative to background 

 



 

FIG. 1. Enter the caption for your figure here. Repeat as necessary for each of your 

figures. 
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FIG. 2. Extreme values of the analysis increments as a function of the distance across the 

batch grid. Batch grid cells containing observations are located between the black vertical 

dashed lines. 

0 800 1600 2400 3200

x (km)

-25

-20

-15

-10

-5

0

5

10

15

20

25

E
xt

re
m

e 
an

al
ys

is
 in

cr
em

en
t

δt in Tropics
δt in NH & SH
δl in Tropics
δl in NH & SH



 

FIG. 3. Autocorrelation of the zonal wind component u from the ECMWF model and 

from SDP with and without MSS. 
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FIG. 4. Standard deviation of the noise in the zonal and meridional wind components u 

and v obtained by SDP at 25 km and 50 km resolution. 
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FIG. 5. Average value of the analysis increment components perpendicular and parallel to 

the satellite direction as a function of distance across the 2VAR batch grid. Upper panels: 

ECMWF background; lower panels: NCEP background; left panels: Tropics; right 

panels: Extratropics. 
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FIG. 6. Original NOAA wind field. 



 

 

 

 

 

 

 

 

 

 

 

FIG. 7. NCEP model field. 



 

 

 

 

 

 

 

 

 

 

 

FIG. 8. SDP without MSS. 



 

 

 

 

 

 

 

 

 

 

 

FIG. 9. SDP with MSS. 



 

 

FIG. 10. SDP with MSS. Left: background error standard deviation of 1 m/s; right: 

background error standard deviation of 3 m/s. 



 

 

FIG. 11. SDP with MSS. Left: 250 km background error correlation length; right: 350 km 

background error correlation length. 



 

 

 

 

 

 

 

 

 

 

FIG 12. Hurricane wind field in the northern Pacific obtained with SDP with MSS. 



 

 

FIG. 13. Centre of the hurricane on December 30, 2004. The arrow colors indicate the 

wind speed range (yellow: 0-10 m/s, green: 10-20 m/s; cyan: 20-30 m/s; blue: 30-40 m/s) 

and the setting of the variational quality control flag (black). Left: with Gross Error 

Probabilities; right: without. 



 

FIG. 14. Tropical cyclone east of India on August 31, 2007 observed with ASCAT at 25 

km resolution. Upper left: standard processing result without MSS; upper right: ECMWF 

background; lower left: result with MSS; lower right: result without MSS and with 300 

km background error correlation length. 

 


