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ABSTRACT

A global version of the equivalent barotropic vorticity equation is derived for the one-layer shallow-water

equations on a sphere. The equation has the same form as the corresponding beta plane version, but with one

important difference: the stretching (Cressman) term in the expression of the potential vorticity retains its

full dependence on f 2, where f is the Coriolis parameter. As a check of the resulting system, the dynamics of

linear Rossby waves are considered. It is shown that these waves are rather accurate approximations of the

westward-propagating waves of the second class of the original shallow-water equations. It is also concluded

that for Rossby waves with short meridional wavelengths the factor f 2 in the stretching term can be replaced

by the constant value f0
2, where f0 is the Coriolis parameter at 6458 latitude.

1. Introduction

The quasigeostrophic system of equations, systemat-

ically derived by Charney (1948), is the main conceptual

framework of dynamic meteorology. The basic physical

principle of the theory is stated in section 2 of Charney’s

article: ‘‘the motion of large-scale atmospheric distur-

bances is governed by the laws of conservation of po-

tential temperature and absolute potential vorticity, and

by the conditions that the horizontal velocity be quasi-

geostrophic and the pressure quasi-hydrostatic.’’ Phillips

(1990) remarks that these words must be considered

among the most effective meteorological statements of

the 20th century. Indeed, Charney’s theory has with-

stood the test of time and expositions of his theory are

an integral part of modern textbooks on geophysical

fluid dynamics and dynamic meteorology (see Gill 1982;

Pedlosky 1987; Salmon 1998; Holton 2004; Vallis 2006).

Quasigeostrophic theory is usually developed in the

context of the midlatitude beta plane approximation

and the geostrophic relationship is defined as a near-

balance between the Coriolis force and the pressure

gradient force. A common approach is to assume that

the Coriolis parameter f can be replaced by a constant

value f0 in the geostrophic relationship, an approach

that Blackburn (1985) refers to as the ‘‘theoretician’s

geostrophy.’’ If we wish to generalize quasigeostrophic

theory to a spherical domain then the theoretician’s

geostrophy is not a valid option because there is no

value of f0 other than zero that would be representative

for the whole sphere. Keeping the full variation of f in

the geostrophic relationship, referred to by Blackburn

(1985) as the ‘‘synoptician’s geostrophy,’’ is no option

either because, by evaluating the divergence, it can be

easily shown that it would constrain the geostrophic

meridional velocity to be zero at the equator.1 The

equator would thus be turned into an impenetrable wall

for geostrophic flow, which, except for special flows such

as equatorial Kelvin waves, would be quite unrealistic.

An alternative that avoids these problems is given by

Daley (1983), who proposes a nondivergent horizontal

velocity field in combination with the linear balance

equation as the natural extension of the geostrophic re-

lationship to a global domain. The linear balance equa-

tion is an integral part of the spherical geostrophic model

developed by Lorenz (1960) and can be simplified further

to what Daley (1983) calls the ‘‘simplest form of the

geostrophic relationship’’—a nondivergent horizontal

velocity field in combination with a geopotential of which

the deviation from a uniform reference field (corre-

sponding to the state of rest) is given by f times the
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streamfunction of the velocity field. The author (Verkley

2001) has used this balance as the mass-velocity con-

straint in a Hamiltonian balanced approximation of a

one-layer isentropic model of the atmosphere. It served

its purpose very well although the resulting balanced

model is rather difficult to use in theoretical studies.

In the present article we will combine Daley’s (1983)

simplest form of the geostrophic relationship with a

linearized expression of the potential vorticity to for-

mulate a much simpler balanced model. We will do this

in the context of a global one-layer shallow-water

model of the atmosphere, introduced in section 2. In

section 3 we show how our simplifying procedure leads

to an equation that is identical in form to the equiva-

lent barotropic vorticity equation (Cressman 1958)

except for a full f 2 dependence of the Cressman

(stretching) term. To investigate the consequences of

this f 2 dependence, the frequencies and spatial struc-

ture of linear Rossby waves are discussed in section 4.

It is seen that these waves are a rather accurate ap-

proximation of the westward-propagating waves of the

second class (comprising the mixed planetary–gravity

wave and the planetary waves) as calculated by Lon-

guet-Higgins (1968) for the full underlying shallow-

water model. In section 4 it is also shown that linear

Rossby waves in the limit of small meridional wave-

lengths behave as if f 2 were a constant f 0
2, where f0 is the

Coriolis parameter at 6458 latitude. The results are

summarized in section 5.

2. One-layer shallow-water equations

The model system that forms the basis of this article

consists of a single hydrostatic layer of fluid with uni-

form density r, moving adiabatically and frictionless

over the surface of a rotating spherical earth with mean

radius a and angular velocity of rotation V. The lower

boundary of the layer has a fixed height zl 5 hB, where

hB is the height of the orography. The upper boundary

has a variable height zu 5 HA 1 h, where HA is a uni-

form average height and h is a variable surface eleva-

tion. Horizontal positions are denoted by the longitude

l and the latitude f. The shallow-water model is gen-

erally considered to be a useful benchmark model of

atmospheric and oceanic fluid flow although, of course,

for the atmosphere the assumption of a uniform density

is rather unrealistic. However, by replacing a uniform

density by a uniform potential temperature one obtains

a somewhat more realistic model with essentially similar

dynamics (see Verkley 2001).

In the shallow-water model the horizontal velocity v

is independent of height and satisfies the momentum

equation

Dv

Dt
1 f k 3 v 1 =u 5 0, (1)

where D/Dt is the horizontal material derivative and

f 5 2V sin f is the Coriolis parameter. The geopotential

u is given by

u 5 gh, (2)

with g being the gravity acceleration, and is the devia-

tion of the geopotential F 5 gzu 5 g(HA 1 h) from the

state of rest gHA. The dynamics of the geopotential u is

given by the conservation of mass, which, due to the

columnar motion of the fluid, reduces to the following

equation for the total fluid depth H:

DH

Dt
1 HD5 0, (3)

where D 5 = � v is the divergence of the horizontal

velocity field and H 5 zu 2 zl; that is,

H 5 HA 1 h� hB. (4)

Equations (1), (2), (3), and (4) are the shallow-water

equations as derived and discussed extensively by

Pedlosky (1987). It is assumed that the average height of

the fluid is much smaller than the radius of the earth so

that this radius may be substituted for the distance from

the earth’s center in the metric terms of the differential

operators. These operators are purely horizontal and

can be written in terms of the geographic coordinates

l and f and the unit vectors i, j, and k, where k points

vertically upward.

It can be shown (see the appendix) that the shallow-

water system conserves the massM,

M5 r

ð
dSh, (5)

and the energy E,

E 5 r

ð
dS

1

2
Hv2 1

1

2
gh2

� �
. (6)

Here, dS 5 a2 cos fdldf denotes a spherical area ele-

ment. We note that the mass M is the difference be-

tween the actual mass and the mass in the state of rest.

Conservation ofM implies that if the integrated surface

elevation h is zero at some initial time, it will remain

zero thereafter. The potential energy in the expression

of E is the difference between the actual potential en-

ergy and the potential energy at the state of rest (i.e., the

available potential energy). As is well known (Pedlosky
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1987), the shallow-water system also has a material in-

variant: the potential vorticity. This invariant is the basis

of the balanced approximation, to be discussed in the

next section.

3. The balanced approximation

Following the approach of Charney (1948), the bal-

anced approximation to be derived is based on the

material conservation of potential vorticity and the

assumption that the atmosphere stays close to a form

of balance. We first consider the material conservation

of potential vorticity and then discuss the balance

condition that we will adopt: a simplification of linear

balance that Daley (1983) calls the simplest form of the

geostrophic relationship.

a. Potential vorticity

We first note that we have for the material derivative

of the horizontal velocity v

Dv

Dt
5

›v

›t
1 z(k 3 v) 1 =

v � v
2

� �
, (7)

where z 5 k � = 3 v is the vorticity of the horizontal

velocity field. The momentum equation [(1)] can then

be written in the form

›v

›t
1 ( f 1 z)(k 3 v) 1 = u 1

v � v
2

� �
5 0. (8)

If the vertical curl and horizontal divergence k � = 3 and

=� are applied to this form of the momentum equation,

we obtain the following equations for the vorticity and

the divergence:

›z

›t
1 = � [( f 1 z)v] 5 0, and (9a)

›D
›t

1= � ( f 1z)(k 3 v)1= u1
v � v

2

� �h i
5 0. (9b)

The equation for the vorticity can be written in the same

form as the mass conservation equation [(3)]:

Dj

Dt
1 jD5 0, (10)

where j 5 f 1 z is the absolute vorticity. Eliminating the

divergence D from Eqs. (3) and (10), we obtain

DP

Dt
5 0, (11)

where

P 5
j

H
. (12)

This is the material conservation of potential vorticity.

b. Balance condition

In deriving a closed dynamical system from the ma-

terial conservation of potential vorticity, we need a form

of balance that relates the velocity field to the geo-

potential. To avoid the problems that we mentioned in

the introduction, we use Daley’s (1983) simplest form of

the geostrophic relationship. The basic assumption un-

derlying this form of balance is that the divergence of

the horizontal velocity field is so small that it can be

taken to be zero to a first approximation. By dividing

the mass conservation equation [(3)] by the total depth

H we see that, for the shallow-water system, a small

divergence would be a direct consequence of the as-

sumption (which we will adopt) that the free surface

elevation h and the orography hB are small compared to

HA. The horizontal velocity field v can then be ex-

pressed in terms of a streamfunction c:

v 5 k 3 =c. (13)

Furthermore, the condition that the divergence remains

small reduces the divergence equation [(9b)] to the bal-

ance equation:

= � �( f 1 z)=c 1 = u 1
=c � =c

2

� �� �
5 0. (14)

This equation will be simplified by ignoring terms that

are quadratic in the dynamical variables (i.e., by line-

arization), giving

= � (�f =c 1 =u) 5 0, (15)

which is known as the linear balance equation. The

linear balance equation was used by Lorenz (1960) in

his derivation of a balanced system of equations in

spherical geometry. According to Daley (1983), it is the

natural generalization of geostrophy from a beta plane

to spherical geometry. We will make a further approx-

imation, to which end the linear balance equation is

rewritten as

=2(�f c 1 u) 1 = � (c=f ) 5 0. (16)

By ignoring the second term on the left-hand side of this

equation, we get

=2(�f c 1 u) 5 0, (17)

which is equivalent to

�f c 1 u 5 0 5 u 5 f c, (18)

putting the arbitrary constant of integration equal to

zero. This is Daley’s (1983) simplest form of the geo-

strophic relationship.
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We recall that the basic assumption of Daley’s (1983)

simplest form of the geostrophic relationship is a small

horizontal divergence. For large-scale atmospheric flow

a small horizontal divergence is a valid approximation,

even at the equator, as was argued by Charney (1963) on

the basis of scale considerations and confirmed recently

by Yano et al. (2009) on the basis of observational data.

Furthermore, the condition of a small horizontal di-

vergence can be applied globally, in contrast to either

the theoretician’s or the synoptician’s geostrophy. It

gives rise to the linear balance equation if the quadratic

terms in the balance equation are ignored. The simpli-

fication of the linear balance equation that leads to

Daley’s (1983) simplest form of the geostrophic rela-

tionship [i.e., skipping the second term on the left-hand

side of (16)] assumes that the meridional spatial scales

are small compared to the scale of the Coriolis param-

eter. The approximation is expected to be the least

accurate for the largest meridional scales involved.

Both the linear balance equation and its simplification

pose difficulties at the equator when c is to be calcu-

lated from u. Indeed, Daley (1983) finds that the linear

balance equation produces rather inaccurate results if

applied within 208 from the equator. Calculating u
from c, on the other hand, poses no problems at the

equator and it is only in this sense that the balance

condition is used.

c. Balanced potential vorticity

We will now discuss how the potential vorticity

equation [(11) and (12)] can be transformed approxi-

mately into a single equation in terms of the stream-

function c. We first write for the thickness field H

H 5 HA 1 h� hB 5 HA 1 1
h

HA
� hB

HA

� �
. (19)

Assuming that the fractions h/HA and hB/HA are small

compared to one, as we already did in motivating a

small horizontal divergence, we may linearize the ex-

pression of 1/H:

1

H
’

1

HA
1� h

HA
1

hB

HA

� �
. (20)

This implies that we have

P ’
1

HA
f 1 z � f

h

HA
� z

h

HA
1 f

hB

HA
1 z

hB

HA

� �
. (21)

Ignoring, as a further linearization, the terms zh/HA and

zhB/HA, we get

HAP ’ q [ f 1 z � f
h

HA
1 f

hB

HA
. (22)

The field q, from now on, will be referred to as the

potential vorticity. If we implement our balance condi-

tion we may use (13) to write

z 5 =2c. (23)

Furthermore, recalling definition (2) of the geopotential

and combining it with (18), we have

gh 5 f c. (24)

Thus, expressing z and h in terms of c, we find for the

potential vorticity q

q 5 f 1 =2c� f 2

gHA

c 1 f
hB

HA
, (25)

in which we recognize the equivalent barotropic po-

tential vorticity. Note that the Cressman term is pro-

portional to f2 and that the contribution of the orogra-

phy involves a factor f.

The evolution in time of q is given by the material

conservation of q as implied by (11):

Dq

Dt
5

›q

›t
1 v � =q 5

›q

›t
1 J(c, q) 5 0, (26)

where the advection is by the balanced velocity [(13)]

and which can be written using the Jacobian

J(c, q) 5 k 3 =c �=q 5 k �=c 3 =q. (27)

The streamfunction c can be obtained from the poten-

tial vorticity q by solving

=2 � f 2

gHA

 !
c 5 q� f � f

hB

HA
. (28)

This is a second-order differential equation. The equa-

tion has a unique solution because the operator between

brackets has a zero null space, as shown in the appendix.

The result is the familiar equivalent barotropic vorticity

equation in which the equivalent barotropic potential

vorticity q, given by (25), is advected by the non-

divergent velocity field [(13)] of which the stream-

function can be obtained from q by solving (28).

We conclude this section by considering the conser-

vation of the massM and the energy E. In the original

shallow-water system the expressions in terms of h and

v are given by (5) and (6), respectively. There are

equivalents of these quantities in the balanced system

that we have derived; these equivalents are denoted by
~M and ~E, respectively. For the mass ~M we have

~M5
rHA

V

ð
dS

f 2

gHA

c. (29)
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This expression is obtained by substituting (24) into (5),

multiplying the integrand with f/HA, and putting the

fraction HA/V in front of the integral to restore di-

mensionality. The equivalent ~E of the energy in the

balanced system is given by

~E 5 rHA

ð
dS

1

2
(=c)2

1
1

2

f 2

gHA

c2

" #
. (30)

This expression is obtained by replacing H by HA in the

original expression for E and expressing v and h in terms

of c, in the same manner as above. In the appendix it is

shown that for the balanced system governed by (25)

and (26), the mass ~M and the energy ~E are conserved

quantities.

4. Linear Rossby waves

In this section we will test the balanced system by

studying the dynamics of linear Rossby waves. This is, of

course, a rather limited context, but in this limited

context the dynamics of the balanced system can be

compared very stringently with the dynamics of the

original shallow-water system. The properties of linear

waves of the shallow-water system have been docu-

mented in much detail by Longuet-Higgins (1968) and

were summarized concisely by Andrews et al. (1987).

a. Nondimensional equations

In the following discussion it is convenient to measure

length in units of a and time in units of V21. Vorticity and

potential vorticity are then measured in units of V and

velocity in units of aV. If the height variations h and hB

are expressed in terms of HA, the shallow-water equa-

tions are characterized by a single nondimensional pa-

rameter g, called Lamb’s parameter, which is given by

g 5
4V2a2

gHA

. (31)

In the shallow-water Eqs. (1) and (3) the expressions

of the geopotential [(2)] and thickness [(4)] become

u 5 (4/g)h and H 5 1 1 h 2 hB. The balance rela-

tionship (24) assumes the form

h 5
m

2
g c, (32)

where m 5 sinf and the streamfunction c is expressed in

units of a2V. The nondimensional expression of the

global balanced potential vorticity q reads

q 5 2m 1 =2c� gm2c 1 2mhB. (33)

In the balanced system, this field is advected by a non-

divergent velocity field of which the zonal and meridional

components are given in terms of the streamfunction

c by

u 5 �(1� m2)1/2 ›c

›m
, y 5 (1� m2)�1/2 ›c

›l
. (34)

The nondimensional equation for the material conser-

vation of potential vorticity is identical to (26), with the

following nondimensional expression for the Jacobian:

J(c, q) 5
›c

›m

›q

›l
� ›c

›l

›q

›m
. (35)

As a result of our choice of units, in the differential

operators such as the Jacobian, Laplacian, and the gra-

dient operator, the radius of the earth is to be replaced

by 1.

b. Linearized balanced system

We will study the dynamics of linear Rossby waves

in the absence of orography. In this case the potential

vorticity is

FIG. 1. The value of s (frequency divided by two) as a function

of g–1/2 for westward-propagating waves of the second class with

m 5 1 and n 5 1, 2, . . . , 5, where the upper curve corresponds to

n 5 1 and the lower curve to n 5 5. These results are identical to

those given by Fig. 2b of Longuet-Higgins (1968).
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q 5 2m 1 =2c� gm2c, (36)

and the equation governing linear waves reads

›

›t
(=2c� gm2c) 1 2

›c

›l
5 0. (37)

Searching for solutions in the form of the real part of a

streamfunction c of which the longitude and time de-

pendence is given by exp[i(ml 2 2st)], where m is the

zonal wavenumber and 2s is the frequency, this stream-

function should satisfy

=2c� gm2c 5 dmc, (38)

with

dm 5
m

s
; (39)

that is, it should be an eigenfunction of the operator

=2 2 gm2 with eigenvalue dm 5 m/s. This relation fixes

the frequency 2s of a wave in terms of the eigenvalue dm.

It follows from (38) that the meridional part of the

streamfunction, denoted by ĉm(m), has to satisfy

d

dm
(1� m2)

dĉm

dm

" #
� m2

1� m2
� gm2

)
ĉm 5 dmĉm.

(
(40)

This equation is known as the differential equation for

the angular prolate spheroidal wave functions [see

Abramowitz and Stegun 1965, Eq. (21.6.2)]. The ei-

genvalues and eigenvectors depend on g as well as m

and will be denoted by dmn and Smn, respectively, where

n is an integer larger than or equal to |m|. We note that

for g 5 0 the differential equation [(40)] is identical to

the differential equation for associated Legendre func-

tions Pmn. For these functions the eigenvalues dmn are

independent of m and given by 2n(n 1 1).

The eigenvalue equation [(40)] can be solved numer-

ically by writing the field ĉm as a linear combination

of associated Legendre functions Pmn, as explained in

some detail in the appendix. By using recurrency rela-

tions one can express m2Pmn in terms of the associated

Legendre functions Pmn–2, Pmn, and Pmn12 and thereby

transform the equation, for each m separately, into a

tridiagonal matrix equation. By normalizing the asso-

ciated Legendre functions according to Machenhauer

(1979), the matrices are symmetric. Denoting by N the

maximum value of n, we have for each m a symmetric

FIG. 2. (a)–(c) Meridional profiles of (a) ẑ, (b) û, and (c) ŷ for a westward-traveling wave of the second class with

m 5 1 and n 5 1. (d)–(f) As in (a)–(c) but with m 5 1 and n 5 2. Function values are on the horizontal axis and

latitudes on the vertical axis. The different profiles in each plot refer to different values of g, namely 1 (solid curve),

10 (long-dashed curve), 100 (short-dashed curve), and 1000 (dotted curve). Note that ẑ, û, and ŷ can be identified with

Z, U, and V, which, for these parameter values, are displayed in Fig. 9 of Longuet-Higgins (1968, p. 538).
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system with dimension N 2 m 1 1. The eigenvalue

problem is solved with N 5 105, using a numerical

routine from Press et al. (1986), based on the Jacobi

method for symmetric eigenvalue problems.

Following Longuet-Higgins (1968) we normalize the

eigenfunctions such that

ð
dS(u2 1 y2 1 z2) 5 p, (41)

where z is defined by the following expression:

z 5 2g�1/2h. (42)

Expressing u and y in terms of the streamfunction c,

using (32) and (42) as well as Gauss’ theorem and the

fact that c is an eigenfunction of (38) with eigenvalue d,

we have

ð
dS(u2 1 y2 1 z2) 5

ð
dS� c(z � gm2c) 5 �d

ð
dSc2,

(43)

so that c is normalized as

ð
dSc2 5 �p

d
. (44)

Because the streamfunction—and all other variables—

were taken to be the real part of a complex exponential

in l and t, we may write (choosing the phase of the wave

such that at t 5 0 the zero meridian is the axis of sym-

metry for c)

c(l, m, t) 5 ĉ(m) cos(ml� 2st), (45)

so that we have for u, y, and z

u(l, m, t) 5 û(m) cos(ml� 2st), (46a)

y(l, m, t) 5 ŷ(m) sin(ml� 2st), and (46b)

z(l, m, t) 5 ẑ(m) cos (ml� 2st), (46c)

where the meridional structure functions û, ŷ, and ẑ are

given by

û(m) 5 �(1� m2)1/2 dĉ(m)

dm
, (47a)

ŷ(m) 5 �(1� m2)�1/2mĉ(m), and (47b)

ẑ(m) 5 g1/2mĉ(m). (47c)

c. Balanced Rossby waves

Before presenting the results of our analysis, we first

give the frequency divided by two (s) as a function of

the inverse square root of Lamb’s parameter (g21/2) as

well as a few meridional profiles for the westward-

propagating waves of the second class, as calculated

for the full shallow-water system by Longuet-Higgins

(1968). The frequencies s are shown in Fig. 1, for m 5 1

and n 5 1, 2, . . . , 5. The wave with n 5 1 is the mixed

planetary–gravity wave; the waves with n . 1 are the

planetary waves. For g 5 1, 10, 100, and 1000 a few

profiles ẑ, û, and ŷ for m 5 1 as functions of f, where

m 5 sin f, are shown in Figs. 2a–c for n 5 1 (mixed

planetary-gravity wave) and in Figs. 2d–f for n 5 2

(planetary wave). The results, obtained by a method

that is similar to the method outlined above, can be

checked to be identical to those of Longuet-Higgins

(1968) by comparing our Fig. 1 with Fig. 2b from

Longuet-Higgins (1968) or with Fig. 4.2b of Andrews

et al. (1987). The profiles in Fig. 2 can be verified to be

identical to those given by Longuet-Higgins (1968, his

Fig. 9, p. 538) because the fields Z, U, and V that are

shown in the latter figure can be identified with ẑ, û, and

FIG. 3. As in Fig. 1, but for Rossby waves. The wave with n 5 1 is to

be identified with the mixed planetary–gravity wave.
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ŷ, respectively. It should be kept in mind, of course, that

in the calculations of Longuet-Higgins (1968) the me-

ridional structure functions [(47a) and (47b)] also in-

volve a velocity potential x̂ and that ẑ is a separate field

not related explicitly to the streamfunction ĉ as in (47c).

For the balanced system we have calculated the ei-

genvalues dmn and thereby the frequencies s for several

values of m and n. As an example, we show in Fig. 3

the result for m 5 1 and n 5 1, 2, . . . , 5 in the form of

graphs that show s as functions of g21/2. When the

graphs are compared with those of Fig. 1, we see that

the equivalent barotropic model with variable f2 re-

produces quite well the frequencies of all waves, al-

though the n 5 1 wave, which corresponds to the mixed

planetary–gravity wave, is less well reproduced. Also,

we note that the meridional structures of the Rossby

waves are rather accurate approximations of the struc-

tures of the westward-propagating waves of the second

class. In particular, the concentration of amplitude near

the equator for large values of Lamb’s parameter is

rather well reproduced. To illustrate this, we show in

Fig. 4, for g 5 1, 10, 100, and 1000, the meridional

structure of two eigenfunctions with zonal wavenumber

m 5 1, namely for n 5 1 (Figs. 4a–c, corresponding

to the mixed planetary–gravity wave) and for n 5 2

(Figs. 4d–f, corresponding to a planetary wave). Figure 4

can be compared directly with Fig. 2 [or with Fig. 9 of

Longuet-Higgins (1968, p. 538)]. We see that even for

large values of g the meridional structures are quite

well reproduced. For the n 5 1 case, however, the am-

plitude of û is too large and the amplitude of ŷ is too

small near the equator for large values of g. For the n 5

2 case both structure and amplitude are generally re-

markably good, except for the fields ẑ close to the

equator. This is also true, and increasingly so, for larger

values of n. The same remarks can be made for the

meridional structure functions for larger values of m,

with the n 5 |m| case (to be identified with the mixed

planetary–gravity wave) being the least well repre-

sented (not shown). The fact that the planetary–gravity

waves (which have the largest meridional scales for a

given m) are least well reproduced by the balanced

system is probably a consequence, at least partly, of the

approximation that leads from the linear balance equa-

tion [(16)] to Daley’s (1983) simplest form of the geo-

strophic relationship (18).

Concerning the eigenvalues dmn for g 6¼ 0, the nu-

merical calculations revealed an interesting result, a

result that can also be inferred from Eq. (21.7.5) of

Abramowitz and Stegun (1965). From this equation it

can be deduced that the eigenvalue dmn approaches

the value 2n(n 1 1) 2 g/2 if, for a given m, the value

n goes to infinity so that m/n approaches zero. This

means that for Rossby waves with n large compared to

FIG. 4. As in Fig. 2, but for Rossby waves. The wave with n 5 1 is to be identified with the mixed planetary–gravity

wave.

1742 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 66



m (which—as for associated Legendre functions—implies

many wavelengths between pole and equator) the ei-

genvalues of the operator =2 2 gm2 are the same as the

eigenvalues of the operator =2 2 g/2. The latter oper-

ator corresponds to the case in which the factor m2 in

(38) is approximated by 1/2 or, equivalently, the factor

f2 in the Cressman term of (25) is approximated by f0
2 5

4V2 sin2 f0 with f0 5 6458. The corresponding linear

waves are the familiar Rossby–Haurwitz waves of

which the meridional structure Smn is given by the as-

sociated Legendre function Pmn. When normalized in

the same way as before, but replacing m2 by 1/2 in (43),

we obtain for this approximated case

û(m) 5 � 1

2n(n 1 1) 1 g

� �1/2

(1� m2)1/2 dPmn(m)

dm
, (48a)

ŷ(m) 5 � 1

2n(n 1 1) 1 g

� �1/2

(1� m2)�1/2mPmn(m), and

(48b)

ẑ(m) 5
g

2n(n 1 1) 1 g

� �1/2

mPmn(m). (48c)

Here we recall that the associated Legendre func-

tions Pmn are assumed to be normalized according to

Machenhauer (1979) (see the appendix). In this nor-

malization we have that P11(m) 5 (3/2)1/2(1 2 m2)1/2 and

P12(m) 5 (15/2)1/2m(1 2 m2)1/2. The above expressions

for the meridional structures show that when g in-

creases, there is only a change of amplitude, not of

structure. This is different from the results with a

varying m2. Also, the frequencies deviate markedly from

the previous case when g increases. Only when g is

small (either g or HA or both large) is the latter ap-

proximation accurate, even for small values of m/n.

These features are illustrated by Figs. 5 and 6, respec-

tively, which show the frequencies and meridional

profiles for this simplified balanced model.

Figures 7 and 8 display the frequencies and profiles

for the three models together and are meant to highlight

the differences. Solid curves refer to the full shallow-

water model, dashed curves to the balanced model with

variable m2, and dotted curves to the balanced model

with m2 replaced by 1/2. The upper curves in both figures

refer to a mixed planetary–gravity wave with m 5 1

and n 5 1; the lower curves to a planetary wave with

m 5 1 and n 5 2. In Fig. 8 we have chosen g 5 100.

We note that the differential equation for the angular

prolate spheroidal wave functions, Eq. (40), also emerged

from an analysis by Wunderer (2001) of a simplified

form of the Hamiltonian balanced system discussed by

the author (Verkley 2001). Wunderer (2001) uses the

same simplified form of balance as we do2 but does not

linearize the expression of the potential vorticity. For

the analysis of linear waves this does not make a dif-

ference, so his Eq. (5.100) is identical to our Eq. (40)

if his 1/«2 is identified with our g and his 2v with our s.

In his Table 5.2 Wunderer (2001) gives, for g 5 1/«2 5 10,

numerically calculated frequencies v 5 2s for m 5

1, 2, . . . , 5 and n 2 m 5 0, 1, . . . , 5 as well as the per-

centage deviations from the full shallow-water results as

reported by Longuet-Higgins (1968). These results fully

agree with those presented here.

During the review stage of this article the author

became aware of a manuscript by Schubert et al. (2009)

in which a balanced system is proposed that is identical

to (25) and (26)—apart from the orography term,

which these authors do not include. The manuscript

FIG. 5. As in Figs. 1 and 3, but with s calculated on the as-

sumption that m2 in the eigenvalue equation [(40)] can be replaced

by 1/2 so that the eigenvalues dmn can be approximated by 2n(n 1

1) 2 g/2.

2 There is a slight difference in the sense that Wunderer (2001)

subtracts the spatial average of fc from the right-hand side of the

balance relationship (24) so as to guarantee that the spatial aver-

age of the height deviation is zero.
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by Schubert et al. (2009) contains a short introduction

and motivation of this system—sketched earlier in sec-

tion 7 of Schubert and Masarik (2006)—and focuses

on the eigenvalues and eigenfunctions of (38), the cor-

responding Rossby wave frequencies as implied by (39),

and the implications for large-scale atmospheric tur-

bulence. Although the present work and the work by

Schubert et al. (2009) deal with the same balanced sys-

tem, they emphasize different aspects of its dynamics.

5. Conclusions

We have seen how a globally valid form of the

equivalent barotropic vorticity equation can be derived

from a one-layer shallow-water model of the atmos-

phere. Our derivation follows the standard procedure in

quasigeostrophic theory except for one crucial differ-

ence. We do not make use of either Blackburn’s (1985)

theoretician’s geostrophy or his synoptician’s geos-

trophy; instead, we use Daley’s (1983) simplest form of

the geostrophic relationship in which the balanced

velocity field is nondivergent, v 5 k 3 =c, and where

the deviation u of the geopotential from a horizontally

uniform reference field—corresponding to the state of

rest—is given by u 5 fc, where f is the Coriolis pa-

rameter and c is the streamfunction. The basic as-

sumption of a small horizontal divergence is reasonable

for large-scale atmospheric flow and can be applied

globally.

The result of this study is an expression of the

equivalent barotropic potential vorticity, Eq. (25), that

is identical to the expression in its usual form except for

the full variation of f2 in the Cressman (stretching)

term. The streamfunction of the balanced velocity can

be obtained by inverting a linear differential equation,

Eq. (28), which is shown to have unique solutions. The

system has a mass as well as an energy invariant. The

full variation of f 2 in the equivalent barotropic potential

vorticity can be handled without problems. In fact, it

gives a reasonably accurate approximation of both the

frequencies and meridional structure of the westward-

moving waves of the second class of the original shallow-

water model, with the planetary waves being the best

reproduced. It has been noticed that for waves with

short meridional wavelengths the factor f 2 in Eq. (25)

can be replaced by a constant value f 0
2 if f0 is evaluated

at 6458 latitude. This result legitimizes, to a certain

degree, the use of a constant value f 0
2 in heuristic ex-

tensions of the beta-plane quasigeostrophic potential

vorticity equation to a sphere (Marshall and Molteni

1993; Opsteegh et al. 1998) and provides, in addition, a

motivated value of f 0
2.

The derivation of Daley’s (1983) simplest form of the

geostrophic relationship from the basic assumption of a

FIG. 6. As in Fig. 4, but for the case that m2 in the eigenvalue equation [(40)] is replaced by 1/2. Here the profiles can

be expressed directly in terms of associated Legendre functions and do not change shape when g varies.
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small horizontal divergence requires two additional ap-

proximations. The first is the linearization of the balance

equation, leading to the linear balance equation [(15)].

The second is the simplification of the linear balance

equation, leading to Daley’s (1983) simplest form of the

geostrophic relationship [(18)]. To obtain our final result

[(25)], we also need to linearize the potential vorticity.

The linearization of the balance equation and the po-

tential vorticity do not reveal their limitations in the

context of linear wave solutions. This is different for the

simplification of the linear balance equation. This sim-

plification is likely to be responsible, at least in part, for

the fact that Rossby waves with the largest meridional

scales (for which n 5 |m|, corresponding to the mixed

planetary–gravity waves) are the least well represented

in the balanced system. For the other waves, the con-

sequences of the latter approximation seem to be much

less severe, as Fig. 7 clearly indicates.

We conclude that Daley’s (1983) simplest form of

the geostrophic relationship is a viable basis of a global

balanced approximation of the shallow-water equa-

tions on a sphere. It has played this role very satisfac-

torily in previous work by the author (Verkley 2001),

but applications date from much earlier times. Kuo

(1959) and Charney and Stern (1962) used this balance

to derive a pressure and height coordinate version,

respectively, of the continuously stratified equivalent

of (25) and (26). In this context we also mention

Dickinson (1968), who used it to simplify the linearized

primitive equations in height coordinates. For a single

vertical mode, the resulting equation is his Eq. (31),

which is identical to our Eq. (40). Dickinson’s (1968)

analysis of this approximate equation is in accord with

our results as can be seen from his Fig. 3. The simpli-

fied linear balance equation has also been used by

Hollingsworth et al. (1976) in their study of momentum

transports and by Simmons and Hoskins (1976) in their

study of baroclinic instability, where for the linearized

primitive equations in sigma coordinates it results in

their Eq. (3.2). The same balance condition also forms

an essential ingredient of the recent work by Schubert

et al. (2009).

With hindsight, expression (25) of the equivalent

barotropic potential vorticity could have been derived

very quickly from the corresponding beta-plane ex-

pression by simply replacing in the latter expression the

constant Coriolis parameter f0 by the variable Coriolis

parameter f. The mass and energy invariants (29) and

(30) would follow immediately from the advection of

the equivalent barotropic potential vorticity by a non-

divergent horizontal velocity field, of which the stream-

function is c. The relationship between the stream-

function c and the surface elevation h could have been

obtained by equating the potential energy contribution

of (30) to the corresponding contribution of (6), re-

sulting in Daley’s (1983) simplest form of the geo-

strophic relationship (24). This derivation would be

concise but would not give much insight into the phys-

ical foundation of the resulting system. That foundation

should then come from the midlatitude beta-plane

derivation of the quasigeostrophic potential vorticity

equation and that derivation is based on the theoreti-

cian’s geostrophy, a form of geostrophy that cannot be

generalized to a sphere.
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curves from the balanced model with variable m2, and the dotted

curves from the balanced model in which m2 is replaced by 1/2.

JUNE 2009 V E R K L E Y 1745



I would furthermore like to thank Drs. D. Crommelin,

T. Gerkema, R. J. Haarsma, J. D. Opsteegh, G. van der

Schrier, and F. M. Selten for their comments on earlier

versions of the manuscript. The reviewers are ac-

knowledged for scrutinizing the different steps of the

derivation and pointing out the short-cut mentioned in

the last paragraph of the conclusions section.

APPENDIX

Mathematical Details

a. Conservation laws of the shallow-water system

Adding the advective part of the material derivative to

the term involving the horizontal divergence, the equa-

tion for the conservation of mass (3) can be written as

›h

›t
1 = � (Hv) 5 0. (A1)

By integrating this equation over the whole sphere, it

follows immediately that the global mass quantity (5) is

constant in time. In a similar way it is possible to derive

an energy equation. We have that

›

›t

1

2
Hv2 1

1

2
gh2

� �
5

›h

›t
u 1

v � v
2

� �
1 Hv � ›v

›t
, (A2)

which, after substituting (A1) and (8) and noting that

the Coriolis force is perpendicular to the velocity field,

leads to

›

›t

1

2
Hv2 1

1

2
gh2

� �
1 = � Hv u 1

v � v
2

� �h i
5 0. (A3)

This results immediately in the conservation of energy

(6).

b. Potential vorticity inversion

We will show here that the streamfunction c is

uniquely determined by the potential vorticity q. To

this end we show that the null space of the correspond-

ing operator in (28) is zero. Let us thus assume that

c satisfies

=2 � f 2

gHA

 !
c 5 0. (A4)

Multiplying this equation by c and integrating over the

whole sphere S, it follows that

FIG. 8. (a)–(c) Meridional profiles of (a) ẑ, (b) û, and (c) ŷ for a Rossby wave (mixed planetary–gravity wave)

with m 5 1 and n 5 1. (d)–(f) As in (a)–(c), but for a Rossby wave (planetary wave) with m 5 1 and n 5 2. All profiles

refer to the case g 5 100. The solid, dashed, and dotted curves refer to the different models, as in Fig. 7.
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ð
S

dS c=2c� f 2

gHA

c2

 !
5 0. (A5)

Using Gauss’ theorem, this can be rewritten as

ð
S

dS =c � =c 1
f 2

gHA

c2

 !
5 0, (A6)

from which it follows that c 5 0, thereby proving the

assertion.

c. Conservation laws of the balanced system

The balanced equivalents of the massM and energy E
are denoted by ~M and ~E and are given by (29) and (30).

Because the global integral of the Laplacian is zero, we

may write

›

›t
~M5

rHA

V

ð
dS

›

›t
�=2c 1

f 2

gHA

c

 !

5 �rHA

V

ð
dS

›q

›t
5

rHA

V

ð
dS= � (vq). (A7)

In the last equality we used (26) and the fact that the

balanced velocity is nondivergent. Because the latter

integral is zero, the result above proves that ~M is a

conserved quantity in the balanced system. For the

balanced equivalent ~E of the energy, we have

›

›t
~E 5 rHA

ð
dS c

›

›t
�=2c 1

f 2

gHA

c

 !

5 �rHA

ð
dS c

›q

›t
5 rHA

ð
dS = � (cvq), (A8)

the last expression being zero. This proves that in the

balanced system governed by (25) and (26) the energy
~E is also a conserved quantity.

d. Solving the eigenvalue equation

To solve (40) numerically, we first write quite gener-

ally

ĉm(m) 5 �
‘

n5jmj
ĉmnPmn(m), (A9)

where Pmn are the associated Legendre functions in the

normalization of Machenhauer (1979):

Pmn(m) 5 (�1)m (2n 1 1)
(n�m)!

(n 1 m)!

� �1/2

Pm
n (m), (A10)

with Pn
m(m) defined by Abramowitz and Stegun (1965).

In this normalization we have for m2Pmn(m)

m2Pmn(m) 5
[(n� 1)2 �m2](n2 �m2)

(2n� 3)(2n 1 1)

( )1/2
Pmn�2(m)

2n� 1

1
n2 �m2

2n� 1
1

(n 1 1)2 �m2

2n 1 3

" #
Pmn(m)

2n 1 1

1
[(n 1 1)2 �m2][(n 1 2)2 �m2]

(2n 1 1)(2n 1 5)

( )1/2

3
Pmn12(m)

2n 1 3
. (A11)

If we now use the fact that for g 5 0 the function Pmn is

an eigenfunction of (40), the expression above can be

used to transform the eigenvalue equation [(40)] into

the following matrix equation:

�
‘

n95jmj
amnn9ĉmn9 5 dmĉmn, (A12)

where amnn9 is a tridiagonal matrix with the matrix ele-

ments

amnn9 5 �n(n 1 1)dnn9 � gbmnn9 (A13)

and bmnn9 is given by

bmnn9 5
[(n� 1)2 �m2][n2 �m2]

(2n� 3)(2n 1 1)

( )1/2
dn n912

2n� 1

1
n2 �m2

2n� 1
1

(n 1 1)2 �m2

2n 1 3

" #
dn n9

2n 1 1

1
[(n9� 1)2 �m2][n92 �m2]

(2n9� 3)(2n9 1 1)

( )1/2
dn12 n9

2n9� 1
.

(A14)

Note that m is a parameter; for each value of m we have a

different eigenvalue problem.

As a result of the normalization (A10), the matrix

of the eigenvalue problem is symmetric; it follows

therefore that the eigenvalues dmn and the eigenfunctions

Smn are real. The system (A12) is solved numerically

by replacing the infinite sum by a finite sum with upper

limit N 5 105. The eigenvalue problem for a given value

of m has N 2 m 1 1 dimensions and can be solved by

publicly available numerical routines. We used for this

purpose a routine from Press et al. (1986) based on the

Jacobi method. The eigenvalues are sorted in terms

of increasing absolute value. When making plots of

the meridional structure of the eigenfunctions, we cal-

culate Pmn(sin f) as a function of f by using recurrency

relations.
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