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1 Introduction 
 

Objective 

 

Within the Ocean and Sea Ice Satellite Application Facility (OSI SAF) created by the European 

Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the Royal Netherlands 

Meteorological Institute (KNMI) has developed sea ice screening routines for both the ERS and ASCAT 

radar sensors based on probabilistic distances to empirical C-Band models for sea ice and ocean 

backscatter ([de Haan, 2001], [Verspeek, 2006]).  

 

The Microwave Earth Remote Sensing group at Brigham Young University (BYU) in the United States 

has also developed an ice screening method for the Ku-Band SeaWinds radar sensor, which KNMI 

adopted initially for its own processing. Prompted by its own analyses and users queries, the KNMI 

decided to use an additional Sea Surface Temperature (SST) filter to prevent occasional erratic winds over 

sea ice surfaces. Since wind information near the ice edge is quite relevant, this document reports on 

renovated efforts at KNMI to develop an improved sea ice detection algorithm for SeaWinds similar to the 

one used for ERS and ASCAT sensors, where computed residuals to geophysical Ku-Band ice and ocean 

model functions are interpreted as probabilities and then combined with prior information on the sea ice 

state using a Bayesian discrimination algorithm to produce Near Real-Time (NRT) sea ice maps. 
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2 SeaWinds on QUIKSCAT 
 

The SeaWinds instrument was launched on the QUIKSCAT platform on June 1999 onto a sun-

synchronous Low Earth Orbit (LEO) with a period of 101 minutes. SeaWinds uses a rotating dish antenna 

with two pencil beams that sweep in a circular pattern. The antenna radiates microwave pulses at a 

frequency of 13.4 GHz and collects the returning backscatter over a continuous 1800 km wide swath, 

covering 90% of the Earth’s surface in one day [Leidner, 2000]. Although the primary mission of 

QUIKSCAT is to acquire measurements of near-surface winds over the global oceans, other science goals 

include monitoring the seasonal extent of the Arctic and Antarctic ice packs and the study of changes in 

rain forest vegetation.  

 

Geometry of observations 

 

SeaWinds employs a single 1 meter parabolic antenna for the reception of horizontal and vertically 

polarized backscatter with incidence angles of 46 (H-pol) and 54 (V-pol) degrees. The transmitted 

microwave pulses are frequency chirped and the backscattered returns passed through a Fast Fourier 

Transform stage to provide sub-footprint range resolution cells (~25x25 km
2
, called slices). Each surface 

resolution cell (or wind vector cell, WVC) registers a total of four backscatter measurements in sequence, 

two of them collected by the outer V-pol antenna and another two by the inner H-pol antenna (see Fig.1). 

 

 

Figure 1 – QUIKSCAT provides a total of four backscatter views per resolution cell 

 

The distance from the sub-satellite to the wind vector cell (i.e. WVC number) determines the azimuthal 

diversity of the measurement sequence, namely, the arrangement of viewing angles about the surface cell, 

which should ultimately allow for the detection of the wind direction signature over the ocean. 

HH 

VV 
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3 Ocean wind GMF 
 

The empirical Ku-band ocean geophysical model function (GMF) was determined on the basis of a 

statistical comparison between ADEOS
1
 NSCAT 14 GHz dual-polarized backscatter measurements and 

collocated ECMWF
2
 model winds [Wentz, 1999]. The span of valid model incidence angles ranges from 

15 to 65 degrees (55 degrees for H-pol) for wind speeds under 35 m/s. The most salient features of the 

ocean GMF (see Appendix A) are best described in terms of its own variables, namely radar incidence 

angle, wind speed and wind direction: 

 

i) Incidence angle: the observed values of ocean backscatter at both V and H polarization are 

equal at nadir and decrease with incidence angle, where V-pol backscatter becomes stronger than H-pol 

(see Fig.2). This behavior is roughly explained by the physical optics (Kirchhoff) approximation near 

nadir, and Bragg (resonant) scattering theory at larger incidence angles [Jones, 1977].  

 

Figure 2 – Ocean backscatter vs radar incidence angle (NSCAT2) 

 

ii) Wind speed: The backscatter from the ocean increases with wind speed up to a point of 

saturation, namely a point beyond which ocean roughness no longer responds to increasing wind speed. 

Theoretical studies of the ocean wave spectrum [Fernandez, 2006] indicate that the phenomenon of 

saturation is initiated at the smallest ocean length scales, leaking into larger scales as the wind speed 

continues to increase. The saturation wind speed is thus expected to increase with radar wavelength and 

elevation angle (e.g. about 35 m/s for Ku-Band on QUIKSCAT). 

 

iii) Wind direction: ocean backscatter shows a double harmonic modulation with respect to wind 

direction, with a small up/downwind amplitude and a large up/crosswind difference. This azimuthal 

                                                            
1 ADEOS = Advanced Earth Observing Satellite 
2 ECMWF = European Center for Medium range Weather Forecasting 

UPWIND, 

Windspeed = 3 m/s 
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anisotropy in backscatter is strongest for moderate winds (~8 m/s) at large incidence angles (see Fig.3), 

and it vanishes either as wind speeds decrease or approach the backscatter saturation point at 35 m/s. 

 

Figure 3a – Ocean backscatter vs. wind direction (NSCAT2) 

 

 

 

Figure 3b – Wind direction relative to transmit-receive antenna 
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4 Sea ice detection 
 

In contrast to ocean backscatter, which is a result of surface interaction processes, sea ice backscatter at 

Ku-band arises from volume interactions deeper in the ice layer. These result in distinct polarization, 

intensity and directional radiation properties that allow its effective identification against an ocean 

background. In particular, while ocean (surface) scattering is characterized by steep backscatter gradients 

relative to the incidence angle and substantial polarization ratios (V/H), volume scattering from sea ice 

yields smaller gradients and near unity polarization ratios ([Gohin, 1994], [Yueh, 1997]). Also, the 

azimuthal response of sea ice backscatter is much more isotropic than that of the ocean [Early, 1997]. 

4.1 BYU algorithm 

 

The BYU sea ice detection algorithm is used at NOAA’s National Environmental Satellite Data and 

Information Service (NESDIS) for the operational generation of the SeaWinds Real Time BUFR 

geophysical products. Following the same principles adopted later by the Norwegian Meteorological 

Institute [Haarpaintner, 2004] and IFREMER [Ezraty, 2001], the BYU algorithm capitalizes on the 

contrasting azimuthal and polarization properties of sea ice and ocean backscatter for their effective 

discrimination ([Remund, 1999] and [Anderson, 2005]). More specifically, the pseudo-polarization ratio 

(= σV/σH), mean collected backscatter (= σH), and V and H-pol error standard deviations (= ∆σH,V or 

azimuthal variability within a resolution cell.) form a 4-dimensional space where ocean and ice clusters are 

separated. In this transformed space, the BYU algorithm calculates ice/ocean cluster centroids and their 

covariance matrices to implement maximum likelihood discrimination, using image processing techniques 

to reduce misclassification noise.  

 

While the BYU algorithm is expected to perform well during calm wind and winter conditions, its 

seasonal performance has not been validated exhaustively. Some of the problems affecting its accuracy 

include ([Remund, 1998], [Remund, 2000] and [Abreu, 2002]):  

 

i) High wind events over the ocean that reduce the ice-seawater contrast, especially in areas 

of strong cyclonic activity such as the Greenland or Weddell Seas.  

ii) Poorer discrimination over less compact (i.e. lower concentration) ice areas, such as those 

typical of Antarctica’s sea ice margin and the Arctic edge during the melt season. 
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4.2 KNMI algorithm 

 

For the KNMI sea ice detection algorithm, the former ice/ocean cluster centroids in the transformed space 

of pseudo-polarization, mean backscatter and azimuthal variability combinations are replaced by empirical 

model functions for ocean and sea ice backscatter in the original space of backscatter vectors (Fig.4).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Observed SeaWinds backscatter distribution (LEFT) vs. empirical model functions (RIGHT)  

 

The KNMI algorithm computes residuals (squared distances) to pre-existing Ku-Band ocean wind and sea 

ice model functions, and the residuals are converted to probabilities after normalizing by the expected 

error variance about the corresponding model. These probabilities are finally combined with prior 

information on the sea ice state using a Bayesian approach to produce daily sea ice maps: 

  

                   (1) 

 

Where p(ice|σ
0
) is the conditional probability of ice given σ

0 
measurements, p(σ

0
|ice) is the conditional 

probability of σ
0 

given ice (i.e. the distribution of ice backscatter measurements about the ice model), 

p(σ
0
|wind) the distribution of ocean backscatter measurements about the ocean wind model, and p0(ice) is 

the a priori ice probability. Note that p0(wind) = 1 - p0(ice), since ice and ocean are considered the only 

two possible outcomes of the algorithm. Observe that modelling the probability distribution of backscatter 

points about the ocean wind and sea ice models is required, which is what we set out to do next. 

 

Probability distribution of ocean backscatter p(σ
0
|wind) 

 

The KNMI SeaWinds Data Processor [de Kloe, 2007] carries all the necessary information about the 

ocean wind GMF and its expected error variance. This information is embedded in the processor’s 
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normalized maximum likelihood estimator (MLEwind), defined as the squared distance of measurements to 

the ocean GMF divided by the expected noise variance [Stoffelen, 2006]: 

 

         

0 0 2

, ,

0
1,..., ,

( )1

var[ ]

obs i wind i

wind

i N wind i

MLE
MLE

σ σ

σ=

−
= ∑            (2) 

 

Where σ
0
obs is the SeaWinds observed backscatter, σ

0
wind is the Ku-band ocean wind GMF (i.e. NSCAT2), 

N is the number of independent looks available (usually four), var[σ
0
wind] is the instrumental noise 

Gaussian variance [Spencer, 2000] and <MLE> is a normalization factor that accounts for deviations from 

the ocean wind GMF due to geophysical noise effects like sub-cell wind variability [Portabella, 2006]. 

Note that the normalized MLEwind is constructed to guarantee that the variance of each normalized 

backscatter component about the ocean wind model is unity (in linear space). Since the normalized 

MLEwind is expressed as a sum of normally distributed random variables, the probability to find a 

SeaWinds four-dimensional ocean backscatter vector a squared distance MLEwind away from the two-

dimensional ocean GMF surface should be given by a chi-square distribution with two independent 

degrees of freedom (i.e. an exponential distribution with L = 2 [Johnson, 1994], although the exponent of 

the distribution is in empirically adjusted to L=1.5, as in Fig.5): 

 

                    

 

 

         
/0 1

( | ) windMLE L
p wind e

L
σ

−
=          (3) 

 

 

 

 

Figure 5 – Probability distribution of SeaWinds ocean backscatter about the ocean GMF: red is the observed 

distribution normalized to unit area, and dashed is modeled from Eq. (3) with L=1.5 

 

Probability distribution of sea ice backscatter p(σ
0
|ice) 

 

To obtain the necessary statistical knowledge about the Ku-Band ice model and its error variance, we look 

at the actual distribution of sea ice backscatter data in the space of SeaWinds measurements. We use good 

quality, land-masked and rain-free backscatter measurements extracted from the NOAA/NESDIS BUFR 

files [Leidner, 2000], corrected for two-way atmospheric attenuation using Wentz’s SSM/I rain-free 

climatology and collocated with background BYU sea ice masks (Fig.6). 
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Figure 6 – Daily SeaWinds backscatter measurements 

 

The distribution of sea ice backscatter data in the QUIKSCAT measurement space has been analyzed daily 

for a period of one year, providing experimental support to the following statements: 

 

a) Sea ice backscatter distributes along a linear ice model on the QUIKSCAT ‘fore’ and ‘aft’ dB-

measurement subspaces (Fig.7) 

 

Figure 7 –Histogram (70, 80 and 95%) contours of SeaWinds sea ice backscatter  

with superimposed linear ice and ocean wind (NSCAT2, dashed) models 

 

In the northern hemisphere (see Appendix B1), the level of sea ice backscatter observed during 

the winter months is very stable, ranging from -5 to -21 dB for the H-pol component at 46 deg 

incidence and from -7 to -23 dB for the V-pol component at 54 deg incidence, with little deviation 

from a straight ice line model. In the summer months, the bright portion of the sea ice distribution 

(multiyear ice) merges with that of first year ice and a significant number of sea ice backscatter 

points deviate towards the ocean model (i.e. mixed ice-water pixels make appearance). For sea ice 

that survives the melt season, the transition to multiyear ice is rather abrupt: the backscatter levels 

of summer ice (from -10 to -20 dB for H-pol at this time of the year) suffer an overall increase of 

about 5 dB in both the H and V-pol components as the fall season starts, after which new data 

points start filling the dark portion of the backscatter distribution (new ice production), bringing it 

ocean 

sea ice - BYU 

land + gaps 

rain 

poor quality 

ARCTIC, 
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 2007 

ANTARCTIC, 
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st
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back to its stable winter configuration [Onstott, 1987]. In the southern hemisphere (see Appendix 

B2), most of the sea ice backscatter observed during winter is found between -10 and -20 dB. In 

contrast to the Arctic case, the brightest portions of the Antarctic backscatter distribution arise 

from the ice shelves, which also feature larger polarization ratios than multiyear ice. Most of the 

floating Antarctic ice disappears in the summer, leaving backscatter from ice shelves and mixed 

ice-water pixels to dominate the distribution of data points. We note that the presence of mixed 

ice-water pixels is more abundant in the Antarctic than in the Arctic, probably a reflection of the 

more dynamic environment to which the southern sea ice margin is subject.  

 

A graphical summary of the seasonal dependence of the linear ice model slopes is given in Figure 

8 below. The linear model slope is affected by a number of factors, including the presence of 

mixed ice-water pixels (MP in Fig.8 during the austral and boreal summers, negatively biasing the 

model slope) or backscatter from the ice shelves (late in the austral summer, positively biasing the 

model slope). To ensure the uniformity of the linear Ku-band sea ice GMF, we take the mean 

Arctic winter distribution as the most representative of pure ice (volume) backscatter throughout 

the year and use it for its definition (see Table 1). 

 

 Table 1 – Winter sea ice GMF σ
0
V,ice = σ

0
H,ice*Slope + Offset 

 

 

 

 

Figure 8 – Daily slopes to linear ice model (Arctic on left and Antarctic on right panel). 

The reference Arctic winter slopes are highlighted in red. 

  

b) The distribution of sea ice backscatter about the winter linear ice model is Gaussian  

 

The distribution of sea ice backscatter distances to the linear ice GMF model on the SeaWinds 

‘fore’ and ‘aft’ measurement subspaces is Gaussian with a standard deviation of about 0.5 dB 

 Slope Offset 

Arctic Winter 1.06 -1.0 dB 

MY 

+ 

MP 

 

WINTER 
FY 

+ 

MP 

 

ice shelves 
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(Fig.9). A summary of the seasonal dependence of the Gaussian fit parameters (standard deviation 

and biases) for the dispersion of data about the winter linear ice model is given in Figure 10 (see 

also Appendix C). Observe that the increased dispersion of data in non-winter months mainly 

relates to the presence of mixed ice-water pixels. 

                  

Figure 9 – Histogram of sea ice backscatter distances to linear ice model 

 

Figure 10 – Gaussian fit parameters (Sigma = Standard deviation; Mean = Bias) 

 

c) Sea ice backscatter is azimuthally isotropic  

 

To measure the degree of azimuthal anisotropy in sea ice backscatter, we calculate the backscatter 

differences between the aft and fore looks for H and V-polarized components (see Fig. 11). Since 

the variance of the backscatter differences observed for all azimuths combinations (s ~ 0.6-0.7 

dB) is roughly equal to twice the variance of the backscatter distance to the linear ice model (s ~ 

0.4-0.5 dB), we conclude that sea ice backscatter is azimuthally isotropic at Ku-Band. Note that 

the azimuthal modulation of ocean backscatter can reach up to 6-7 dB, indicating that there is a 

strong ice-ocean discrimination power encoded in azimuthal variability. 
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Figure 11a – Azimuthal sea ice backscatter differences (∆s0
H, ∆s0

v)  

 

 

 

 

 

 

 

 

 

 

 

Figure 11b – Azimuthal sea ice backscatter differences (geometry) 

 

So far, we have determined that the variability of sea ice backscatter in the space of SeaWinds 

measurements appears confined to a linear ice model on H/V polarized components characterized by a 

Gaussian standard deviation of 0.5 dB (1D). This variability is insensitive to azimuth angle and can be 

described by a single independent variable which we label ice brightness.  Therefore, the formal 

expression for the conditional probability p(σ
0
|ice) to find a SeaWinds four-dimensional sea ice 

backscatter vector a squared distance MLEice away from the one-dimensional sea ice GMF line can be 

modelled by a chi-square distribution with three independent degrees of freedom (see Fig.12) [Johnson, 

1994], where: 

∑
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Always as a function of the Gaussian variance of measurements about the linear ice model, var[σ
0
ice]. The 

expected dispersion for pure ice backscatter points is given in Table 2 below, which excludes the thin 
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cloud of mixed ice-water pixels that collects on one side of the backscatter distribution (i.e. towards the 

ocean GMF). Note that the effective detection of mixed ice-water pixels may call for values of var[σ
0
ice] 

larger than those representative of pure ice cells, that is, the definition of sea ice edge can be adjusted by 

modifying the expected variance of sea ice backscatter about the linear ice GMF. 

 

 

 

Table 2 – Expected 1-D gaussian scatter about 

linear sea ice GMF 

 

 

 

 

 

 

 

Figure 12 – Probability distribution of sea ice backscatter about the sea ice GMF: red is the observed distribution 

normalized to unit area, and dashed is modelled from Eq (5). 
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5 Algorithm implementation and validation 
 

The implementation of the KNMI sea ice detection algorithm using SeaWinds data requires the calculation 

of the posterior ice probability: 

 

                               (1) 
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in terms of the normalized squared distances to the Ku-Band ocean wind and ice GMFs. The local prior 

probabilities for ice and wind are initially set to p0(ice) = p0(wind) = 0.50 (reflecting low initial certainty), 

and then become updated daily using relaxed versions of the previous day posteriors as: 

 

0

0 0
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These settings have been chosen after a preliminary trial-and-error study to maximize the level of historic 

information passed on to the discrimination algorithm, without contradicting the update information 

carried by new measurements. These processing steps are illustrated in Figure 13 below. In panel A, the 

distance of backscatter to the ice model is seen to provide a strong ice-water contrast, only disturbed by 

local structures on the ocean (e.g. see the Bering Sea in Panel A below) that arise from σ
0
-quadruplets 

lying close to the ice model: these disturbances are most likely caused by rain. In panel B, the distance of 

backscatter to the ocean wind model also provides a good ice-water contrast, only weakened at extreme 

high latitudes by the combined effects of a reduced azimuthal diversity in SeaWinds measurements and 

the presence of bright multiyear ice (which lies close to the high wind speed portion of the ocean model). 

In panel C, the a priori ice probability is built from the sea ice probability map computed for the previous 

day. The graininess in the raw p(σ
0
|class) maps is caused by the SeaWinds daily sampling density in the 

selected projection grid (i.e. SSM/I polar stereographic, with 12.5 km pixels at 70 deg. latitude). 
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Figure 13 – Bayesian probability combination and thresholding 

 

 

The SeaWinds KNMI sea ice discrimination algorithm uses a probability threshold of p(ice|σ
0
)> 0.45 for 

the generation of its sea ice masks.  

5.1 Validation sources – AMSR and BYU SIRF 

 

As a primary validation source, we use daily gridded AMSR-E sea ice concentrations from Aqua (AE 

SI12 v.001 from EOS data gateway, [Cavalieri, 2004]). This 12.5 km sea ice concentration product is 

generated using the Enhanced NASA Team (NT2) algorithm, which proves accurate to within a 10-15% 

error against clear sky visible sea ice concentrations ([Meier, 2005], [Cavalieri, 2006]). The wintertime 

p(σ
0
|ice) p(σ

0
|ocean) p0(ice) 

p(ice|σ
0
) 

A B C 

p0(ice) 

thresholding 



Algorithm implementation and validation 17 

AMSR (NT2) sea ice extents (15% ice concentration edge [Comiso, 1984]) prove to lie within 10 km of 

the ice edge extracted from RADARSAT SAR and MODIS image composites [Heinrichs, 2006]. The 

accuracy of the AMSR (NT2) sea ice concentration algorithm is reported to worsen during the summer 

months, when it is most affected by weather effects, unresolved thin or low concentration ice types and 

surface melt effects [Markus, 2000].  

 

As a preliminary exercise, we compare the daily AMSR NT2 sea ice extent estimates against the 

SeaWinds (QSCAT BYU) sea ice masks included in the NOAA/NESDIS Real Time BUFR Geophysical 

Data Product during the period spanning from September 15
th
 2006 through September 15

th
 2007 (see 

Fig.14). The comparison is performed on polar 12.5 x 12.5 km
2
 stereographic projection grids with true 

latitude at 70 degrees, using a common polar-stereo 12.5 km landmask (GSFC II) with a 25 km coastal 

filter. As additional reference, Figure 14 shows the US National Ice Center (NIC) sea ice extents, which 

are produced from combined satellite records that include visible, infrared and microwave imagery 

[Dedrick, 2001]. Caution must be exercised when using NIC charts as a validation source, since they tend 

to rely heavily on QUIKSCAT and SSM/I imagery. 

 

Figure 14 – Daily sea ice extent estimates from AMSR NT2 and SeaWinds Real Time BYU algorithms 

  

Figure 14 shows that the SeaWinds Real Time BYU sea ice masks are rather conservative relative to the 

passive microwave reference, and that user complaints about erratic winds over sea ice in BUFR products 

may be associated with occasional glitches in the BYU Real Time masks, which also contain a significant 

amount of noise along the ice edge [Meier, 2008]. We observe, as noted by [Meier, 2006], that the best 

agreement between US NIC and AMSR (NT2) sea ice extents is found during the freeze-up period and 

that US NIC charts tend to overestimate sea ice extents relative to AMSR (NT2) at all other seasons (i.e. 

see also [Markus, 2002]).  
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Another source of validation data are the sea ice products derived from SeaWinds backscatter using the 

threshold-based BYU algorithm on enhanced resolution SIRF images (Scatterometer Image 

Reconstruction with Filtering, Version 2 from the Scatterometer Climate Record Pathfinder page at 

ftp://ftp.scp.byu.edu, [Remund, 1999]). Unlike the BYU Real Time mask included in the NOAA/NESDIS 

BUFR products, the BYU SIRF sea ice masks arise from post-processed 36 hour composites of SeaWinds 

backscatter data. Figure 15 shows that the agreement between the SeaWinds BYU SIRF and the AMSR 

NT2 algorithms is rather good during the fall and winter months in both hemispheres, providing a robust 

starting point for the validation of the KNMI Bayesian sea ice detection algorithm. Observe that while 

earlier work has found general good agreement between microwave active and passive sea ice extents, 

seasonal discrepancies have been characterized by slightly defective scatterometer extents during the 

growth season (winter bias) and excessive scatterometer extents during the melt season (summer bias) 

([Remund, 1999] [Meier, 2008]). 

 

Figure 15 – Daily sea ice extent estimates from AMSR NT2 and SeaWinds BYU algorithms (NRT and SIRF) 

(Total areas have been clipped to the limited geographic coverage of BYU SIRF masks) 

 

Figure 16 shows the daily Arctic and Antarctic sea ice extents calculated using the SeaWinds KNMI 

Bayesian algorithm from September 2006 to September 2007 against the passive microwave AMSR 

(NT2) reference. The SeaWinds KNMI sea ice extents correspond to three separate runs of the Bayesian 

algorithm with increasing tolerances for mixed ice/ocean species (i.e. increasing expected variances about 

the empirical Ku-band ice model, var[σ
0
ice]). Observe that as the ice model variance increases, the total 

extent of sea ice detected by the scatterometer increases via the inclusion of a larger number of mixed 

ice/ocean pixels (i.e. pixels with lower concentration, water saturated and thinner ice species), reducing 

the winter bias relative to radiometer estimates (i.e. improving the detection of newly formed thin ice 

during the freeze-up season) but increasing the summer discrepancies (i.e. capturing a larger extension of 

water saturated and lower concentration ice than the passive microwave technique during the melt season).  
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Figure 16 – Tuning the SeaWinds KNMI Bayesian algorithm  

(Dashed line is AMSR NT2, shaded lines are QSCAT KNMI with 0.5, 1.0 and 1.5 dB ice model variances) 

 

 

In summary, the reported seasonal discrepancies between active (scatterometer) and passive (radiometer) 

microwave sea ice detection techniques are well reproduced by the KNMI Bayesian algorithm when the 

tolerance to mixed ice/ocean species is set too low. To improve the detection of rapidly forming ice during 

the growth season and the characterization of radiometer errors during the summer months, the tolerance 

to mixed ice/ocean species should be increased up to the point where misclassification noise has not yet 

become excessive. One such optimal ice model standard deviation is found at 1.5 dB (c.f. Table 2).  

 

 

Figure 17 - Daily sea ice extent from SeaWinds KNMI (1.5 dB) algorithm 

(Dashed line is AMSR NT2 and dotted line is SeaWinds BYU SIRF) 

 

KNMI 0.5 dB 

KNMI 1.0 dB 

KNMI 1.5 dB 
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Figure 17 shows the evolution of Arctic and Antarctic sea ice extents derived from the AMSR (NT2), 

QSCAT (BYU SIRF) and QSCAT (KNMI 1.5 dB) algorithms during the 2006/07 freeze-melt cycle. We 

observe good convergence of all sea ice extent products during the freeze-up months in both hemispheres. 

Note that the sensitivity of the QSCAT (BYU SIRF) algorithm to stormy wind conditions causes a 

significant amount of noise during the arctic fall and winter months, which manifests as a large dispersion 

in daily ice extents. Both active microwave algorithms (KNMI and BYU SIRF) overestimate the spring 

and summer sea ice extents relative to passive microwaves, but to different degrees. A further look into 

high resolution optical and radar imagery should help solve this latter ambiguity. 

 

5.2 Validation sources – MODIS and ASAR 

 

While the extensive cloud cover in the polar regions is a factor against the use of optical data for the 

monitoring of sea ice conditions, the contrast between ice and open water may be unclear for the cloud 

penetrating SAR due to variable wind conditions at the ice margin. Anyway, the combined use of high 

resolution optical (MODIS) and synthetic aperture radar (ASAR) data sets compensates for their 

individual deficiencies and provides a valuable tool for examining algorithm discrepancies over 

geographically limited areas. 

 

In this section, the KNMI Bayesian sea ice detection algorithm is evaluated against ENVISAT ASAR 

backscatter and Terra/Aqua MODIS radiance imagery. The MODIS sea ice products (Version 5 MOD29 

and MYD29, with 1 km resolution) have been downloaded from the National Snow and Ice Data Center 

(NSIDC) Distributed Active Archive Center (DAAC). These products are cloud masked and identify sea 

ice covered oceans by their reflectance characteristics [Riggs, 1999]. The ENVISAT ASAR Global 

Monitoring data (ASA_GM1_1P, with 1 km resolution) have been provided by the European Space 

Agency under a Cat-1 PI registration agreement [ASAR, 2007]. ASAR images have been pre-processed 

on BEAM VISAT software for rough calibration and geo-location. 

 

During the winter months, the ice edge remains a compact boundary between open water and 

consolidated thick ice. Under these conditions, all three satellite microwave algorithms [AMSR (NT2), 

QSCAT (BYU SIRF) and QSCAT (KNMI 1.5 dB)] come to agree within ±2 grid pixels or about 25 km in 

their determination of the ice edge (Figure 18). The finer spatial resolution of the AMSR (NT2) algorithm 

allows the radiometer edge to adjust more tightly to the optical/SAR reference and resolve its indentations 

(Figure 19). The QSCAT (BYU SIRF) algorithm has as fine a spatial resolution as AMSR (NT2), but it is 

noisier and less reliable. Note that QSCAT (KNMI 1.5 dB) edge stays safely away (~ 25 km or about half 

the spatial resolution of the SeaWinds footprint) from the least detectable traces of sea ice, providing a 

rather conservative definition of ice edge but well-suited for masking purposes. 
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During the growth season, consolidated sea ice progresses behind a rapidly advancing band of newly 

formed thin ice (frazil, grease ice, nilas, pancake, etc. [Comiso, 1984]). Accurate detection of new ice in 

active formation areas is difficult because the representativity of daily ice maps degrades rapidly. Besides, 

scatterometers have been reported to have difficulties in detecting thin ice [Abreu, 2002]. Increasing the 

KNMI Bayesian ice model variance improves the chances of its detection, but at the cost of increasing the 

background noise. While the ability of the AMSR (NT2) algorithm to detect thin ice is undisputed, it is 

closely followed by the QSCAT (KNMI 1.5 dB) algorithm in areas of active ice formation (Figure 20). 

The QSCAT (BYU SIRF) algorithm shows poorer performance in these cases.  

 

During the melt season and year-round in Antarctica, the ice edge includes lower concentrations of 

decaying floes with varying amounts of brash (water saturated) ice between them, which are examples of 

diffuse ice conditions most likely to pass undetected by passive microwave algorithms [Worby, 2004]. 

Also, ice bands of varying concentration may appear at the Antarctic ice edge at any time of the year. 

Figures 21-23 illustrate typical detection discrepancies found in the Arctic during the spring and summer 

months and in the Antarctic all year-round, including low concentrations of decaying floes (Fig. 21), water 

saturated and brash ice (Fig. 22) and sea ice bands (Fig.23). Note that surface melt effects lead to 

significant errors in passive microwave estimates. The QSCAT (BYU SIRF) algorithm generally stays 

midway between the AMSR (NT2) and QSCAT (KNMI 1.5dB) ice edges, and the ability of the QSCAT 

(KNMI 1.5dB) algorithm to capture diffuse ice remains unmatched. Other problems with the QSCAT 

(BYU SIRF) algorithm that are overcome by the newer KNMI Bayesian approach, besides the limited 

geographical coverage and poorer time resolution, is the lack of detection of water openings within the ice 

pack (polynyas). 

 

In conclusion, we encounter three types of errors when comparing active vs. passive microwave derived 

sea ice extents. The first relates to the detection of rapidly forming thin ice during the growth season 

(scatterometer winter bias). The second relates to the detection of diffuse ice conditions during the melt 

season (radiometer summer bias), and the last one is related to the presence of misclassified ice patches 

over the ocean (ocean noise). The KNMI Bayesian algorithm has been adjusted so that scatterometer 

winter biases are minimized without incurring in excessive ocean noise. In this sense, the KNMI Bayesian 

approach proves superior to the threshold-based BYU SIRF algorithm. The resulting sea ice extents agree 

with their passive microwave counterparts to within ±25 km during the fall and winter months, and prove 

more sensitive to diffuse ice conditions during the melt season (see Figures 25 through 37). The KNMI 

Seawinds Bayesian algorithm provides a conservative definition of sea ice edge, more in line with that 

provided by ship observations and well-suited for applications that require reliable masking of sea ice all 

year round.  
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Figure 18 – Satellite microwave sea ice extents against MODIS and ASAR imagery 

[Green is AMSR (NT2), yellow is QSCAT (BYU SIRF) and red is QSCAT (KNMI 1.5 dB)] 

In MODIS image, grey represents possibly cloudy areas. 
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Day 170-2007 

MODIS 
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Figure 19 – Satellite microwave sea ice extents against MODIS and ASAR imagery 

[Green is AMSR (NT2), yellow is QSCAT (BYU SIRF) and red is QSCAT (KNMI 1.5 dB)] 

In MODIS image, grey represents possibly cloudy areas. 
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Figure 20 – Satellite microwave sea ice extents against MODIS and ASAR imagery 

[Green is AMSR (NT2), yellow is QSCAT (BYU SIRF) and red is QSCAT (KNMI 1.5 dB)] 
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Figure 21 – Satellite microwave sea ice extents against MODIS and ASAR imagery 

[Green is AMSR (NT2), yellow is QSCAT (BYU SIRF) and red is QSCAT (KNMI 1.5 dB)] 

In MODIS image, grey represents possibly cloudy areas. 
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Figure 22 – Satellite microwave sea ice extents against MODIS and ASAR imagery 

[Green is AMSR (NT2), yellow is QSCAT (BYU SIRF) and red is QSCAT (KNMI 1.5 dB)] 
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Figure 22 – Satellite microwave sea ice extents against MODIS and ASAR imagery 

[Green is AMSR (NT2), yellow is QSCAT (BYU SIRF) and red is QSCAT (KNMI 1.5 dB)] 
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5.3 Problems and fixes 

 

After thorough testing and validation of the KNMI SeaWinds Bayesian algorithm for sea ice 

discrimination, there remain two issues adversely affecting its overall performance. To note: 

 

i) Intersecting ocean wind and sea ice GMFs: The discrimination power of the KNMI Bayesian 

algorithm is adversely affected in those regions where the empirical model functions for ocean 

wind and sea ice backscatter intersect in the measurement space. For the SeaWinds 

observation geometry, the region of ice/ocean GMF overlap corresponds with the high wind 

speed tail of the ocean wind GMF, which coincides with the bright multiyear ice (or ice sheet) 

tail of the sea ice GMF.  

 

To correct for this problem, we introduce an additional piece of information, namely the location of the 

point of minimum distance on the ocean GMF (i.e. the retrieved wind) relative to the NWP wind forecast. 

It can be seen that the minimum distance to the GMF and the location of the point of minimum distance on 

the GMF are independent pieces of information. Using Bayes rule, the probability of a surface cell being 

ice given both backscatter measurements and NWP wind forecasts will be calculated as: 
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Where )|( 0
oceanp σ  and )|( 0

icep σ  are the already known distributions of ocean and ice backscatter 

measurements about the “wind cone” and the “ice line” models, while )|( oceanvp
�

and )|( icevp
�

refer 

to the distribution of wind retrievals over ocean and ice surfaces respectively, modelled as:  

)|( oceanvp
�

 = Normal distribution about NWP wind = )]2/(exp[)2/(1 222
∆−−∆ NWPvv

��

π  

)|( icevp
�

 = Uniform distribution = )2/(1 2
∆π  

The standard deviation of retrieved wind solutions about NWP wind forecasts has been set to ∆ = 10 m/s. 

This approach solves the problem with intersecting GMF functions effectively and also proves beneficial 

for the detection of low concentration and thin ice in the marginal ice zones. 
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ii) Ocean noise (rain signature): There is a penalty to increasing the tolerance in sea ice 

detection with scatterometer algorithms, which consists in enhanced ocean noise (i.e. ocean 

that is misclassified as ice). This ocean noise arises typically from rain contaminated cells 

because rain and ice both share a similar backscatter signature. Most of this ocean noise can 

be filtered using a brightness temperature based threshold [Ezraty, 2000] or a SST based mask 

for those areas far from the ice edge.  

 

Thin ice, low concentration ice and rain contaminated cells all share a similar backscatter signature which 

is characteristic of a mixed surface/volume interaction. Figure 23 shows the effects of rain on measured 

ocean backscatter and the distribution of rain contaminated observations in the measurement space of 

SeaWinds backscatter data. The upper panel shows that the rain signature dominates the backscatter 

measurement at low windspeeds. The lower panel shows that rain saturated measurements lie in the 

vicinity of the ice model, making it difficult to separate them in terms of backscatter alone. 

 
Figure 23 – Rain effects on distribution of backscatter in QSCAT measurement space 

(R is columnar rain rate in kmÿmm/hr, from [Draper, 2004]) 

 



Algorithm implementation and validation 30 

Figure 24 below shows the distribution of SeaWinds brightness temperatures for ocean, sea ice and rain 

flagged cells. These figures illustrate the fact that rain cells are definitely warmer than sea ice, rendering 

these two species effectively separable in terms of their brightness temperatures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 – Sample distributions of ice/ocean (left) and rain (right) brightness temperatures  
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Sep 15
th
 2006 

 

Figure 25 – QSCAT KNMI (1.5 dB) ice edge vs AMSR sea ice concentration (LEFT) 

and QSCAT ice brightness (RIGHT) 

 

 

 

 



Algorithm implementation and validation 32 

 

 

 

 

 

Oct 15
th
 2006 

 

Figure 26 – QSCAT KNMI (1.5 dB) ice edge vs AMSR sea ice concentration (LEFT) 

and QSCAT ice brightness (RIGHT) 

 

 

 

 

 



Algorithm implementation and validation 33 

 

 

 

 

 

Nov 15
th
 2006 

 

Figure 27 – QSCAT KNMI (1.5 dB) ice edge vs AMSR sea ice concentration (LEFT) 

and QSCAT ice brightness (RIGHT) 
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Figure 28 – QSCAT KNMI (1.5 dB) ice edge vs AMSR sea ice concentration (LEFT) 

and QSCAT ice brightness (RIGHT) 
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Figure 29 – QSCAT KNMI (1.5 dB) ice edge vs AMSR sea ice concentration (LEFT) 

and QSCAT ice brightness (RIGHT) 
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Figure 30 – QSCAT KNMI (1.5 dB) ice edge vs AMSR sea ice concentration (LEFT) 

and QSCAT ice brightness (RIGHT) 
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Figure 31 – QSCAT KNMI (1.5 dB) ice edge vs AMSR sea ice concentration (LEFT) 

and QSCAT ice brightness (RIGHT) 
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Figure 32 – QSCAT KNMI (1.5 dB) ice edge vs AMSR sea ice concentration (LEFT) 

and QSCAT ice brightness (RIGHT) 
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th
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Figure 33 – QSCAT KNMI (1.5 dB) ice edge vs AMSR sea ice concentration (LEFT) 

and QSCAT ice brightness (RIGHT) 
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Figure 34 – QSCAT KNMI (1.5 dB) ice edge vs AMSR sea ice concentration (LEFT) 

and QSCAT ice brightness (RIGHT) 
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th
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Figure 35 – QSCAT KNMI (1.5 dB) ice edge vs AMSR sea ice concentration (LEFT) 

and QSCAT ice brightness (RIGHT) 
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th
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Figure 36 – QSCAT KNMI (1.5 dB) ice edge vs AMSR sea ice concentration (LEFT) 

and QSCAT ice brightness (RIGHT) 
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th
 2007 

 

Figure 37 – QSCAT KNMI (1.5 dB) ice edge vs AMSR sea ice concentration (LEFT) 

and QSCAT ice brightness (RIGHT) 
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6 Summary and conclusions 
 

In this report, we describe the implementation of a Near-Real Time sea ice detection algorithm using 

SeaWinds backscatter data. Well beyond the threshold-based contrasts between sea ice and ocean 

backscatter properties exploited in earlier algorithms, the KNMI Bayesian approach uses full geophysical 

model functions to discriminate sea ice from water returns. The fitted Ku-band ocean wind and sea ice 

models for SeaWinds, together with their measurement noise characteristics, are employed for sea ice 

detection. The normalized distances given by MLE residuals to the respective ocean and sea ice GMF 

manifolds are converted into sea ice and ocean wind conditional probabilities, and these are combined into 

a posterior probability using a Bayesian approach. The SeaWinds KNMI algorithm proves to be less noisy 

than the existing SeaWinds BYU algorithm and adjusts better to our primary validating reference (AMSR-

NT2 sea ice concentrations) during the fall and winter months. The performance of the KNMI Bayesian 

algorithm during the spring and summer months has been validated using higher resolution MODIS and 

ASAR imagery, indicating substantial errors in AMSR NT2 sea ice extents during the melt season, which 

are related to the presence of lower concentration and water saturated sea ice in the marginal zones. The 

KNMI Bayesian algorithm provides a rather conservative definition of sea ice edge, more in line with that 

provided by ship observations and well-suited for applications that require reliable masking of sea ice all 

year round.  

 

Aspects to be further elaborated include the determination of sea ice concentrations from conditional sea 

ice probabilities and the creation of a historic long-term record of QUIKSCAT sea ice extents from 

archived data. 
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Appendices 
 

Appendix A 

 

Empirical Ku-Band Ocean GMF (NSCAT2) 

 

  

 

 

Figure A1 – Empirical Ku-Band GMF (a.k.a. NSCAT2) 
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Appendix B1  

 

Linear fits to sea ice backscatter (using BYU masks) Arctic  
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Appendix B2  

 

Linear fits to sea ice backscatter (BYU masks) Antarctic  
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Appendix C1  

 

Scatter distribution – Distances to linear ice model (in dB space) 

 

Arctic 
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Appendix C2 

 

Scatter distribution – Distances to linear ice model (in dB space) 

 

Antarctic 
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