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Abstract 

A novel approach to infer surface soil heat fluxes from measured profiles of soil temperature, 

soil heat flux, and observations of the vegetation canopy temperature and the incoming short 

wave radiation, is evaluated for the Cabauw measurement facility in the Netherlands. The 

approach is a variational data-assimilation approach which uses the applied measurements to 

optimize on a daily basis parameter values of a model that describes the heat transport 

between the vegetation canopy and the surface and within the soil column. Inserting error 

characteristics that are either inferred from the field data itself or derived from literature, leads 

to valid estimates of the cost function for about 100 days in the year 2003. It appears that the 

approach gives values of the model parameters that compare well to values derived from 

literature, though at the end of 2003 values for the soil conductivity and the volumetric heat 

capacity of the soil start to differ from the literature values, possibly to specific soil 

characteristics and the extreme dryness of the summer of 2003. It appears that the model gives 

estimates of the surface soil heat flux that compare well with estimates using the currently 

operational Lambda approach, provided that the latter is adapted to account for the 

disturbance of the soil heat flux at the locations of the heat flux plates. Only when the surface 

soil heat flux is very small or very large, the new approach gives estimates of the surface soil 

heat flux that differ from the Lambda-approach.
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1. Introduction 

The soil heat flux quantifies transport of heat through planes perpendicular to the soil 

surface. At the surface it quantifies the energy transport (positive downward) through the 

interface between the air-vegetation continuum and the soil. The thus defined surface soil heat 

flux ( 0G ) is in balance with the net radiation ( NR ) and the atmospheric transport (positive 

upward) of sensible ( H ) and latent heat ( LE ) (see Stull 1988).  

During daytime and for vegetated surfaces 0G  is relatively small, about 10% of  NR  

(De Bruin and Holtslag 1982; Stull 1988). For sparsely vegetated and non-vegetated surfaces 

in semi-arid regions 0G  becomes a more important component of the surface energy budget 

(SEB) (Passerat de Silans et al. 1997; Heusinkveld et al. 2004). Also, during night time 0G  is 

important, because H and LE  are in nocturnal conditions much smaller than during daytime. 

Consequently 0G  plays a significant role in the development of stable boundary layers (Van 

de Wiel et al. 2002) and in fog (Duynkerke 1991) and dew formation (Garrat and Segal 1988). 

Local measurements of the soil heat flux at certain depths are obtained using heat flux 

plates (Portman 1958). To determine 0G  heat flux plates should be placed very close to the 

surface. This approach is however only applicable when a sensor is used which thermal 

properties are comparable to the thermal properties of the soil (Mayocchi and Bristow 1995).  

Using such a configuration, Heusinkveld et al. (2004) were able to measure the soil heat flux 

in the Negev desert.  

In general, values of the thermal properties of the soil differ from thermal properties of 

heat flux plates that are used at measurement sites. 0G  is then inferred from a combination of 

heat flux plates that are placed at depths that are deeper than a few centimeters, and one or 

more soil temperature sensors. The estimation of 0G  involves an extrapolation towards the 

surface for which three methods are available:  

1. the calorimetric method (Fuchs and Tanner 1968; Massman 1992; Heusinkveld et al. 

2004), in which 0G  is calculated by integrating the one-dimensional heat conduction 

equation between the surface and the installation depth of the heat flux plate; 

2. the harmonic analysis method (Van Wijk and de Vries 1963; Massman 1992; 

Heusinkveld et al. 2004), in which the 0G  follows from extrapolated harmonic 
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functions which are fitted to the vertical profile of measured soil heat fluxes and soil 

temperatures; 

3. the Lambda method (De Bruin and Holtslag 1982), in which 0G  is calculated as the 

product of the observed surface gradient  of soil temperature and an apparent thermal 

soil conductivity at the surface, which is derived from harmonic analysis of the 

observed soil heat fluxes and the observed surface temperature gradient. 

Major disadvantage of the calorimetric method is that this method requires detailed 

knowledge of the thermal properties of the soil. Most notably the volumetric heat capacity of 

the soil, but also the soil heat conductivity of the soil as this is an important parameter for 

relating the heat flux over the plate to an undistorted soil heat flux (Philip 1961). In contrast, 

the harmonic analysis method does provide estimates of the thermal properties of the soil, 

provided that at least two measurements of the soil temperature are taken in conjunction with 

at least one measurement of the soil heat flux. Major disadvantage of this method is that it 

requires the slowest Fourier mode to be identifiable and measureable. Furthermore, it cannot 

calculate temporal variations in the soil characteristic that are more rapid than the identified 

slowest cycle. Major disadvantage of the Lambda method is that it determines the gradient at 

the surface by means of the difference between a measurement at the surface and a 

measurement at a few centimeters below the surface. In some situations, this might lead to 

underestimations or overestimations of the gradient at the surface.  

In this paper, we pursue the use of an explicit model for the diffusion of heat from the 

vegetation canopy to the soil surface and within the soil column in conjunction with a 

variational data-assimilation technique. Using variational data assimilation techniques has a 

long history in weather forecasting (Daly 1991). Recently their application has been extended 

to 1D column models of the atmosphere (Lopez et al. 2006; Margulis and Entekhabi 2001) 

and land surface models (Boni et al. 2001). Main advantage of this method is that it provides 

optimal estimates of the soil characteristics in an user-defined data-assimilation window.  

Other advantages over the traditional methods to estimate the surface soil heat flux are that:  

• the system provides a more flexible framework in which it is easy to incorporate 

different type of observations that contain information on the thermodynamic state of 

the soil in a consistent way; 
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• the system is able to incorporate instrumental corrections that depend on the thermal 

parameters of the soil;  

• an objective quality assessment of the system and different sensors that are used 

within  the system is possible; 

• the system can be extended to incorporate known inhomogeneities of  the soil. 

The novel method is evaluated for measurements taken during the year 2003 at the 

Cabauw measurement facility in the Netherlands (Van Ulden and Wieringa 1996).  

In section 2 the variational data-assimilation framework is described. Section 3 deals with 

the measurements that are used in the variational data-assimilation framework to estimate the 

surface soil heat flux. In section 4 the numerical setup for the validation study is given. In 

section 5, results of the validation study are presented and discussed.  Finally, section 6 

summarizes and concludes. 

2. Variational data assimilation method 

 

a. Forward model 

The forward model consists of model equations for the system that is depicted 

schematically in Fig. 1. Core of the system is the soil column, which thermodynamic state is 

characterized by the vertically and temporally varying soil temperature, denoted by T . The 

soil temperature is found by integrating the one-dimensional diffusion (Fourier) equation 

from a starting time 0tt =  at which an initial profile for T  is specified: 
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where pc  is the volumetric heat capacity of the soil, λ  is the soil heat conductivity, z is the 

depth below the surface, and )(1 zf gives the initial profile of T .  Applying Eq. (1a) requires 

specification of boundary conditions at the top and bottom of the soil column. The upper 

boundary condition at the top of the soil column is formed by the surface soil heat flux. The 

surface soil heat flux follows from the transport of heat between the vegetation canopy and 

the surface of the soil, the long wave radiative flux difference between the vegetation canopy 
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and the soil surface, and the incoming short wave radiation that is absorbed at the soil surface. 

It is parameterized according to the formulation given by Duynkerke (1992), which translates 

to a Robin boundary condition for Eq. (1a) that reads as: 
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where Λ  is the skin conductivity, vT  is the vegetation canopy temperature, τ  is the 

transmissivity of the vegetation, and inK  is the incoming short wave radiation flux. At the 

lower boundary, a Dirichlet boundary condition is implemented: 

( ) )(, 2 tftzT b = ,                                (1d) 

where bz  denotes the depth at which the bottom of the soil column is located, and )(2 tf  

specifies the soil temperature at the bottom of the column. 

b. Optimization of parameters 

To solve the system described by Eqs. (1a) to (1d) values for the parameters λ , pc , Λ , 

and τ  need to be specified. These are found using a variational data assimilation framework. 

Within this framework, we seek statistically optimal values for these parameters as a function 

of misfits between uncertain measurements and simulated equivalents, and uncertain prior  

parameter value estimates. Assuming that both measurements and prior value estimates can 

be considered as realizations drawn from a Gaussian distribution, deriving statistically 

optimal values for the parameters is equal to finding parameter values that minimize a cost 

function that reads:  

( ) ( ),);,(,();,(,()()( 11 ppMZppMZpppp pp tzTCtzTCJ
vp

T
r

T
r −−+−−= −−                              (2) 

where p  is the vector containing the parameter values: ( )T
p τcλ ,,, Λ=p ; prp is the vector that 

contains the prior estimates of the parameter values: ( )T
prprprpprpr τcλ ,,, , Λ=p , where prλ is 

the prior value of λ , prpc ,  is the prior value of pc , prΛ is the prior value of Λ  , and prτ is the 

prior value of τ ; pC  is the error-covariance matrix  of the prior values;  Z  is the vector 

containing the measurements; M  is the vector that gives the modeled equivalents of the 

measurements that results from propagating the forward model, and vC  is the error-

covariance matrix of the measurements. 
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To add the forward model as a hard constraint,  its equations are adjoined to the cost 

function, forming the Lagrange function (Margulis and Entekhabi 2001,2004): 
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where L  is the Lagrange function,  ft is the end time of the integration (end time of data-

assimilation window), and ),(* tzµ  is the Lagrange multiplier function. 

Under the constraint of the forward model, minimizing the cost function is 

mathematically equivalent to minimizing the Lagrange function. The minimal value is 

obtained by setting the derivatives of the Lagrange function with respect to the state variables, 

the Lagrange multiplier function and the model parameters to zero: 

( ) ( ) ( ) ./and,0),(/,0),(/ * 0p =∂∂=∂∂=∂∂ TLtzLtzTL µ           (4) 

Differentiating the Lagrange function with respect to the Lagrange multiplier function, 

yields the forward model as given by Eqs. (1a) to (1d).  Differentiating the Lagrange function 

with respect to the soil temperature field yields the adjoint model, which is given by: 
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The adjoint model is a terminal value problem. For given values for the skin conductivity, the 

soil heat conductivity, the volumetric heat capacity of the soil, and the transmissivity of the 

vegetation, the adjoint variables are found by integrating Eq. (5a) backward in time, using Eq. 

(5b) as terminal condition, and Eqs. (5c) and (5d) as boundary conditions. 

Finally, differentiating the Lagrange function with respect to the model parameters 

yields: 
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Eqs. 1a to 1d, 5a to 5d, and 6a to 6d form a closed set of differential equations that can 

be solved. This yield values for soil temperature fields, Lagrange multiplier fields and model 

parameters that minimize the Lagrange function.  

c. Numerical implementation 

Obtaining analytical solutions for both the forward model and the adjoint model is not 

straightforward. The partial differential equation describing the forward model is 

homogeneous, but it includes inhomogeneous initial and boundary conditions. The adjoint 

model has homogeneous terminal and boundary conditions, but the partial differential 

equation describing its evolution includes non-linear source terms. Because in addition Eqs. 

(6a) to (6d) depend non-linearly on the model parameters, a numerical approach has been 

adopted to find optimal parameters.  

First, the forward model is solved using a Crank-Nicolson finite difference scheme. 

This leads to a vector propagation equation that calculates the temperature for a set of discrete 

depths and time steps starting from a discretisized initial condition. Second, a discrete 

formulation of the Lagrange function is derived, whereby instead of the continuous forward 

model, the discretisized forward model is added as a constraint.  Third, the discrete adjoint 

model is derived by differentiating the discrete formulation of the Lagrange function to the 

different components of the discrete temperature vector.  Last,  the discrete formulation for 

the Lagrange function is differentiated with respect to the model variables, yielding discrete 

equivalents of the Eqs. (6a) to (6d). Our approach can be identified as the adjoint of finite 

difference approach, as outlined by Sirkes and Tziperman (1997). The resulting equations are 

given in the appendix. Eqs. (A.1a) and (A.1b) describe the finite difference form of the 
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forward model, Eqs. (A.3a) and (A.3b) describe the resulting discrete adjoint model, while 

Eq. (A.4) summarizes the derived finite difference equivalents of Eqs. (6a) to (6d).  

Because Eqs. (6a) to (6d) and their numerical equivalents represented by Eq. (A.4) are 

non-linear in the model parameters, finding the minimal values for the model parameters 

requires an iterative procedure. We follow Margulis and Entekhabi (2004) and employ a 

steepest descent technique to minimize L with respect to the control variables.  This method is 

summarized in Algorithm 1, in which q  refers to the iteration step counter , qγ  is the step size 

matrix, ε  is the scalar convergence factor, while the subscript refers to the iteration step 

under scope. 

 

Algorithm 1: 

 

1 set q=1; 

2. set prq pp = ; 

3. calculate Nitiq ,..3,2,1),( =T  using Eqs. (A.1a) and (A.1b); 

4. calculate Nitiq ,..3,2,1),( =µ using Eqs. (A.3a) and (A.3b); 

5. calculate 
q

L
p∂

∂ using Eq. (Eq. A.4); 

6. calculate 

T
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q
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7. set q=q+1 

8. repeat steps 3 to 7  until ε<

∂
∂

∂
∂

1p

p

L

L

q  

 

3. Observations 

 

a. General characteristics  
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The tower at the Cabauw measurement facility site is located at '564,'5851 oo  , in the 

central Netherlands. It consists of flat grass meadows and ditches, surrounded by a flat area 

with villages, orchards and lines of trees (Beljaars and Bosveld 1997).    

Jager et al. (1976) determined the soil in the Cabauw area using laboratory analysis of 

soil samples and inspection of a soil column in a 120-cm deep pit (see Beljaars and Bosveld 

1997). The soil in Cabauw consists, from the surface downwards, of a 2 cm turf layer,  a 18 

cm upper clay layer that is relatively rich in organic matter, a 42 cm (from 18 cm to 60 cm) 

thick lower clay layer that is relatively poor in organic matter, a 15 cm thick mixed clay/peat 

layer, while underneath the soil consists of peat. Based on these characteristics the upper 18 

cm of the upper layer is identified as B11 (fairly heavy clay) in the soil type classification for 

the Netherlands as proposed by Wösten et al. (1994).  

 

b. Soil heat flux 

In Cabauw, observations of the soil heat flux have been obtained at a so-called soil-

terrain, located at about 100 m South of the main tower.  Following Philip (1961), the soil 

heat flux follows from the heat flux that passes through a horizontally placed circular plate 

according to: 
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GG                                                                                                  (7) 

where G is the soil heat flux, pG is the heat flux through the plate, pT  is the thickness of the 

plate, pd is the diameter of the plate, and pλ  is the heat conductivity of the plate material. The 

heat flux through the plate is calculated as the product of the conductivity of the plate and the 

temperature gradient over the body of the plate. The latter is determined by the ratio of the 

temperature difference over the plate, which is measured using a thermopile, and the thickness 

of the plate.   

At the Cabauw site six WS31S soil heat flux plates, manufactured by TNO-Delft are 

installed. The body of these plates consists of ceramic-plastic material, has a diameter of 110 

mm, while it is 5 mm thick. These plates are buried at depths of approximately 5 and 10 cm 

below the surface, located at the three vertices of an equilateral triangle. First, for each depth 

and at each vertex 10-minute averages of the soil heat flux are obtained.  Second, a linear 

average of the fluxes at the three vertices is performed so that average heat fluxes over the 

soil-terrain at the Cabauw site at depths of approximately 5 cm and 10 cm are obtained.   
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c. Soil temperature 

Ten-minute averaged profiles of soil temperatures are measured at the centre of the 

equilateral triangle used to determine the average soil heat flux profile. The thermometers are 

KNMI home-made and consist of 35 cm long Nickel needle with a temperature-dependent 

electrical resistance around 500 Ohm.  The thermometers were placed at depths of 

approximately 0.004 m, 0.02 m, 0.04 m, 0.08 m, 0.12 m, 0.20 m,  0.3 m and 0.5 m. Depths 

were obtained using a metal plate at the grass layer at the edge of the pit, whereby the lower 

side of the plate served as the zero reference level.  

 

d. Incoming short wave radiation, vegetation canopy temperature, and soil moisture content 

At the Cabauw site, 10-minute averages of the incoming short wave radiation fluxes 

are saved. Incoming short wave radiation is measured at the radiation field, which is located 

about 20 m away from the soil site. Incoming short wave radiation is measured at a height of 

1.5 above the surface using a ventilated and heated Kipp & Zn CM11 pyranometer.  

The vegetation canopy temperature is estimated from ten-minute averages of the 

infrared radiation temperature, as measured with a Heimann K-15-85 radiation thermometer. 

The thermometer is mounted at 2 m and it looks downward on the soil site with a M6 lens 

with a field of view of 40o. The field of view is thus a circle with a diameter of about 1.5 m, 

which is centered around the location where the soil temperature profile is taken. 

Soil water content is measured at depths of 0.03 m and 0.08 m below the surface of the 

soil-terrain. It is measured using TDR-sensors manufactured by Campbell Scientific. In 

Cabauw, sensor type CS615 is used, which has a rod length of 0.3 m, while the width between 

the rods is 0.0032 m. For calibration the standard calibration function provided by the 

manufacturer is used. It should be noted that calibration for the (clayey) soil found at Cabauw 

is uncertain. Averages over 10 minutes are saved. 

 

4. Setup of study 

a. General numerical setup and assimilation window 

We have run the (adjoint) model for 2003.  As the soil type changes at a depth of 0.18 

m below the surface, the bottom of the modeled soil column is chosen to be at 0.12 m 

( 12.0=bz  m).  z∆ is set at 0.005 m.  To optimize the involved parameters a data-assimilation 
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time window of 24 hours is used. Each 24 hour period starts at 0:00 UTC.  The model is 

initialized by  linear spatial interpolation of the first ten-minute averaged temperature profile 

after 0:00 UTC. t∆  is set at 600 s, implying that 144=N . At the lower boundary, the model 

is forced by the measured ten-minute averages of the soil temperature at bz . At the upper 

boundary of the soil column, the model is forced using the ten minute averages of the 

temperature measured by the Heimann thermometer, and ten-minute averages of the incoming 

short wave radiation flux.  

b. Parameter prior values and uncertainty 

Because a time-assimilation window of 24 hour is adopted, 24 hour averages for the 

control variables are required. As prior values for the control variables for each 24 hour 

period, their values on the previous 24 hour period are used.  Prior uncertainties in these 

estimates are assumed to be uncorrelated. Off-diagonal elements of a priori error-covariance 

matrix are thus set to zero. Concerning the diagonal elements of the error-covariance matrix 

we assume that the error in each parameter is 50 % of the prior value: ( )22/)1,1( prp λC = , 

( )2
, 2/)2,2( prpp cC =  , ( )22/)3,3( prpC Λ= , and ( )22/)4,4( prp τC = .  

At the beginning of the year 2003, the heat conductivity of the soil is initialized using 

the method as described by Johansen (1975) (see also Peters-Lidard et al. 1998). For the 

porosity of the B11 clay soil a value of  0.6 is adopted (Beljaars and Bosveld 1997), while the 

quartz content of the soil at Cabauw is assumed to be 0.1. The equation for the prior value of 

the soil heat conductivity at the beginning of 2003 then reads (Peters-Lidard et al. 1998): 

13.01
6.0

log03.1 +






 +





= θλpr   W m-1 K-1,                                                                            (8) 

where θ  is the soil moisture content. Here, we estimate the soil moisture content as the 

average of the daily averaged soil moisture content at 0.03 m, and the daily averaged  soil 

moisture content measured at 0.08 m.  For the volumetric heat capacity, the prior value at the 

beginning of 2003 is calculated as: 

66
, 10*2.4*10*0.2*4.0 θc prp +=   J m-3 K-1.                                                                         (9) 

Note that the heat capacity of air has been neglected in this formulation.  For Λ  we adopt a 

prior value  of 3 W m-2 K-1   at the beginning of the year, while τ is initialized at a prior value 

of 0.05 (Duynkerke 1992).   
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c. Applied measurements and uncertainty 

Ten-minute averages of the soil temperature and soil heat flux measurements are 

available. As the first ten-minute average after 0:00 UTC is used for initialization, at each 

depth only 143 ten-minute averages of the soil temperature profile and the soil heat flux 

profile are independent measurements that can be used to optimize the parameters. Though 

the measurements can be assumed independent,  modeling errors might be biased leading to 

time correlations between misfits between measurements and modeled equivalents (Bosveld 

and Bouten 2001). To mitigate this, we only use measurements taken at t=3:00 UTC, 6:00 

UTC, 9:00 UTC, 12:00 UTC, 15:00 UTC, 18:00 UTC and 21:00 UTC, and 24:00 UTC. Thus, 

the observations obtained at each depth and at each time step are assumed independent and 

the off-diagonal elements of the matrix vC  are zero.  The diagonal elements  refer to the 

variance associated with the error in the soil temperature measurement and soil heat flux 

measurements that results from both instrumental errors and representation errors.  

To calculate the variance of each ten-minute average of the  heat flux through the 

plate, measurements at the three corners of the triangle are available. For each time step, 

however, only three observations are available.  Therefore, for each ten-minute average, the 

variance is taken to be equal to the daily averaged variance, which is given by: 

( ) ( ) ( )( )

( ) ( ) ( )( ),)(10)(10)(10)(10)(10)(10
286
1)10(

;)(05)(05)(05)(05)(05)(05
286
1)05(
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where )05(GCv  is the element of vC  that refers to the daily averaged variance of the plate 

heat flux measurements taken at approximately 0.5 m, )10(GCv  is the element of vC  that 

refers to the daily averaged variance of the plate flux measurements taken at approximately 

0.1 m, i denotes the index of the ten-minute averages; 05GS , 05GW , and 05GE denote the 

plate heat flux measurements taken at 0.5 m at respectively the Southern, Western and Eastern 

vertex of the equilateral triangle; 10GS , 10GW , and 05GE denote the plate heat flux 

measurements taken at 0.1 m at respectively the Southern, Western and Eastern vertex of the 

equilateral triangle; 05G  denotes the average plate heat measurement at 0.5 m; 10G  denotes 

the average  plate heat flux measurement at 0.1 m. 
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For the soil temperature, only one profile is available. It is therefore not possible to 

estimate the variance of the soil temperature among different soil thermometers. To estimate 

the uncertainty in measured soil temperatures, data obtained by Scharringa (1976) are used. 

Scharringa measured the standard deviation of the measured soil temperature among 25 soil 

thermometers located at equidistant locations on a 18 m x 18 m grid, located in De Bilt in the 

Netherlands.  He found that the standard deviation ranges from a value of about .3 K in winter 

to 1.1 in July. Here, we estimate the standard deviation of the soil temperature as: 

,
365

)104(2sin4.7.)(
2















 −+= dnπTCv                                                                       (11) 

where  )(TCv  are the elements of vC  that refer to the variance of the error in the soil 

temperature measurements at the different depths, dn is Day Of Year (DOY).  Also, only 

temperatures taken at 03:00 UTC, 06:00 UTC, 09:00 UTC, 12:00 UTC, 15:00 UTC, 18:00 

UTC, 21:00 UTC, and 24:00 UTC are used. 

d. Minimization algorithm parameters 

The steepest descent technique requires the specification of the step size matrix. It is 

calculated as (Margulis and Entekhabi 2004): 

pq Cηγ = ,                                                                                                                               (12) 

where η is the scalar step size, which is set to a constant value of 1E-4. For the convergence 

factor, ε , we adopt a value of 1E-3. 

 

5.  Results and discussion 

Our intent is to evaluate the performance of the proposed variational data-assimilation 

approach in providing estimates of 0G  as a term of the SEB. First,  the approach is analyzed 

and evaluated by examining the characteristics of the cost function that it provides. Second,  

important side-products such as the optimal values for the model parameters are presented 

and discussed. Third, estimates of the surface soil heat flux obtained using the approach 

proposed in section 2 are compared to estimates of the surface soil heat flux obtained by the 

Lambda-approach. Last, the effect of using the proposed approach to estimate the surface soil 

heat flux on the SEB is explored.  
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a. Cost function characteristics 

The approach as presented in section 2 has been applied for the entire year 2003. It 

appears that for 2003 there are 223 days for which all the data described in section 3 are 

available. For these days in Fig. 2  the posterior values of the cost function ( postJ ), i.e. the 

value of the cost function after optimizing is plotted against the prior value of the cost 

function ( priorJ ), i.e. the value of the cost function when it is evaluated using the prior values 

for the parameters. Also shown are values of 33.1 and 65.2, which define the 5 % and 95 % 

quantile of the Chi-square distribution with a number of degrees of freedom of 48.  

From Fig. 2 it appears that on average postJ  is about 70 % of priorJ . For values of priorJ  

lower than 35,  the difference between the prior cost function and the posterior cost function 

is relatively small. In these cases, the observations contain only little extra information on the 

model parameters. For higher values of priorJ  the difference between priorJ  and postJ  becomes 

much larger indicating that in these cases the observations put a much stronger constraint on 

the model parameters.  Note that on some days, the reduction of postJ  with respect to priorJ  

exceeds 50 %. As Margulis and Entekhabi (2004) argued,  values of postJ  on each day can be 

used to evaluate the validity of the prescribed error characteristics. To understand this, it is 

important to acknowledge that for independent observational errors, postJ  is the sum of 48 

(8x6+4-4) independent Gaussian distributions. As a result, it should theoretically be 

distributed according to a Chi-square distribution with 48 degrees of freedom (Menke 1989; 

Margulis and Entekhabi 2004).  Such a distribution has a mean of 48 and a standard deviation 

of 9.8.  If the posterior cost function is much smaller than 48, this suggests that either the 

prescribed observation error characteristics overestimate the uncertainty in the observations, 

or  errors among different observations show correlations that are not accounted for.  If the 

posterior cost function is much larger than 48, the prescribed uncertainty might be too small. 

Thus, Margulis and Entekhabi (2004) assessed the statistical confidence in the posterior 

parameter estimates and the statistical assumptions in the  variational data-assimilation setup 

by evaluating whether the value of the posterior cost function was within one or two standard 

deviations away from the mean value. We follow a slightly different approach and validate 

the posterior cost function by evaluating whether it is within the 90 % confidence interval of 

its theoretical probability distribution. As such,  posterior cost functions are only valid for 
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days in which the posterior cost function lies between 33.1 and 65.2. The 101 days for which 

this condition is met will be further analyzed, while the remaining days are not used.   

For the selected days we show in Fig. 3  the contribution of different components to 

the entire posterior cost function (Eq. (2)) as given in Fig. 2. Components include a 

component penalizing deviations from the prior values, denoted by apJ  (Fig. 3a),  a 

component penalizing deviations from the observed soil temperatures, denoted by TJ  (Fig. 

3b), and a component penalizing deviations from the observed soil heat fluxes, denoted by GJ  

(Fig. 3c). It appears that GJ  dominates the posterior cost function throughout 2003. During 

the entire year,  GJ  scatters between a value of 20 and 60, with an average value of about 40. 

In contrast, TJ  is smaller, ranging from a value of about 13 around DOY 2003 50 and 350 to 

a value of about 4 around DOY 2003 200. This is surprising as the data-assimilation cycle 

uses on each day 32 soil temperature measurements and 16 soil heat flux measurements. This 

suggests that  the prescribed uncertainty in the soil heat flux as derived using Eq. (10) 

underestimates the real uncertainty in the soil heat flux measurements, while the prescribed 

uncertainty in the soil temperature measurements as derived using Eq. (11) overestimates the 

real uncertainty in the soil temperature measurements. Also, TJ  has a clear seasonal cycle, 

with values of about 13 in winter conditions, around DOY 200 50 and 350, and values of 

about 3 in summer conditions, around DOY 2003 200.  Interestingly, the observed seasonal 

cycle in the values of the posterior cost function, is reflected in the prescribed seasonal cycle 

in the standard deviation as inferred from Scharringa (1975). In winter conditions, Eq. (11) 

predicts relatively low values of the standard deviation leading to high values of the cost 

function or given discrepancies between observed soil temperatures and modeled equivalents. 

In summer conditions, Eq. (11) predicts relatively high  values of the standard deviation 

leading to low values of the cost function or given discrepancies between observed soil 

temperatures and modeled equivalents. This suggests that the prescribed seasonal cycle as 

inferred from Scharringa (1975) overestimates the real seasonal cycle in the standard 

deviation.   

apJ is very small. Most points are very close to zero, though especially at the end of 

2003 values of 0.8 are obtained.  Apparently,  the prior estimates only play a small role in 

determining the final estimates of the parameter values. Their prime role is to serve as a 

starting point for the iteration in algorithm 1.    
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b. Control parameter values 

Fig. 4 shows posterior values of  the soil heat conductivity, denoted by postλ  (Fig. 4a), 

the volumetric heat capacity, denoted by postpc ,  (Fig. 4b), the skin conductivity, denoted by 

postΛ  (Fig. 4c), and the transmissivity of the vegetation, denoted by postτ  (Fig. 4d). Also, in 

Figs. (4a) and (4b) values for λ  and pc  are given that are calculated using respectively Eq. 

(8) or Eq. (9) and the average of the daily averaged soil moisture contents at 0.03 m and 0.08 

m, The temporal evolution of the soil moisture at 0.08 m is not given as its calibration is 

uncertain. Its temporal evolution  can be derived from the volumetric heat capacity as 

calculated using Eq. (9) as this quantity is linearly related to the soil moisture content.   

It appears that from DOY 2003 50 to DOY 2003 230, postλ  scatters around 0.9 W m-1 

K-1. This value is comparable to the value derived from Eq. (8), though the latter shows 

somewhat less inter-diurnal variation.  At about DOY 2003 230 postλ  decreases toward a 

value of  about 0.6  W m-1 K-1, around which value it scatters from DOY 2003 230 onwards.  

In contrast, the value for λ derived from Eq. (8) reaches a minimum value of about  0.8 W m-1 

K-1 around DOY 2003 230, while it increases again to a value of about 1.0 W m-1 K-1 at DOY 

2003 350.   

The volumetric heat capacity follows a similar pattern as the soil heat conductivity. 

From DOY 2003 50 to DOY 2003 230, postpc ,    is relatively close to the value for pc derived 

from Eq. (9). Both decrease from a value of about 3.3 MJ m-3 K-3 at DOY 2003 50 to a value 

of about 1.7 MJ m-3 K-3 at DOY 2003 230. From DOY 2003 210 onwards postpc ,  differs 

considerably from the value for pc  derived using Eq. (9). From DOY 2003 210 to DOY 2003 

230,  postpc ,  decreases further to a value of about 1.5 MJ m-3 K-3, after which it increases 

sharply toward a value of about 2.7 MJ m-3 K-3  from DOY 2003 260 to DOY 2003 350.  In 

contrast, the value for pc derived from Eq. (9) reaches a minimum value of about 1.7 MJ m-3 

K-3 around DOY 2003 230, after which it increases toward a value of about 2.5 MJ m-3 K-3 at 

DOY 2003 350. 

 Similar to postλ and postpc , , the temporal variation of postΛ , shows a sharp change at 

DOY 2003 230. Before DOY 2003 230 postΛ  scatters around a value of about 4.0 W m-2 K-1, 
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whereas from DOY 2003 230 onwards, postΛ  scatters around a value of about 3.0  W m-2 K-1. 

For postτ , there is no clear regime change at DOY 2003 230. Throughout 2003 it decreases 

steadily from a value of about 0.03 at DOY 2003 50 to a value of about 0.005 at the end of 

2003. 

 Parameter τ is only a function of the vegetation cover and the characteristics of the 

incoming short wave radiation. Parameters λ  and pc are mainly soil characteristics, while Λ  

is both influenced by the characteristics of the (top) soil, and the temperature distribution 

within the vegetation cover. Changes in the soil characteristics are thus the most probable 

explanation for the regime change that is observed for postλ , postpc ,  and postΛ  at DOY 2003 

230.  A possible explanation for the regime change is the well-known property of a clay soil 

to crack in very dry conditions such as experienced during the summer of 2003 (Wallender et 

al. 2006). In very dry conditions cracking leads to the appearance of fissures in the clay soil 

that are filled with air which has both a very low conductivity and a very low volumetric heat 

capacity. Hence, the very low posterior values of the soil heat conductivity, the volumetric 

heat capacity and the skin conductivity from DOY 2003 230 to DOY 2003 250. From DOY 

2003 250 onwards, the soil starts to wet again due to precipitation (note the increasing value 

of soil heat conductivity as derived from Eq. (8)).  In these conditions, the fissures are filled 

with water which has a very large volumetric heat capacity, but a conductivity that is lower 

than the surrounding soil. Hence, the relatively large values of the volumetric heat capacity 

and the relatively low values of the soil heat conductivity and the skin conductivity  from 

DOY 2003 250 onwards. It should however be noted that the current method assumes a 

homogeneous soil in which the vertical heat transfer can be described using the diffusion 

equation as given in Eq. (1a). Obviously, this assumption is violated when the clay soil cracks 

and another much more complex formulation should be applied to calculate the heat transfer 

within the soil column (Wallender et al. 2006).   

c. Surface soil heat flux 

In Fig. 5 ten-minute averages of 0G estimated by the current approach are compared to 

ten-minute averages of 0G  estimated using the Lambda-approach as described by De Bruin 

and Holtslag (1982). Here, we have adapted  the original approach described by De Bruin and 

Holtslag (1982) to account for the Philip (1961)  correction (Eq. (7)) on the soil heat flux 

estimates. Unfortunately, unlike the new method, the Lambda method does not yield values 
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for λ  that are representative for the soil column between the surface and 0.12. To account for 

the Philip correction, a constant “representative“ value for λ  of 0.9 W m-1 K-1  is adopted.  

Also shown in Fig. 5 is the 1:1 line.  It appears that in conditions where 0G  derived using the 

new approach is between –40 W m-2 and –20 W m-2 (directed upward), the new approach 

gives lower values of 0G  than the adapted Lambda approach. When 0G  as estimated by the 

new approach is –40 W m-2 , while the adapted Lambda approach gives values of about –30 

W m-2. When 0G  is between –20 W m-2 and 30 W m-2 (directed downward), the new 

approach gives estimates of the surface soil flux that are similar to the estimates: in these 

situations the points in Fig. 5 scatter around the 1:1 line. When 0G  is larger than 30 W m-2 

(directed downward), the  new approach gives lower estimates of 0G  than the adapted 

Lambda method: when 0G  as estimated by the new approach is 50 W m-2, the estimate 

obtained by the adapted Lambda approach is about 70 W m-2.  

 It appears that the underprediction of  0G  by the new approach with respect to the 

Lambda approach can be mitigated when only daytime values of measured ground heat flux 

and soil temperature profile obtained are assimilated into the model. Similarly, the 

underprediction of the ground heat fluxes by the new approach with respect to the Lambda 

approach can be mitigated when only nocturnal values of measured ground heat flux and soil 

temperature profile are assimilated into the model. Furthermore, using only daytime 

measurements leads to somewhat larger values of the skin conductivity than using nocturnal 

profiles only. This suggests that especially Λ shows a diurnal cycle that favors large surface 

soil heat fluxes during day time, and decreases surface soil heat fluxes in nocturnal 

conditions.  

The larger nighttime (negative) values of the surface soil heat flux as calculated using 

the novel approach result in a lower imbalance of the surface energy budget,  as can be seen in 

Fig. 6 where we plot for both the adapted Lambda approach (a.) and the new approach (b.) 

0G  against the measurements of (RN-LE-H).  It appears that for the Lambda approach, the 

estimated 0G is not equal to (RN-LE-H). When (RN-LE-H) is negative, the difference amounts 

to a maximum value of 25 W m-2, i.e. about 50 % of the value of (RN-LE-H)  at this point.  

For positive values of (RN-LE-H) the difference between the estimated surface soil heat flux 

and the (RN-LE-H) is about 100 W m-2.  The imbalance of the surface energy budget gets 

somewhat smaller when the novel approach to estimate the surface soil heat flux is used. 
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When (RN-LE-H) is positive however, there is still a large imbalance between the measured 

(RN-LE-H) and the determined surface soil heat flux. 

 

6. Summary and conclusion 

 Our aim was to present and evaluate the performance of a new method for  estimating 

the surface soil heat flux at the meteorological measurement facility at Cabauw in the 

Netherlands. The proposed method calculates the soil surface heat flux using an optimized 

land surface model that describes the transport of heat between the vegetation  and the soil 

surface, the transport of heat through the interface between soil and air/vegetation continuum, 

and the transport of heat within the soil column. The model is optimized using a variational 

data-assimilation framework in which for each day optimal values for the parameters are 

calculated as a function of misfits between 48 uncertain measurements and simulated 

equivalents, and 4 uncertain prior parameter value estimates. Boundary conditions for the 

model are the (radiative) temperature of the vegetation, the temperature measured at 12 cm 

below the surface, and the incoming short wave radiation at the surface.  

For the ground heat fluxes observational uncertainty is derived from the field 

measurements itself, while for the soil temperatures the observational uncertainty is assigned 

according to values for the lateral variations in the soil temperature found in literature 

(Scharringa 1975). Inserting the resulting values into the data-assimilation setup, it appears 

that the variational data-assimilation setup yields on 101 days values of the cost function that 

are between 33 and 67, the 90% confidence interval of a Chi square distribution with degrees 

of freedom is 48, the distribution that the cost function theoretically should follow assuming 

independent observational errors.  

As important evaluation products, the proposed approach yields values of the model 

parameter: the soil conductivity, the volumetric heat capacity of the soil, the skin 

conductivity, and the transmissivity of the vegetation. Up to DOY 2003 230, values for the 

soil conductivity and the volumetric heat capacity follow  theoretical values as derived from 

literature (Peters-Lidard et al. 1998). From DOY 2003 230 however deviations from the 

values derived from Peters-Lidard et al. (1998) start to occur, which is possibly due to the 

cracking of the clay soil in Cabauw.  

It appears that in general the proposed method gives estimates of the soil heat flux that 

are in good agreement with the currently operational Lambda approach, provided that the 
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Lambda approach is adapted to include a term to account for a correction term that translates 

the heat flux over a heat flux plate to a soil heat flux.  However, unlike the proposed approach 

which allows the incorporation of  instrumental corrections that depend on the thermal 

parameters of the soil , the correction cannot be extracted by the method itself, but has to be 

quantified separately. Unfortunately, the proposed method gives very large estimates of the 

surface soil heat flux in conditions where the soil heat flux is larger than about 50 W m-2, 

while it gives too small estimates when the soil heat flux is smaller than about -20 W m-2. It 

appears that these discrepancies are caused  by the lack of intra-diurnal variations in the skin 

conductivity in the proposed method. Therefore, it is recommended that the proposed 

approach is  further refined so that the skin conductivity is allowed to vary within the day.    

 The conclusion is that the proposed approach is a good candidate to replace current 

operational algorithms to infer the surface soil heat flux from measured soil temperature and 

soil heat flux profiles. Its main advantages are that 1) the prescribed error statistics can be 

evaluated objectively by studying the distribution and characteristics of the cost function, 2) 

the model can incorporate different measurements that have different error characteristics, and 

3) the model can include in a consistent way measurements that need corrections that depend 

on the modeled soil parameters themselves, as is the case for the soil heat flux plates. 

However, the current approach should be extended so that inhomogeneities of the soil as well 

intra-diurnal variations in the parameters can be accommodated. 
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Appendix 

Eqs. (1a) to (1d) are solved using a finite difference technique. Finite differencing implies that 

the soil temperature is represented by its values at a discrete set of points in space and time. 

Discretizing the initial conditions yields: 

( ) ,,...3,2,1),(, 10 MkzkftzkT =∆=∆                                                                                   (A.1a) 



 22

where z∆ is the vertical grid spacing, and zzM b ∆= / . For time integration of the values at 

discrete points in the vertical, the semi-implicit Crank-Nicolson technique is used, resulting in 

the following equation for the model given by Eqs. (1a) to (1d) (Press et al. 1986): 

( ) ( ) ,,...,2,1,0,)()(
2
1)( 11 NitttBtA iiii =++= ++ VVT T                                                (A.1b) 

where titti ∆+= 0 , A  and  B are M x M matrices controlling the propagation of the soil 

temperature, t∆ is the temporal grid spacing, N  is the number of time steps, )( itT  is a M x 1 

vector with elements ),(])[( iki tzTkt =T , and )( itV is a M x 1 vector that contains information 

on boundary conditions. Matrices A  and B are tridiagonal, implying that their elements are 

zero valued everywhere, except for the values on the main diagonal, the first diagonal below 

this and the first diagonal above this:  
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Using Eqs. (A.1a) and (A.1b) as the forward model as a hard constraint,  the discrete 

formulation of the Lagrange function becomes (Margulis and Entekhabi 2001,2004): 
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where dL is the discrete formulation of the Lagrange function, and )( itµ  is a M x 1 Lagrange 

multiplier vector. 

The minimal value of the Lagrange function within the finite difference framework is 

obtained by setting the derivatives of the Lagrange function with respect to the state variables, 

the Lagrange multipliers and the model parameters to zero: 

( ) ( ) ( ) 0p0µ0T =∂∂==∂∂=∂∂ T
d
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Differentiating the Lagrange function with respect to the Lagrange multipliers, yields 

the discrete forward model as given by Eqs. (A.1a) and (A.1b).  Differentiating the Lagrange 

function with respect to the soil temperature fields yields the discrete adjoint model, which is 

thus given by: 
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Finally, differentiating the discrete Lagrange function with respect to the model parameters 

yields: 
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Figure caption list: 

 

Fig. 1. Schematic representation of the system which model equations are given by eqs. (1a) 

to (1d). Also included are the positions of the observations 

 

Fig. 2. Comparison of posterior values of the cost function versus prior values of the cost 

function for days on which all the available data are available (dots). Also shown are the 1:1 

line (dashed line), and the 0.05 (dotted) and 0.95 quantile (solid) of a Chi square distribution 

which degrees of freedom is 48.  

 

Fig. 3. Daily values of the components of the posterior cost function that penalizes deviations 

from the prior values (a.),  the component  of the cost function that penalizes deviations from 

the observed soil temperatures (b.), and the component of the cost function that penalizes 

deviations from the observed soil heat fluxes (c.) for the selected days. 

 

Fig. 4. Posterior values of the soil heat conductivity, and values of the soil heat conductivity 

calculated according to Eq. (8) (a.), posterior values of the volumetric heat capacity of the 

soil, and values of the volumetric heat capacity of the soil calculated according to Eq. (9) (b.), 

posterior values of the skin conductivity (c.), and posterior values of the transmissivity of the 

vegetation (d.) for the selected days.  

 

Fig. 5. Comparison of the surface soil heat as calculated using the new approach with 

estimates of the surface soil heat flux using the adapted Lambda approach. Also shown is the 

1:1 line. 

 

Fig. 6. The surface soil heat flux versus the net radiation minus the atmospheric transport 

(positive) upward for the new approach (a.), and the adapted Lambda approach (b.). Also 

shown is the 1:1 line. 
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Fig. 1 Schematic representation of the system which model equations are given by eqs. (1a) to 

(1d). Also included are the positions of the observations 
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Fig. 2. Comparison of posterior values of the cost function versus prior values of the cost 

function for days on which all the available data are available (dots). Also shown are the 1:1 

line (dashed line), and the 0.05 (dotted) and 0.95 quantile (solid) of a Chi square distribution 

which degrees of freedom is 48.  
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Fig. 3. Daily values of the components of the posterior cost function that penalizes deviations 

from the prior values (a.),  the component  of the cost function that penalizes deviations from 

the observed soil temperatures (b.), and the component of the cost function that penalizes 

deviations from the observed soil heat fluxes (c.) for the selected days. 
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Fig. 4. Posterior values of the soil heat conductivity, and values of the soil heat conductivity 

calculated according to Eq. 8 (a.), posterior values of the volumetric heat capacity of the soil, 

and values of the volumetric heat capacity of the soil calculated according to Eq. (9) (b.), 

posterior values of the skin conductivity (c.), and posterior values of the transmissivity of the 

vegetation (d.) for the selected days. 
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Fig. 5. Comparison of the surface soil heat as calculated using the new approach with 

estimates of the surface soil heat flux using the adapted Lambda approach. Also shown is the 

1:1 line. 
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Fig. 6. The surface soil heat flux versus the net radiation minus the atmospheric transport 

(positive) upward for the new approach (a.), and the adapted Lambda approach (b.). Also 

shown is the 1:1 line. 

 

 


