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ABSTRACT

The principle of maximum entropy is used to obtain energy and enstrophy spectra as well as average

relative vorticity fields in the context of geostrophic turbulence on a rotating sphere. In the unforced-

undamped (inviscid) case, the maximization of entropy is constrained by the constant energy and enstrophy

of the system, leading to the familiar results of absolute statistical equilibrium. In the damped (freely

decaying) and forced-damped case, the maximization of entropy is constrained by either the decay rates of

energy and enstrophy or by the energy and enstrophy in combination with their decay rates. Integrations with

a numerical spectral model are used to check the theoretical results for the different cases. Maximizing the

entropy, constrained by the energy and enstrophy, gives a good description of the energy and enstrophy

spectra in the inviscid case, in accordance with known results. In the freely decaying case, not too long after

the damping has set in, good descriptions of the energy and enstrophy spectra are obtained if the entropy is

maximized, constrained by the energy and enstrophy in combination with their decay rates. Maximizing the

entropy, constrained by the energy and enstrophy in combination with their (zero) decay rates, gives a

reasonable description of the spectra in the forced-damped case, although discrepancies remain here.

1. Introduction

The near-two-dimensional nature of large-scale qua-

sigeostrophic (quasi-nondivergent) flow in the atmo-

sphere enables us to study its properties using theories

of two-dimensional turbulence (Charney 1971). Two-

dimensional incompressible fluid flow is governed by

advection of vorticity, implying the conservation of global

integrals of any function of the vorticity—in particular of

the squared vorticity (enstrophy)—in case the fluid mo-

tion is inviscid (i.e., unforced and undamped). Inviscid

two-dimensional turbulence is severely constrained by

the conservation of enstrophy in addition to energy, as

was first demonstrated by Onsager (1949) for a statistical

mechanical model based on point vortices. Onsager’s

contributions, highlighted in a recent review by Eyink and

Sreenivasan (2006), initiated a long series of investiga-

tions into the problem of two-dimensional turbulence

using the techniques of equilibrium statistical mechanics

(Kraichnan and Montgomery 1980). Applications of

these techniques to the study of turbulent large-scale

atmospheric flow, in which the effects of planetary ro-

tation and orography are taken into account, are given

by Frederiksen and Sawford (1981), Carnevale and

Frederiksen (1987), and Salmon (1998). Equilibrium

statistical mechanical theories that incorporate all invis-

cid invariants of two-dimensional fluid flow—except for

invariants of a topological nature (Pasmanter 1994)—are

developed by Miller (1990), Miller et al. (1992), and

Robert and Sommeria (1991, 1992).

No matter how useful, these theories have to face the

criticism that equilibrium statistical mechanics is inap-

plicable to a dissipative, irreversible process such as

turbulence (Eyink and Sreenivasan 2006, p. 99). Other

approaches have therefore been developed such as the

inertial range theory of Kraichnan (1967) and Batchelor

(1969), critically revisited by Dritschel et al. (2007).

Thompson (1973) developed an approach based on a

randomly forced Liouville equation; this was recently
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extended to a spherical geometry by Kurgansky (2008).

As a somewhat unorthodox application of the tech-

niques of statistical mechanics, Burgers (1939) also

developed a theory of forced-dissipative turbulence.

Rather different from the approach that Onsager (1949)

was to adopt later, Burgers divided the phase space of a

spectrally truncated fluid system into discrete cells and

described the system statistically by associating fre-

quencies with the different cells. Following usual prac-

tice, he then searched for the frequency distribution

with the highest multiplicity (i.e., that can be realized

microscopically in the largest number of ways), using

the constraint—and this was unusual—that forcing and

dissipation of energy should balance on average. The

result of his analysis is equipartition of dissipation in-

stead of equipartition of energy. [See also Burgers

(1974), Nieuwstadt and Steketee (1995), and, for readers

familiar with Dutch, Burgers (1941).] In this article we

wish to build further on Burgers’ approach to forced-

dissipative turbulence.

If we identify a frequency distribution with a proba-

bility density function, then maximizing its multiplicity

is, for all practical purposes, equivalent to maximizing

Shannon’s information entropy. Frequency distributions

with the highest multiplicity can be realized by nature in

the largest number of ways so that probability density

functions with maximum entropy are optimal statistical

descriptions of any system. This underlies the principle of

maximum entropy that has been advocated by Jaynes

in two papers on statistical physics (Jaynes 1957a,b). It

states that the preferred probability density function of

any system is the one that maximizes the information

entropy, constrained by the normalization condition and

the available information. The latter is usually assumed

to be in the form of averages of the quantities of interest.

In several publications (see Rosenkrantz 1989), Jaynes

has shown that the principle of maximum entropy can be

applied to many problems for which we have incomplete

information, ranging from the description of a classical

ideal gas to the correction of images.1

We will apply the principle of maximum entropy to

study the statistics of the equivalent barotropic vorticity

equation on a rotating sphere. This equation was used by

Ambaum (1997) to study the dynamics of the tropopause

and can be considered as a first-order model of the gen-

eral circulation of the atmosphere. The model is closely

analogous to the model that was studied by Frederiksen

and Sawford (1981) and Carnevale and Frederiksen

(1987) and, more recently, by Majda and Wang (2006). In

studying the statistical mechanics of this model we effec-

tively take up Burgers’ thread again by using energy and

enstrophy, as well as their decay rates, as relevant infor-

mation in the description of forced-dissipative turbu-

lence. We will start by studying the unforced-undamped

case to verify results known from the literature, but we

concentrate on the freely decaying and the forced-damped

case. Our focus will be on the energy and enstrophy

spectra and averages of the relative vorticity field that

can be calculated from the probability density functions.

In section 2, we set up the framework of constrained

entropy maximization, deduce the resulting probability

density function, and derive general expressions for the

mean and variance of the system components. The

equivalent barotropic vorticity equation is introduced in

section 3. In section 4 we apply the general formulas

obtained in section 2 to the unforced-undamped case.

Here the entropy is maximized, keeping the energy and

enstrophy of the system fixed. We check the results

against a long numerical run with the unforced-undamped

model. We then, in section 5, apply the general results of

section 2 to the case in which both forcing and damping

are present. First, the entropy is maximized with the

decay rates of energy and enstrophy as constraints. Al-

though the procedure is closely analogous to the proce-

dure in the unforced-undamped case, the results are quite

different. We then give the basic expressions in the case

where the entropy is maximized, keeping both the energy

and enstrophy as well as their decay rates constant.

Two further numerical runs are studied to check the

results. The first is an ensemble of 100 integrations, with

damping in the form of Newtonian viscosity, starting

from 100 different initial states at the end of the previ-

ous unforced-undamped integration. The second is a

long run with the forced-damped version of the model,

spun up from the state of rest. We demonstrate that the

combination of energy and enstrophy and their decay

rates in the maximization of entropy gives a good de-

scription of the spectra and numerical averages in the

freely decaying case, not too long after the dissipation

has set in. In the forced-damped case we show that the

spectra and theoretical averages based on the (zero)

decay rates of energy and enstrophy are better de-

scriptions of the numerical results than the corre-

sponding spectra and theoretical averages based on

values of the energy and enstrophy that are taken from

the numerical run. The use of both the (zero) decay

rates of energy and enstrophy as well as the values of

energy and enstrophy themselves (taken from the nu-

merical run) improves the resemblance between theory

and numerical simulations, although discrepancies still

remain. In section 6 we give our conclusions and discuss

possible extensions of the present approach.

1 All of Jaynes’ papers, published and unpublished, can be

downloaded from http://bayes.wustl.edu/etj/node1.html.
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2. Entropy maximization

Quite generally, we assume that the state of the

physical system under investigation can be specified by

means of a state vector x 5 (x1, x2, . . . , xM), where M

is the number of degrees of freedom. We introduce a

probability density function (or distribution function) P
for the occurrence of this state:

P5P(x) 5P(x
1
, x

2
, . . . , x

M
). (1)

Our objective is to find an expression for P in terms of

the state vector x. The principle of maximum entropy

requires that the probability density function P should

be as broad as possible, given the available information

on the system. The degree of broadness is measured by

the following continuous extension of Shannon’s infor-

mation entropy (see Jaynes 1968):

where dx 5 dx1dx2 � � � dxM and the integration is over all

values of x1, x2, . . . , xM. The definition of the entropy SI

involves a measureM,

M5M(x) 5M(x
1
, x

2
, . . . , x

M
), (3)

which is the probability density function that represents

our knowledge of the system given only background

information (e.g., on the physical nature of the coordi-

nates x1, x2, . . . , xM). Choosing this measure is not

straightforward, but guidelines, based on group invari-

ance arguments, can be found in Jaynes (1968, 1973).

Here we make the following simple choice:

M(x
1
, x

2
, . . . , x

M
) 5 c�1

1 c�1
2 � � � c�1

M 5P
m

c�1
m , (4)

where cm are constants having the same dimension as the

coordinates xm. When the range of coordinates is infinite,

as in our case, this probability density function is not

normalizable. In practice, however, it is the normaliza-

bility of P that is required, so this is no cause of concern.

Once we have made a choice ofM in a particular set

of coordinates, the expression (2) of the entropy SI is

invariant for a transformation to another set of coordi-

nates.2 To show this, let these other coordinates be

denoted by y 5 (y1, y2, . . . , yM). Marking by primes the

probability density functions in the transformed coor-

dinates, we have

P(x) dx 5P9(y)dy and (5)

M(x) dx 5M9(y)dy: (6)

This implies

P(x)

M(x)
5
P9(y)

M9(y)
, (7)

so thatð
P(x) log

P(x)

M(x)
dx 5

ð
P9(y) log

P9(y)

M9(y)
dy, (8)

from which the invariance of S
I

immediately follows. It

should be realized, however, that SI is not invariant

under a change of the measureM. For example, if the

values dm instead of cm are chosen in (4), the entropy

changes by an amount Smlog(cm/dm).

In maximizing the entropy SI the probability density

function P is constrained by the normalization condition:ð
P(x)dx 5 1. (9)

In addition, we consider constraints on some function or

functions K
‘
(x), assuming that their expected values

are given:ð
P(x)K

‘
(x)dx 5K0

‘ ‘5 1, 2, . . . , L , (10)

where K0
‘ are specified numbers. The requirement that

SI be maximal, subject to the constraints above, leads to

the following condition:ð
dP(x) log

P(x)

M(x)
1 1 1 r 1�

‘
l
‘
K
‘
(x)

� �
dx 5 0, (11)

where r and l‘ are the Lagrange multipliers associated

with the constraints (9) and (10), respectively. At a

maximum of S
I

this condition should hold for arbitrary

variations dP, so that the quantity between parentheses

has to be zero. This leads to the following expression of

the probability density function:

P(x) 5
1

ZM(x) exp ��
‘

l
‘
K
‘
(x)

� �
. (12)

The quantity Z 5 exp(r 1 1) is determined from the

normalization constraint (9) and will depend on the

S
I
5�

ð
P(x) log

P(x)

M(x)
dx 5�

ð
� � �
ð
P(x

1
, x

2
, . . . , x

M
) log

P(x
1
, x

2
, . . . , x

M
)

M(x
1
, x

2
, . . . , x

M
)

dx
1

dx
2
� � � dx

M
, (2)

2 Such a set of coordinates could be the result of a deterministic

time-evolution, implying that the entropy SI would—in that

case—be independent of time.
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Lagrange multipliers l‘. It is called the partition

function (Z stands for Zustandsumme or sum over

states):

Z5Z(l
‘
) 5

ð
M(x) exp ��

‘
l
‘
K
‘
(x)

� �
dx. (13)

The probability density function P in the form of ex-

pressions (12) and (13) depends only on the Lagrange

multipliers l‘. These are to be determined from the

constraints (10).

Choosing the measure M as in (4) and limiting our-

selves to constraints for which the functions K
‘

are of

the type

K
‘
(x

1
, x

2
, . . . , x

M
) 5�

m
(A

‘m
x2

m 1 B
‘m

x
m

1 C
‘m

),

(14)

the probability density function may be written

P(x
1
, x

2
, . . . , x

M
)5

1

ZPm
c�1

m exp � �
‘

l
‘
A
‘m

� �
x2

m

��

1 �
‘

l
‘
B
‘m

� �
x

m
1 �

‘
l
‘
C
‘m

� ���
.

(15)

The expression in braces can be put into the form

� 1

2s2
m

[(x
m
� m

m
)2

1 t
m
� m2

m], (16)

where

s2
m5

1

2�
‘

l
‘
A
‘m

, m
m

5�
�
‘

l
‘
B
‘m

2�
‘

l
‘
A
‘m

, t
m

5

�
‘

l
‘
C
‘m

�
‘

l
‘
A
‘m

.

(17)

This means that the probability density function can be

written as

P(x
1
, x

2
, . . . , x

M
) 5

1

ZP
m

c�1
m exp

m2
m � t

m

2s2
m

 !
s

m

ffiffiffiffiffiffi
2p
p

3N (m
m

, s
m

, x
m

), (18)

where N is the normal distribution, given by

N (m, s, x) 5
1

s
ffiffiffiffiffiffi
2p
p exp � (x� m)2

2s2

" #
. (19)

The normal distribution has the following properties:ð
N (m, s, x)dx 5 1,

ð
N (m, s, x)x dx 5 m, andð

N (m, s, x)x2dx 5 s2 1 m2. (20)

The first of these properties can be used to obtain the

partition function Z by applying the normalization

condition to P:

Z5P
m

c�1
m exp

m2
m � t

m

2s2
m

 !
s

m

ffiffiffiffiffiffi
2p
p

. (21)

For the probability density function P we thus have

P(x
1
, x

2
, . . . , x

M
) 5P

m
N (m

m
, s

m
, x

m
), (22)

which is a product of M normal distributions in the

different variables. The variables are uncorrelated and

each component has its own mean mm and variance sm.

The probability density function P is fully determined

by the constraints (10) and is independent of the values

cm chosen in the measureM.

The parameters mm and sm, which determine the

form of the probability density function, depend on

the Lagrange multipliers l‘ as expressed by (17). The

Lagrange multipliers, in turn, are determined by the

expected values of the functions K0
‘ . Using angle

brackets to denote the expectation operator,

the constraints [(10)] can be written as

hK
‘
i5K0

‘ ‘5 1, 2, . . . , L. (24)

Because the expectation operator is linear, we have

hK
‘
i5 �

m
(A

‘m
hx2

mi1 B
‘m
hx

m
i1 C

‘m
). (25)

hKi 5

ð
P(x)K(x)dx 5

ð
� � �
ð
P(x

1
, x

2
, . . . , x

M
)K(x

1
, x

2
, . . . , x

M
) dx

1
dx

2
� � � dx

M
, (23)
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For any function f(xm) that depends only on a single

component xm, we can write

h f i5
ð
� � �
ð
P

k
N (m

k
, s

k
, x

k
)f (x

m
)dx

1
dx

2
� � �dx

M

5 P
k 6¼m

ð
N (m

k
, s

k
, x

k
)dx

k

� �ð
N (m

m
, s

m
, x

m
)f (x

m
)dx

m

5

ð
N (m

m
, s

m
, x

m
)f (x

m
)dx

m
, (26)

where we have again used the first of the properties of

N in (20). Using the second and third of these proper-

ties and the expression just derived, we find that

hx
m
i5 m

m
, hx2

mi5 s2
m 1 m2

m. (27)

Substituting this in (25), we get

hK
‘
i5 �

m
[A

‘m
(s2

m 1 m2
m) 1 B

‘m
m

m
1 C

‘m
] . (28)

Equating this expression toK0
‘ for each ‘ gives us a set of

(possibly nonlinear) equations, from which the Lagrange

multipliers l‘ can be obtained.

Having found the probability density function (22)

that maximizes the entropy S
I
, the value of the maxi-

mum entropy, denoted by S
M

, can be calculated. This

value is readily obtained from (2) and (22) and is given by

S
M

5
1

2
�
m

log (2pe)
s2

m

c2
m

� �
. (29)

This expression illustrates the notion of the information

entropy of a probability density function as a measure of

broadness. Indeed, the broader the individual normal

distributions are (as measured by their variance sm), the

larger the entropy SM will be. We recall that although

the maximum entropy (29) depends on the values of cm,

the corresponding probability density function (22)—

which incorporates the information contained in the

constraints—is independent of cm.

3. Equivalent barotropic vorticity equation

In this section we will introduce the system to which

the results obtained in the previous section will be ap-

plied: a quasigeostrophic model of the general circula-

tion of the atmosphere, called the equivalent barotropic

vorticity equation. To establish a geophysical context,

we use V21 as a unit of time and a as a unit of length,

where V 5 7.292 3 1025 s21 is the earth’s rotation rate

and a 5 6.371 3 106 m is the earth’s radius. This gives a

velocity unit of Va 5 464.573 m s21. We denote by the

number D 5 6.300 288 ’ 2p the time corresponding to

one (solar) day of 86 400 s, expressed in terms of the time

unit V21. Subsequently, we will use days, hours, and

minutes to express time (which, by using the value of D,

can be expressed straightforwardly in units of V21).

The equivalent barotropic vorticity equation describes

the quasigeostrophic (or quasi-nondivergent) dynamics

of a shallow layer of fluid:

›q

›t
1 v � =q 5 F 1 �

p
(�1)p11

n
p
=2p12c, (30)

where

q 5 f 1 z � Lc 1 f
h

B

H
A

. (31)

Here q is the quasigeostrophic potential vorticity, given

by the sum of the planetary vorticity f, the relative

vorticity z, a stretching (Cressman) term 2Lc, and a

contribution f(hB/HA) due to the orography hB. The

horizontal velocity field v of the fluid is independent of

height and assumed to be nondivergent, enabling us to

write v 5 k 3 $c and z 5 =2c, where c is the stream-

function. The flow domain is a rotating sphere on which

horizontal positions are denoted by the longitude l and

the latitude f. In the units given above, the Coriolis pa-

rameter (or planetary vorticity) is given by f 5 2 sinf. For

the stretching parameter L 5 1/L2
R , where LR is the

Rossby radius of deformation, we have (in the same units)

L 5
4V2a2

gH
A

sin2f
0
, (32)

where HA is the average height of the fluid, g is the

(reduced) acceleration due to gravity, and f0 is a fixed

value of the latitude. The unforced-undamped version

of the system (30) and (31) is a simplification of the

global equivalent barotropic vorticity equation that was

proposed recently by Verkley (2009) and Schubert et al.

(2009). In the former reference it is argued that if the

simplified system used here is to reproduce asymptoti-

cally the phase velocities of Rossby waves in the limit of

small meridional wavelengths, we should take f0 5 6p/4,

implying that sin2f0 5 ½. We will discuss both the un-

forced-undamped and the forced-damped version of the

system. In the latter case, the forcing is given by F and

the damping consists of a sum of various orders of

(hyper)viscosity. Without the stretching term [the limit

in which the (reduced) gravity approaches infinity] the

forced-damped system above is discussed extensively in

chapter 16 of Majda and Wang (2006).

Expressing the velocity field in terms of the stream-

function c, we may write for the advection term
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v � $q 5 k 3 $c � $q 5 k � $c 3 $q 5 J(c, q), (33)

where J is the Jacobi operator. This particular form of

advection leads to the following global conservation

laws for energy E and potential enstrophy3 Z:

dE

dt
5F �D, and (34a)

dZ

dt
5G �H, (34b)

where

E 5
1

4p

ð
1

2
(v2 1 Lc2)dS,

F 5� 1

4p

ð
cF dS,

D5
1

4p

ð
c �

p
(�1)p11

n
p
=2p12c

� �
dS,

Z 5
1

4p

ð
1

2
q2 dS,

G5
1

4p

ð
qF dS, and

H5� 1

4p

ð
q �

p
(�1)p11

n
p
=2p12c

� �
dS,

(35)

and all integrals are to be taken over the area of the unit

sphere with dS 5 cosfdldf. The expressions of E and Z

give the nondimensional energy and enstrophy per unit

of nondimensional area. To obtain an indication of the

dimensional value of, for example, the total energy, one

needs to multiply the corresponding expression by A 5

rHA4pa2(Va)2. The factor rHA, where r is the constant

density of the fluid, should correspond to the average

total mass of the atmosphere per unit area. This is given

by ps/g, where ps is the average surface pressure and g is

(full) acceleration due to gravity. Using the values 1000

hPa and 9.806 m s22 for these quantities, we obtain A 5

1.123 3 1024 J. Because the total (kinetic plus available

potential) energy in the atmospheric general circulation

is 2.867 3 1021 J [deduced from Fig. 14.8 of Peixoto and

Oort (1992)] the value of the nondimensional energy E

should be of the order 2.5 3 1023 if it is to represent a

realistic atmospheric value.

It is natural to expand scalar functions on the sphere

in terms of spherical harmonics Ymn(l, f), n 5 0, 1,

2, . . . , m 5 2n, 1 2 n, . . . , n 2 1, n, that we define as

follows:

Y
mn

(l, f) 5

ffiffiffi
2
p

Rjmjn (sinf)cos(jmjl) for m . 0,

R0
n(sinf) for m5 0,ffiffiffi
2
p

Rjmjn (sinf)sin(jmjl) for m , 0,

8>><
>>:

(36)

where Rm
n (x) (21 , x , 1) is given by

Rm
n (x) 5 (�1)m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2n 1 1)

(n�m)!

(n 1 m)!

s
Pm

n (x) (37)

and Pm
n (x) are the associatedLegendre functions asgiven in

Abramowitz and Stegun (1970). The spherical harmonics

are eigenfunctions of the spherical Laplace operator:

=2Y
mn

5�e
n
Y

mn
, (38)

where en 5 n(n 1 1). The functions form an orthonor-

mal set:

1

4p

ð
Y

mn
(l, f)Y

k‘
(l, f)dS 5 d

mk
d

n‘
. (39)

The expansion coefficients of any field, for example, the

relative vorticity field z,

z(l, f, t) 5 �
mn

z
mn

(t)Y
mn

(l, f), (40)

are therefore given by

z
mn

(t) 5
1

4p

ð
Y

mn
(l, f)z(l, f, t)dS. (41)

Because the spherical harmonics Ymn are eigenfunctions

of the Laplace operator =2 with eigenvalue 2en, the co-

efficients of z are related to the coefficients of c by

z
mn

5�e
n
c

mn
. (42)

If the field f 1 f(h/H) is written as

f 1 f
h

H
5 �

mn
f

mn
Y

mn
, (43)

we may write the coefficients of q in terms of the coef-

ficients of c:

q
mn

5 f
mn
� «

n
c

mn
, (44)

where «n 5 L 1 en. Note that «n 5 O(n2) for large n.

Finally, the forcing plus damping term may be written as

�
mn

(F
mn

1 d
n
c

mn
)Y

mn
, (45)

3 From now on we will skip, for convenience, the adjective

‘‘potential.’’
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where Fmn are the spectral coefficients of the forcing F

and where

d
n

5 �
p

n
p
e p11

n . (46)

With these definitions we may express E, Z, etc. in

terms of the coefficients cmn of the streamfunction c:

E 5 �
mn

1

2
«

n
c2

mn,

F 5 �
mn
�F

mn
c

mn
,

D5 �
mn

d
n
c2

mn,

Z 5 �
mn

1

2
«2

nc2
mn � «

n
f

mn
c

mn
1

1

2
f 2

mn

� �
,

G5 �
mn

(�«
n
F

mn
c

mn
1 f

mn
F

mn
), and

H5 �
mn

(d
n
«

n
c2

mn � d
n
f

mn
c

mn
).

(47)

The evolution equations for the coefficients cmn can be

written as

�«
n

dc
mn

dt
1

1

4p

ð
Y

mn
J(c, q)dS 5 F

mn
1 d

n
c

mn
. (48)

Expanding the fields c and q in the Jacobian in terms of

spherical harmonics, these equations assume the form

�«
n

dc
mn

dt
1 �

ij
�
kl

c
ij
( f

kl
� «

k
c

kl
)I

mnijkl
5 F

mn
1 d

n
c

mn
,

(49)

where the interaction coefficients Imnijkl are given by

I
mnijkl

5
1

4p

ð
Y

mn
J(Y

ij
, Y

kl
)dS. (50)

A finite dimensional (spectrally truncated) model is

obtained by letting n run from 0 to N and m from 2n to

1n, with N being a finite number, referred to as a tri-

angular truncation TN, and the same for the indices i, j

and k, l in the summations of (49). The global energy

and enstrophy equations [(34a) and (34b)], after re-

placing (35) by (47), remain valid for such a finite-

dimensional version of the equations, as can be deduced

from the symmetry properties of the interaction coeffi-

cients. We furthermore note that all quantities involved

fit into the general form (14), thus allowing us to apply

the principle of maximum entropy for any combination

of these quantities as constraints, using the general ex-

pressions derived in the previous section.

The model that we will use to check the predictions of

the maximum entropy principle is the spectral numeri-

cal model in the form of (48). The projection integrals of

the Jacobian onto the spherical harmonics Ymn are

carried out numerically by summations over a Gaussian

grid, equidistant in longitude and Gaussian in the sine of

the latitude. The integrals can be calculated exactly if

the grid resolution is larger than some minimum reso-

lution that depends on the truncation limit N of the

model. More specifically, if the Gaussian grid has K 3 L

points then the numerical projections are exact if K $

3N 2 1 and L $ (3N 2 1)/2. This can be verified by

consulting Machenhauer (1979), whose review paper on

the spectral method was closely followed in the con-

struction of the model. For our experiments we use a

model with truncation T42. A Gaussian grid of 128 3 64

points is then sufficiently dense to perform the projec-

tions without approximation. For the time stepping we

use a fourth-order Runge–Kutta scheme with a time

step of 15 min (0.065807 in units of V21).

In all variants that we will discuss in the following, the

right-hand side of (30) is specialized to

F 1 �
p

(�1)p11
n

p
=2p12c

5 n�1
(c� c

f
) 1 (�1)r11

n
r
=2r12c, (51)

with the understanding that in the unforced-undamped

case, all terms on the right-hand side are zero. The

forcing is therefore given by F 5 2n21cf, whereas the

damping is the sum of a hypoviscosity (longwave

damping) term n21c and a (hyper)viscosity term

(21)r11nr=
2r12c. The values of n21 and nr are written as

n�1
5

L

Dt�1

, n
r
5

1

Dt
r

1

er
N

, (52)

where t21 and tr are expressed in days (recall that we

defined D 5 6.300 288 ’ 2p to be the nondimensional

length of a day). The expression for nr implies that the

coefficients zmn with n 5 N of the relative vorticity field

decay in time according to exp(2t/tr), where t is ex-

pressed in days, neglecting L and the nonlinear advection.

We take t21 5 90 days and tr 5 5 days, with r 5 1 (vis-

cosity), giving n21 5 1.764 3 1021 and nr 5 1.758 3 1025

nondimensionally. For the scale height HA we take

10 km whereas for L we choose the value 100. These

values are consistent with (32) if we take the value 0.432

for the (reduced) acceleration due to gravity.

For the field hB we choose the earth’s orography in

T41 truncation, obtained from the European Centre

for Medium-Range Weather Forecasts (ECMWF). The

field f(hB/HA) can then be represented exactly in the
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T42 truncation of the model. The field cf that we will

use in the forced-damped case is the streamfunction that

corresponds to two sharply defined (westerly) zonal jet

streams, each one having the form

u
f
(f) 5 U exp[�(f� f

0
)2/2Df2], (53)

where U 5 0.050 and Df 5 0.079. The jet streams are

placed at f0 5 6p/4 and have velocity maxima of 23.228

m s21. The spectral coefficients of cf are calculated by

evaluating the corresponding relative vorticity field on

the Gaussian grid of the model, transforming to spectral

space and then applying the inverse Laplace operator.

In Fig. 1a we show the field f(hB/HA) and in Fig. 1b, the

streamfunction cf. The profile to the right of Fig. 1b

shows the zonal velocity (in m s21) associated with the

streamfunction cf. In the first case considered below, we

put forcing and damping to zero but keep the terms

2Lc and f(hB/HA) in the expression of the potential

vorticity q.

4. The unforced-undamped case

We will now apply the general results obtained in

section 2 to the spectrally truncated system discussed in

the previous section. To place our work in the per-

spective of known results, we consider in this section the

case in which the system is neither forced nor damped.

In the next section we consider the case in which both

forcing and damping are present.

a. Analytical expressions

The constraints to be used in the maximization of the

entropy when there is neither forcing nor damping are

the expected values of the energy E and enstrophy Z:

hK
1
i5 hEi5 E0 and hK

2
i5 hZi5 Z0, (54)

where E0 and Z0 are given values. The corresponding

Lagrange multipliers will be denoted by l1 5 a and l2 5 b.

All coefficients in the general expression of K1 are zero

except for the coefficients A1mn 5 ½«n. For the coeffi-

cients of K2 we have A
2mn

5 ½«2
n, B2mn 5 2«n fmn, and

C
2mn

5 ½ f 2
mn. For the multivariate probability density

function (22) that results from the maximization of en-

tropy, we get

P(c�N,�N
, . . . , c

N,N
) 5 P

mn
N (m

mn
, s

mn
, c

mn
), (55)

where the variance and mean follow from the general

expressions [(17)]

s2
mn 5

1

«
n
(a 1 b«

n
)

and m
mn

5
bf

mn

a 1 b«
n

. (56)

Apart from dependence on the Lagrange multipliers

a and b, the variance depends only on «n, whereas the

mean values are determined by the Coriolis parameter,

the orography, and «n. To find the values of a and b

we consider the expectation values of the energy and

enstrophy. Using hc2
mni 5 s2

mn 1 m2
mn and hcmni 5 mmn,

we find that

hEi5 �
mn

1

2
«

n
hc2

mni5 �
mn

1

2
«

n
(s2

mn 1 m2
mn) and (57a)

hZi5 �
mn

1

2
«2

nhc2
mni � «

n
f

mn
hc

mn
i1 1

2
f 2

mn

� �

5 �
mn

1

2
«2

n(s2
mn 1 m2

mn)� «
n
f

mn
m

mn
1

1

2
f 2

mn

� �
.

(57b)

When we substitute the expressions (56) for s2
mn and

mmn we get

hEi5 �
mn

1

2(a 1 b«
n
)

1
b2«

n
f 2

mn

2(a 1 b«
n
)2

" #
, (58a)

FIG. 1. (a) The scaled orography f(hB/HA) and (b) the forcing

field cf in the T42 truncation of the spectral model. The contour

interval in (a) is 0.1 and in (b) is 0.002; negative values are dashed.

The zero contour is left out in both panels. The fields in this and

similar plots are based on 256 3 128 data points. The profile on the

right in (b) shows the zonal velocity in m s21 associated with the

streamfunction cf.
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hZi5 �
mn

«
n

2(a 1 b«
n
)

1
a2f 2

mn

2(a 1 b«
n
)2

" #
. (58b)

We have, without further approximation, if we assume

that c00 5 0,

hEi5 �
N

n51
E

n
and (59a)

hZi5 �
N

n51
Z

n
, (59b)

in which the energy and enstrophy spectra En and Zn are

given by

E
n

5 �
n

m5�n

1

2(a 1 b«
n
)

1
b2«

n
f 2

mn

2(a 1 b«
n
)2

" #
and (60a)

Z
n

5 �
n

m5�n

«
n

2(a 1 b«
n
)

1
a2f 2

mn

2(a 1 b«
n
)2

" #
. (60b)

Because «n is independent of m, we can write

E
n

5
2n 1 1

2(a 1 b«
n
)

1
b2«

n

2(a 1 b«
n
)2

�
n

m5�n
f 2

mn and (61a)

Z
n

5
(2n 1 1)«

n

2(a 1 b«
n
)

1
a2

2(a 1 b«
n
)2

�
n

m5�n
f 2

mn. (61b)

If the Coriolis parameter and the orography are as-

sumed to be zero, we see from (58a), by taking b 5 0,

that there would be equipartition of energy among all

the spectral coefficients if the energy were the only

constraint in the maximization of entropy. The same is

seen to be true, by taking a 5 0 in (58b), for the ens-

trophy if the enstrophy were the only constraint in the

maximization of entropy. This is an expression of the

equipartition theorem in equilibrium statistical mechan-

ics. Under the same circumstances (i.e., when the Cori-

olis parameter and the orography are zero), En and Zn

behave as n21 and n, respectively, for large n. In the

context of two-dimensional turbulence these results

are well known. For fmn 5 0 the results are in accord

with Eq. (3.18) from the review by Kraichnan and

Montgomery (1980), taking into account the difference

in notation. The expressions (58a) and (58b) are iden-

tical to Eqs. (2.10a) and (2.10b) of Frederiksen and

Sawford (1981), their hmn corresponding to our fmn,

and are also in accord with Eqs. (3.8a) and (3.8b) of

Carnevale and Frederiksen (1987), noting that «n re-

duces to en if L 5 0.

b. Numerical calculations

To check these results we did an integration with the

numerical model without forcing or damping and with

an initial state of which the field z 2 Lc is given by

z(l, f)�Lc(l, f) 5 A
25,25

Y
25,25

(l, f)

1 A
26,26

Y
26,26

(l, f), (62)

where A25,25 and A26,26 are both taken to be 1/
ffiffiffi
2
p

. The

name and settings of this run are given in the first row of

Table 1. We integrate the system for a total period of

2000 days, storing the output of the integration every

12 h. The relative vorticity field z at time t 5 0 and t 5

2000 days are shown in Fig. 2. The meridionally aligned

vortices, neatly arranged at t 5 0, start to interact im-

mediately and the field becomes turbulent very rapidly.

After 100 days the system is already close to a statisti-

cally stationary state. By averaging over the last 1000

days of the 2000-day integration, which amounts to an

average over 2000 fields, we obtained the energy and

enstrophy spectra that are shown in Fig. 3. The nu-

merical spectra of the energy and enstrophy are denoted

by solid dots and open circles, respectively, and are

calculated by averaging over

E
n

5 �
n

m5�n

1

2
«

n
c2

mn and (63a)

Z
n

5 �
n

m5�n

1

2
«2

nc2
mn � «

n
f

mn
c

mn
1

1

2
f 2

mn

� �
, (63b)

where the values of cmn are obtained from the numer-

ical integration.

The energy E0 and enstrophy Z0 of this integration

are given in the first row of Table 2. These values are

also averages over the last 1000 days of the integration,

but because these quantities are conserved very accu-

rately by the numerical model, they are virtually iden-

tical to their initial values. Using the procedure de-

scribed in the appendix, we determined the maximum

entropy spectrum by determining the Lagrange multi-

pliers a and b from these values, yielding values that are

given in the first row of Table 3. We then calculated the

TABLE 1. The forcing and damping parameters of the different

numerical runs. A dash indicates that the tabled parameter is not

relevant.

Run Type r n21 nr

1 Unforced–undamped — — —

2 Damped 1 0 1.758 3 1025

3 Forced–damped 1 1.764 3 1021 1.758 3 1025
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theoretical spectra for the energy and enstrophy; these

are displayed by the solid lines in Fig. 3. We see that the

theoretical spectra agree well with the numerical ones.

The theoretical expected energy and enstrophy agree

with the numerical values to within the accuracy with

which these values are given, as can be checked by

consulting the first row of Table 4.

In Fig. 4a we show the relative vorticity field aver-

aged over the last 1000 days of the numerical integra-

tion. This average relative vorticity field may be com-

pared to the theoretical expected relative vorticity field

(referred to as the theoretical average) that can be

calculated from

hzi5 �
mn
hz

mn
iY

mn
5 �

mn
e

n
hc

mn
iY

mn
5 �

mn
e

n
m

mn
Y

mn
.

(64)

If we substitute the value of mmn as given by (56), using

the values of a and b given in Table 3, we get the

theoretical average relative vorticity field that is dis-

played in Fig. 4b. It should be remarked that the nu-

merically calculated average relative vorticity field,

displayed in Fig. 4a, has not completely converged and

is therefore rather noisy. The theoretical average rel-

ative vorticity field, however, captures a few of the

most important features, such as the regions of low and

high relative vorticity over Greenland and Antarctica.

The zonally averaged zonal velocity profiles, plotted to

the right of the relative vorticity fields, show that the

zonal flow is predominantly easterly in the numerical

average. This is also in accordance with the theoretical

average, which is dominated by an easterly solid-body

rotation.

5. The forced-damped case

The results of the previous section have confirmed

that the statistics of a system that is neither damped nor

forced and has been left to itself for a sufficiently long

time are determined by its energy and enstrophy. If the

system is damped but not forced and thus decays freely

in time, one might conjecture that the decay rates of

energy and enstrophy are also important in determining

the statistics of the system. In the same way, if both

forcing and damping act on the system and the system

has reached a statistically stationary state, then the

FIG. 3. The values of log En (energy) and log Zn (enstrophy) as a

function of log n, averaged over the last 1000 days of the 2000-day

time integration of the unforced-undamped system. The numerical

energy spectra are represented by solid dots and the numerical

enstrophy spectra by open circles. The solid curves are the theo-

retical spectra, based on maximum entropy.

TABLE 2. The energy E0, enstrophy Z0, decay rate of energy

2dE0/dt, and decay rate of enstrophy 2dZ0/dt of the different

runs, the parameters of which are summarized in Table 1.

Run E0 Z0 2dE0/dt 2dZ0/dt

1 6.450 3 1024 1.215 3 1010 — —

2 1.739 3 1024 7.065 3 1021 6.426 3 1027 4.173 3 1024

3 1.105 3 1023 1.327 3 1010 2.234 3 10210 6.006 3 1028

FIG. 2. The relative vorticity field at times (a) t 5 0 and (b) t 5

2000 days in a numerical run without forcing or dissipation. The

fields are displayed with a contour interval of 0.2; values in the

range (20.1, 0.1) are colored white, values in the range (0.1, 0.3)

are colored light yellow, values in the range (20.3, 20.1) light blue,

etc. The field in (a) lies in the range (24.2, 4.2) and the field in (b)

lies in the range (23.7, 4.3). In all figures of this type, if we display

the relative vorticity field with a contour interval of c, then values

in the range (2c/2, c/2) are colored white, values in the range (c/2,

3c/2) are colored light yellow, values in the range (23c/2, 2c/2) are

light blue, etc. The profiles to the right of the relative vorticity

fields show the zonally averaged zonal velocity (m s21).
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condition that the decay rates of energy and enstrophy

are zero might be important for the statistics of the

system. The latter idea was put forward and explored

by Burgers (1939) and will be investigated further in

the present section. We first consider the case in which

the decay rates of energy and enstrophy are used as the

only constraints in the maximization of entropy. We

will see that the procedure is very similar to the pro-

cedure discussed above. We will then describe the

procedure in the case where the decay rates of energy

and enstrophy are combined with the energy and ens-

trophy themselves.

a. Analytical expressions

First, we will consider as constraints, with respective

Lagrange multipliers l3 5 g and l4 5 d,

hK
3
i5 hD � Fi5D0, hK

4
i5 hH � Gi5H0. (65)

As already noted, these constraints are also of the

general form (14). For the corresponding coefficients we

have A3mn 5 dn, B3mn 5 Fmn, C3mn 5 0, A4mn 5 dn«n,

B4mn 5 «nFmn 2 dnfmn, and C4mn 5 2fmnFmn. This gives

the probability density function

P(c�N,�N
, . . . , c

N,N
) 5 P

mn
N (m

mn
, s

mn
, c

mn
), (66)

where, using (17), the variance and mean are

s2
mn 5

1

2d
n
(g 1 d«

n
)

, m
mn

5
df

mn

2(g 1 d«
n
)
�

F
mn

2d
n

.

(67)

The difference from the unforced-undamped case is in

the dependence of s2
mn on dn and the addition of an

extra term (due to the forcing) in the expression of mmn.

As before, to find the values of g and d we consider the

expectation values of the constraints:

hD � Fi5 �
mn

(d
n
hc2

mni1 F
mn
hc

mn
i)

5 �
mn

[d
n
(s2

mn 1 m2
mn) 1 F

mn
m

mn
], and (68a)

hH � Gi5 �
mn

[d
n
«

n
hc2

mni1 («
n
F

mn
� d

n
f

mn
)hc

mn
i

� f
mn

F
mn

]

5 �
mn

[d
n
«

n
(s2

mn 1 m2
mn) 1 («

n
F

mn
� d

n
f

mn
)m

mn

�f
mn

F
mn]. (68b)

If we substitute the expressions for s2
mn and mmn, given

by (67), we get

hD � Fi5 �
mn

1

2(g 1 d«
n
)

1
d2d

n
f 2

mn

4(g 1 d«
n
)2
� F2

mn

4d
n

" #
and

(69a)

hH � Gi5 �
mn

«
n

2(g 1 d«
n
)
�

d(d«
n

1 2g)d
n

f 2
mn

4(g 1 d«
n
)2

"

�
«

n
F2

mn

4d
n

�
f

mn
F

mn

2

#
. (69b)

In the freely decaying case these expressions should be

set equal to the given values of D0 and H0. If forcing is

present and if we consider a statistically stationary state,

we set these expectation values to zero.

As in the unforced-undamped case, we have (57a)

and (57b) for the energy and enstrophy. Substituting

the expressions for s2
mn and mmn, given by (67), this

leads to

TABLE 4. The expectation values of the energy E, enstrophy Z, decay rate of energy 2dE/dt, and decay rate of enstrophy 2dZ/dt.

Run hEi hZi 2hdE/dti 2hdZ/dti

1 6.450 3 1024 1.215 3 1010 — —

2 1.739 3 1024 7.065 3 1021 4.054 3 1026 2.874 3 1023

2 5.623 3 1023 8.313 3 1021 6.426 3 1027 4.173 3 1024

2 1.739 3 1024 7.065 3 1021 6.426 3 1027 4.173 3 1024

3 1.105 3 1023 1.327 3 1010 2.463 3 1025 2.680 3 1022

3 2.563 3 1024 9.118 3 1021 2.613 3 10222 21.983 3 10213

3 1.105 3 1023 1.327 3 1010 6.511 3 10211 23.243 3 10217

TABLE 3. The Lagrange multipliers for the different entropy

maximizations.

Run a b g d

1 19.779 3 105 15.444 3 102 — —

2 14.166 3 106 13.807 3 103 — —

2 — — 19.608 3 107 12.048 3 106

2 15.040 3 105 11.770 3 102 23.965 3 108 12.578 3 106

3 14.075 3 105 16.638 3 102 — —

3 — — 13.757 3 108 17.468 3 105

3 13.274 3 106 22.943 3 104 21.765 3 109 11.668 3 107
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Assuming as before that c00 5 0, these expressions can

be written as

hEi5 �
N

n51
E

n
and (71a)

hZi5 �
N

n51
Z

n
, (71b)

where, because both «n and dn are independent of m, we

have

E
n
5

(2n 1 1)«
n

4d
n
(g 1 d«

n
)

1
«

n

8(g1d«
n
)2

�
n

m5�n
df

mn
�[(g1d«

n
)F

mn
]/d

n

	 
2
and

(72a)

Z
n

5
(2n 1 1)«2

n

4d
n
(g 1 d«

n
)

1
1

8(g 1 d«
n
)2

�
n

m5�n
(d«

n
1 2g)f

mn

	

1 [(g 1 d«
n
)«

n
F

mn
]/d

n


2
. (72b)

We see from (69a) that with zero Coriolis parameter,

orography, and forcing, and considering only the dissi-

pation of energy (so that the Lagrange multiplier d is

zero), all spectral components contribute equally to the

dissipation of energy. This is Burgers’ equipartition of

dissipation, referred to in the introduction. Similarly, if

only the dissipation of enstrophy is considered (so that

the Lagrange multiplier g is zero), all spectral compo-

nents contribute equally to the dissipation of enstrophy,

as can be seen from (69b). Furthermore, if there is only

Newtonian viscosity (r 5 1), so that dn 5 n1e2
n ; n4 and

the Coriolis parameter and the orography are zero, then

En and Zn behave as n23 and n21, respectively, for large

values of n. If there is only hyperviscosity (r 5 2), then

En and Zn behave as n25 and n23, respectively. More

generally, we see from the definition of dn that the be-

havior of En and Zn for large n is determined by the

highest-order damping present. We note that the energy

spectrum En ; n23, in the case of Newtonian viscosity

(r 5 1), is identical to the spectrum obtained in the

enstrophy inertial range for two-dimensional turbulence

[see Eq. (4.12) of Kraichnan and Montgomery 1980].

The energy spectrum En ; n25 in the case of hypervis-

cosity (r 5 2) does agree with the spectrum that is ob-

tained by McWilliams (1984) in his simulations of de-

caying two-dimensional turbulence with hyperviscosity

(see his Fig. 2). All this indicates that the results ob-

tained are not unrealistic.

It is also possible to use both the energy and ens-

trophy as well as their decay rates (which are, as we
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FIG. 4. (a) The relative vorticity averaged over the last 1000 days

of the integration of the unforced-undamped system. (b) The ex-

pected relative vorticity field based on maximum entropy. The

fields are displayed with a contour interval of 0.01, where the field

in (a) lies in the range (20.19, 0.18) and the field in (b) lies in the

range (20.11, 0.08). The profiles to the right show that the zonally

averaged zonal velocity of the numerical average is predominantly

easterly, in accordance with the theoretical average, although the

numerical average is rather noisy because of incomplete conver-

gence. The correlation coefficient between the relative vorticity

fields in (a) and (b) is 0.41. This coefficient (and the coefficients

mentioned in the captions of Figs. 7 and 10) is calculated on the

basis of the 256 3 128 values that are plotted, weighted by the

cosine of the latitude.
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emphasize, zero in the statistically stationary state) in

the maximization of entropy. We then require

hK
1
i5 hEi5 E0 , hK

2
i5 hZi5 Z0, (73)

hK
3
i5 hD � Fi5D0 , and hK

4
i5 hH � Gi5H0.

(74)

Denoting the corresponding Lagrange multipliers by a,

b, g, and d and using the general expressions given in

section 2, we obtain a product of normal distribution

functions with the following expressions of smn and mmn:

s2
mn 5

1

«
n
(a 1 b«

n
) 1 2d

n
(g 1 d«

n
)

, and (75)

m
mn
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1 dd

n
)f

mn
� (g 1 d«

n
)F

mn

«
n
(a 1 b«

n
) 1 2d

n
(g 1 d«

n
)
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The expressions of hEi, hZi, hD � Fi, and hH � Gi
become too involved to write out explicitly but can be

handled numerically without any problems. Calculating

the Lagrange multipliers from given expectation values

is discussed in the appendix.

b. Numerical calculations—Damped

In the second experiment with the numerical model,

of which the parameters are given in the second row of

Table 1, we use the last 100 fields of the previous inte-

gration as initial conditions for an ensemble of 100 in-

tegrations over a period of 20 days. Here, however, we

added a Newtonian viscosity term (r 5 1) with tr 5 5 days

(giving nr 5 1.758 3 1025). We thus consider a case in

which a turbulent system decays freely under the action

of Newtonian viscosity. The relative vorticity at time t 5

10 and t 5 20 days for the last member of the ensemble

are shown in Fig. 5. When we compare the two panels in

this figure with Fig. 2b, we see how in the course of time

the dominant spatial scales become larger, a well-known

fact in freely decaying two-dimensional turbulence

(McWilliams 1984). This is also demonstrated by the

numerical spectra of energy (solid dots) and enstrophy

(open circles) at time t 5 20 days that are shown in

Fig. 6. These spectra are obtained by using (63a) and (63b)

and averaging over the 100 members of the ensemble.

The solid lines in Fig. 6 represent three different

theoretical spectra. The theoretical spectra in Fig. 6a are

obtained by maximizing the entropy, keeping the en-

ergy and enstrophy fixed at the values E0 and Z0 at time

t 5 20 days, obtained from the numerical experiment by

averaging over the ensemble and given in the second

row of Table 2. We give these spectra as a reference to

show that the spectra after 20 days are quite far from the

inviscid equilibrium spectra encountered in the previous

section. The theoretical spectra in Fig. 6b are obtained

by maximizing the entropy, keeping the energy and ens-

trophy dissipation rates fixed at the values �dE0/dt 5 D0

and �dZ0/dt 5 H0, also obtained by averaging over the

ensemble and given in the second row of Table 2. The

correspondence is now better, in particular at the higher

wavenumbers where the slopes of the numerical spectra

are well represented. At the lower wavenumbers the

spectra still deviate rather much from the numerically

obtained results. In Fig. 6c we show the spectra that

result when entropy is maximized, keeping the energy

and enstrophy and also their decay rates fixed at

the values obtained from the numerical experiment.

Now the spectra at lower wavenumbers are also well

described.

The relative vorticity field at time t 5 20 days, aver-

aged over the 100 members of the ensemble, is shown in

Fig. 7a. Even for as few as 100 members, the average has

converged better than the average in the unforced-

undamped case, although there is still considerable

noise left. In Fig. 7b we show the theoretical average

FIG. 5. The relative vorticity field at times (a) t 5 10 days and (b)

t 5 20 days of member 100 of an ensemble of flows decaying freely

as the result of Newtonian viscosity. The field in (a) lies in the

range (21.6, 1.4) and is plotted with a contour interval of 0.1; the

field in (b) lies in the range (20.7, 0.7) and is plotted with a contour

interval of 0.05. By comparing the fields in (a) and (b) with the field

in Fig. 2b, we see how the dominant spatial scales become larger in

the process of decay. This is also clear from the zonally averaged

zonal velocity profiles (m s21), displayed to the right of the relative

vorticity fields.
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FIG. 7. Relative vorticity fields displayed with a contour interval

of 0.02. (a) The relative vorticity averaged over the 100 members

of the ensemble, 20 days after the damping has set in. (b)–(d) The

theoretical expected relative vorticity, based on maximization of

entropy; the constraints are (b) energy and enstrophy, (c) the de-

cay rates of energy and enstrophy, and (d) both energy and ens-

trophy and their decay rates. The fields in the consecutive panels

vary between (20.43, 0.22), (20.15, 0.11), (20.21, 0.16), and

(20.28, 0.20), respectively. The profiles to the right display the

zonally averaged zonal velocity (m s21). The correlation coeffi-

cients between the relative vorticity fields in (a) and (b), (a) and

(c), and (a) and (d) are 0.70, 0.66, and 0.71, respectively.

FIG. 6. The values of log En (energy) and log Zn (enstrophy) as

functions of log n, averaged over an ensemble of 100 fields at

20 days after the damping has set in. The solid dots represent the

spectra of energy, the open circles represent the spectra of ens-

trophy, and the solid curves are the theoretical spectra, based on

maximum entropy. The constraints in the maximization of entropy

are (a) energy and enstrophy, (b) the decay rates of energy and

enstrophy, and (c) energy and enstrophy as well as their decay

rates. The slope of the numerically obtained energy spectra at the

high end of the spectrum is around 23.1.
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based on maximizing the entropy with the given energy

and enstrophy as constraints. In Fig. 7c the theoretical

average is shown for the case in which the decay rates

are used as constraints, whereas in Fig. 7d the theoret-

ical average is shown for the case in which energy and

enstrophy as well as their decay rates are used as con-

straints. We see that along with the spectra, the corre-

spondence with the numerical results improves between

Figs. 7b and 7d.

The different Lagrange multipliers and the corre-

sponding theoretical expectation values of energy, ens-

trophy, and their decay rates are given in the second,

third, and fourth rows of the Tables 3 and 4. For com-

pleteness we also give in Table 4 the expected decay

rates of energy and enstrophy when entropy is maxi-

mized with energy and enstrophy as constraints (second

row) and the energy and enstrophy when entropy is

maximized with only the decay rates as constraints

(third row). The fourth row shows that all four quanti-

ties are reproduced accurately if all these quantities are

kept fixed in the maximization of entropy.

c. Numerical calculations—Forced-damped

In the third experiment, in which the system is spun up

from an initial state of rest, both forcing and damping act

on the system. To the viscosity term of the damped case

we add the term n21(c 2 cf), where n21 5 1.764 3 1021,

corresponding to t21 5 90 days in (52). The parameters

are given in the third row of Table 1. As in the first

experiment, the run is 2000 dimensional days long. The

graphs of energy, enstrophy, and their forcing and damp-

ing rates (not shown) reveal that the system reaches a

dynamical equilibrium after about 500 days. The energy

E0, enstrophy Z0, energy decay rate �dE0/dt 5 D0 �
F 0, and enstrophy decay rate �dZ0/dt 5 H0 � G0,

based on averaging over the last 500 days (1000 fields) of

the integration, are given in the third row of Table 2. To

give an idea of the amount of variability in the statisti-

cally stationary state, we show in Fig. 8 snapshots of the

flow at two times, 10 days apart, at the end of the inte-

gration period (the second snapshot is at time t 5 2000

days).

The spectra, averaged over the last 500 days of the

integration, are shown in Fig. 9. As before, the solid dots

and open circles denote the numerical energy and ens-

trophy spectra, respectively, whereas the solid lines

denote the theoretical spectra. As in the freely damped

case, the three panels of the figure contain identical nu-

merical results, whereas the different theoretical curves

are spectra based on different constraints in the maxi-

mization of entropy. The theoretical curves in Fig. 9a are

based on maximum entropy, keeping the energy and

enstrophy fixed at the values obtained from the nu-

merical experiment. We see that there is a large dif-

ference between the numerical and theoretical spectra,

signifying that the forced-damped system is far from

inviscid equilibrium. In Fig. 9b the theoretical spectra

are shown for the case in which the entropy is maxi-

mized with the decay rates of energy and enstrophy

fixed at the value zero. From Table 2 we see that the

numerically obtained average decay rates are not ex-

actly zero, but taking the values from the table instead

of the value zero does not make a noticeable difference

in the results. This particular case is quite interesting

because here we do not need any information from the

numerical experiment—the decay rates can be taken to

be zero—to obtain a theoretical spectrum. In other

words, the principle of maximum entropy is here purely

predictive in the sense that the only information needed

from the run is the fact that the system has reached a

statistically stationary state. However, although the

correspondence is better than in the first case, there

remain notable differences, especially at the higher

wavenumbers. When zero decay rates of energy and

enstrophy are used in combination with the (numerically

obtained) values of the energy and enstrophy, the cor-

respondence improves, but there still remain differ-

ences between the theoretical and numerical spectra.

FIG. 8. The relative vorticity field at times (a) t 5 1990 days and

(b) t 5 2000 days in a numerical run with forcing and dissipation.

The values are in the range (20.50, 0.55) and (20.57, 0.61), re-

spectively, and are displayed with a contour interval of 0.04. The

profiles to the right of the relative vorticity fields are the zonally

averaged zonal velocity (m s21).
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This concerns, in particular, the slopes at high wave-

numbers; see Fig. 9c.

In Fig. 10a we show the relative vorticity field aver-

aged over the last 500 days of the integration. This field

has converged perfectly and can be compared without

qualifications to the expected relative vorticity fields

obtained from the theory. In Fig. 10b we show the the-

oretical average for the case in which the entropy is

maximized with the energy and enstrophy obtained from

the experiment as constraints. In Fig. 10c the theoretical

average is shown for the case in which the entropy is

maximized using the (zero) decay rates of the energy

and enstrophy as constraints. In Fig. 10d the energy and

enstrophy as well as their (zero) decay rates are used as

constraints in the maximization of entropy. Quite re-

markable is that Fig. 10c shows that maximization of

entropy, constrained by the (zero) decay rates of energy

and enstrophy, predicts an average flow that contains a

zonal flow component of the same basic structure as the

zonal flow component in the numerical average. This

can be seen quite clearly from the profiles shown to the

right of the relative vorticity plots and is markedly dif-

ferent from the case displayed in Fig. 10b, in which the

energy and enstrophy from the numerical run are used

as constraints. Indeed, considering the profiles of zon-

ally averaged zonal velocity, we see in Fig. 10b a rather

weak zonal flow dominated by an easterly solid body

rotation, whereas in Fig. 10c we clearly see the two jet

streams that have developed as a result of the forcing.

Maximizing the entropy with both energy and ens-

trophy as well as their (zero) decay rates improves the

resemblance still further although discrepancies, such a

lack of wavelike variability, still remain.

The different Lagrange multipliers and theoretical ex-

pected values for the energy, enstrophy, etc. are given in

the last three rows of Tables 3 and 4. Also here we give in

Table 4 the expected decay rates of energy and enstrophy

when entropy is maximized with energy and enstrophy

as constraints (fifth row) and the energy and enstrophy

when entropy is maximized with only the (zero) decay

rates as constraints (sixth row). The sixth row shows that

if the entropy is maximized, constrained by the (zero)

decay rates of energy and enstrophy, the resulting values

of the energy and enstrophy are lower than the numerical

values.

6. Conclusions and outlook

In this paper we have applied the principle of maxi-

mum entropy to the statistical mechanics of the equiv-

alent barotropic vorticity equation on a sphere. The

equivalent barotropic vorticity equation is a system that

is frequently used as a first-order model of the general

FIG. 9. The values of log En (energy) and log Zn (enstrophy) as a

function of log n, averaged over the last 500 days of the forced-

damped run. The solid dots represent the spectra of energy, the

open circles represent the spectra of enstrophy, and the solid

curves are the theoretical spectra, based on maximum entropy.

The constraints in the maximization of entropy are (a) energy and

enstrophy, (b) the decay rates of energy and enstrophy (taken to be

zero), and (c) both energy and enstrophy and their decay rates.

The slope of the numerically obtained energy spectra at the high

end of the spectrum is around 24.5.
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circulation of the atmosphere. With suitable forcing

and damping parameters, it displays the typical two-

dimensional turbulent behavior that can be observed in

the atmosphere, as demonstrated by Ambaum (1997).

The turbulent nature of the atmosphere’s general cir-

culation leads quite naturally to a study of its properties

with the techniques of statistical mechanics; see Salmon

(1998). Until now, however, it was mostly equilibrium

statistical mechanics that was applied, despite the pres-

ence of forcing and damping in the real atmosphere. In a

more general fluid dynamical context, an important ex-

ception is the work of Burgers (1939), who went beyond

equilibrium statistical mechanics in studying turbulent

flows in which forcing and damping are prominently

present. His idea was to apply the condition of an av-

erage compensation between input and output of the

relevant conserved quantity (energy in his case) instead

of a fixed value of the conserved quantity itself.

In the present paper we have taken up Burgers’

thread again but have based it on the principle of

maximum entropy, as put forward by Jaynes (1957a,b).

In section 2 we summarized the technique of maximum

entropy and applied it to general finite-dimensional

systems with constraints that are quadratic in the vari-

ables. We derived general formulas that are then ap-

plied to the system that we introduce in section 3: the

equivalent barotropic vorticity equation on a sphere.

The results presented in section 4 have confirmed that if

the unforced-undamped version of that system is left to

itself for a time sufficiently long to reach a statistically

stationary state, the statistics of that system are well

captured by a probability density function based on

maximum entropy with the system’s expected energy

and enstrophy as constraints. This was demonstrated by

comparing the numerical energy and enstrophy spectra,

obtained by averaging over 1000 days in the second half

of a 2000-day-long numerical integration, with the cor-

responding maximum entropy spectra, both shown in

Fig. 3. We also studied the numerical average of the

relative vorticity field. Although averaging over 1000

days was not enough to achieve complete convergence,

the most important features were captured reasonably well

by the theoretical expected relative vorticity field, as can be

verified by comparing Figs. 4a and 4b. These results are in

accordance with the literature (see Frederiksen and

Sawford 1981; Carnevale and Frederiksen 1987).

In section 5 we used the general formulas of section 2

to obtain the probability density function of a system if

its entropy is maximized, constrained by the decay rates

of energy and enstrophy or by these decay rates in

combination with the energy and enstrophy themselves.

We first studied an ensemble of 100 time integrations,

starting from the last 100 stored fields of the inviscid

FIG. 10. Relative vorticity fields displayed with a contour

interval of 0.04. (a) The relative vorticity averaged over the last

500 days of the 2000 days integration of the forced-damped system.

(b)–(d) The theoretical expected relative vorticity, based on

maximization of entropy; the constraints are (b) energy and ens-

trophy, (c) the (zero) decay rates of energy and enstrophy, and (d)

both energy and enstrophy and their decay rates. The fields in the

consecutive panels vary between (20.41, 0.46), (20.21, 0.15),

(20.13, 0.09), and (20.21, 0.17). The correlation coefficients be-

tween the relative vorticity fields in (a) and (b), (a) and (c), and (a)

and (d) are 0.20, 0.46, and 0.44, respectively.
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integration, unforced but with Newtonian viscosity as

the damping mechanism. We studied the results after

the damping had been effective for 20 days. The nu-

merical spectra were obtained by averaging over the 100

members of the ensemble and are shown in Fig. 6. In

Fig. 6a the solid lines denote the spectra based on

maximum entropy, keeping the energy and enstrophy

fixed. In Fig. 6b the solid lines denote maximum entropy

spectra, based on fixed decay rates of energy and ens-

trophy. In Fig. 6c the solid curves are maximum entropy

spectra, based on fixed decay rates of energy and ens-

trophy in combination with fixed values of energy and

enstrophy. The latter theoretical spectra give a good

description of the numerical spectra at both small and

high values of the wavenumbers. In Fig. 7 we show that

the numerical average relative vorticity field is repre-

sented increasingly better, along with the spectra. We

thus conclude that both the energy and enstrophy and the

decay rates of energy and enstrophy contain important

information on the statistics of a freely decaying turbu-

lent system and that this information can be exploited

successfully by using the principle of maximum entropy.

It should be noted, however, that if the damping is

allowed to be active for a longer time the results become

less impressive. The numerical spectra, for instance,

become steeper than the theoretical ones and also the

numerical average fields are less well described by the

expected fields based on maximum entropy. Examples

were not given but the fact is illustrated well enough by

the results of a forced-damped version of the model.

Here, damping (and forcing) has been allowed to act for

such a long time that the system has reached a state of

statistical equilibrium, a state characterized by averages

that do not change in time. The spectra and average

relative vorticity fields, both numerical and theoretical,

are shown in Figs. 9 and 10. In analogy to the previous

case, we calculated maximum entropy spectra based

on energy and enstrophy (taken from the simulation),

(zero) decay rates of energy and enstrophy, and a com-

bination of the two. Both theoretical spectra and average

relative vorticity fields improve, going from energy/

enstrophy as constraints to a combination of these with

their (zero) decay rates, but there remain discrepancies,

in particular concerning the slopes of the spectra and the

amount of wave structure in the average flow.

The principle of maximum entropy, as we have ap-

plied it, has shown its most predictive side in the forced-

damped case in which the (zero) decay rates of energy

and enstrophy are used as constraints. Without any in-

formation from the numerical run, except for the fact

that it has reached a statistically stationary state, it

predicts a spectrum and expected relative vorticity field

that match the numerical results better than the spec-

trum and expected relative vorticity field that are based

on energy and enstrophy as constraints, with values

taken from the numerical run. As we have seen, the

results are improved if the (zero) decay rates of energy

and enstrophy are combined with the energy and ens-

trophy from the numerical run. However, by using

values from the numerical run, part of the theory’s

predictive power is lost and we might wonder whether it

is possible to achieve improvements without reliance on

the numerical run.

As a possible way forward, we might contemplate

maximizing the entropy SI , constrained by fixed values

of hEi, hZi, hdE/dti, and hdZ/dti, but leaving the actual

values of hEi and hZi undetermined. The maximum

entropy SM, as given by (29), would then become a

function of hEi and hZi:

S
M

5S
M
hEi, hZi, dE

dt

� �
,

dZ

dt

� �� �
, (77)

because it is understood that the last two arguments of

S
M

are fixed at the value zero. Phrased in this way, the

principle of maximum entropy states that the most ap-

propriate values of hEi and hZi are those values that

maximize SM. A maximum exists, indeed, but will be

attained by the values of hEi and hZi that result from

maximizing the entropy SI without these quantities as

constraints. The reason is that extra constraints can

never increase the maximum value of a function, in-

cluding the entropy.

The procedure above would thus yield the values of

hEi and hZi that are already given in the sixth row of

Table 4. It would confirm that values of hEi and hZi,
taken from the numerical run, do indeed provide addi-

tional information. However, additional information

may also be extracted from the fact that the system is in

a statistically stationary state. Indeed, for a statistically

stationary state hEi and hZi are, by definition, constant

in time. This would suggest that if we permit ourselves

to require that hdE/dti and hdZ/dti are zero, we may as

well require that hdnE/dt ni and hdnZ/dt ni are zero for

n 5 2, 3, . . . . These extra constraints are nontrivial. For

n 5 2 we have

d2E

dt2
5

dF
dt
� dD

dt
and (78a)

d2Z

dt2
5

dG
dt
� dH

dt
, (78b)

as follows straightforwardly from the budget equations

[(34a) and (34b)]. Not going further than second-order

time derivatives, for the sake of argument, we might

maximize the entropy S
I
, using fixed values of hEi, hZi,
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hdE/dti, hdZ/dti, hd2E/dt2i, and hd2Z/dt2i as constraints.

The maximum entropy can then be written as

S
M

5S
M
hEi, hZi, dE

dt

� �
,

dZ

dt

� �
,

d2E

dt2

* +
,

d2Z

dt2

* + !
.

(79)

Note, however, that the actual expression might be

different from (29) if the constraints are no longer of the

form (14). Given that the last four arguments of SM are

fixed at the value zero, the entropy SM is a function of

hEi and hZi. The values of hEi and hZi that maximize

the entropy S
M

can, as we have seen, be obtained by

maximizing the entropy S
I

with only these last four

arguments as constraints. The resulting values of hEi
and hZi will now be different from the values obtained

earlier—and possibly closer to the numerical values—as

the constraints on the second-order time derivatives

provide additional information. A theory developed

along these lines would—for systems that have reached

a state of statistical stationarity—be purely predictive

because the only basic assumption is that the system’s

expected values hEi and hZi do not change in time, so

that hdE/dti, hdZ/dti, hd2E/dt2i, hd2Z/dt2i, etc., can be

taken zero.4

It is not difficult to write out the constraints on the

second-order time derivatives of E and Z, given above,

and express them in terms of the spectral coefficients

cmn of the numerical model. If we do this, however, we

will see that the Jacobian appears in the formulas so that

the quantities contain terms of the form cmncij and

cmncijckl with indices that may be different. On the one

hand, these terms raise the prospect of obtaining cor-

relations between different coefficients, correlations

that are probably needed to reproduce the wavelike

structures in the numerically averaged relative vorticity

field. On the other hand, the same terms might cause

problems in the calculation of the probability density

function. It is also difficult to assess how far one has to

go with the use of higher-order constraints. In principle,

infinitely many of them could be used, although it is

possible, of course, that the procedure would converge

quickly so that we would need only a small number.

These and similar issues are left as subjects of future

research.
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APPENDIX

Calculating the Lagrange Multipliers

In this appendix we give a few details on the way in

which the Lagrange multipliers are calculated.

a. The unforced-undamped case

We first rewrite the expressions (56) for the variance

and mean s2
mn and mmn:

s2
mn 5

1

b

1

«
n
(a/b 1 «

n
)

, and m
mn

5
f

mn

a/b 1 «
n

. (A1)

This allows us to cast the expressions (57a) and (57b) of

the expected energy and enstrophy in the following

form:

hEi��
mn

1

2
«

n
m2

mn 5
1

b
�
mn

1

2
«

n
s2

mn and (A2a)

hZi��
mn

1

2
«2

nm2
mn�«

n
f

mn
m

mn
1

1

2
f 2

mn

� �
5

1

b
�
mn

1

2
«2

ns2
mn,

(A2b)

where we have defined

s2
mn 5

1

«
n
(a/b1«

n
)
. (A3)

Because mmn and smn only depend on the fraction a/b,

the quotient of the two equations above depends only

on a/b. If we subtract the quotient on the right-hand

side of the equality sign from the quotient on the left-

hand side, the sought-for value of a/b is then a zero of

the resulting expression. Plotting it as a function of a/b,

the zero can be found by a simple numerical search al-

gorithm. After a/b has been calculated to any degree of

accuracy (e.g., by the method of interval halving), the

value of b can be obtained by using any one of the two

expressions above, from which a then immediately

follows.

b. The forced-damped case

To find the Lagrange multipliers g and d in the case in

which decay rates of energy and enstrophy are used as

the sole constraints, a procedure is followed that is

4 The strategy proposed here is presumably an approximated

application of the principle of maximum caliber to statistically

stationary states (nonequilibrium steady states) that Jaynes (1980)

has proposed as the guiding principle of nonequilibrium statistical

mechanics.
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closely analogous to the procedure described above. We

first rewrite (67):

s2
mn 5

1

d

1

2d
n
(g/d 1 «

n
)

, m
mn

5
f

mn

2(g/d 1 «
n
)
�

F
mn

2d
mn

,

(A4)

which enables us to cast (68a) and (68b) in the form

hD � Fi ��
mn

(d
n
m2

mn 1 F
mn

m
mn

) 5
1

d
�
mn

d
n
s2

mn and

(A5a)

hH � Gi ��
mn

[d
n
«

n
m2

mn 1 («
n
F

mn
� d

n
f

mn
)� f

mn
F

mn
]

5
1

d
�
mn

d
n
«

n
s2

mn,

(A5b)

where we have defined

s2
mn 5

1

2d
n
(g/d 1 «

n
)

. (A6)

In exactly the same way as before, we may find g/d by

dividing the second of the two equations by the first,

subtracting the two quotients, and then searching for a

zero of the resulting expression. Either one of the two

original equations can then be used to find d, from which

g follows.

In case we wish to use all four constraints (73) and

(74), we rewrite (75) and (76):

s2
mn 5

1

d

1

«
n
(a/d 1 b/d«

n
) 1 2d

n
(g/d 1 «

n
)

and (A7)

m
mn

5
(b/d«

n
1 d

n
)f

mn
� (g/d 1 «

n
)F

mn

«
n
(a/d 1 b/d«

n
) 1 2d

n
(g/d 1 «

n
)

. (A8)

We can then cast the different constraints in the form

hEi ��
mn

1

2
«

n
m2

mn 5
1

d
�
mn

1

2
«

n
s2

mn, (A9a)

hZi ��
mn

1

2
«2

nm2
mn � «

n
f

mn
m

mn
1

1

2
f 2

mn

� �
5

1

d
�
mn

1

2
«2

ns2
mn,

(A9b)

hD � Fi ��
mn

(d
n
m2

mn 1 F
mn

m
mn

) 5
1

d
�
mn

d
n
s2

mn and

(A9c)

hH � Gi ��
mn

[d
n
«

n
m2

mn 1 («
n
F

mn
� d

n
f

mn
)� f

mn
F

mn
]

5
1

d
�
mn

d
n
«

n
s2

mn, (A9d)

where s2
mn is defined by

s2
mn 5

1

«
n
(a/d 1 b/d «

n
) 1 2d

n
(g/d 1 «

n
)

. (A10)

By dividing the second, third, and fourth of these

equations by the first and then subtracting the right-

hand sides from the left-hand sides, we may reduce the

system to three equations in the three variables a/d, b/d,

and g/d. From the solution of this system, d can be ob-

tained by using any one of the equations above, from

which then a, b, and g follow. The solution is sought

graphically by plotting the zero lines of the second and

third equations (obtained by the dividing procedure just

described) as a function of a/d and b/d, where g/d is

determined automatically by zero-searching of the third

equation using interval halving. The values of a/d and

b/d at which the two zero lines cross are the required

values that, together with the automatically searched-

for value of g/d, constitute the solution of the system. By

zooming in successively, one may obtain values of a, b,

g, and d to any required accuracy.
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