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Abstract 9 

The Generalized Extreme Value (GEV) distribution has often been used to describe the 10 

distribution of daily maximum precipitation in observed and climate model data. The 11 

model developed in this paper allows the GEV location parameter to vary over the 12 

region, while the dispersion coefficient (the ratio of the GEV scale and location 13 

parameters) and the GEV shape parameter are assumed to be constant over the region. 14 

This corresponds with the index-flood assumption in hydrology. It is further assumed that 15 

all three GEV parameters vary with time such that the relative change in a quantile of the 16 

distribution is constant over the region. This non-stationary model is fitted to the 1-day 17 

summer and 5-day winter precipitation maxima in the river Rhine basin in a simulation of 18 

the RACMO regional climate model for the period 1950–2099 and the results are 19 

compared with gridded observations. Except for an underestimation of the dispersion 20 

coefficient of the 5-day winter maxima by about 35% the GEV parameters obtained from 21 

the observations are reasonably well reproduced by RACMO. A positive trend in the 22 

dispersion coefficient is found in the summer season, which implies that the relative 23 

increase of a quantile increases with increasing return period. In the winter season there is 24 

a positive trend in the location parameter and a negative trend in the shape parameter. For 25 

large quantiles the latter counterbalances the effect of the increase of the location 26 

parameter. It is shown that the standard errors of the parameter estimates are significantly 27 

reduced in the regional approach compared to those of the estimated parameters from 28 

individual grid box values, especially for the summer maxima.29 
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1. Introduction 30 

Regional climate models (RCMs) nested inside a global climate model provide useful 31 

information about potential local climate change. Precipitation extremes in RCM 32 

simulations have been analyzed in different ways. One method is to consider the change 33 

in a large empirical quantile of the daily precipitation amounts (e.g., the 99th percentile) 34 

or the properties of the exceedances of such a quantile [e.g., Durman et al., 2001; 35 

Christensen and Christensen, 2004]. An alternative is to fit an extreme-value distribution 36 

to the largest daily precipitation amount in a season [e.g., Frei et al., 2006; Beniston et 37 

al., 2007; Goubanova and Li, 2007] or year [e.g., Huntingford et al., 2003; Fowler et al., 38 

2005; Ekström et al., 2005]. Maxima of multi-day precipitation amounts are treated 39 

similarly in several of these studies. 40 

 41 

A problem with extreme precipitation is that the likelihood of detecting a systematic 42 

change at a single grid box is generally small due to the large year-to-year variability. 43 

Frei and Schär [2001] mention, for instance, that a frequency change by a factor of 1.5 in 44 

daily events with an average return period of 100 days can be detected with a probability 45 

of only 0.2 in a 100-year record, assuming a smoothly varying trend component and 46 

temporal independence of extreme events. The decrease of this probability with 47 

increasing event magnitude limits the detection of systematic changes in extreme events 48 

at a single grid box. 49 

 50 

Spatial pooling has been used to detect meaningful changes in extremes. Frei et al. 51 

[2006] and Goubanova and Li [2007] averaged an estimated quantile of the extreme-52 
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value distribution over large regions. Kendon et al. [2008] studied the effectiveness of 53 

spatial pooling for the detection of changes in the 95th percentile of wet-day 54 

precipitation. An alternative is to assume that the most uncertain parameters of the 55 

extreme-value distribution are constant over some region. The estimates of these 56 

parameters based on the pooled data across the region are then generally more precise 57 

than those from the data of an individual grid box, leading to a reduction of the standard 58 

errors of the estimated quantiles of the distribution. This approach has its origin in 59 

hydrology where it is known as regional frequency analysis. Although biases will be 60 

introduced when the homogeneity assumptions are not met, simulation studies [e.g., 61 

Lettenmaier et al., 1987; Hosking and Wallis, 1997] show that even in regions with 62 

moderate amounts of heterogeneity, a regional frequency analysis is more accurate than 63 

the at-site analysis. 64 

 65 

The most popular method of regional frequency analysis is the index-flood method. 66 

Fowler et al. [2005] and Ekström et al. [2005] applied this method to the 1-, 2-, 5-, and 67 

10-day annual maximum precipitation amounts across the UK in two RCM simulations. 68 

Apart from a change in the distribution parameters between the control and future 69 

climate, these parameters do not vary over time in their application. 70 

 71 

The purpose of this paper is to introduce an index-flood model with time-varying 72 

parameters as a tool to summarize changes of extreme precipitation in transient RCM 73 

simulations. The model is applied to daily precipitation in the river Rhine basin in the 74 

RACMO-ECHAM5 simulation. In this part of Europe, short-period convective storms 75 
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may cause local flooding in summer, whereas in winter multi-day episodes may have 76 

adverse impacts over large areas. As in Frei et al. [2006], we analyze the 1-day 77 

precipitation maxima in summer and the 5-day precipitation maxima in winter. 78 

 79 

The index-flood model is described in section 2. Section 3 provides some information 80 

about the river Rhine basin, the RACMO-ECHAM5 simulation, and the observational 81 

data sets that were used for validation. The results for the summer maxima are presented 82 

in section 4 and those for the winter maxima in section 5. Section 6 presents the 83 

conclusions. 84 

 85 

2. Regional modeling of non-stationary precipitation extremes 86 

2.1. Index-flood model 87 

The idea behind the index-flood method is that the variables within a homogeneous 88 

region are identically distributed after scaling with a site-specific factor, the index flood. 89 

The T-year quantile )(sQT of the distribution of the variable X(s) at any given site s, i.e., 90 

the value that is exceeded with probability 1 / T, can then be written as 91 

   TT qssQ )()( μ= ,      (1) 92 

where μ(s) is the index flood and qT is a regional, dimensionless quantile function, in this 93 

context often called the growth curve. The mean or median of the distribution of X(s) is 94 

usually chosen as the index flood. 95 

 96 

A consequence of the index-flood assumption is that the coefficient of variation of X(s) 97 

should be constant over the region of interest. This property is useful for identifying 98 
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homogeneous regions. A number of authors have found that the coefficient of variation of 99 

the observed annual maximum precipitation is relatively large in dry areas and small in 100 

wet, mountainous regions [see Brath et al., 2003]. Nevertheless, the spatial variation in 101 

the coefficient of variation of precipitation maxima is generally much less than that in the 102 

mean. 103 

 104 

The index-flood method has been used with different probability models for the 105 

distribution of X(s). For seasonal and annual precipitation maxima the generalized 106 

extreme value (GEV) distribution is popular. This is a three-parameter distribution that 107 

combines the three possible types of extreme value distributions (i.e., Gumbel, Fréchet, 108 

and reverse Weibull distributions). Its distribution function is given by 109 

   
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+−=

−
κ

α
ξκ

1

1exp)( xxF ,  0≠κ , 110 

           (2) 111 

   
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−=

α
ξxxF expexp)( ,  0=κ , 112 

with ξ, α, and κ the location, scale, and shape parameters, respectively. The shape 113 

parameter controls the behavior of the tails of the distribution – positive values imply a 114 

heavy upper tail (Fréchet distribution). 115 

 116 

Apart from support from extreme value theory [e.g., Coles, 2001], the GEV distribution 117 

has often been found to describe the distribution of observed or simulated precipitation 118 

maxima well. For annual precipitation maxima of various durations Schaefer [1990], 119 
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Alila [1999], and Kyselý and Picek [2007], using L-moment ratio diagrams, observed that 120 

the GEV distribution is generally superior to other candidate distributions. In addition, 121 

Alila [1999] and Kyselý and Picek [2007] found that a goodness of fit test based on the L-122 

kurtosis did not reject the GEV distribution. Buonomo et al. [2007] and Goubanova and 123 

Li [2007] used the Kolmogorov-Smirnov goodness of fit test and concluded that the GEV 124 

distribution is appropriate for modeling precipitation extremes in RCM projections for 125 

most parts of Europe, although problems were met in dry areas where most of the 126 

seasonal maxima were zero. 127 

 128 

For the development of our non-stationary GEV model it is convenient to use the location 129 

parameter as the index flood, i.e., μ(s) = ξ(s), rather than the mean or the median. If the 130 

seasonal maximum X(s) at site s follows a GEV distribution with parameters ξ(s), α(s), 131 

and κ(s), then the scaled seasonal maximum X(s)/ξ(s) has a GEV distribution with 132 

location parameter 1, scale parameter γ(s) = α(s)/ξ(s), and shape parameter κ(s). The 133 

index-flood method applies if γ(s) and κ(s) do not vary over the region, i.e., γ(s) = γ and 134 

κ(s) = κ. The dispersion coefficient γ is analogous to the coefficient of variation. 135 

 136 

The T-year quantile of the scaled seasonal maximum X(s)/ξ(s) follows from equation (2) 137 

by setting F(qT) = 1–1/T, ξ = 1, and α = γ : 138 
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Note that qT = 1 and QT(s) = ξ(s) when T = 1/(1–1/e) = 1.58 years, the return period 142 

corresponding to the location parameter. The growth curve is determined by γ and κ. This 143 

is also the case if X(s) is scaled by the mean [Buishand, 1991; Sveinsson et al., 2001] or 144 

the median [Northrop, 2004]. However, the index flood then depends on γ and κ, which is 145 

inconvenient in the case of temporal trends in these parameters. 146 

 147 

2.2. Non-stationary index-flood model 148 

A few studies in the hydrological literature deal with non-stationarity in regional 149 

frequency analysis. Cunderlik and Burn [2003] assume temporal and spatial variation in 150 

both the location and scale parameter of the distribution. Linear trends in these 151 

parameters were estimated with a distribution-free method due to Sen [1968]. In a 152 

subsequent paper [Cunderlik and Ouarda, 2006] the scale parameter was assumed to be 153 

constant over the region of interest but still time-varying. The regional scale parameter 154 

was estimated as a weighted average of the at-site scale parameters. Renard et al. [2006] 155 

used a regional non-stationary GEV model to describe trends in annual maximum 156 

discharges. In that model the shape parameter was constant but the scale and location 157 

parameters varied over the region and there was a common linear trend in the location 158 

parameter. Statistical inference was based on a Bayesian analysis using Markov chain 159 

Monte Carlo methods. Other authors have successfully used a GEV distribution with 160 

time-varying parameters, e.g., Kharin and Zwiers [2005], Adlouni et al. [2007], García et 161 

al. [2007], and Brown et al. [2008], although not in the framework of regional frequency 162 

analysis. 163 
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 164 

Let X(s, t) be the seasonal maximum at site s in year t. Using the location parameter of 165 

the GEV distribution as the index flood, the T-year quantile QT (s, t) can be represented as 166 

   )(),(),( tqtstsQ TT ξ= ,     (4) 167 

where )(tqT is given by equation (3) but with time-dependent dispersion coefficient γ(t) 168 

and shape parameter κ(t). The location parameter ξ(s, t) varies both in time and space. As 169 

in the non-stationary GEV model of Renard et al. [2006], the temporal trend in the 170 

location parameter is assumed to be constant over the region of interest. A motivation for 171 

this is that changes in extreme precipitation are mainly associated with large-scale 172 

changes in the atmospheric conditions (changes of the amount of precipitable water due 173 

to temperature change and changes of the atmospheric circulation). However, in regions 174 

with strong orography the changes in precipitation may be altitude-dependent [Giorgi et 175 

al., 1997]. The altitude-dependence of the trend in the location parameter will be 176 

examined for the mountainous southern part of the Rhine basin. 177 

 178 

We propose the following model for the GEV parameters: 179 

   )]([exp)(),( 10 tIsts ξξξ =      (5) 180 

   )]([exp)( 10 tIt γγγ +=      (6) 181 

   )()( 10 tIt κκκ +=       (7) 182 

where I(t) is a time indicator or time-dependent covariate, the choice of which is 183 

discussed in section 3. Different forms of trends can be considered, but our choices have 184 

the following advantages. The dispersion coefficient cannot become negative because of 185 

the exponential expression in equation (6). The exponential function in equation (5) 186 
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ensures that the relative changes in the quantiles are constant over the region of interest, 187 

as follows. From equations (4) and (5), the relative change of the T-year quantile between 188 

years t1 and t2 at site s can be written as 189 
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           (8) 191 

which does not depend on s. Apart from the common usage of percentages for changes in 192 

extreme precipitation, a reason to assume constant relative changes rather than absolute 193 

changes is that specific humidity and hence atmospheric moisture would increase roughly 194 

exponentially with temperature (about 6.5% per degree) according to the Clausius-195 

Clapeyron relation [e.g., Pall et al., 2007]. 196 

 197 

The parameters ξ0(s), ξ1, γ0, γ1, κ0, and κ1 of the model were estimated by maximizing the 198 

log-likelihood 199 

   ( )( )∑∑=
= =

S

s
ts

N

t
sLL

1
101010,

1
,,,,, κκγγξξ     (9) 200 

where Ls,t(ξ0(s), ξ1, γ0, γ1, κ0, κ1) is the log-likelihood for the seasonal maxima at grid box 201 

s in year t, S is the number of grid boxes in the region and N is the number of years in the 202 

record. The number of parameters that has to be determined is thus S+5. Dealing usually 203 

with more than 50 grid boxes in one region it was difficult to estimate all parameters 204 

simultaneously. Therefore, a two-step procedure was applied [Arnell and Gabriele, 1988; 205 

Buishand, 1991]. Initial values of the parameters were based on L-moments estimates 206 

[Hosking and Wallis, 1997]. For the parameters ξ0(s) the individual grid box estimates 207 

were used, and the parameters γ0 and κ0 were set to the regional average of the grid-box 208 
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estimates. The trend parameters ξ1, γ1, and κ1 were set initially to zero. In the first step, all 209 

the site-specific location parameters ξ0(s) were estimated by maximum likelihood, 210 

keeping the regional parameters ξ1, γ0, γ1, κ0, and κ1 fixed. In the second step, the values 211 

of ξ0(s) were fixed at their estimates from the previous step and the regional parameters 212 

were estimated by maximum likelihood. These two steps were repeated until 213 

convergence. The number of iterations needed for the procedure to converge was usually 214 

not more than 5 for the summer and not more than 10 for the winter maxima. The CPU 215 

time needed to fit the index-flood model was on average 10% larger in summer and 70% 216 

larger in winter than the time needed to fit the model to each of the corresponding grid 217 

boxes individually. 218 

 219 

2.3. Uncertainty and model checking 220 

The log-likelihood in equation (9) assumes independence between years and between 221 

grid boxes within the region. In particular, the latter assumption is not satisfied because 222 

the seasonal maxima at adjacent grid boxes are often associated with the same 223 

meteorological event. As a consequence, the standard errors of the estimates can no 224 

longer be obtained from the second derivatives of the log-likelihood. The bootstrap can 225 

be used to assess the uncertainty of the parameters and quantiles of the distribution in the 226 

case of spatial dependence. Rather than bootstrapping the data of the grid boxes 227 

individually, the data for a certain year are bootstrapped simultaneously in order to 228 

preserve the spatial dependence [cf. Faulkner and Jones, 1999; Kharin et al., 2007]. 229 

Since resampling requires that the data come from the same distribution, the trend is 230 

removed from the maxima X(s, t) by the transformation [Coles, 2001] 231 
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where ),(~ tsX  are the detrended seasonal maxima and ),(ˆ tsξ , )(ˆ tγ , and )(ˆ tκ are the 233 

maximum likelihood estimates of the GEV parameters (these are obtained by replacing 234 

ξ0(s), ξ1, γ0, γ1, κ0, and κ1 in equations (5)–(7) by their maximum likelihood estimates 235 

01010 ˆ,ˆ,ˆ,ˆ),(ˆ κγγξξ s , and 1κ̂ ). Then a sample Nu ttt ,,,,1 KK  is drawn with replacement 236 

from the years N,,1K . A bootstrap sample of detrended seasonal maxima is obtained by 237 

taking the vector ( )),(~,),,(~,),,1(~
uuu tSXtsXtX KK  for each resampled year ut . Finally, 238 

the sample is transformed back to the original scale according to 239 
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and the parameters are re-estimated. 241 

 242 

The transformed maxima ),(~ tsX should have a standard Gumbel distribution if the model 243 

is correct (we refer to them as standard Gumbel residuals hereafter), which is tested in 244 

this study by calculating the Anderson-Darling statistic for each grid box. The Anderson-245 

Darling statistic A2 is defined as [Anderson and Darling, 1952] 246 
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where FN (x) is the empirical distribution of the ),(~ tsX  for the grid box of interest and 248 

F(x) is the standard Gumbel distribution function, F(x) = exp [– exp(– x)]. The A2 statistic 249 

summarizes the mean square distance between the two distributions, putting more weight 250 

on the tails of the distribution through the function 1/{F(x) [1–F(x)]}. For testing 251 
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goodness of fit of extreme value distributions it has been shown [e.g., Shimokawa and 252 

Liao, 1999; Laio, 2004] that this statistic is more powerful than the Kolmogorov-Smirnov 253 

and Cramer-von Mises statistics and the probability plot correlation coefficient. Here A2 254 

also tests the adequacy of assumptions about the GEV parameters (the index-flood 255 

assumption, constant trends over the region of interest and (log-)linearity with the time 256 

indicator I(t)). Separate tests for these assumptions can be designed but these are not 257 

considered in the present paper. The definition of the region should be re-examined or a 258 

different model for the GEV parameters should be used if the fit is not acceptable. 259 

 260 

The procedures used to assess uncertainty and goodness of fit assume independence 261 

between years. This assumption has been checked by exploring the temporal pattern of 262 

residuals. For this purpose, it is convenient to work with residuals that have a symmetric 263 

distribution, in particular the normal distribution. Standard normal residuals 264 

),(~
norm tsX are obtained by the transformation  265 

   ( )[ ]{ }),(~expexp),(~ 1
norm tsXtsX −−Φ= − ,   (13) 266 

with 1−Φ  the quantile function of the standard normal distribution. 267 

 268 

3. Rhine basin and data used 269 

The river Rhine basin has an area of 185,000 km2 and is situated in the territory of nine 270 

European countries (Figure 1a). The basin stretches from the Alps in the south with 271 

mountain peaks higher than 4000 m to a flat delta in the Netherlands in the north. Mean 272 

annual precipitation is quite variable – the wettest part is the Alpine region with more 273 

than 3000 mm of precipitation per year in some areas, the driest part is the area around 274 
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Mainz in the center of the Rhine basin where mean annual precipitation is about 400 mm. 275 

The overall mean annual precipitation is 910 mm. 276 

 277 

The precipitation maxima in the output of the KNMI regional climate model RACMO 278 

[van Meijgaard et al., 2008] driven by the ECHAM5 global climate model [Jungclaus et 279 

al., 2006] under the SRES A1B emission scenario [Nakićenović and Swart, 2000] for the 280 

period 1950–2099 were studied. The horizontal resolution of the RACMO model is ≈ 25 281 

km on a rotated longitude-latitude grid. There are 316 grid boxes whose centers lie within 282 

the Rhine basin (Figure 1b).  283 

 284 

To use the index-flood model homogeneous regions have to be identified. Hosking and 285 

Wallis [1997] mention several methods for choosing the regions ranging from subjective 286 

partitioning to using geographical units and objective partitioning. The latter still requires 287 

subjective choices at several stages. We split the Rhine basin into regions subjectively: 288 

we estimated the GEV parameters at each grid box for the 1-day summer (JJA) and 5-day 289 

winter (DJF) maxima for two time slices (1950–1989 and 2070–2099) using the 290 

stationary model, i.e., with I(t) = 0 in equations (5)–(7). Since the grid box estimates of 291 

the shape parameter are not very reliable, we based the division of the Rhine basin on the 292 

spatial pattern of the dispersion coefficient. Spatial heterogeneity of the dispersion 293 

coefficient turned out to be stronger for the summer maxima (Figure 1b–c) than for the 294 

winter maxima and therefore has more influence on the delimitation of the regions. On 295 

the basis of Figure 1b–c we divided the Rhine basin into 5 regions (Figure 1d), each 296 

including 48 to 97 grid boxes. Region 1 corresponds roughly to the Swiss part of the 297 
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basin and region 5 to the Dutch part. The sensitivity of the results to the boundaries of the 298 

regions was briefly checked by moving a few grid boxes from one region to another 299 

region and refitting the model. There was little change in the estimated parameters and 300 

the goodness of fit. 301 

 302 

Figure 2 shows the change of the mean seasonal and annual precipitation between the 303 

periods 1950–1989 and 2070–2099. In the model output mean annual precipitation 304 

increases by about 5% over the whole basin, mean winter precipitation increases by more 305 

than 20% over most of the basin and mean summer precipitation decreases by 10–20%.  306 

 307 

The model for the GEV parameters defined in equations (5)–(7) requires the choice of the 308 

time indicator I(t). The most straightforward approach is to use I(t) = t. Since the 309 

enhanced greenhouse effect is small during the first decades of the RCM simulation, a 310 

more complicated function of the year t is needed to allow the GEV parameters to stay 311 

constant or almost constant in this period. Such a function usually contains one or more 312 

unknown parameters which generally leads to more uncertain trend estimates. An 313 

alternative time indicator which is representative of the enhanced greenhouse effect is the 314 

global temperature. In our application a seasonal global temperature anomaly from the 315 

driving ECHAM5 model is used. This anomaly is calculated with respect to the overall 316 

1950–2099 mean temperature so that the parameters ξ0(s) are approximately orthogonal 317 

to the regional parameters ξ1, γ0, γ1, κ0, and κ1. This significantly speeds up the two-stage 318 

estimation procedure. Using temperature anomalies with respect to some historical period 319 

such as 1960–1989 (or temperature itself) leads to a significant correlation between 320 
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)(ˆ
0 sξ and 1̂ξ . For example, if the historical period 1960–1989 is considered, the average 321 

correlation between these parameters is –0.87. This correlation is only 0.14 if the 322 

anomalies are calculated with respect to the overall mean. The summer and winter global 323 

temperature anomaly is given in Figure 3. The increase between the periods 1950–1989 324 

and 2070–2099 is ≈ 3 °C in the summer and ≈ 3.5 °C in the winter season in the 325 

ECHAM5 simulation. The increase of the temperature over the Rhine basin is 3.3 °C in 326 

summer and 2.8 °C in winter in the RACMO-ECHAM5 simulation. In the summer 327 

season there is, however, a considerable gradient in the warming over the Rhine basin 328 

(from 2.5 °C in region 5 in the north to 4.3 °C in region 1 in the south). 329 

 330 

To compare the distribution of extremes in the RACMO-ECHAM5 run with that in 331 

observations, the gridded observed daily precipitation amounts produced within the EU-332 

funded ENSEMBLES project [Haylock et al., 2008] were used. These data (further 333 

denoted as E-OBS) are available on different grids including a rotated longitude-latitude 334 

grid with a resolution of ≈ 25 km, which makes the comparison with the RACMO data 335 

straightforward. The data cover the period 1950–2006. The density of stations used for 336 

gridding varies across the Rhine basin (e.g., Netherlands ≈ 1 station per 400 km2, 337 

Switzerland ≈ 1 station per 1300 km2, and Germany ≈ 1 station per 3400 km2). The rather 338 

low station density in much of the Rhine basin implies that only a small fraction of grid 339 

boxes contains one or more rainfall stations (see Figure 1d). For the gridding of the E-340 

OBS data set, the station data were first interpolated to a 0.1 degree longitude-latitude 341 

grid (≈ 10 km by 5 km) using a search radius of 450 km, and then averaged within the 342 

grid boxes. The distance between stations that significantly contribute to the interpolated 343 
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values is relatively large in areas with low station density, resulting in a large amount of 344 

spatial smoothing. This questions the representativeness of the extremes in the E-OBS 345 

data for these areas. Hofstra et al. [2009] compared daily precipitation in the E-OBS data 346 

to that in three gridded data sets based on a significantly larger number of rain gauges: 347 

one for the UK (1958–2002), the Alpine data set (1971–1995), and the ELDAS data set 348 

(October 1999–December 2000) covering central and northern Europe. The upper deciles 349 

of the area-average daily rainfall amounts found in these data sets turned out to be larger 350 

than those in the E-OBS data set, in particular in the Alpine data set. The latter is also 351 

used in our study and will be denoted as ALP from here on. It is available on a regular 352 

longitude-latitude grid with a resolution of ≈ 25 km. The density of stations used for 353 

gridding was ≈ 1 station per 100–200 km2 and more high-elevation stations were 354 

included than in the E-OBS data. Further details on this data set can be found in Frei and 355 

Schär [1998]. 356 

 357 

4. Summer maxima 358 

4.1. Results 359 

Figure 4 shows boxplots of estimated parameters and their trends for the 1-day summer 360 

maximum precipitation. These boxplots were obtained from 3000 bootstrap samples. The 361 

upper panels (Figures 4a–c) refer to the GEV parameters for the period 1950–1989. The 362 

estimated values of ξ (average location parameter over the S grid boxes in the region), γ, 363 

and κ were derived from equations (5)–(7) using the 1950–1989 average summer global 364 

temperature anomaly for I(t).  365 

 366 
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In the RACMO-ECHAM5 simulation the average location parameter is about 32 mm in 367 

the Alpine area and about 21 mm in the rest of the basin. This difference is caused by the 368 

high mean seasonal precipitation amounts in the Alps. The dispersion coefficient varies 369 

between 0.32 and 0.37 in the RACMO-ECHAM5 simulation. The high value of the 370 

dispersion coefficient in region 3 could be related to the low mean precipitation in this 371 

region. We do not have any explanation for the high values of the dispersion coefficient 372 

in region 5. The shape parameter is positive (Fréchet distribution). 373 

 374 

Figures 4a–c also give the estimated parameters from the E-OBS and ALP data sets based 375 

on the non-stationary GEV model using the average summer global temperature anomaly 376 

from the HadCRUT3 data set of gridded observed temperatures [Brohan et al., 2006] for 377 

I(t) in equations (5)–(7). The location parameter in the RACMO-ECHAM5 simulation is 378 

on average 10% larger than the location parameter from the E-OBS data. In addition to 379 

model error, this difference is caused in part by the low number of stations used for 380 

gridding in certain countries (see section 3). This is most pronounced in region 1 where 381 

the average estimate of the location parameter from the E-OBS data is 20% lower than 382 

that from the ALP data which are based on a substantially larger number of stations. 383 

These differences remain large (15%) if the parameters for the E-OBS and ALP data are 384 

estimated for the common period 1971–1995. Furthermore, there is little difference 385 

between the estimated location parameter from the RACMO-ECHAM5 and E-OBS data 386 

in region 5 where the gridding of the E-OBS data was based on a relatively large number 387 

of stations. The dispersion coefficient and the shape parameter show a reasonable 388 

agreement in the E-OBS and ALP data sets for region 1. These two parameters are in 389 
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most regions somewhat larger in the RACMO-ECHAM5 simulation than in the E-OBS 390 

data.  391 

 392 

Figures 4d–f refer to the estimated trends in the GEV parameters ξ(t), γ(t), and κ(t). The 393 

change of ξ(t) and γ(t) is given as the ratio of the mean values of these parameters for the 394 

periods 2070–2099 and 1950–1989, the change of κ(t) is the difference in the mean of 395 

κ(t) for the same periods. There is a notable positive trend in the dispersion coefficient in 396 

all five regions, while the trends in the location and the shape parameters are less clear. 397 

 398 

To assess the increase in precision of the parameter estimates due to spatial pooling, the 399 

non-stationary GEV model was fitted for each individual grid box (i.e., without spatial 400 

pooling) and the 25th and 75th percentiles of the parameter estimates were calculated 401 

using 500 bootstrap samples. Then, for each region and each parameter the average 402 

interquartile range was obtained as the difference between the average 75th and 25th 403 

percentile of the estimates. These average interquartile ranges were compared with those 404 

in Figure 4. Table 1 gives the reduction of the interquartile range for the summer season 405 

for the RACMO-ECHAM5 data. Note that in the case of no correlation between grid 406 

boxes the standard error would be roughly inversely proportional to the square root of the 407 

number of grid boxes, which would lead to a reduction by 85–90% of the interquartile 408 

range. If the grid boxes were perfectly dependent there would be no reduction at all. The 409 

reduction for the RACMO-ECHAM5 data is substantial: 30–80%. Spatial pooling has the 410 

largest influence on the uncertainty of the shape parameter and the reduction is larger for 411 

parameters describing trends.  412 
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 413 

The relative changes of quantiles (ratios of the average quantiles in the periods 2070–414 

2099 and 1950–1989) are shown in Figure 5. Despite the decrease of mean summer 415 

precipitation, the quantiles of the extremes increase. The change of the 2-year quantile is 416 

largely determined by the change of the location parameter. Therefore, there is only a 417 

small increase (up to 10%) of the 2-year quantile except for region 2 where a relatively 418 

large increase of the location parameter leads to an increase of this quantile of almost 419 

30%. The relative increase of the 50-year quantile is larger in all regions except for 420 

region 2 because of the positive trend in the dispersion coefficient. The 50-year quantile 421 

increases by 10–30% in regions 1 and 3 and even by 50% in regions 4 and 5 where the 422 

positive trend in the dispersion coefficient is enforced by the positive trend in the shape 423 

parameter. The relatively small increase of the 50-year quantile in region 2 is caused by 424 

the decrease of the shape parameter. The uncertainty of the change of a given quantile is 425 

large, in general comparable with its magnitude.  426 

 427 

One possible way to reduce the uncertainty of changes of quantiles is to join regions or to 428 

assume that certain regions have common parameters. To test for differences between 429 

regions the following statistic was used: 430 

  ∑
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=
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i
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2) - ˆ(  θθ        (14) 431 

with n the number of regions, iθ̂ the estimate of the parameter of interest for region i and 432 

nn
i i /ˆ

1∑= = θθ . The results of the test for the five regions in the Rhine basin are given in 433 

Table 2. The p-values were obtained using a bootstrap procedure as described in 434 
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Appendix A. The differences between the regions are significant at the 0.1 level for all 435 

parameters except the trend parameter γ1. The differences in the trend parameters ξ1 and 436 

κ1, however, are mostly due to the results in region 2 only: the trends in the other regions 437 

are similar (see Figure 4). Therefore, a restricted model with common trends of the GEV 438 

parameters in regions 1, 3, 4, and 5 was also fitted. Regardless of different values of 439 

0γ̂ and 0κ̂ , the estimated changes of the quantiles for this restricted model are almost 440 

identical in these four regions (see Figure 6) and roughly correspond to the mean of the 441 

relative changes in these regions assuming no common parameters. The uncertainty is, 442 

however, significantly reduced. For the 50-year quantile in Figure 6 a 27% increase is 443 

found. This corresponds to a 6.3% increase per degree of summer warming in region 1 444 

and a 10.8% increase per degree in region 5. The latter value is considerably larger than 445 

that expected from the Clausius-Clapeyron relation, indicating that other factors than the 446 

temperature influence on atmospheric moisture also determine the change in extreme 447 

precipitation. 448 

 449 

We studied the data further to find an explanation for the deviating trends in the location 450 

parameter and the shape parameter for region 2. This region appeared to be part of a 451 

larger area east of the Rhine basin exhibiting less summer drying than the rest of the 452 

basin in the RACMO-ECHAM5 simulation (not shown). This difference in summer 453 

drying might explain why the location parameter increases in region 2 and not in the 454 

other regions. The increased soil moisture deficits towards the end of the 21st century 455 

limit the increase of summer showers in regions 1, 3, 4, and 5. We further found that the 456 

largest values in the last 20–30 years of the simulation for region 2 are not as large as in 457 



22 

the rest of the simulation: the trend is different there. This might explain the drop in the 458 

shape parameter in this region (Figure 4f).  459 

 460 

4.2. Model validation 461 

For the RACMO-ECHAM5 simulation, the goodness of fit was tested using the A2 462 

statistic. For regions 1 and 3, Figure 7 gives the A2 value for each grid box together with 463 

critical values for a test at the 0.1 significance level. These critical values were 464 

determined using a parametric bootstrap procedure (Appendices B and C). The local 0.1 465 

critical values in Figure 7 apply to the goodness of fit test at an individual grid box. The 466 

likelihood that all A2 values fall below these critical values is small. In the case of an 467 

adequate fit it is expected that 10% of the A2 values exceed the local 0.1 critical value. 468 

This fraction is higher for regions 1 and 3 (≈ 20%). This does not necessarily imply lack 469 

of fit because of spatial dependence. Even if the model provides an adequate fit, clusters 470 

of grid boxes may fail the Anderson-Darling test in the case of spatial dependence. In 471 

order to evaluate the field significance, the 0.1 global critical values in Figure 7 have to 472 

be considered. The chance that some A2 value exceeds the line of these critical values is 473 

0.1 if the data come from the assumed model. None of the A2 values for region 1 is above 474 

this line, but in region 3 there are five grid boxes for which A2 exceeds the global 0.1 475 

critical value. Four of these grid boxes are situated near Mainz in the center of the region 476 

(Figure 1) where the lowest precipitation in the Rhine basin is found. A separate model fit 477 

for these four grid boxes and three adjacent grid boxes with large A2 values revealed a 478 

relatively high dispersion coefficient for this subregion. There was no evidence of lack of 479 

fit of the GEV distribution and the trend γ1 in the dispersion coefficient did not deviate 480 
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much from that for the rest of region 3. These seven grid boxes in this relatively dry area 481 

were excluded. In addition, four grid boxes in region 4 for which A2 exceeds the global 482 

0.1 critical value were excluded too. One of these grid boxes is located on the western 483 

border of the river Rhine basin, whereas the other three are situated in a relatively wet 484 

subregion, known as Sauerland, with grid box estimates of γ0 lower than those for the rest 485 

of this region. The GEV model was then fitted again and the A2 statistics and their critical 486 

values were recalculated. The results discussed in section 4.1 refer to the refitted model 487 

as well as Figures 4, 5, and 6. Figure 8 shows the location of the excluded grid boxes and 488 

summarizes the results of the goodness of fit tests. In region 3 there remains one grid box 489 

for which A2 exceeds the global 0.1 critical value. 490 

 491 

Two additional checks were made to assess the presence of temporal dependence: (1) the 492 

standard normal residuals were averaged over each of the five regions and smoothed 493 

using a locally weighted regression, "loess" [Cleveland, 1979], in order to find significant 494 

temporal patterns; (2) the average autocorrelation of the standard normal residuals was 495 

calculated for each of the five regions. Figures 9 and 10 show the results of these checks 496 

for region 1. Both pictures are representative of the other regions as well and both show 497 

no evidence of temporal dependence.  498 

 499 

5. Winter maxima 500 

5.1. Results 501 

Boxplots of the estimated GEV parameters for the 5-day winter maximum precipitation 502 

in the RACMO-ECHAM5 simulation for the period 1950–1989 are given in Figures 11a–503 
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c. As for the summer season the location parameter in the Alpine region is higher than in 504 

the rest of the basin. The dispersion coefficient shows a south north gradient. The shape 505 

parameter is almost zero in three of the five regions.  506 

 507 

The RACMO-ECHAM5 simulation overestimates the location parameter by 10–30% and 508 

underestimates the dispersion coefficient by 35% with respect to the E-OBS data. 509 

For the 5-day winter maxima the reduction of variability in the E-OBS data due to the 510 

gridding of insufficient station data is smaller than for the 1-day summer maxima because 511 

of the stronger spatial correlation between the 5-day winter maxima. The low number of 512 

stations used for gridding cannot explain the observed differences between the parameter 513 

estimates from the RACMO-ECHAM5 and E-OBS data. In contrast to the 1-day summer 514 

maxima the differences between the estimated location parameters from the ALP and E-515 

OBS data are small for region 1. There is also a significant difference between the 516 

estimated location parameters from the RACMO-ECHAM5 and E-OBS data for the well-517 

gauged region 5. The overestimation of the location parameter in the RACMO-ECHAM5 518 

data is strongly related to the positive model bias in the mean (36%) and the standard 519 

deviation (11%) of daily winter precipitation. Part of this bias is caused by the systematic 520 

undercatch inherent to rain gauges for which neither the E-OBS nor the ALP data were 521 

corrected. For instance, Frei et al. [2003] mention for the winter season an average bias 522 

of 11% due to undercatch. This bias is expected to be somewhat lower in other parts of 523 

the Rhine basin because of a smaller fraction of snowfall. Since the overestimation of the 524 

standard deviation is smaller than that of the mean, the coefficient of variation is 525 

underestimated (19%). The low relative variability of the daily values in the RACMO-526 
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ECHAM5 simulation partly accounts for the underestimation of the dispersion coefficient 527 

in the GEV model for the 5-day maxima across the basin. 528 

 529 

The estimated trends of the GEV parameters in the RACMO-ECHAM5 simulation are 530 

shown in Figures 11d–f. The location parameter increases and the shape parameter 531 

decreases significantly over the whole basin, while there is almost no change in the 532 

dispersion coefficient. The relative changes of the quantiles are given in Figure 12. Due 533 

to the increase of the location parameter the 2-year quantiles increase over the whole 534 

basin by 10–20%. The relative increase of these quantiles is, however, smaller than the 535 

relative increase of mean winter precipitation (Figure 2). For the 50-year quantiles the 536 

effect of the increase of the location parameter is counterbalanced by the decrease of the 537 

shape parameter resulting in only a slight and non-significant change of this quantile. The 538 

physical causes of the relatively small change at large quantiles are unknown and need 539 

further investigation. The 5-day winter precipitation extremes result from intense large-540 

scale events which are strongly influenced by the atmospheric circulation. A detailed 541 

study of the changes in circulation characteristics would therefore be of interest. 542 

 543 

In the model fitted to the E-OBS data there is a rather strong positive trend in the location 544 

parameter for all five regions (not shown). This trend is in line with the strong increase 545 

found by Hundecha and Bárdossy [2005] in the 5-day winter maximum precipitation 546 

during the period 1958–2001 at rainfall stations in the German part of the Rhine basin. 547 

This upward trend is much stronger than that in the RACMO-ECHAM5 simulation. 548 

Moreover, the Gumbel residuals for regions 2, 3, and 4 show a small, but statistically 549 
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significant lag 1 autocorrelation for the E-OBS data. This points to some unknown factor 550 

(or factors) causing long-term variability in extreme 5-day winter precipitation. 551 

Hundecha and Bárdossy [2005] did not find a significant increase in the frequency of 552 

circulation patterns associated with wet days over their study period. The presence of this 553 

long-term variability makes difficult the interpretation of the differences between the 554 

estimated GEV parameters in the RACMO-ECHAM5 simulation and the E-OBS data set. 555 

Further investigation is required to understand fully the disparities. 556 

 557 

For the 5-day winter precipitation maxima in the RACMO-ECHAM5 data the reduction 558 

of the interquartile ranges of parameter estimates due to spatial pooling is 17–53%, where 559 

the lower limit applies to the parameter ξ1 and the upper limit to the parameter κ1. This 560 

reduction is lower than that for the 1-day summer maxima, due to the stronger spatial 561 

correlation between the 5-day winter precipitation maxima. In contrast to the summer 562 

maxima, the test for differences between regions indicates that for the 5-day winter 563 

precipitation maxima the trends in the GEV parameters can be assumed the same for the 564 

whole Rhine basin. However, the reduction of the uncertainty of the quantiles by fitting a 565 

model with common trend parameters ξ1, γ1, and κ1 is not as large as that for the 1-day 566 

summer maxima. This is partly due to the larger correlation between the estimated 567 

parameters of different regions in winter and partly due to the fact that the uncertainty of 568 

the changes in quantiles is smaller in winter (compare the widths of the confidence bands 569 

in Figures 5 and 12). 570 

 571 

5.2. Model validation 572 
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For the RACMO-ECHAM5 simulation, Figure 13 gives a summary of the goodness of fit 573 

testing for the winter season. As for the summer season the model was initially fitted to 574 

all grid boxes. Fifteen grid boxes with high values of A2 were excluded. Most of these 575 

grid boxes are located on the border of region 1 or close to it, some of them at high 576 

altitude. Two excluded grid boxes are found on the border of region 4. After the 577 

exclusion of these grid boxes the model was refitted and the A2 values were recalculated. 578 

The results discussed in section 5.1 refer to this refitted model. After refitting there 579 

remains one grid box with an A2 value exceeding the global 0.1 critical value in region 2. 580 

In contrast to the observed data, no signs of persistence or low-frequency variability were 581 

found in the standard normal residuals of the RACMO-ECHAM5 data (not shown). This 582 

points to a failure of the driving ECHAM5 global model to reproduce long-term 583 

variability. There is, however, a strong indication that the magnitude of the trend 584 

parameter ξ1 decreases with increasing altitude in the Swiss part of the Rhine basin (see 585 

Figure 14). The relative increase in the GEV location parameter is therefore smaller at 586 

high altitude. This is also found for the change in mean winter precipitation in the 587 

RACMO-ECHAM5 simulation. Though the relative increase in mean winter precipitation 588 

is smaller at high altitude, the absolute increase is larger. The latter is in agreement with 589 

the RCM simulation of Giorgi et al. [1997]. The physical cause of this altitude-590 

dependence is not clear. 591 

 592 

6. Conclusions 593 

In the present study a non-stationary regional GEV model was introduced and applied to 594 

the 1-day summer and 5-day winter precipitation maxima in the transient RACMO-595 
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ECHAM5 run for the river Rhine basin in order to evaluate the changes in the properties 596 

of simulated precipitation extremes. The capability of the climate model to reproduce 597 

observed precipitation extremes was also assessed. The river Rhine basin was subdivided 598 

into 5 regions and the GEV model was applied to each of these regions. The model 599 

allows the location parameter to vary over the region of interest with common trend in 600 

time. The dispersion coefficient and the shape parameter are assumed constant over the 601 

region but varying with time. 602 

 603 

The regional GEV model provides an informative summary of the differences between 604 

observed and simulated precipitation maxima as well as of the changes in the distribution 605 

of extremes. Looking at the parameters of the GEV distribution gives a better insight into 606 

the differences in distribution than looking at a single quantile only. In addition, the 607 

standard errors of the estimated common parameters are significantly reduced compared 608 

to the estimates based on the data of an individual grid box. 609 

 610 

The choice of regions is a difficult point in the application of the regional GEV model. 611 

The size of a region is limited by spatial heterogeneities in the GEV parameters γ and κ as 612 

well as spatial heterogeneities in the trends of these parameters. Maps of grid box 613 

estimates of γ for the periods 1950–1989 and 2070–2099 proved to be useful for the 614 

partitioning of the Rhine basin in this study. Instead of defining certain regions, one could 615 

pool the data from the grid box of interest and a fixed number of neighboring grid boxes 616 

[e.g., Zwiers and Kharin, 1998; Coelho et al., 2008]. This is convenient if identifying 617 

large, homogeneous regions is difficult or if one wishes to show how the model 618 
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parameters vary over the entire RCM domain. The size of such neighborhoods is 619 

typically much smaller than the regions used in regional frequency analyses, and 620 

therefore results in less spatial pooling. Moreover, the use of a fixed number of grid 621 

boxes will not be optimal if the degree of spatial heterogeneity varies over the domain. 622 

 623 

The values of estimated parameters in the period 1950–1989 for the 1-day summer 624 

precipitation extremes are reasonably well reproduced in the RACMO-ECHAM5 625 

simulation. Part of the differences between the values from the E-OBS data can be 626 

ascribed to the low density of stations used for gridding. The distribution of the 5-day 627 

winter precipitation extremes is affected by strong positive biases in the mean and 628 

standard deviation of daily winter precipitation. In particular, the dispersion coefficient of 629 

the GEV distribution is severely underestimated across the whole Rhine basin. 630 

 631 

The changes of the distribution of the 1-day summer precipitation maxima are primarily 632 

related to the positive trend in the dispersion coefficient. Since there is almost no change 633 

in the location parameter, the changes in distribution are mainly found at large quantiles 634 

(e.g., the 50-year quantile) whereas there are only minor changes in quantiles close to the 635 

median (i.e., the 2-year quantile). For the 5-day winter maxima the low quantiles (e.g., 2-636 

year quantile) are increasing due to the increase of the location parameter. As the return 637 

period gets longer the effect of the positive trend in the location parameter is 638 

counterbalanced by the decrease of the shape parameter resulting in only minor positive 639 

or negative changes of large quantiles (e.g., the 50-year quantile).  640 

 641 
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The opposite direction of the changes in mean and 1-day maximum precipitation in 642 

summer is in agreement with earlier findings of Christensen and Christensen [2004] and 643 

Frei et al. [2006]. A relatively small change of the quantiles of extreme multi-day winter 644 

precipitation was also found by Leander et al. [2008] for the adjacent Meuse basin in a 645 

simulation of the RACMO model driven by the HadAM3H atmospheric model of the 646 

Hadley Centre. Despite a considerable increase in mean winter precipitation in this 647 

experiment there was little change in the distribution of the 10-day winter precipitation 648 

maxima and extreme river flows. The differences between changes in mean and extremes 649 

indicate that proportional adjustment of observed data can be very misleading. 650 

 651 

Despite the reduction of standard errors due to spatial pooling of data, the changes in the 652 

quantiles of the extreme-value distributions are often not statistically significant. For the 653 

2-year quantile of the 1-day summer maxima this can be attributed to the fact that the 654 

change in the location parameter is small. The estimates of the relative changes of the 50-655 

year quantiles are strongly affected by the estimates of the dispersion coefficient and the 656 

shape parameter, which have large standard errors. For the summer season the 657 

uncertainty of the change in this quantile for regions 1, 3, 4, and 5 could be reduced 658 

considerably by assuming common trend parameters ξ1, γ1, and κ1. The use of an 659 

ensemble of RACMO simulations driven by different simulations of the ECHAM5 global 660 

climate model is an option to improve the estimates of the changes in extreme value 661 

properties of this RCM-GCM configuration further. Apart from the uncertainty in the 662 

extreme value properties for a particular RCM-GCM configuration, there are large 663 

differences between the estimated changes for different RCM-GCM combinations. 664 
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 665 

The Anderson-Darling test shows that the model fits well for much of the Rhine basin. In 666 

the summer the model fails to fit in a relatively dry subregion with a relatively high 667 

dispersion coefficient and in a small relatively wet subregion. In the winter season the 668 

model did not fit well at a number of grid boxes on, or close to, the border of the Rhine 669 

basin, in particular in the Swiss part of the basin. As a consequence, a small number of 670 

grid boxes were excluded. A separate model fit using part of the excluded grid boxes 671 

suggests that formation of different, smaller regions could improve the goodness of fit, 672 

however, at the cost of increased uncertainty. Another possibility is the reformulation of 673 

the statistical model to allow the dispersion coefficient to vary over the region of interest. 674 

In addition, for regions with strong orography it may be necessary to incorporate altitude-675 

dependence of the trend in the location parameter.  676 

 677 

Appendix A: Test for differences between regions 678 

Let θi be one of the parameters ξ1, γ0, γ1, κ0, or κ1 in the non-stationary GEV model for 679 

region i and let τ be the vector of the other parameters. We want to test the hypothesis 680 

nθθθ === K210 :H  using the statistic R in equation (14). The test consists of the 681 

following steps: 682 

 683 

1. Calculate the value of the test statistic using equation (14) and denote this value r.  684 

2. Calculate the standard Gumbel residuals using the iθ̂ and the estimated values of the 685 

other parameters. 686 

3. Re-estimate the other parameters 0τ̂  given θθθθ ==== nK21 .  687 
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4. Draw a bootstrap sample from the standard Gumbel residuals using resampling of 688 

years to preserve the spatial dependence structure (see section 2.3) and transform this 689 

sample back to the original scale using the parameter estimates θ and 0τ̂ . 690 

5.  Re-estimate all parameters and re-calculate the test statistic as 691 
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6. Repeat steps 4–5 until the desired number of bootstrap samples is obtained. 694 

 695 

The p-value is the fraction of *
br  values larger than r. The p-values in Table 2 are based 696 

on 500 bootstrap samples. 697 

 698 

Appendix B: Determination of the critical values of the Anderson-699 

Darling statistic 700 

The critical values of the Anderson-Darling statistic A2 in the literature usually refer to 701 

the situation of independent realizations from a distribution that is entirely specified 702 

under the null hypothesis. This does not apply to the standard Gumbel residuals ),(~ tsX at 703 

a given grid box, which are in fact dependent due to the use of estimated GEV parameters 704 

instead of their true but unknown values. It is well-known that parameter estimation has a 705 

substantial effect on the distribution of A2 [e.g., Laio, 2004]. This appendix deals with the 706 

derivation of the local and global critical values of A2 from bootstrap samples. The 707 
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generation of these bootstrap samples is discussed in Appendix C. In our application 708 

B = 3000 bootstrap samples were generated. 709 

 710 

Let t(s) be the value of A2 from the climate model data at grid box s (s = 1, …, S) and let 711 

)(stb
∗ be the value of A2 from bootstrap sample b (b = 1, …, B ) for this grid box. For a 712 

chosen significance level LOCα , the local critical values )(sc LOCα are obtained for each 713 

grid box as the kth smallest value ( ) )(st k
∗  of the )(stb

∗ , where )1)(1( +−= Bk LOCα .  714 

 715 

The determination of the global critical values is based on an approach suggested by 716 

Davison and Hinkley [1997]. Let )(sc LOC
b

α
− be the local critical values that we get if we 717 

exclude bootstrap sample b. Then a bootstrap estimate of the global error rate GLOBα  is 718 

obtained as: 719 
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where #{b: Ab} is the number of b for which Ab is true. This error rate can easily be 721 

calculated using the fact that bootstrap sample b fulfills the condition 722 

]any for    ),()([ sscst LOC
bb

α
−

∗ ≥  if and only if )1)(1()]([rank +−=≥∗ Bkst LOCb α  for at least 723 

one s. Thus if the values of )(stb
∗  are stored in a matrix with grid boxes in columns and 724 

bootstrap samples in rows, then we first calculate the columnwise ranks and subsequently 725 

the proportion of rows in which the maximum rank is greater than or equal to k. The 726 

value of k is chosen such that GLOBα  is as close as possible to the desired global 727 

significance level.  728 
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 729 

Appendix C: Comparison of two bootstrap procedures for goodness of 730 

fit testing 731 

The determination of the critical values of the Anderson-Darling statistic A2 requires 732 

simulation from the model under the null hypothesis. In particular, the preservation of 733 

spatial dependence is important. The bootstrap procedure outlined in section 2.3 to asses 734 

the uncertainty of the parameter estimates and quantiles is not appropriate for testing 735 

goodness of fit because the distribution of the ),(~ tsX may deviate from the Gumbel 736 

distribution due to lack of fit of the GEV model and because of the occurrence of ties in 737 

the bootstrap samples. The latter influences the statistical properties of the empirical 738 

distribution function FN(x) in equation (12). In this appendix two alternatives are 739 

discussed:  740 

 741 

• Replacement of resampled standard Gumbel residuals by samples from the 742 

standard Gumbel distribution, preserving the spatial structure of the ranks of the 743 

maxima as suggested by Heffernan and Tawn [2004]. This approach requires no 744 

assumptions about the underlying dependence structure of data. 745 

 746 

• Sampling standard normal residuals from the multivariate normal distribution 747 

[Hosking and Wallis, 1997]. These residuals are assumed to be equicorrelated, 748 

i.e., the correlation ρi,j between the residual at grid box i and the residual at grid 749 

box j equals ρi,j = ρ for i ≠ j and ρi,j = 1 for i = j. In this case the multivariate 750 

normal dependence structure is introduced into the simulated samples. 751 
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 752 

In the following the procedures are referred to as "HT" and "MVN", respectively, and 753 

both are fully described below. 754 

 755 

Bootstrap procedure based on the Heffernan and Tawn approach 756 

1. Fit the statistical model to the original sample.  757 

2. Calculate standard Gumbel residuals with the parameter estimates from step 1. 758 

3. Bootstrap the residuals from step 2 (using resampling of years to preserve the spatial 759 

dependence as described in section 2.3). 760 

4. Generate S independent samples of size N from the standard Gumbel distribution (S is 761 

the number of grid boxes and N the number of years). 762 

5. Rearrange the values in the samples from step 4 such that the dependence structure of 763 

the ranks corresponds to that of the bootstrapped residuals from step 3. 764 

6. Transform the rearranged standard Gumbel values from step 5 back to the original 765 

scale using the parameter estimates from step 1. 766 

7. Fit the statistical model again. 767 

8.  Calculate standard Gumbel residuals with the parameter estimates from step 7 and 768 

calculate the A2 statistics. 769 

9. Repeat steps 3–8 until the desired number of bootstrap samples is obtained. 770 

 771 

Parametric bootstrap procedure with sampling from the multivariate normal 772 

distribution 773 

1. Fit the statistical model to the original sample.  774 
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2. Calculate standard normal residuals (see section 2.3) with the parameter estimates 775 

from step 1. 776 

3. Calculate the average correlation ρ̂  of the standard normal residuals. 777 

4. Generate a sample of S equicorrelated standard normal variables with correlation ρ̂ . 778 

5. Transform the sample from step 4 back to the original scale using the parameter 779 

estimates from step 1. 780 

6. Fit the statistical model again. 781 

7.  Calculate standard Gumbel residuals with the parameter estimates from step 6 and 782 

calculate the A2 statistics. 783 

8. Repeat steps 4–7 until the desired number of bootstrap samples is obtained. 784 

 785 

A simulation experiment was conducted to assess the validity of both approaches: 3000 786 

samples of size 150 from an equicorrelated 30-dimensional normal distribution with 787 

known correlation were generated (think about 30 grid boxes in the RACMO-ECHAM5 788 

simulation which has a length of 150 years). These samples (further denoted as control 789 

samples) were transformed according to the non-stationary GEV model 790 

   ])40([exp)(),( 10 +−= tsts ξξξ     (C1) 791 

   ])40([exp)( 10 +−+= tt γγγ      (C2) 792 

   +−+= )40()( 10 tt κκκ      (C3) 793 

with s = 1, …, 30; t = 1, …, 150, and (x)+ = max (x, 0). The values of the parameters were 794 

set to be representative of those obtained for the 1-day summer maximum precipitation in 795 

the Rhine basin, i.e., ξ0(s) ranged between 22 and 38, ξ1 = 0.00055, exp(γ0) = 0.37, γ1 = 796 

0.0013, κ0 = 0.05, and κ1 = 0.00015. 797 
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 798 

For each sample the parameters of the GEV model were estimated and the values of the 799 

A2 statistics were calculated. The 0.1 critical value from these simulations is denoted the 800 

"true" critical value. Further, for one of the control samples two sets of 3000 bootstrap 801 

samples were generated using the "HT" and "MVN" approaches, respectively, and the 0.1 802 

local and global critical values of the A2 statistic were calculated according to Appendix 803 

B.  804 

 805 

Table C1 gives the local rejection rates of the null hypothesis as obtained from the 806 

control samples, i.e., the proportion of the A2 values of these samples lying above the 807 

"HT" and "MVN" critical values. For the "MVN" critical values the rejection rate 808 

corresponds quite well with the nominal 0.1 significance level, but for the "HT" critical 809 

values the actual rejection rate is lower than 0.1 in the case of correlation and the 810 

difference grows with increasing correlation coefficient. Table C1 further shows that the 811 

"MVN" critical values resemble the "true" critical values and decrease with increasing 812 

correlation. By contrast the "HT" critical values do not depend on correlation. Though 813 

Table C1 refers to the local rejection rates and the local critical values, very similar 814 

results were obtained for the global test at the 0.1 significance level. 815 

 816 

To understand why the critical values of the A2 statistic are decreasing with increasing 817 

correlation, we have to examine how the estimates of the parameters are influenced by 818 

the data from a particular grid box. The estimate of ξ0(s) is largely determined by the 819 

maxima of the grid box of interest. If there is no or little correlation, the maxima of this 820 
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grid box have little influence on the estimates of the other parameters γ0, κ0, ξ1, γ1, and κ1. 821 

The influence of the maxima of the grid box of interest on the estimates of these 822 

parameters grows with increasing spatial correlation. As a result the fitted regional GEV 823 

model will describe the local maxima better and therefore the critical value of the A2 824 

statistic should be smaller than in the case of independence. The "MVN" and "true" 825 

critical values for ρ = 0.99 are close to the critical value for the case that all six 826 

parameters are estimated from the maxima at the grid box of interest only. 827 

 828 

The reason of the failure of the "HT" approach in the case of goodness of fit testing is 829 

that the test statistic is insensitive to a permutation of the data, i.e., rearranging residuals 830 

at a grid box to preserve the spatial dependence of the ranks does not influence the value 831 

of the A2 statistic. Unlike the "MVN" bootstrap samples, the values of the A2 statistic do 832 

not exhibit any spatial correlation in the "HT" bootstrap samples. Although the "HT" 833 

approach is not suitable for goodness of fit testing, it can be used for the estimation of 834 

standard errors and the construction of confidence intervals, for which it was originally 835 

introduced by Heffernan and Tawn [2004]. 836 

 837 

It is not surprising that the "MVN" critical values do quite well because of the underlying 838 

multivariate normal dependence structure of the data. To study the robustness to the type 839 

of association at extreme levels, 3000 new samples were generated from our non-840 

stationary GEV model but now with a dependence structure of a limiting extreme-value 841 

distribution. This was achieved by generating the standard Gumbel residuals from an 842 

equicorrelated multivariate Gumbel distribution as described by Stephenson [2003]. The 843 
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results (not shown) are very similar to those presented in Table C1 for a multivariate 844 

normal dependence structure from which it may be concluded that the "MVN" critical 845 

values are robust to the dependence structure. 846 
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List of Figures 992 

Figure 1. (a) The river Rhine basin. (b) The dispersion coefficient of the 1-day summer 993 

(JJA) maxima for the fit of the stationary GEV model to the RACMO-ECHAM5 994 

simulation for the period 1950–1989. (c) Same as (b) but for the period 2070–2099. (d) 995 

Subdivision of the river Rhine basin into five regions. The numbers in subscript give the 996 

number of grid boxes included in the region. The rectangles represent the RACMO model 997 

grid boxes, the gray dots show the locations of stations that have been used for gridding 998 

of the E-OBS data.  999 

 1000 

Figure 2. Relative change of mean seasonal and annual precipitation between the periods 1001 

1950–1989 and 2070–2099 in the RACMO-ECHAM5 simulation for all 5 regions of the 1002 

Rhine basin. 1003 

 1004 

Figure 3. Summer (JJA) and winter (DJF) global temperature anomalies in the ECHAM5 1005 

simulation. 1006 

 1007 

Figure 4. (a–c) Estimates of the GEV parameters for the 1-day summer (JJA) 1008 

precipitation extremes for the period 1950–1989 for the ALP, E-OBS, and RACMO-1009 

ECHAM5 data. The results are averaged over the region in the case of the location 1010 

parameter. (d–f) The changes of the GEV parameters for the 1-day summer (JJA) 1011 

precipitation extremes between the periods 1950–1989 and 2070–2099. The boxplots 1012 

were obtained from 3000 bootstrap samples. The boxes represent the interquartile range, 1013 

the whiskers extend from the 5th to the 95th percentile of these bootstrap samples.  1014 
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 1015 

Figure 5. Relative changes of quantiles of the 1-day summer maximum precipitation 1016 

between the periods 1950–1989 and 2070–2099 in the RACMO-ECHAM5 simulation for 1017 

all five regions. The confidence bands were obtained from 3000 bootstrap samples. The 1018 

5th, 25th, 50th, 75th, and 95th percentile of these bootstrap samples are shown. 1019 

 1020 

Figure 6. Same as Figure 5 but for the restricted model with common trends over regions 1021 

1, 3, 4, and 5. The panel on the right gives the average relative change of the four regions 1022 

together with the average confidence band.  1023 

 1024 

Figure 7. The values of the Anderson-Darling statistic for (a) region 1 and (b) region 3 1025 

for the 1-day summer (JJA) precipitation extremes in the RACMO-ECHAM5 simulation. 1026 

 1027 

Figure 8. Summary of the goodness of fit testing of the non-stationary GEV model for 1028 

the 1-day summer (JJA) precipitation extremes in the RACMO-ECHAM5 simulation. 1029 

 1030 

Figure 9. Averaged standard normal residuals (gray line) for the 1-day summer (JJA) 1031 

precipitation extremes in the RACMO-ECHAM5 simulation in region 1. The black line 1032 

shows residuals smoothed by locally weighted regression "loess". 1033 

 1034 

Figure 10. Average autocorrelation coefficients (ACC) of the standard normal residuals 1035 

(vertical bars) for the 1-day summer (JJA) precipitation extremes in the RACMO-1036 
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ECHAM5 simulation in region 1. The 90% confidence band (shaded area) was obtained 1037 

from 3000 bootstrap samples. 1038 

 1039 

Figure 11. Same as Figure 4 but for the 5-day winter (DJF) precipitation extremes. 1040 

 1041 

Figure 12. Same as Figure 5 but for the 5-day winter (DJF) precipitation extremes. 1042 

 1043 

Figure 13. Same as Figure 8 but for the 5-day winter (DJF) precipitation extremes. 1044 

 1045 

Figure 14. Grid box estimates of the trend in the location parameter as a function of 1046 

altitude for the 5-day winter (DJF) precipitation maxima in the RACMO-ECHAM5 1047 

simulation. The values for the grid boxes in region 1 (black dots) are smoothed by locally 1048 

weighted regression "loess" (black line).1049 
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Table 1. Reduction (%) of interquartile ranges of the parameter estimates due to spatial 1050 

pooling for the summer (JJA) in the case of the RACMO-ECHAM5 data. 1051 

 region  

parameter 1 2 3 4 5 mean 

ξ1 37 32 34 31 39 35 

γ0 58 45 48 53 44 50 

γ1 67 60 60 61 58 61 

κ0 73 71 67 66 58 67 

κ1 80 75 75 72 66 74 

 1052 

Table 2. The p-values resulting from the test for differences between regions for the 1053 

summer (JJA). 1054 

parameter p-value 

ξ1 0.01 

γ0 0.00 

γ1 0.13 

κ0 0.00 

κ1 0.00 

 1055 

Table C1. Local rejection rates and critical values (nominal significance level of 0.1) for 1056 

testing goodness of fit using the Anderson-Darling statistic. The "true" critical values are 1057 

based on 3000 simulated samples from a non-stationary GEV model, the critical values 1058 

"HT" and "MVN" are based on 3000 bootstrap samples from one of these simulations 1059 
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using respectively the Heffernan and Tawn approach and a multivariate normal 1060 

distribution to preserve spatial dependence. 1061 

 rejection rate critical value 

correlation "HT" "MVN" "HT" "MVN" "true"  

0.00 0.098 0.102 0.881 0.870 0.875 

0.40 0.077 0.095 0.888 0.837 0.823 

0.60 0.050 0.088 0.901 0.778 0.751 

0.80 0.025 0.081 0.892 0.686 0.648 

0.99 0.000 0.093 0.905 0.523 0.514 

1062 
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Figure 1. (a) The river Rhine basin. (b) The dispersion coefficient of the 1-day summer 1064 

(JJA) maxima for the fit of the stationary GEV model to the RACMO-ECHAM5 1065 

simulation for the period 1950–1989. (c) Same as (b) but for the period 2070–2099. (d) 1066 

Subdivision of the river Rhine basin into five regions. The numbers in subscript give the 1067 

number of grid boxes included in the region. The rectangles represent the RACMO model 1068 

grid boxes, the gray dots show the locations of stations that have been used for gridding 1069 

of the E-OBS data.  1070 
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Figure 2. Relative change of mean seasonal and annual precipitation between the periods 1073 

1950–1989 and 2070–2099 in the RACMO-ECHAM5 simulation for all 5 regions of the 1074 

Rhine basin. 1075 
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Figure 3. Summer (JJA) and winter (DJF) global temperature anomalies in the ECHAM5 1078 

simulation. 1079 
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Figure 4. (a–c) Estimates of the GEV parameters for the 1-day summer (JJA) 1082 

precipitation extremes for the period 1950–1989 for the ALP, E-OBS, and RACMO-1083 

ECHAM5 data. The results are averaged over the region in the case of the location 1084 
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parameter. (d–f) The changes of the GEV parameters for the 1-day summer (JJA) 1085 

precipitation extremes between the periods 1950–1989 and 2070–2099. The boxplots 1086 

were obtained from 3000 bootstrap samples. The boxes represent the interquartile range, 1087 

the whiskers extend from the 5th to the 95th percentile of these bootstrap samples.  1088 
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 1090 

Figure 5. Relative changes of quantiles of the 1-day summer maximum precipitation 1091 

between the periods 1950–1989 and 2070–2099 in the RACMO-ECHAM5 simulation for 1092 

all five regions. The confidence bands were obtained from 3000 bootstrap samples. The 1093 

5th, 25th, 50th, 75th, and 95th percentile of these bootstrap samples are shown. 1094 
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Figure 6. Same as Figure 5 but for the restricted model with common trends over regions 1097 

1, 3, 4 and 5. The panel on the right gives the average relative change of the four regions 1098 

together with the average confidence band.  1099 
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 1101 

Figure 7. The values of the Anderson-Darling statistic for (a) region 1 and (b) region 3 1102 

for the 1-day summer (JJA) precipitation extremes in the RACMO-ECHAM5 simulation. 1103 

 1104 

globally rejected

locally rejected

excluded

 1105 

Figure 8. Summary of the goodness of fit testing of the non-stationary GEV model for 1106 

the 1-day summer (JJA) precipitation extremes in the RACMO-ECHAM5 simulation. 1107 
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 1109 

Figure 9. Averaged standard normal residuals (gray line) for the 1-day summer (JJA) 1110 

precipitation extremes in the RACMO-ECHAM5 simulation in region 1. The black line 1111 

shows residuals smoothed by locally weighted regression "loess". 1112 
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 1114 

Figure 10. Average autocorrelation coefficients (ACC) of the standard normal residuals 1115 

(vertical bars) for the 1-day summer (JJA) precipitation extremes in the RACMO-1116 

ECHAM5 simulation in region 1. The 90% confidence band (shaded area) was obtained 1117 

from 3000 bootstrap samples. 1118 
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 1120 

Figure 11. Same as Figure 4 but for the 5-day winter (DJF) precipitation extremes. 1121 
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 1123 

Figure 12. Same as Figure 5 but for the 5-day winter (DJF) precipitation extremes. 1124 
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Figure 13. Same as Figure 8 but for the 5-day winter (DJF) precipitation extremes. 1127 
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 1129 

Figure 14. Grid box estimates of the trend in the location parameter as a function of 1130 

altitude for the 5-day winter (DJF) precipitation maxima in the RACMO-ECHAM5 1131 

simulation. The values for the grid boxes in region 1 (black dots) are smoothed by locally 1132 

weighted regression "loess" (black line). 1133 


