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Abstract

Climate models contain numerous parameters with uncertain values. In the context of climate 

prediction, it is relevant to obtain an estimate of the range of outcomes given the parameter 

uncertainty. Taking an ensemble of simulations with randomly perturbed parameters would require 

an extremely large sample, because most random perturbations do not have much impact. In this 

study we select parameter perturbations that potentially change the climate effectively. We consider 

a dry, spectral quasi-geostrophic, three-level model on the sphere (T21QGL3). Two approaches are 

considered. First, using the theory of empirical orthogonal functions (EOFs), parameter 

perturbations are explored that directly act in the direction of a preferred flow regime. Next the 

changing sensitivity to perturbations along the chaotic attractor of a circulation model is analyzed. 

Frequently short intervals of high sensitivity are passed. Using the adjoint method we select the 

first singular vector denoting the direction of the parameter perturbation having the largest effect in

such an interval. For the first 1000 intervals with the highest sensitivity, this vector is taken for the 



2

direction of the parameter perturbation of the system integrated over 100,000 days. As a measure of 

change we compute the probability density of the dominant patterns of variability, since these 

strongly impact regional climates. The parameter perturbations are limited to constant terms in the 

equations yielding a vector of 1449 values. The approach based on the adjoint method is the most

successful: compared with random search the effect of the best perturbation in the sample is a 

factor 20 larger.

1. Introduction

Uncertainty in the outcome of climate models is widely recognized, see Fleming (1993), Allen

(2003), Murphy et al. (2004), Stocker (2004), Stainforth et al. (2005) and IPCC (2001). A 

contributing factor is uncertainty in the model parameters. Most of the model parameters are not 

exactly known so an uncertainty analysis should be part of a study on the long term dynamics of the 

climate. Of special interest is the range of possible outcomes of the climate model, given the range 

of parameter uncertainties. A practical method to identify the parameter perturbations that yield the 

more extreme outcomes is lacking. We refer to these parameter perturbations as effective parameter 

perturbations. Fleming (1993) conducted a preliminary analysis on uncertain model parameters in 

the context of simple non-linear dynamical systems. He stated that there is a need to establish a 

scientific methodology for identifying and quantifying the impacts of uncertainty. For complex 

General Circulation Models (GCMs) he concluded that the Monte Carlo approach is the only 

practical solution to obtain uncertainty estimates despite the lack of rigor in the determination of

the sample size and the enormous computational effort that is required. To provide a reliable 

estimate of the spread of possible regional climate changes, a large ensemble of climate predictions 

is needed, in which parameters are chosen such that the widest range of uncertainties is captured 

(Murphy et al., 2004). In a first attempt to evaluate climate sensitivity due to anthropogenic climate 
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change (assuming a doubled CO2 concentration) they compiled an ensemble of 6104 × model 

versions of an atmospheric model coupled to a mixed-layer ocean, with randomly chosen multiple 

parameter perturbations. Stainforth et al. (2005) presented results from the 'climate.net' experiment

in which climate simulations are performed on personal computers all around the world. A central 

server distributes the computation tasks through the internet and collects the results. The 

experiments show that impacts of different parameter perturbations do not combine linearly in the 

regional climate response, partially invalidating the Murphy et al. (2004) study.  

If one is interested in the climate mean response to a small change in forcing, an alternative 

approach, based on the fluctuation-dissipation theorem (Leith, 1975), has been developed. This 

theorem states that by observing the natural fluctuation of a system with certain properties a linear 

operator can be constructed that gives the response of the system to an external stimulus of 

sufficiently weak amplitude. The most realistic test of the theorem's applicability to the atmosphere 

so far is described in Gritsun and Branstator (2007). This approach does not suffer from sampling 

issues and subjective expert judgements. However, it cannot assess the impact of parameters that 

occur in products with state variables in the governing equations and only evaluates the response of 

the mean state.

In this study we evaluate two directed search approaches to obtain parameter perturbations 

that potentially cause a large change in regional climates. Regional climates depend strongly on the 

frequency of occurrence of preferred atmospheric variability patterns, like for Europe the North 

Atlantic oscillation (Hurrell, 1995; Visbeck et al., 2001) or European blocking (Carril et al., 2008). 

As a measure of climate change we therefore evaluate the change in a probability density function 

(PDF) describing the presence of dominant circulation structures and not just the change in the 

mean state. 

For our investigation we use a dry, spectral quasi-geostrophic, three-level model on the 

sphere (T21QGL3), see Marshalland Molteni (1993). First, employing the theory of empirical 

orthogonal functions (EOFs), we explore parameter perturbations that directly act in the direction 
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of a preferred flow regime. Since EOF1 is related to the most prominent preferred flow regime 

(North Atlantic oscillation), it is very well possible that an additional constant forcing of the system 

in the direction of EOF1 turns out to be an effective way to change the climate. We apply a 

perturbation to the constant forcing vector that is introduced to compensate the fact that the model 

potential vorticity tendencies do not vanish in the averaged equations. This perturbation is taken in 

the direction of EOF1 with a length of resp. 5 and 10% of the forcing vector. It indeed induces a 

change in the PDF measuring the distribution in time of the different regimes. Next the changing 

sensitivity to perturbations along the chaotic attractor of a global circulation model is taken as a

clue to find a shift in the forcing parameter vector that most effectively changes the statistics of the 

flow in the long term. From time to time short intervals of high sensitivity are passed. Using the 

adjoint method we select the first singular vector denoting the direction of the parameter 

perturbation having the largest effect in such an interval (Errico, 1997). In order to analyze this 

effect upon the regional climate the perturbation is next applied to the full model over an extended 

time interval. Repeating the procedure for many short highly sensitive intervals at the attractor we 

can compare the different results and take the best of them. The method was developed in 

Moolenaar and Selten (2004) in the context of the three-component Lorenz model of Rayleigh-

Benard convection (Lorenz, 1963). The T21QGL3 model produces a quite realistic simulation of 

the extra-tropical wintertime circulation (Corti et al., 1997). It has been used for adjoint sensitivity 

analysis with respect to uncertainty in both the initial conditions and the forcing (Oortwijn and 

Barkmeijer, 1995), see also Barkmeijer et al. (2003). In a way comparable to the Lorenz '63 model, 

the T21QGL3 model shows preferred circulation structures (Selten and Branstator, 2004). Whereas 

the Lorenz 63 model only has two “preferred flow regimes”, the T21QGL3 model contains several 

of them. Both models show sensitivity to initial conditions as well as sensitivity to the perturbation 

of parameters depending on the state of the model. Consequently, the dynamics of the T21QGL3 

model bears sufficient similarities to the Lorenz 63 model to also apply the adjoint method for 

finding effective parameter perturbations to this system. 
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In Section 2 the T21QGL3 model is described and a measure of climate change is 

introduced. In Section 3 both the introduction of a perturbation in the direction of EOF1 and the use 

of the adjoint method for finding effective parameter perturbations are explained and applied to the 

T21QGL3 model. In order to judge the meaning of the results we obtained, we also carry out a

random selection method in Section 4 and compare the outcomes in Section 5, where we also 

discuss the wider scope of the adjoint method.

2. Climate sensitivity analysis using empirical orthogonal functions

In the extratropics, the atmospheric circulation can be well approximated by quasi-geostrophic 

equations. These equations are filtered prognostic equations (gravity waves are absent) and can be 

written in terms of only one variable, the quasi-geostrophic potential vorticity. Here, the quasi-

geostrophic (QG) T21-model is used, which is a spectral, 3-level model, as described by Marshall 

and Molteni (1993). For the potential vorticity a series expansion in spherical harmonics is made. 

The time dependent coefficients of this expansion are the state variables of the model. The series of 

spherical harmonics used in the representation of horizontal fields has a triangular truncation at 

total wavenumber 21 (T21). The model integrates prognostic equations for the QG potential 

vorticity at 200 hPa (level 1), 500 hPa (level 2) and 800 hPa (level 3),
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where qk is the potential vorticity (PV) and kψ the streamfunction at level k, Dk is a linear operator 

that represents dissipation, Sk is an artificial forcing, J the Jacobian in which λ represents the

longitude and µ the sine of the latitude. Eq.(1) represents a vertical discretization of the quasi-
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geostrophic potential vorticity equation (Holton, 1992). Details on the derivation of (1) and on the 

relation between the vectors q and ψ can be found in Marshall and Molteni (1993). It is assumed 

that the multi-level PV is a linear function of the multi-level streamfunction vector ψ . At each 

level the PV has 483 spectral components, so that the model has in total 1449 degrees of freedom.

Instead of expressing the state of the system in the amplitudes of the spectral components we use 

Empirical Orthogonal Functions, see Preisendorfer (1988). These EOFs form an orthonormal 

system {e(1), e(2), ….}. The streamfunction vector )(tψ has a time mean )(tψ . The difference 

between the two is approximated by the projection upon the first p EOFs: 
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where  < , > denotes the Euclidian innerproduct with norm 2/1, >=< vvv . In our case p = 483.

Under the assumption that the EOF amplitudes are uncorrelated in time the total variance in the 

streamfunction equals the sum of the eigenvalues μi of the matrix A(t) = a(t) a(t)T:

∑
=
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The eigenvalues corresponding to the EOFs fall off very quickly, see Figure 1. Given are the

eigenvalues of the first 100 EOFs of the T21QGL3 model calculated from 100,000 daily fields of

the 500 hPa streamfunction over the northern hemisphere. It is observed that most information 

about the variability is contained in the first leading EOFs. The first 10 EOFs contain 55% of the 

information about the variability. By projecting the data along these dominant EOFs and truncating 

the summation (2a) at a certain n < p = 483 we can reduce the dimension of the full EOF space 

considerably and still retain a good global view of the dynamical range of the system. A special 
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property of the EOFs is that for a given truncation n no other basis set can explain more of the 

average variance (Lorenz, 1956; North et al., 1982).

The leading EOFs are an indication for the presence of preferred flow regimes. In the 

T21QGL3 model EOF1 is strongly related to the North Atlantic Oscillation (NAO) and EOF2 may 

represent the Pacific North American pattern (PNA). The NAO is important for the regional 

climate in Western Europe. A stronger NAO results in fewer easterlies and more westerlies which 

cause milder winters in Western Europe (Hurrell, 1995). We will examine the effect of forcing 

parameter perturbations upon the occurrence of preferred flow regimes. An important question is 

formulated as follows: do parameter changes have a notable influence on the NAO and therefore on 

the climate in Western Europe? Analysis of the EOFs can give us information about the effect upon 

the climate. A climate is characterized by the statistical properties of the circulation over an 

extended time interval (~105 days). In Figure 2 EOF1 - EOF4 of the T21QGL3 model are shown.

The probability density functions (PDFs) of the first ai's, sampled over the time interval, will reflect

these preferences. In order to study the sensitivity to changes in the forcing parameters Sk of (1) we 

have to identify a measure for the change in the behaviour of the T21QGL3 model. For a long term 

integration the amplitude a1 of the projection onto EOF1 at level 500 hPa of each day, is calculated 

and then binned, thus creating the PDF1 of a1. Each PDFi is divided into 100 bins, each bin has the 

length 0.002. PDF1 describes the intensity of the anomaly in the direction of EOF1. Only the level 

500 hPa will be analysed. In Figure 3 PDFs of a1 to a6 for an unperturbed climate integration of 

100,000 days are shown. The time mean of these PDFs vanishes, because (2b) implies

0,0,)()()( )()( =><=>ψ−ψ<= ii
i eettta ,

where the overbar indicates the time mean. For a model integration with perturbed forcing 

parameters a same computation is made for the PDFs. Systematic changes in time of the EOF 
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amplitudes induce shifts in the PDFs indicating possible climatic change (changes in the frequency 

and duration of preferred patterns), see North et al. (1982) and Selten (1997). As a measure of 

change in the PDFs we introduce the parameter 

2)0(

1

)}()({ jPDFjPDF i

nbin

j
ii ∑

=

−=β ,  (4)

where )( jPDFi is the probability of finding ai in bin j for the system with the perturbed parameters;

)()0( jPDFi is the one for the standard parameter values. It is of interest to find the largest changes 

from a small parameter vector perturbation of a given size. A larger iβ is expected to give a larger 

climate change. A PDF may just shift, or change its shape becoming wider or smaller or its

skewness may change. In Cha and Srihari (2002) a large number of alternatives can be found for 

the measure (4) we have chosen. It is not expected that a different choice will substantially affect 

our results.

3. Directed search for effective forcing parameter perturbations 

The forcing terms Sk in (1) are determined by computing the potential vorticity tendencies, using a 

large number of observed atmospheric fields and by averaging these tendencies (Roads, 1987). 

These average tendencies should be zero. This is equivalent to assuming that the sample of fields 

used in such a computation represents a statistically stable climatology. Consequently, the forcing 

term Sk must be chosen such that it compensates the deviation from zero:

),()(),( kkkkkk qJDqJS ′ψ′+ψ−ψ= ,  (5)
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where an apostrophe denotes the deviation from the averaged value. Corti et al. (1997) worked out

this approach for the same model (1) using streamfunction fields from nine winter seasons. 

Two questions can be raised: do small changes in the forcing parameters affect the 

simulated climate and is there an efficient way of finding the most effective forcing parameter 

perturbations? Standard methods, such as simulated annealing (Kirkpatrick at al, 1983), fail to give 

an answer within a reasonable computing time due to the long integration time of one run in 

combination with the large number or parameters that are varied. Since EOF1 is related to the most 

prominent preferred flow regime, it is very well possible that an additional constant forcing of the 

system in the direction of EOF1 turns out to be an effective way to change the climate. An 

alternative approach is found in the behaviour of circulation system near its (chaotic) attractor. At 

certain intervals trajectories near the attractor tend to diverge because of the fact that eigenvalues 

that correspond with the tangent linear system have a positive value. Then the system is likely to be 

more sensitive to perturbations. The idea is to choose a forcing perturbation in the direction of the 

eigenvector that corresponds with the largest eigenvalue of the tangent linear system integrated 

over a short time interval over which the linearization holds and the first eigenvalue takes a large 

positive value.

In order to come to a conclusion about the merits of these two approaches we also randomly 

select forcing perturbations in the next section. In each approach we integrate the full system over 

100,000 days to verify the climate change induced by the perturbation and quantified by (4).

Perturbation in the direction of EOF1

As a first experiment, we add a forcing perturbation in the direction of EOF1, which is expected to 

change the amplitude of EOF1 of the streamfunction. A 100,000 day integration was made with 
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forcing parameter perturbed on each level individually with 5% of the climatological forcing in the 

direction of )1(e :

 )1(
)1(

05.0 kk e
e
S

S =∂ ,  k = 1, 2, 3,  (6)

so that indeed SS 05.0=∂ . It resulted in a PDF1 shift of 1β = 0.018. Scaling the perturbation with 

10%, gave a value of 0.050 for 1β . In Figure 4 we show both shifts in the PDF. 

Using a singular vector from the adjoint system along a reference orbit

Next we use an algorithm to calculate forcing singular vectors as devised by Barkmeijer et al, 

(2003). They compared singular vectors due to a change in initial conditions with those that arise 

from parametrical forcing in 2-day forecasts. Then the tangent linear and the corresponding adjoint 

model need to be extended with the equations with respect to the forcing parameters, which are 

coefficients of the parameter vector S. As mentioned in Section 2 it is assumed that the multi-level 

field of PV is a linear function of the multi-level streamfunction, which is invertible under 

appropriate boundary conditions. A time derivative of the streamfunction can be derived by 

eliminating the PV giving a system of the form

),;( SF
dt
d

ψ=
ψ (7)

where S denotes the forcing in terms of streamfunction. Next we consider the extended dynamical 

system with state vector
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The tangent linear equations are derived by linearizing Eq.(8) near a non-linear reference orbit yr:

rrG
r yyJ

dt
yd

δ=
δ )()( (9)

with Jacobi matrix

rr yy
rG OO

IrF
y
yGyJ 







 ∂∂
=








∂

∂
=

/)()( ,

where O is the zero matrix with the appropriate number of rows and columns. The presence of the 

identity matrix I is understood from the fact that the parameter vector only contains the constant 

forcing terms. The Jacobian matrix rF ∂∂ / is obtained by linearizing Eq.(7) along a reference 

solution.

The tangent linear equations integrate a small perturbation )0(ryδ forward in time over a 

sufficiently short period. This is described by the propagation matrix R:

)0(),0()( rr yTRTy δ=δ . (10)
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At initial time the parameter perturbation is set fixed at the unit hypersphere 1)0(),0( =>δδ< SS

(due to the linearity of the system the size of the perturbation is irrelevant). The initial state )0(ψ is 

not perturbed, so

)0(
)0(

0
)0( SQ

S
yr δ=








δ

=δ (11)

with Q an injective mapping. Substitution in (10) yields

)0(),0()( SQTRTyr δ=δ . (12)

Since we only have to consider the wayδψ has evolved at time T, we use a surjective mapping P:

)0()0(),0()()( SMSQTPRTyPT r δ=δ=δ=δψ . (13)

In summary, integration of Eq.(8) maps vectors )0(Sδ on a unit hypersphere in the forcing 

parameter space at the initial point (t = 0), to a set of vectors )(Tδψ given by (13) forming an 

ellipsoid at the end point (t = T) in the state space of (7).

Our aim is to find the parameter perturbation Sδ , being constant in time, that causes the 

largest error growth at the end time. This is the vector Sδ that maximizes the ratio
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where the matrix N specifies a norm based on the kinetic energy and the matrix M* denotes the 

adjoint of M. Next we consider the following generalized eigenvalue problem  

SNSNMM δλ=δ* (15)

with largest eigenvalue λ having an eigenvector called the first singular vector. Using 

SNv δ= 2/1 we rewrite (15) as an eigenvalue problem of a symmetric operator:

vvNMNMN λ=−− 2/1*2/1 . (16)

It is solved using the Lanczos algorithm (Parlett, 1980). The operator M is not explicitly known, it 

is evaluated by integrating the tangent linear equations. The operator M* follows from a backward 

integration of the adjoint system (Barkmeijer et al., 2003). This procedure we apply over a short 

time interval of length T along the reference orbit with a perturbation Sδ of the forcing S giving the 

perturbation on the unit hypersphere that causes the largest change in )(Tδψ .

Selecting singular vectors in the peaks of the singular value as a function of time

It is expected that in time intervals with a large first eigenvalue (singular value) the system is 

sensitive to perturbations; particularly in the direction of the corresponding singular vector. 

Therefore, the search for the perturbation vector S∂ that results in the largest climate change is 

carried out as follows. With the use of the adjoint method forcing parameter perturbations that are 

likely to be effective are selected. The scheme is as follows:

(a) Calculate a short reference orbit over a time interval of 5 days.
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(b) Calculate, with the use of the tangent linear and adjoint equations the corresponding first 

singular vector, along with the first singular value.

(c) Shift the reference orbit a time step (one day) forward and calculate the corresponding first 

singular vector and the first singular value again.

(d) Look at the evolution of the first singular value and select values that are local maxima above a 

threshold value of 500,000. Then use the corresponding first singular vector as forcing parameter 

perturbation.

The first singular value fluctuates considerably, as can be seen in Figure 5. Peaks mark the 

passage of a time interval in which the system is highly sensitive to parameter perturbations. 

Integrations of the full nonlinear system (7) are carried out over a length of 100,000 days with the 

1000 largest first singular vectors as perturbations on the forcing parameters given by

 )1(
)1(

05.0 kk v
v
S

S =∂ ,  k = 1, 2, 3, (17)

where )1(v denotes a first singular vector that corresponds with one of the largest 1000 local 

maxima of the largest singular value. From each of these perturbed integrations PDF1 of a1 is

calculated along with β1, see Figure 6 (dotted line). It falls very rapidly, but there is a long tail 

consisting of 8 runs with β1 > 0.020. For the largest value of β1 we found 0.037.

Selecting singular vectors  just after the peaks of the singular value

In Moolenaar and Selten (2004) it is found that the singular vector that has just passed through a 

sensitive area is likely to be an effective parameter perturbation. Thus, we selected a singular value 

at the moment it has a first local minimum value after the peak. Again 1000 forcing perturbations 

are taken to compute PDF1 and the shift of this PDF is computed. The largest value found for β1 is

now 0.050, which is more than a stroke of luck, because three times as much values are found 
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above β1 = 0.020 than previously (at the peak of the first singular value itself). PDF1 obtained from

the singular vector as parameter perturbation direction that gave this largest β1 is shown in Figure 

7a. The distribution of all values of β1 of the sample is given in Figure 6 (solid line).

4 Random selection of perturbations

In order to judge the value of our approach of selecting effective forcing parameter perturbations

with the adjoint method, we compare our results with the best of 1000 randomly chosen perturbed 

forcing parameters. For each level, we draw randomly a vector from a set of uniformly distributed 

vectors on the unit hypersphere. Similar to (6) and (19) we perturb the climatic forcing S with 5% 

in the direction of the randomly chosen vector. Again integrations of 100,000 days are made, but 

this time with the randomly chosen parameter perturbations. The PDF of β1 for these integrations is 

shown in Figure 6 (dashed line). The largest β1 found with this random method equals 0.0025. This 

is a factor 20 smaller than the largest β1 found with the second variant based on the adjoint method. 

From the vector perturbations found with this variant 35.7% yielded a larger β1 than this largest 

value found with random selection. The shift in PDF1 from the most effective random perturbation 

is shown in Figure 7b.

5. Conclusions

The goal of the method we presented is to find those parameter perturbations that cause the largest 

change in the climate statistics. For that purpose a GCM has to be integrated over a large time 

interval. Since for this problem a long computer time is required to evaluate the effect of a new set 

of parameter values, rigorous optimization methods cannot produce within a reasonable time span 
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the change of the parameter vector that results in the maximum climate change because of the large 

dimension of this parameter vector. As the first EOF can be related to a preferred weather regime, it 

is worth to study first the effect of a perturbation of the forcing parameter vector in the direction of 

this EOF. Next a method is presented that uses short time integrations of the adjoint equations at a 

reference orbit and selects perturbations that have a good chance to be effective in changing the 

climate. In a previous investigation (Moolenaar and Selten, 2004) the method was applied to the 

Lorenz 63 model. The encouraging results of that study made us decide to test the method for more 

realistic higher dimensional atmospheric circulation models. We took the T21QGL3 model.

To judge the outcome a comparison with a random selection method was made. In Table I we give 

the best result from a sample of 1000 parameter perturbations for each of the methods. It is noted 

that the adjoint method variant that picks the singular vector just after a peak in the largest singular 

value performs the best. From the tails of the PDFs of β1 (Fig.6) it is seen that we are not dealing 

with a lucky guess for that method. 

Although we do not exclude the possibility that in the future more efficient methods will be 

developed, we now have brought up a method that may create more openings in the field of 

uncertainty analysis of highly nonlinear systems. Moolenaar et al. (2007) carried out a sensitivity 

analysis for climate driven ecological systems with respect to the ecological parameters using the 

adjoint method. These parameters are also present in terms that are nonlinear in the state variables

being comparable with terms in GCMs with products of state variables, being a situation that 

cannot be handled with uncertainty analysis methods based on a linearity assumption in case of 

small system perturbations. Although the adjoint equations become slightly more complex, the 

approach still continues to hold.
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Figure 1: Eigenvalues μi of the matrix A, see (3). It is seen that most of the energy goes in the first 

EOFs.
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(a) (b)

(c) (d)   

Figure 2: Preferred circulation patterns for the 500hPa streamfunction as indicated by the EOFs for 

the T21QGL3 model (a) EOF1, (b) EOF2, (c) EOF3 and (d) EOF4.
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Figure 3: PDFs of the EOF amplitudes a1(solid), a2(long dash), a3(short dash), a4(long short dash), 

a5(dots), a6(dot dash). It is noted that the time means are all zero.
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Figure 4: PDF1 of a1: (a) unperturbed (solid), (b) 5% perturbation in direction of EOF1 (dashed)

with β1 = 0.018, (c) 10% perturbation (dotted).
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Figure 5: Evolution of the first singular value of (16) over 350 days for simulation runs over 

intervals of 5 days along a reference orbit with 4 days overlap of consecutive intervals.
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Figure 6: PDF of  β1 for a sample of 1000 runs by the adjoint method with direction of perturbation 

S∂ determined by (a) the singular vector at peaks of the first singular value (dotted), (b) the 

singular vector just after peaks of the first singular value (solid), (c) random selection (dashed).
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(a)                                                                   (b)

Figure 7: The solid line represents the PDF of a1 for the unperturbed system: (a) the shifted PDF 

(dashed) due to a perturbation in the direction of the singular vector that corresponds with the first 

singular eigenvalue just after a peak producing the largest change in the PDF of a1:  β1 = 0.05, (b) 

the shifted PDF (dashed) due to the random perturbation of the sample that gives the largest change 

in a1:  β1 = 0.0025.
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perturbation type ( S∂ ) max. PDF change (β1)
in direction of EOF1 0.018
adjoint method (SV at peak) 0.037
adjoint method ( SV just after peak) 0.050
random 0.0025

Table I Most effective perturbation direction of S from a selection of 1000 directions obtained with 

the different approaches. 


