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It is shown that the principle of maximum entropy, as formulated by Jaynes, can
be applied to parametrize the effect of unresolved variables on resolved variables in
a dynamical system proposed by Lorenz. The starting point is the assumption that
the unresolved variables are in a state of statistical equilibrium on the time-scale of
the resolved variables. The probability density function that describes the statistics
of the unresolved variables is then determined by requiring that its information
entropy is maximal under the constraint that the average time rate of change of the
unresolved variables’ energy is zero. By using this probability density function to
determine the average effect of the unresolved variables on the resolved variables,
a linear damping of the resolved variables is found. After incorporating the linear
damping in the equations of the resolved system, the principle of maximum entropy
is applied a second time to shed light on the statistics of the resolved system. The
consequences are studied of using a priori probability density functions that go
beyond Laplace’s principle of indifference. Copyright c© 2011 Royal Meteorological
Society
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1. Introduction

Fluid dynamical systems evolve on high-dimensional
manifolds in a state space that is dimensionally infinite.
If finite difference or spectral approximations are used
to construct finite-dimensional models of these systems,
then generally not all variables can be resolved explicitly.
The unresolved variables have to be taken into account in
some approximate sense, i.e. their influence on the resolved
variables has to be parametrized. This can be done by
describing the unresolved variables in terms of a probability
density function (p.d.f.) that is conditioned on the resolved
variables. The mean impact of the unresolved variables on
the resolved variables can then be calculated by averaging
over this p.d.f. The p.d.f. can also be used to produce random
perturbations of the resolved variables’ time rate of change.
These two approaches lead to deterministic and stochastic
parametrizations, respectively.

In both approaches, the central issue is the choice of the
p.d.f. In the present study we propose to address this issue
by applying the principle of maximum entropy (Jaynes,
1957a, 1957b; Rosenkrantz, 1989). First, the unresolved
variables are assumed to be in a statistically stationary
state on the time-scale of the resolved variables. More
specifically, it will be assumed that the p.d.f. gives a zero
averaged time derivative of the unresolved variables’ energy.
This assumption by itself is not sufficient to fix the p.d.f.,
but when used as a constraint in the maximization of
the information entropy, a unique p.d.f. does result. The
consequences of this approach are worked out in the context
of a dynamical system devised by Lorenz (1996), analyzed
following the outlines of Wilks (2005) and Crommelin and
Vanden-Eijnden (2008). The approach will be shown to
yield a simple linear damping of the resolved variables by
the unresolved variables, the strength of which depends on
the coupling between resolved and unresolved variables.
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Figure 1. A schematic of the system variables for J = 3 and K = 4. The
large dots represent the large-scale variables, the small dots represent the
small-scale variables. Large-scale variables with a given colour (i.e. with a
given index k) interact with small-scale variables of the same colour (i.e.
with the index j, k).

2. The model

The system that we will study was proposed and applied by
Lorenz (1996) in the context of atmospheric predictability.
The model has K large-scale variables, called Xk, and
JK small-scale variables, called Yj,k, with j = 1, ..., J and
k = 1, ..., K. It is assumed that the system is cyclic in the
sense that Xk−K and Xk+K are equal to Xk for all k. Also,
Yj,k−K and Yj,k+K are equal to Yj,k, whereas Yj−J,k equals
Yj,k−1 and Yj+J,k equals Yj,k+1 for all k and j. A schematic of
the system, for J = 3 and K = 4, is given in Figure 1.

The variables Xk and Yj,k are supposed to satisfy the
following set of first-order differential equations:

Ẋk = Xk−1(Xk+1 − Xk−2) − Xk + F − Bk , (1)

Ẏj,k = c {b Yj+1,k(Yj−1,k − Yj+2,k) − Yj,k + Ck} , (2)

where we have defined

Bk = hc

b

J∑
j=1

Yj,k , Ck = h

b
Xk . (3)

Both large-scale and small-scale variables have quadratic
nonlinear terms that represent fluid dynamical advection.
The large-scale variables Xk are forced by a forcing F, which
is equal for all variables, and are damped by a linear damping
−Xk. As the coefficient of the damping is equal to 1, the
time-scale of the large-scale system is the time-scale of the
damping, which Lorenz (1996) sets to 5 days.

The effect of the small-scale variables Yj,k on the large-
scale variables Xk is given by −Bk; depending on the state
of the small-scale variables, this term acts as a forcing or
as a damping. The effect of the large-scale variables Xk on
the small-scale variables Yj,k is given by the term Ck; it
is a constant forcing for all variables Yj,k with a given k.
The damping −Yj,k of the small-scale variables is linear,
like the damping of the large-scale variables. The overall

time-scale of the dynamics of the small-scale variables is
set by the parameter c, assumed to be positive and larger
than 1. As a result, the small-scale variables evolve on
shorter time-scales than the large-scale variables. According
to Lorenz (1996), one could think of the variables Yj,k as
representing convective-scale quantities and of the variables
Xk as representing quantities that favour convective activity,
such as the degree of static instability.

As in the original study of Lorenz (1996), we
take (K, J, F, h, c, b) = (36, 10, 10, 1, 10, 10), although the
values of h, c and b will be varied. Integrating the system
by means of a fourth-order Runge–Kutta time-stepping
scheme with a time step of 0.001∗, we performed six
integrations of the full system for a total period of 200
time units, i.e. 200 000 time steps. We started with a
simple initial condition in which all variables are set to
0 except for the large-scale variable X1 which is set to
0.1. Following Wilks (2005) and Crommelin and Vanden-
Eijnden (2008), the results of these integrations are displayed
in terms of scatter plots between B1 and X1. In our
case, these values are plotted every 0.1 time units for the
whole period of integration, the results being given in
Figure 2. Figure 2(a) shows the scatter diagram in the case
(h, c, b) = (1, 10, 10), as in Lorenz (1996), (b) shows the
scatter diagram for the case (h, c, b) = (0.5, 10, 10), and (c)
shows the case (h, c, b) = (2, 10, 10). Figures 2(d, e, f), show
the cases (h, c, b) = (2, 10, 20), (1, 5, 10) and (1, 20, 10),
respectively. We note that our choice of k = 1 is immaterial,
i.e. the plots look the same for all k, as the system is symmetric
with respect to k. In the first four columns of Table I, the
system parameters are given for reference.

The different panels of Figure 2 show that for every
value of the large-scale variable Xk there is a range of
values of Bk. The influence of the small-scale variables
on the large-scale variables, effected through the term
−Bk in (1), may thus depend rather sensitively on the
state of the small-scale variables Yj,k. However, we see
that this sensitivity varies with the parameters of the
model: in Figures 2(b and e) this sensitivity is significantly
lower than in the other panels. The graphs illustrate the
general idea that, to describe the effect of the small-scale
(unresolved) variables on the large-scale (resolved) variables,
one could use a p.d.f.P(Y1,1, ..., YJ,K |X1, ..., XK) of the small-
scale variables Y1,1, ..., YJ,K conditioned on the large-scale
variables X1, ..., XK . In a deterministic parametrization, we
then replace Bk in (1) by its expectation value over this
p.d.f. As the p.d.f. depends parametrically on the large-scale
variables, the result is a closed dynamical system in the
large-scale variables X1, ..., XK . From the cloud of points in
the panels of Figure 2, it is to be expected that, in these cases,
the average effect will assume the form of a damping.

3. Small-scale variables

In this section we will discuss a procedure that will lead to
a p.d.f. P(Y1,1, ..., YJ,K|X1, ..., XK). To this end, we consider

∗Repeating the integrations with a time-step of 0.0001 did not reveal any
noticeable differences in the statistics.

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2011)



A Maximum Entropy Approach to Parametrization

Table I. Values of (h, c, b) and the theoretical and numerical results of the different runs that are discussed in this article.
For (K, J, F) we have (36, 10, 10) in all cases. The names a, b, c, d, e and f of the runs correspond to the labels in Figures 2,
3, 4, 5 and 6. The values of κnum, µnum

L and σ num
L are obtained numerically by a linear least-squares fit and by calculating

averages and standard deviations on the basis of the integrations that underly Figures 4, 5 and 6.

Run h c b κ µL σL κ ′ µ′
L σ ′

L κnum µnum
L σ num

L

a 1 10 10 1.500 3.333 3.333 1.381 2.723 3.507 1.343 2.449 3.509
b 0.5 10 10 1.125 4.444 4.444 1.095 3.434 4.423 1.117 2.727 4.048
c 2 10 10 3.000 1.666 1.666 2.526 1.489 1.918 2.117 2.286 2.351
d 2 10 20 1.500 3.333 3.333 1.381 2.723 3.507 1.223 2.751 3.837
e 1 5 10 1.250 4.000 4.000 1.190 3.159 4.068 1.164 2.632 3.953
f 1 20 10 2.000 2.500 2.500 1.763 2.134 2.748 1.778 2.038 2.706
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Figure 2. Scatter plots of B1 against X1, based on a numerical simulation of the full model equations (1), (2) and (3). The values of (h, c, b) are, from (a)
to (f), (1, 10, 10), (0.5, 10, 10), (2, 10, 10), (2, 10, 20), (1, 5, 10) and (1, 20, 10), respectively, as summarized in the first four columns of Table I. The values
of (K, J, F) are (36, 10, 10) in all cases. The solid curves are the theoretical averages of B1 as a function of X1, given by (26). The dashed curves are the
theoretical averages (72), based on the alternative a priori probability density function (59). Each scatter plot is based on a total number of 2001 data
points.
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the following global quantities:

EL =
K∑

k=1

1

2
X2

k , (4)

ES =
J∑

j=1

K∑
k=1

1

2
Y2

j,k . (5)

These quantities can be regarded as the energy in the large-
scale and small-scale variables, respectively. The nonlinear
terms in the time-dependent equations (1) and (2) have
a form that is such that, if combined with the periodicity
conditions on the variables, their contribution to the time
derivative of EL and ES vanish. We thus have

ĖL =
K∑

k=1

(−X2
k + FXk − BkXk) , (6)

ĖS = c
J∑

j=1

K∑
k=1

(−Y2
j,k + CkYj,k) . (7)

Both ĖL and ĖS are quadratic forms, in which sense they
resemble EL and ES themselves†.

The p.d.f. for the small-scale variables is required to
maximize the information entropy SIS, given by

SIS = −
∫

· · ·
∫

dY1,1 · · · dYJ,K

× P(Y1,1, . . . , YJ,K) log
P(Y1,1, . . . , YJ,K)

M(Y1,1, . . . , YJ,K)
,

(8)

where the measure M is an a priori p.d.f. For reasons of
notational convenience, we deleted the variables X1, ..., XK

from the argument list of P , although it should be kept
in mind that P depends parametrically on these large-scale
variables. The same is true, generally, forM. The constraints
in the maximization of the information entropy (8) are that
the average time derivative of the small-scale energy is zero,

〈ĖS〉S =
∫

· · ·
∫

dY1,1 · · · dYJ,K

×P(Y1,1, . . . , YJ,K)ĖS(Y1,1, . . . , YJ,K)= 0,
(9)

and that the p.d.f. satisfies the normalization condition∫
· · ·

∫
dY1,1 · · · dYJ,K P(Y1,1, . . . , YJ,K) = 1. (10)

This is an application of Jaynes’ principle of maximum
entropy (Jaynes, 1957a, 1957b; Rosenkrantz, 1989)‡. The
maximum entropy principle states that, if a system is to be
described probabilistically, then its p.d.f. should be as broad
as possible. The broadness is measured by the information
entropy, which is to be maximized constrained by the
relevant information. In our case the relevant information is

†Note that, if ĖL and ĖS are added, the small-scale/large-scale energy
transfer terms cancel. In the absence of forcing and damping, the model
of Lorenz (1996) thus conserves total energy.
‡The cited references to the papers by Jaynes, as well as all other
manuscripts written by Jaynes, both published and unpublished, can be
downloaded from http://bayes.wustl.edu/etj/node1.html

the condition that the average time derivative of ES is zero.
This condition is implied by the assumption of statistical
stationarity and is evidently an important manifestation of
it. It should be noted, however, that the average of higher-
order time derivatives of ES are also implied to be zero by
statistical stationarity, so it is only a limited aspect of it. The
issue will come up again in section 6.

There is a principal difference between the constraint of
a zero time derivative of the energy and the value of the
energy itself, which is the main constraint in equilibrium
statistical mechanics. If the energy were available then that
information would be of much value, but the energy in the
small-scale variables cannot, in general, be found in terms
of the large-scale variables. Indeed, this is only possible if the
whole system conserves energy and this is not the case in the
presence of forcing and damping. It is a fortunate state of
affairs, however, that the time derivative of the energy and
the energy itself are both quadratic in the variables. It implies
that the mathematical analysis is similar to the analysis used
in equilibrium statistical mechanics.

If the normalization condition is the only constraint in
the maximization of entropy, the entropy is maximal if the
p.d.f. is equal to the measure M. This is the p.d.f. in case we
only have a priori information. Finding the measure M for
a given system is a non-trivial problem that in some cases
can be solved by consideration of the basic symmetries of
the system (Jaynes, 1968, 1973). For the moment, we note
that taking M into account is necessary on dimensional
grounds and makes the information entropy invariant to a
coordinate transformation of the variables Yj,k once a choice
of M has been made.

In the following we will make for M the simplest possible
choice by taking it to be a product of constants,

M(Y1,1, ..., YJ,K) =
J∏

j=1

K∏
k=1

c−1
j,k . (11)

As we will see in due course, the actual values the constants
cj,k (not to be confused with the constant c in the dynamical
equation (2)) do not influence the resulting p.d.f. and we
could just as well take them to be identical. In that case, the
choice is known as Laplace’s principle of indifference (Jaynes,
2003) which effectively assumes no a priori knowledge at all.
An alternative a priori p.d.f. will be discussed in section 5.

In the maximization of entropy, the condition that the
expectation value of ĖS is zero is incorporated by using
the technique of Lagrange multipliers to the constraint
〈−(1/c)ĖS〉S = 0, the corresponding Lagrange multiplier
being α. Using Eq. (12) of Verkley and Lynch (2009), this
gives

P(Y1,1, . . . , YJ,K)= 1

ZM(Y1,1, . . . , YJ,K)

×exp


−α

J∑
j=1

K∑
k=1

(Y2
j,k − CkYj,k)


,

(12)

where Z , the partition function, is determined from the
normalization condition. If this condition is taken into
account, the above expression can be written as (Eqs. (14),

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2011)
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(17) and (22) of Verkley and Lynch, 2009)

P(Y1,1 . . . , YJ,K) =
J∏

j=1

K∏
k=1

N (µSk, σS, Yj,k) , (13)

where

µSk = Ck

2
and σ 2

S = 1

2α
, (14)

and where the functions N ,

N (µ, σ , x) = 1

σ
√

2π
exp

{
− (x − µ)2

2σ 2

}
, (15)

are normal distributions with mean µ and variance σ 2. The
resulting p.d.f. P is thus a product of normal distributions.
We note that the coefficients of the a priori p.d.f. have been
absorbed in the partition function Z and do not play a role
in the final expression of P .

The condition that P also satisfies constraint (9) fixes
the value of the Lagrange multiplier α. To obtain an
expression for α we need the following properties of the
normal distribution:∫

N (µ, σ , x) dx = 1 , (16)∫
N (µ, σ , x)x dx = µ , (17)∫
N (µ, σ , x)x2 dx = µ2 + σ 2. (18)

From these properties it can be deduced that

〈Yj,k〉S = µSk , (19)

〈Yj,k Yl,m〉S = δjl δkm σ 2
S + µSk µSm . (20)

It thus follows that the constraint (9) gives, using the first
expression in (14),

J∑
j=1

K∑
k=1

{−〈Y2
j,k〉S + Ck〈Yj,k〉S} = 0

⇒
J∑

j=1

K∑
k=1

{−σ 2
S − µ2

Sk + 2µ2
Sk} = 0

⇒
K∑

k=1

{−σ 2
S + µ2

Sk} = 0 , (21)

from which it may be concluded that, again using the first
expression in (14),

σ 2
S = 1

K

K∑
k=1

µ2
Sk = 1

K

K∑
k=1

(
Ck

2

)2

. (22)

The value of the Lagrange multiplier α can now be obtained
from the second expression in (14). This concludes the
calculation of the p.d.f. P . We note that the means µSk and
the variance σ 2

S both depend on the state of the large-scale
system, as expressed by the variables X1, ..., XK . The variance
σ 2

S is actually proportional to the energy EL, as can be seen

by comparing (22) with (4), using the second expression in
(3).

From the p.d.f. of the small-scale variables Yj,k, it is
possible to obtain the p.d.f. of the terms Bk. From the first
expression in (3) it can be seen that Bk is (hc)/b times a sum
of independent normally distributed variables Yj,k, so that
the p.d.f. of Bk is given by a similar expression,

P(B1, ..., BK) =
K∏

k=1

N (µBk, σB, Bk) , (23)

where the means µBk and the variance σ 2
B are given by (items

3.6.11 and 4.2.1 of Zwillinger and Kokoska, 2000)

µBk = hc

b

J∑
j=1

µSk = J c

(
h

b

)
µSk , (24)

σ 2
B =

(
hc

b

)2 J∑
j=1

σ 2
S = J c2

(
h

b

)2

σ 2
S , (25)

i.e. a product of K normal distributions with means
µBk and variance σ 2

B . The expressions for µBk and
σ 2

B can be checked to be identical to 〈Bk〉S and
〈(Bk − 〈Bk〉S)2〉S = 〈B2

k〉S − 〈Bk〉2
S, respectively, by applying

the identities (19) and (20) to the first expression of (3).
Substituting (14)(first expression) and (22) for µSk and σ 2

S ,
respectively, and using the second expression of (3), we get

µBk = J
( c

2

) (
h

b

)2

Xk , (26)

σ 2
B = J

( c

2

)2
(

h

b

)4 1

K

K∑
k=1

X2
k , (27)

which give µBk and σ 2
B directly in terms of the large-scale

variables Xk.
The deterministic parametrization is now obtained by

replacing the term Bk in (1) by its expectation value
〈Bk〉S = µBk, as given by (26). The equation for the large-
scale variables then becomes

Ẋk = Xk−1(Xk+1− Xk−2)−Xk+F−J
( c

2

)(h

b

)2

Xk . (28)

By defining an effective damping coefficient κ that includes
the contribution of the parametrized small-scale variables,

κ ≡ 1 + J
( c

2

)(
h

b

)2

, (29)

the system may be written

Ẋk = Xk−1(Xk+1 − Xk−2) − κXk + F. (30)

As c was assumed positive, our approach is seen to yield
an additional linear damping of the large-scale variables.
We note that the extra damping is proportional to J and
c and varies quadratically with h/b. A stronger coupling
between resolved and unresolved variables thus implies a
stronger damping or, equivalently, a damping time-scale
that is shorter. Note that the quadratic dependence of the
damping on h/b results from the fact that both Bk and Ck

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2011)
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are proportional to h/b. Values of the resulting effective
damping coefficient κ , given by (29), are given in the fifth
column of Table I. The theoretical expression of 〈Bk〉S = µBk

is represented by the solid curves in Figure 2. We see that
it gives a reasonably good representation of the average
values of the numerically obtained distributions, however
the slopes are somewhat too large, in particular for large
values of |Xk|.

4. Large-scale variables

We now address the question whether the maximum entropy
approach enables us to predict more details of the scatter
plots of Figure 2. Information on the mean and variance
of Xk and thereby information on the range of Xk and Bk

will allow us to predict the horizontal and the vertical extent
of the cloud of points in the scatter plots of Figure 2. We
recall that the mean µBk depends on Xk only, but that the
variance σ 2

B depends on the sum over k = 1, ..., K of X2
k . In

the following we attempt to shed light on the statistics of the
large-scale variables X1, ..., XK by applying the principle of
maximum entropy to the large-scale system, parametrizing
the effect of the small-scale variables in the way described
above.

Replacing Bk by its expectation value 〈Bk〉S = µBk, as given
by (26), we have for the time derivative of the large-scale
energy, given by (6),

ĖL =
K∑

k=1

{
−X2

k + FXk − J
( c

2

)(
h

b

)2

X2
k

}
(31)

=
K∑

k=1

(−κX2
k + FXk) , (32)

where κ is defined by (29). We will now assume that the
large-scale system is in a statistically stationary state and
describe the large-scale variables Xk in terms of a p.d.f.
P(X1, ..., XK). In analogy to the procedure described in
the previous section, we will require that the information
entropySIL is maximal under the constraint that the average
time derivative of EL is zero and that the p.d.f. is normalized.
The information entropy SIL is defined as

SIL = −
∫

· · ·
∫

dX1 · · · dXK

× P(X1, . . . , XK) log
P(X1, . . . , XK)

M(X1, . . . , XK)
.

(33)

The definition is identical to (8), the large-scale variables Xk

replacing the small-scale variables Yj,k.
Again, the a priori p.d.f. is assumed to be a product of

constants

M(X1, ..., XK) =
K∏

k=1

c−1
k . (34)

Using as a constraint that 〈(−1/κ)ĖL〉L = 0, with Lagrange
multiplier β , we find, using Eq. (12) of Verkley and Lynch
(2009) in much the same way as before,

P(X1, . . . , XK)= 1

ZM(X1, . . . , XK)

× exp

{
−β

K∑
k=1

(
X2

k − F

κ
Xk

)}
,

(35)

where Z is determined from the normalization condition.
The resulting normalized p.d.f. is seen to be a product of K
independent normal distributions (Eqs (14), (17) and (22)
of Verkley and Lynch, 2009),

P(X1, ..., XK) =
K∏

k=1

N (µL, σL, Xk) , (36)

with

µL = F

2κ
and σ 2

L = 1

2β
. (37)

The value of the Lagrange multiplier β can be found by
using the following identities, analogous to (19) and (20),

〈Xk〉L = µL , (38)

〈Xk Xm〉L = δkm σ 2
L + µ2

L . (39)

Writing out the constraint 〈ĖL〉L = 0 and using these
identities in addition to the first expression in (37), one
finds

σ 2
L = µ2

L =
(

F

2κ

)2

, (40)

from which β follows by using the second expression in
(37). We see that the normal distributions in (36) all have
the same average µL and variance σ 2

L . The values of µL and
σL, corresponding to the parameters of the different runs,
are listed in the sixth and seventh columns of Table I.

The theoretical equivalent of a scatter diagram, such as
shown in Figure 2, is the p.d.f. P(X1, B1), given by

P(X1, B1) =
∫

· · ·
∫

dX2 · · · dXK dB2 · · · dBK

× P(X1, ..., XK , B1, ..., BK) ,
(41)

in whichP(X1, ..., XK , B1, ..., BK) is the joint p.d.f. of finding
the system in the state (X1, ..., XK , B1, ..., BK). The latter
p.d.f. is given by the following product, an expression of the
product rule of probabilities,

P(X1, ..., XK , B1, ..., BK) =
P(X1, ..., XK)P(B1, ..., BK|X1, ..., XK).

(42)

Here P(B1, ..., BK |X1, ..., XK) is the p.d.f. of the variables
Bk, conditioned on the large-scale variables Xk, for which
an expression was derived in the previous section and
P(X1, ..., XK) is the p.d.f. of the large-scale variables Xk,
discussed above. Upon substituting the p.d.f. as given by
(23) and (36) into (41) and (42), we obtain

P(X1, B1) =
∫

· · ·
∫

dX2 · · · dXK dB2 · · · dBK

×
K∏

k=1

N (µL, σL, Xk)
K∏

m=1

N (µBm, σB, Bm).
(43)

The integrals over B2, ..., BK can be carried out immediately
and the normal distribution in the variable X1 can be placed
in front of the integral. This gives

P(X1, B1) = N (µL, σL, X1)

×
∫
· · ·

∫
dX2· · · dXK

K∏
k=2

N (µL, σL, Xk)N (µB1, σB, B1).
(44)
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Figure 3. Scatter plots of B1 against X1, calculated by randomly drawing from the theoretical probability density function P(X1, B1), given by (51). The
panels of this figure and of the following figures are ordered as in Figure 2, with the parameters of the different panels given in the first four columns of
Table I. The solid lines show the theoretical average µB1, given by (26). The plots are based on 2001 data points.

We see that the normal distribution in B1 depends on the
variables X2, ..., XK via σB for which we have ((27)),

σB = σB(X1, Z)

=
(

J

K

)1/2( c

2

)(h

b

)2

σL

{(
X1

σL

)2

+ Z

}1/2

,
(45)

where

Z =
K∑

k=2

(
Xk

σL

)2

. (46)

The variables Xk are normally distributed with non-zero
mean µL. The integral over X2, .., XK can therefore be
replaced by an integral over Z, from 0 to ∞, where Z is
distributed according to the non-central χ 2 distribution.

We thus have

P(X1, B1) =N (µL, σL, X1)

×
∫

dZ p(Z)N {µB1(X1), σB(X1, Z), B1},
(47)

where the non-central χ2 distribution p(Z) is given by
(Johnson et al., 1995, Eq. (29.4))

p(Z) = 1

2
exp

(
−Z + �

2

)(
Z

�

)ν/4−1/2

Iν/2−1[(�Z)1/2].

(48)

Here I is a modified Bessel function of the first kind, ν is
the number of degrees of freedom (the number of terms in
Z) and � is the non-centrality parameter (the value of Z if
the means of Xk are substituted for Xk). In our case these
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parameters are given by, using (40) in the second expression
below,

ν = K − 1 and � =
K∑

k=2

(
µL

σL

)2

= K − 1. (49)

For the mean value of Z, averaged over the distribution (48),
we have the following simple expression (Johnson et al.,
1995, Eq. (29.28))

〈Z〉 = ν + � = 2(K − 1), (50)

an expression that can also be derived from (39) and (46).
We numerically evaluated the integral in (47) by using the

routine bessik from Press et al. (1996) for the modified
Bessel function I and integrating by means of the trapezoidal
rule with 200 values of Z, evenly distributed over the interval
[0, 200]. In the course of experimenting we noted that a
satisfactory approximation§ is obtained by replacing p(Z)
by a delta function at the average value 〈Z〉. This gives

P(X1, B1) ≈N (µL, σL, X1)

× N {µB1(X1), σB(X1, 〈Z〉), B1},
(51)

where we recall that µB1(X1) is given by (26) and σB(X1, Z)
by (45).

In Figure 3, we show scatter plots generated by randomly
drawing from the p.d.f. (51). Using the routine gasdev
from Press et al. (1996), we calculated 2001 pairs of values
X1 and B1 using the same parameters as used for the scatter
plots in Figure 2, i.e. for (a), (b), (c), (d), (e) and (f) we have
(h, c, b) = (1, 10, 10), (0.5, 10, 10), (2, 10, 10), (2, 10, 20),
(1, 5, 10) and (1, 20, 10), respectively. The other parameters
are the same as before, i.e. (K, J, F) = (36, 10, 10). The
solid lines are the theoretical averages µB1, given by (26),
as in Figure 2. Note that the theoretical scatter diagrams of
Figures 3(a) and (d) are identical, as only the fraction h/b
enters into the theoretical expressions. The figures compare
reasonably well with the scatter plots in Figure 2, given that
no time integration had to be carried out to produce them.
In accordance with remarks made earlier on the theoretical
average µBk, we see that the theoretical scatter plots of
Figure 3 are somewhat steeper than those of Figure 2. We
also notice that, generally, the theoretical scatter plots have
a larger spread in values of B1 than the numerical scatter
plots.

5. A priori probability

In choosing the a priori p.d.f.s (11) and (34), we have
been guided by Laplace’s principle of indifference. We will
now consider the consequences of an alternative possibility,
anticipating that this might influence the theoretical average
µBk. A consideration that we did not take into account is that
the presence of forcing and damping causes the energy of
the small-scale and large-scale systems to be bounded from
above. This effectively limits the volume in phase space in
which these systems must reside if they are in a statistically
stationary state. The derivation that follows is consistent
with Eq. (7) of Lorenz (1963), an equation from which, for a
wide variety of dynamical systems, it can be concluded that
the attractor occupies a finite region of phase space.

§The differences between (51) and (47) are between 1 and 2% of the
maximum value of (47) for the cases displayed in Figure 2.

5.1. Small-scale variables

We begin with the small-scale variables and apply Schwarz’s
inequality¶

J∑
j=1

K∑
k=1

CkYj,k ≤

 J∑

j=1

K∑
k=1

C2
k




1/2
 J∑

j=1

K∑
k=1

Y2
j,k




1/2

, (52)

from which it follows that

ĖS ≤ c


 J∑

j=1

K∑
k=1

Y2
j,k




1/2

×


−


 J∑

j=1

K∑
k=1

Y2
j,k




1/2

+

 J∑

j=1

K∑
k=1

C2
k




1/2

 .

(53)

We therefore have the implication

J∑
j=1

K∑
k=1

Y2
j,k >

J∑
j=1

K∑
k=1

C2
k ⇒ ĖS < 0 , (54)

or

ES >

J∑
j=1

K∑
k=1

1

2
C2

k ⇒ ĖS < 0 . (55)

This means that, in a statistically stationary state in which
we cannot have a steady decrease of energy, we should have
that

J∑
j=1

K∑
k=1

Y2
j,k ≤

J∑
j=1

K∑
k=1

C2
k , (56)

from which it may be concluded that the unresolved
variables’ energy is bounded from above by the values of
the resolved variables. We may translate this into an a priori
p.d.f. M∗ of the form

M∗(Y1,1, ..., YJ,K) = AH


 J∑

j=1

K∑
k=1

C2
k −

J∑
j=1

K∑
k=1

Y2
j,k


 ,

(57)

where H(x) is the Heaviside step function and A is a
normalization constant.

In order to check the consequences of using M∗ instead
of M without getting into too much calculational trouble,
we approximate M∗ by M′:

M′(Y1,1, ..., YJ,K)

= B exp


ρ


 J∑

j=1

K∑
k=1

C2
k −

J∑
j=1

K∑
k=1

Y2
j,k




 ,

(58)

¶For the reasoning that leads to the implication (55), the author is
indebted to his colleague Mr Roel Stappers.
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where B is a normalization constant and the parameter ρ

is determined by requiring that M∗ and M′ give the same
expectation value of ES. As shown in the appendix, this gives

M′(Y1,1, ..., YJ,K)

=
(

1

σMS

√
2π

)JK

exp


−

J∑
j=1

K∑
k=1

Y2
j,k

2σ 2
MS


 ,

(59)

where

σ 2
MS = 1

JK + 2

J∑
j=1

K∑
k=1

C2
k = σ 2

S

γ 2
S

. (60)

Here we have defined a parameter γ 2
S ,

γ 2
S ≡ 1

4

JK + 2

JK
, (61)

and σ 2
S is given by (22).

If we now, in the maximization of entropy, go back to
(12) and substitute M′ for M, we obtain

P ′(Y1,1, ..., YJ,K) = 1

Z

(
1

σMS

√
2π

)JK

× exp


−

J∑
j=1

K∑
k=1

(
Y2

j,k

2σ 2
MS

+ αY2
j,k− αCkYj,k

)
 .

(62)

Using the definition of the normal distribution and
expressing Ck in terms of µSk by using (14), this can be
rewritten as (13)

P ′(Y1,1 . . . , YJ,K) =
J∏

j=1

K∏
k=1

N (µ′
Sk, σ ′

S, Yj,k) , (63)

where

µ′
Sk = σ 2

MS

σ 2
MS + 1/(2α)

µSk , (64)

σ ′2
S = σ 2

MS

σ 2
MS + 1/(2α)

1

2α
. (65)

The Lagrange multiplier α can be found from the condition
that 〈ĖS〉′S = 0, the prime denoting that the average is taken
over the primed p.d.f. Using (7), (14), (19), (20) and (22),
we find

1

2α
= σ 2

MS + 1/α

σ 2
MS + 1/(2α)

σ 2
S . (66)

From this expression, 1/(2α) may be obtained by solving
a quadratic equation. Keeping only the root that leads to a
postive value of 1/(2α), this gives

1

2α
= σ 2

MS


 σ 2

S

σ 2
MS

− 1

2
+

{(
σ 2

S

σ 2
MS

)2

+ 1

4

}1/2

 . (67)

Using (60), this can be written as

1

2α
= σ 2

MS

[
γ 2

S − 1

2
+

{
γ 4

S + 1

4

}1/2
]

. (68)

If substituted in (64) and (65) we obtain

µ′
Sk = fS µSk and σ ′2

S = g2
S σ 2

S , (69)

where

fS = 1

γ 2
S + 1

2 + (γ 4
S + 1

4 )1/2
, (70)

g2
S = γ 2

S − 1
2 + (γ 4

S + 1
4 )1/2

γ 2
S + 1

2 + (γ 4
S + 1

4 )1/2

1

γ 2
S

. (71)

If we take the values J = 10 and K = 36, we get γ 2
S = 0.251

and thus fS = 0.763 and gS = 0.971.
If µ′

Sk is substituted into (24) and σ ′2
S is substituted into

(25), we obtain

µ′
Bk = fS J

( c

2

)(
h

b

)2

Xk , (72)

σ ′2
B = g2

S J
( c

2

)2
(

h

b

)4 1

K

K∑
k=1

X2
k , (73)

whereas for κ ′ we get

κ ′ ≡ 1 + fS J
( c

2

)(
h

b

)2

. (74)

Thus, if we take (59) as the a priori p.d.f. for the small-scale
variables, the theoretical lines in the scatter diagrams of
Figure 2 acquire a slope that is 0.763 times the original value.
In Figure 2 these theoretical lines are dashed. The resulting
values of κ ′, listed in the eighth column of Table I, become
smaller as well. Consequently, the effective damping of the
large-scale variables by the small-scale variables becomes
less. From the fact that gS is not much smaller than 1, we
expect to see not much difference in terms of the vertical
spread of the scatter plots.

5.2. Large-scale variables

We next consider an alternative to the a priori p.d.f. (34) and
investigate the implications for the statistics of the large-
scale variables. From (32) we may deduce, using Schwarz’s
inequality in much the same way as before‖

EL >

K∑
k=1

1

2

(
F

κ

)2

⇒ ĖL < 0 . (75)

In a statistically stationary state, we should thus have that

K∑
k=1

X2
k ≤

K∑
k=1

(
F

κ

)2

, (76)

‖For reasons of notational simplicity, we use an unaccented variable κ ,
but this should be replaced by an accented κ if the modified a priori
p.d.f. for the small-scale variables is used.
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from which it may be concluded that the large-scale variables’
energy is bounded from above, in this case by the forcing F
and the effective damping coefficient κ . A p.d.f. that takes
this into account could be

M∗(X1, ..., XK) = AH
{

K∑
k=1

(
F

κ

)2

−
K∑

k=1

X2
k

}
. (77)

As before, for reasons of computational convenience, M∗ is
approximated by M′:

M′(X1, ..., XK) = B exp

[
ρ

{
K∑

k=1

(
F

κ

)2

−
K∑

k=1

X2
k

}]
, (78)

where the parameter ρ is determined by requiring that M∗
and M′ give the same expectation value of EL. This leads to

M′(X1, ..., XK)=
(

1

σML

√
2π

)K

exp

(
−

K∑
k=1

X2
k

2σ 2
ML

)
, (79)

where

σ 2
ML = 1

K + 2

K∑
k=1

(
F

κ

)2

= σ 2
L

γ 2
L

. (80)

Here we have defined a parameter γ 2
L ,

γ 2
L ≡ 1

4

K + 2

K
, (81)

and σ 2
L is given by (40).

If we go back to (35) and substitute M′ for M, we obtain

P ′(X1, ..., XK) = 1

Z

(
1

σML

√
2π

)K

× exp

[
−

K∑
k=1

{
X2

k

2σ 2
ML

+ βX2
k − β

(
F

κ

)
Xk

}]
.

(82)

This can be rewritten as (36)

P ′(X1 . . . , XK) =
K∏

k=1

N (µ′
L, σ ′

L, Xk) , (83)

where

µ′
L = σ 2

ML

σ 2
ML + 1/(2β)

µL , (84)

σ ′2
L = σ 2

ML

σ 2
ML + 1/(2β)

1

2β
. (85)

The Lagrange multiplier β can be found from the condition
that 〈ĖL〉′L = 0 and gives, in the same manner as before,

1

2β
= σ 2

ML


 σ 2

L

σ 2
ML

− 1

2
+

{(
σ 2

L

σ 2
ML

)2

+ 1

4

}1/2

 . (86)

Using (80), this can be written as

1

2β
= σ 2

ML

[
γ 2

L − 1

2
+

{
γ 4

L + 1

4

}1/2
]

. (87)

If substituted in (84) and (85), we obtain

µ′
L = fL µL and σ ′2

L = g2
L σ 2

L , (88)

where

fL = 1

γ 2
L + 1

2 + (γ 4
L + 1

4 )1/2
, (89)

g2
L = γ 2

L − 1
2 + (γ 4

L + 1
4 )1/2

γ 2
L + 1

2 + (γ 4
L + 1

4 )1/2

1

γ 2
L

. (90)

For K = 36, we get γ 2
L = 0.264 and this gives fL = 0.752

and gL = 0.969.
Quite analogous to the small-scale variables, the mean of

the distributions is shifted to values that are a factor 0.752
smaller, whereas the variance does not change very much.
Values of µ′

L and σ ′
L, using κ ′ in the definition of µL and σL,

are given in the ninth and tenth columns of Table I.
To further investigate the effects of the alternative

a priori p.d.f.s, we now discuss the theoretical scatter
plots. Equation (51) becomes, after replacing the different
parameters by their primed equivalents,

P ′(X1, B1) ≈N (µ′
L, σ ′

L, X1)

× N {µ′
B1(X1), σ ′

B(X1, 〈Z′〉′), B1}.
(91)

Here µ′
L and σ ′

L are given by (88) above, µ′
Bk is given by (72)

and for σ ′
B we have from (73)

σ ′
B(X1, Z′) = gS

(
J

K

)1/2( c

2

)(h

b

)2

σ ′
L

{(
X1

σ ′
L

)2

+ Z′
}1/2

, (92)

where Z′ is defined by

Z′ =
K∑

k=2

(
Xk

σ ′
L

)2

. (93)

In the same way as before, we have that Z′ is distributed
according to the non-central χ 2 distribution with ν = K − 1
degrees of freedom and the following expression of the
non-centrality parameter:

�′ =
K∑

k=2

(
µ′

L

σ ′
L

)2

=
(

fL
gL

)2

(K − 1) . (94)

For 〈Z′〉′ we thus obtain

〈Z′〉′ = ν + �′ =
{

1 +
(

fL
gL

)2
}

(K − 1). (95)

If we substitute expression (74) of κ ′ in the expressions
for µL and σL, we may use (91) to calculate a theoretical
scatter diagram such as Figure 3. In accordance with the
dashed lines in Figure 2, the cloud of points is expected
to have a somewhat smaller slope. We calculated these
scatter diagrams (not shown) and noticed that the cloud of
points is slightly thinner than in Figure 3. Taking an overall
view, these features bring the results somewhat closer to the
numerically obtained scatter plots, displayed in Figure 2.
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Figure 4. Numerically obtained probability density functions calculated by binning the values of B1 from a numerical time integration of 20 000 time
units, selecting from data points in which X1 lies within an interval of width 1 around Xa

1 = 2.50. Out of the total number of 200 001 data points, an
average of 18 500 satisfy the selection criterion on X1. The results are displayed in the form of step functions (histograms). The smooth solid curves are
the theoretical probability density functions as given by (96), based on the a priori probability density functions (11) and (34). The smooth dashed curves
are given by (97), based on the a priori probability density functions (59) and (79).

6. Discussion

In line with the work of Wilks (2005) and Crommelin and
Vanden-Eijnden (2008), we will discuss in somewhat more
detail the p.d.f.s of X1 and B1, given by (51) and (91).
Interpreting the right-hand sides of these expressions in
terms of the product rule of probabilities, we may consider
the second factor as the p.d.f. of B1 conditioned on X1. An
impression of the width of the theoretical scatter diagrams
is obtained by evaluating these expressions at a fixed value
of X1, for which we take X1 = Xa

1 = 2.50. For the unprimed
and primed cases we then have

P(B1|Xa
1) ≈ N {µB1(Xa

1), σB(Xa
1 , 〈Z〉), B1} , (96)

P ′(B1|Xa
1) ≈ N {µ′

B1(Xa
1), σ ′

B(Xa
1 , 〈Z′〉′), B1} . (97)

These p.d.f.s can be evaluated by substituting Xa
1 into the

expressions (26) and (72) of µBk and µ′
Bk, and into (45) and

(92) for σB and σ ′
B, respectively. We also need (50) and (95)

for 〈Z〉 and 〈Z′〉′, and σ 2
L = (F/2κ)2 and σ ′2

L = g2
L(F/2κ ′)2,

where κ and κ ′ are given by (29) and (74), respectively.
To check these results numerically, we performed another

six integrations, with the same parameters as before, but for
a longer period of 20 000 time units. Evaluating the results at
every 0.1 time unit, this gives us a set of 200 001 values of X1

and B1. By applying a linear least-squares fit to these 200 001
data points, we obtained the numerical equivalent of the
effective damping parameter, denoted by κnum. The values
are given in the eleventh column of Table I and demonstrate,
quantitatively, that the alternative a priori p.d.f.s improve
the theoretical values of the effective damping parameter.
The only exception concerns run b in which κ ′ differs more
from κnum than does κ , although the difference is not very
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large. We also used the 200 001 values of X1 to calculate,
using standard formulae, their means and variances. The
resulting µnum

L and σ num
L are displayed in the last two

columns of Table I. Note that the value 2.50 for Xa
1 is quite

representative of the values of µnum
L .

We then selected values of X1 in an interval of width 1
centred around Xa

1 and binned the corresponding values of
B1 in 251 intervals of width 0.1, ranging from −12.55 to
+12.55. In this way, we obtained numerical p.d.f.s of B1

conditioned on X1 = Xa
1 which can be compared with the

theoretical expressions (96) and (97). The average number
of points on which the numerical p.d.f.s are based, is 18 500,
about 1/10 of the total number of data points.

The results, in the form of step functions (histograms),
are displayed in Figure 4. The theoretical distributions
(96) and (97) are shown in terms of the smooth solid
and dashed curves, respectively. Generally, the difference
between the primed and unprimed p.d.f.s is that the latter
are shifted towards smaller values and are slightly less broad.
In some cases this leads to an improved resemblance with
the numerical results (Figure 4(c, d, e)) but in other cases the
resemblance becomes less (Figure 4(a, b, f)). For Xa

1 = 5.0
(not shown) the shift to smaller average values improves the
resemblance in the majority of cases. The graphs all confirm
that the theoretical scatter diagrams have a larger spread
in values of B1 than the numerical diagrams. The spread
is only slightly smaller in the primed cases so that in that
respect there is not much difference between the primed and
unprimed cases.

It is also of interest to consider the p.d.f. of an individual
variable X1 of the large-scale system. Theoretically, we have
for P(X1) and P ′(X1), as follows from (36) and (83)
by integrating over X2, ..., XK or from (51) and (91) by
integrating over B1,

P(X1) = N (µL, σL, X1) , (98)

P ′(X1) = N (µ′
L, σ ′

L, X1) , (99)

where we recall that µL = F/(2κ) and µ′
L = fLF/(2κ ′). To

check these results in somewhat more detail than is possible
on the basis of scatter plots, we calculated numerical p.d.f.s
for the variable X1. These are obtained by binning the values
of X1 at every 0.1 time unit in 101 intervals with width
0.50, ranging from −25.25 to +25.25. As now all data are
used, the numerical p.d.f.s are based on 200 001 data points.
The results for the different cases are displayed in Figure 5,
again in the form of solid step functions (histograms). Also
shown are the theoretical results based on (98) and (99), the
smooth solid curves for the unprimed values of µL and σL,
and smooth dashed curves for the primed values of these
parameters. We recall that the underlying difference is the
choice of a priori p.d.f., i.e. (11) and (34) in the unprimed
case and (59) and (79) in the primed case. We see that the
differences are not too large; the primed p.d.f.s are shifted to
smaller values and are slightly broader than their unprimed
counterparts. The shift to smaller values is generally of the
right sign.

It is remarkable that four out of the six numerically
obtained p.d.f.s are quite close to Gaussian, in accordance
with theory. The two exceptions are the p.d.f.s displayed in
Figures 5(c) and (f): they are trimodal instead of unimodal
and have sharp peaks. They show that, if the effective
damping becomes too large, the system enters a less chaotic
state. In fact, as inspection of the variables Xk has shown,

the system in Figures 5(c) and (f) is dominated by a
westward travelling wave of wave number 7. The theoretical
p.d.f.s, being Gaussian, do not capture these features, but
they do yield averages and variances of the right order of
magnitude.

Figure 6 displays the numerical covariances
〈(X1 − 〈X1〉)(Xk − 〈Xk〉)〉 for k = 1, ..., K + 1, the index
K + 1 referring to the same variable as the index 1.

Figures 6(c) and (f) show very clearly that the system in
these cases is dominated by a wave of wavenumber 7. As in
the two previous figures, the results are based on a numerical
simulation of 20 000 time units of the full model equations
(1), (2) and (3), using the output every 0.1 time unit.
Although the cases (c) and (f) are quite exceptional, the figure
generally illustrates that the large-scale variables X1, ..., XK

are not statistically independent, in contrast to either (36)
or (83). The numerical covariance between the variables
depends on the effective damping and becomes smaller if
this damping becomes smaller, as the other panels of the
figure indicate. Although the numerical covariances (k > 1)
are not reproduced, the numerical variances (k = 1) are in
reasonable accord with the theory, as can be judged from
Table I. Covariances will be predicted if higher-order time
derivatives of the energy are used as additional constraints
in the maximization of entropy. This becomes evident if one
studies e.g. the second-order time derivatives of (4) and (5).
The mathematical analysis of this problem is beyond the
scope of the present study.

7. Conclusions

By applying the principle of maximum entropy, we obtained
a p.d.f. of the small-scale variables Yj,k of a model devised
by Lorenz (1996). The information entropy of the p.d.f.
is maximized under the constraint that the average time
derivative of the energy of the small-scale variables is zero.
The p.d.f. of the small-scale variables entails a p.d.f. of Bk

which, like the p.d.f. of the small-scale variables Yj,k, is a
product of independent normal distributions. The mean
values of these distributions are proportional to the large-
scale variables Xk whereas the variance is proportional to the
energy EL of the large-scale variables.

Without first performing numerical time integrations,
the maximum entropy approach leads to an expression of
the average interaction of the small-scale variables with the
large-scale variables. The corresponding parametrization
(26) assumes the form of a linear damping of the large-
scale variables, the strength of which depends on the
parameters of the interaction. The theory predicts how
the damping, and thus the average slope in scatter plots such
as displayed in Figure 2, vary with the relevant parameters.
These predictions are borne out by numerical integrations of
the full system, as the solid curves in Figure 2, representing
(26), clearly show.

We also applied the maximum entropy approach to the
large-scale system, parametrizing the influence of the small-
scale variables in the manner described above. In analogy
to the small-scale system, it was assumed that the large-
scale variables are in a statistically stationary state which
can be described by a maximum entropy p.d.f. The entropy
is maximized under the constraint that the averaged time
derivative of the large-scale energy is zero. The procedure
is analogous to the procedure applied to the small-scale
variables and leads to similar results. These results allow
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Figure 5. Numerically obtained probability density functions calculated by binning the values of X1 from a numerical time integration of 20 000 time
units. The means and standard deviations of the numerically obtained probability density functions are given in the last two columns of Table I. The
results are displayed in the form of step functions (histograms). The smooth solid curves represent the theoretical probability density functions given by
(98), with unprimed µL and σL, i.e. based on the a priori probability density functions (11) and (34). The smooth dashed curves represent (99), with µ′

L
and σ ′

L, i.e. based on the a priori probability density functions (59) and (79). The numerical probability density functions in (c) and (f) differ markedly
from the others because here the large-scale system is dominated by a westward traveling wave with wave number 7.

us to predict more details of the scatter plots given in
Figure 2. The theoretical scatter plots of Figure 3 show that
these predictions are in reasonable agreement with results
obtained numerically.

We have also discussed the influence of alternative a priori
p.d.f.s. These alternatives are based on the observation that,
in a statistically stationary state, the presence of forcing and
dissipation implies that the system’s energy is bounded from
above. By approximating the alternative a priori p.d.f.s by a
suitable multivariate Gaussian, it was possible to study their
influence on the statistics of both the small-scale and the
large-scale variables. For the small-scale variables, it leads
to a smaller effective friction, as can be seen from the solid
and dashed lines in Figure 2 and the solid and dashed curves

in Figure 4. For the large-scale variables, it leads to p.d.f.s
that are shifted to somewhat smaller values, as indicated by
the solid and dashed curves in Figure 5. It was illustrated
by Figure 6 that, depending on the amount of effective
damping, the numerical results show covariances between
the different variables. These covariances are not reproduced
by the present theory and will arise only if zero averages of
higher-order time derivatives of the energy are used in the
maximization of entropy.
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Appendix

Mathematical details

In this appendix we will indicate how we obtain values of ρ

in the two expressions (58) and (78) for M′ that give the
same expectation value of the energy as M∗ in (57) and
(77). Concerning the a priori p.d.f. M∗ for the small-scale

variables, we first define

r2 =
J∑

J=1

K∑
k=1

Y2
j,k , R2 =

J∑
J=1

K∑
k=1

C2
k . (A.1)

The normalization condition can then be written

A

∫
· · ·

∫
r2≤R2

dY1,1 · · · dYJ,K = 1 . (A.2)

Here the integral is over a spherical volume in JK-
dimensional space defined by r2 ≤ R2. This volume is given
by the following integral over r:∫

· · ·
∫

r2≤R2

dY1,1 · · · dYJ,K =
∫ R

0
dr AJK(r) , (A.3)

where An(r) is the area of a sphere with radius r in an n-
dimensional Euclidean space. ForAn(r) we have (Zwillinger,
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1996, formula 4.18.2), and using �(x + 1) = x�(x),

An(r) = n
πn/2

�(n/2 + 1)
rn−1, (A.4)

where � is the gamma function. We thus find for the
normalization constant A

A−1 = (πR2)JK/2

�(JK/2 + 1)
. (A.5)

The normalization condition for M′ reads

B

∫
· · ·

∫
dY1,1 · · · dYJ,K

× exp


ρ


 J∑

j=1

K∑
k=1

C2
k −

J∑
j=1

K∑
k=1

Y2
j,k




 = 1 ,

(A.6)

or, using the expressions given above,

B JK
π JK/2

�(JK/2 + 1)
exp(ρR2)

∫ ∞

0
dr rJK−1 exp(−ρr2)

= 1 .

(A.7)

According to Zwillinger (1996, definite integral 642), we
have ∫ ∞

0
dr rn−1 exp(−ρr2) = 1

2
ρ−n/2 �(n/2) , (A.8)

from which we find, again making use of �(x + 1) = x�(x),

B−1 =
(

π

ρ

)JK/2

exp(ρR2). (A.9)

For the normalized a priori p.d.f.s M∗ and M′ for the
small-scale variables, we thus have

M∗ = �(JK/2 + 1) (πR2)−JK/2 H(R2 − r2) , (A.10)

M′ =
( ρ

π

)JK/2
exp(−ρr2) . (A.11)

If we express the small-scale energy ES in terms of r,

ES =
J∑

j=1

K∑
k=1

1

2
Y2

j,k = 1

2
r2, (A.12)

and denote the expectation values of ES with respect to
M∗ and M′ by 〈ES〉∗ and 〈ES〉′, respectively, we find, using
analogous integral identities as before,

〈ES〉∗ = 1

2

JK

JK + 2
R2, (A.13)

〈ES〉′ = JK

4ρ
. (A.14)

If ρ is fixed by requiring that 〈ES〉∗ = 〈ES〉′, it follows that

1

2ρ
= 1

JK + 2
R2 = 1

JK + 2

J∑
j=1

K∑
k=1

C2
k . (A.15)

We arrive at (59) if we identify 1/(2ρ) with σ 2
MS. In an

analogous way, we may obtain (79) for the large-scale
variables.
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