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ABSTRACT

Adjoint models have found their way to many applications in numerical weather prediction, such as variational data
assimilation, singular vector analysis and sensitivity studies. This paper lists some examples of how adjoint models are
being used as a diagnostic tool in atmospheric and ocean models. Their variety is indicative for the many opportunities
adjoint models provide in helping to understand the behaviour of these models.

1 Introduction

The use of adjoint models as a diagnostic tool has increased rapidly over the last years in the atmospheric
and ocean community. This is not surprising given the capability of adjoint models to inform efficiently about
various aspects of model behaviour. An important area of such an adjoint application is provided by the data-
assimilation scheme. In particular the way observations exert impact on the forecast performance is one of the
issues that can be addressed. For more details about this diagnostic application of adjoint models we refer to the
paper by Cardinali (these Proceedings). Other areas where adjoint models play an diagnostic role are associated
with sensitivity and stability issues. With respect to sensitivity, one is interested in how much an aspect of the
model behaviour, e.g. the 2-day forecast error, will change when perturbations are allowed in the forecast
production process. This, for example, may concern parameter variations in parametrized physical processes
or perturbations to the model initial condition. In case of models with many degrees of freedom the model’s
adjoint provides an efficient way to inform about such sensitivity related questions, see e.g. Rabier et al. (1992,
1996); Errico and Vukićević (1992). In case of stability issues one would like to know, for example, how large
forecast deviations one may expect when reasonable perturbations are allowed to the model environment, such
as the initial condition or physical parametrization scheme. Also here adjoint models proved to be useful in, for
example, assessing the dominant growing structures present in the initial condition of a model (Lorenz, 1969).
The further study of these so-called non-modal structures, e.g. Farrell and Ioannou 1996a,b, has been very
fruitful, particularly in the progress of predictability research.

In this paper we present some examples of how adjoint models can been used as diagnostic tool. We certainly
do not claim that this overview is complete. It hopefully does illustrate that there are many opportunities to
explore the use of adjoint models, see also Errico (1997) in this context. However, there are also limitations
to the applicability of adjoint models, which are inherently associated with linear models. To overcome the
restriction of linear perturbation growth there have been attempts to extent the concept of adjoint models to the
weakly nonlinear regime, e.g. Oortwijn and Barkmeijer (1995) and Mu et al. (2003). Another issue which
we do not touch in this paper is the growing complexity of nonlinear forecast models. For an overview of the
problems this poses for the derivation of the tangent linear and adjoint model, we refer to Janisková (2003).

The paper is organized as follows. In section 2 we introduce the adjoint model by means of the gradient
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computation, which is central to sensitivity calculations. This is followed by a series of applications in section
3, where adjoint models are being used as diagnostic tools.

2 Tangent and adjoint model

In this section we show how an adjoint model can be used to efficiently determine the gradient of a function.
This property is essential in many applications, for example in minimizing the costfunction in variational data-
assimilation.

Suppose we are dealing with a nonlinear model M, which for a given input x produces the output y after some
time integration:

dx/dt = M(x) (1)

and further with a differentiable function J, which is defined for the model output field y:

J = J(y) = J(M(x)) (2)

The function J may be a simple function of the output y, but the computation of its gradient with respect to x is
another matter:

∂J
∂x j

= ∑
k

∂J
∂yk

∂yk

∂x j
(3)

The gradient of J would require a perturbed run for every entry of x (which is O(108) in case of operational
NWP models). Assume that perturbations evolve linearly and that a small perturbation δy j of y j is associated
to a perturbation δxk of xk through:

δy j = ∑
k

∂y j

∂xk
δxk =de f (Mδx) j (4)

Then we can write

∇xJ = MT
∇yJ (5)

So provided there is a way to determine the transpose of the operator M, the gradient ∇xJ of J can be evaluated.
In fact there is and it is the adjoint model which makes this possible:

Suppose that the time evolution of initial condition perturbations for system given by eq. 1 is linear and given
by the tangent linear system

dε/dt = Lε (6)

with propagator M: ε(t2) = M(t1, t2)ε(t1). Define the adjoint model by

dε/dt =−L∗ε (7)
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where L∗ is the unique operator such that < La,b >=< a,L∗b > and < ., . > is a suitable innerproduct. Note
that L∗ = LT in case of the Euclidean innerproduct [a,b] = ∑aibi. Denote by S the propagator of the adjoint
model. Solutions a(t) and b(t) of eqs. 6 and 7 respectively satisfy:

d/dt < a(t),b(t) >=< La(t),b(t) > + < a(t),−L∗b(t) >= 0 (8)

and consequently
< M(t1, t2)a(t1),b(t2) >=< a(t1),S(t2, t1)b(t2) > (9)

We conclude that M∗y for a given y can be evaluated by integrating the adjoint model eq. 7 backwards in time
starting with initial condition y.

3 Examples of adjoint models as diagnostic tool

Some examples are presented of how adjoint models are being used in the atmospheric and ocean community.
Although the list is far from complete, its diversity reflects the opportunities adjoint models provide in gaining
knowledge of atmospheric and ocean processes. It is worth mentioning here that since 1992 a workshop (see
Errico and Ehrendorfer (2007) for a review of the seventh workshop (1997) and Adjoint Workshop (1997) for
topics presented there) is being held every two years entirely focusing on adjoint model applications.

3.1 Periodic Weather

In a well known application of adjoint models, a perturbation of the initial condition is sought such that the
forecast started from the modified initial condition improves. This so-called sensitivity calculation (Rabier
1996; Klinker et al. 1998) is a powerful tool in assessing the relative impact of model variables. However,
care should be taken with its interpretation (Isaksen et al., 2005; Caron et al., 2007). A minor adaptation of the
sensitivity calculation enables the search for Unstable Periodic Orbits (UPO) in model or observational data.
UPOs can be considered as the ”skeleton” of a dynamical system as given by eq. 1 and knowledge of them
(and typically from only a few UPO’s with short period) can already inform about the underlying dynamics
(Grebogi et al., 1998; Hunt et al, 1996). There is observational evidence that the atmosphere may exhibit
UPO’s. In Branstator (1987) and Kushnir (1987), for example, a westward-propagating wave is identified in
Northern Hemisphere winter analyses of the 500-hPa height with a period of around 23 days. In order to
determine UPO’s, it suffices to adapt the usual costfunction of the sensitivity calculation. Let x(t) be a solution
of eq. 1. In stead of measuring the difference between the forecast field x(T ) with the verifying analysis for a
certain lead time T , the costfunction J is given by:

J(x(0)) = 1/2 ‖ x(0)−x(T ) ‖2 with ‖ . ‖ some suitable norm (10)

The gradient of J, which is required in the minimization, is then

∇J = [M∗− Id](x(T )−x(0)) (11)

where M∗ the propagator of the adjoint model with respect to the innerproduct associated with the ‖ . ‖ norm
and Id the identity operator. In figure 1 the result of such a minimization is presented. The minimization is
performed in the context of a three level quasi-geostrophic model (Marshall and Molteni, 1993). Only a small
change to the original x(0) results in a loop in phase space with a period of 10 days.
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Figure 1: Original initial condition x(0) (left) and after minimization (right) in terms of streamfunction at
500 hPa. Positive and negative values are plotted in red and blue respectively, with contour interval 3.0 x
106m2s−1. The modified initial condition produces a UPO with a period of 10 days.

3.2 Upwelling cells

In a sensitivity type of experiment (Chhak and Di Lorenzo, 2007) the origin of coastally upwelled water off
the coast of California is determined using the ocean model ROMS (Haidvogel et al., 2000) and its adjoint
ADROMS (Moore et al., 2004). It appears that in the ”cool” phase (pre mid-1970s) of the Pacific Decadal
Oscillation (PDO), the upwelling cell is deeper while during the ”warm” phase (post mid-1970s), the upwelling
cell is shallower with more horizontal entrainment of surface waters from the north, see Fig 2. This reduction
of nutrient rich deep waters being vertically mixed to the surface may play a role in the observed decline in
zooplankton biomass off the coast of Calafornia after the mid 1970s.
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Figure 2:  Cold (a) and warm (b) phase ensemble means of the percent ratio of passive tracer 

concentrations at time tup-1 (one year prior to peak upwelling) relative to that at time tup (the time of peak 

upwelling) indicating the origin of coastally upwelled waters (for region 2 in Fig. 1d) one year prior to peak 

upwelling in mid-April.  
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Figure 2: Percent ratio of the origin of coastally upwelled waters one year prior to peak upwelling indi-
cating the origin of coastally upwelled water for the (A) cold and (B) warm phase of the Pacific Decadal
Oscillation. From Chhak and Di Lorenzo (2007).
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3.3 Sensitivity in two convection schemes

Central in the study of Mahfouf and Bilodeau (2007) is to evaluate the sensitivity of surface precipitation to
the initial condition for up to 24 h. They perform their experiments with the Global Environmental Multi-
scale (GEM) model, together with the tangent linear and adjoint version of its dynamical core (Tanguay and
Polavarapu, 1999) and of a simplified physics package (Zadra et al., 2004). In particular the impact of the defi-
nition of the moist convection scheme’s closure on the adjoint sensitivities is studied. The formulation of deep
convection is based on a Kuo symmetric scheme (Mahfouf, 2005). Simplifications to the linearized versions
lead to two different expresssions of the perturbed surface convective rainrate R

′
c:

R
′
c1 =

∫ pt

pb
(
∂q

′

∂ t
)LS

d p
g

and R
′
c2 =−

Cp

L

∫ pt

pb
(
∂T

′

∂ t
)LS

d p
g

(12)

The subscript LS stands for ”large scale” and corresponds to the dynamical tendencies plus tendencies from
the dry physics. Mahfouf (2005) has shown that R

′
c1 and R

′
c2 have comparable mean and extreme values, and

also the same accuracy with respect to the nonlinear reference. Figure 3 shows the sensitivity of the linearized
convection scheme using R

′
c1 (q-closure formulation), and the scheme using R

′
c2 (T -closure formulation in case

of a midlatitude case. The diagnostic function J for which the sensitivity is shown is the mean precipitation rate
produced by the model at certain lead time T over a geographical domain. Observe that the time axis denotes
the integration time of the adjoint model. So T = 0 refers to the beginning of the adjoint integration, while
T = 24 denotes the end of the integration at analysis time. Clearly the closure of the convection scheme has
significant impact on the sensitivity of the various components of the model state vector shown, especially in
the 0-12h window. With respect to analyses obtained with 4D-VAR it is likely that they are sensitive to the
convection closure’s scheme or when observations are assimilated close to the beginning of the window.

Figure 3: Changes of the diagnostic function J due to optimal perturbation of u, v, T , q, and ps for instan-
taneous precipitation at time t=0 and for a convection scheme with (left) T-closure and (right) q-closure.
From Mahfouf and Bilodeau (2007).
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3.4 Singular vectors

Without doubt the sustained interest in singular vectors has been instrumental in various aspects of predictability
research. For instance their property to sample the growing component of the initial condition was very ap-
pealing to employ in ensemble forecasting (Molteni and Palmer, 1993; Buizza and Palmer, 1995). The adjoint
model again enabled an efficient computation of these structures:

< EMε(0),ε(0)Mε(0) >

< Cε(0),ε(0) >
=

< M∗EMε(0),ε(0) >

< Cε(0),ε(0) >
(13)

where the operators C and E induce perturbations norm at initial and optimization time respectively. For
sufficiently simple operators C, maximizing the ratio in eq. 13 corresponds to solving an eigenvalue problem
involving the propagators of the tangent linear and adjoint model. In this way one may even find growing
structures when the underlying dynamics is stable (Farrell, 1988). A popular choice is identical C and E, both
inducing the total energy norm. But also more exotic choices are possible, such as a precipitation measuring
norm (Errico and Fillion, 2003) or the intensity of the Meridional Overturning Circulation (see section 3.4). In
order to constrain the SVs by the best available estimate of analysis error covariance matrix A one would like
to use for C the Hessian of the 4D-Var costfunction J4dvar. Under mild conditions the following identity holds:

∇∇J4dvar = B−1 +HTR−1H = A−1 (14)

where B and R denote the background and observational error covariance matrix respectively and H is the
linearization of the observation operator. Equivalent to eq. 13 these so-called Hessian singular vectors (HSV)
also satisfy

M∗EMε(0) = λA−1
ε(0) (15)

From this we conclude that the weighted time evolved HSVs given by E1/2Mε(0) are the dominant eigenvectors
of the forecast error covariance matrix in E-norm: E1/2(MAM∗)E1/2. For pre-multiplying eq. 15 on both sides
with E1/2MA yields:

(E1/2MA)M∗EMε(0) = λ (E1/2MA)A−1
ε(0) (16)

or

(E1/2MAM∗E1/2)E1/2Mε(0) = λE1/2Mε(0) (17)

Recent experimentation at ECMWF (Lawrence et al., 2009) showed that the wavenumber spectra of the initial
and final time HSVs now resemble more the spectra of the regular total energy SVs than they used to do
(Barkmeijer et al., 1999). Most likely this can be attributed to the revised description of the background error
statistics (Fisher, 2003). Contrary to total energy SVs, kinetic energy still dominates potential energy for initial
HSVs, see Fig. 4. This property has not changed, see also Palmer et al. (1998), Gelaro et al. (2002) and
Reynolds et al. (2006).

3.5 Sea Surface Salinity SVs

In Sévellec et al. (2008) singular vectors are computed in order to modify the intensity of the Meridional Over-
turning Circulation (MOC) at 48◦N. At initial time only amplitude in the sea surface salinity (SSS) component
of the model state vector is present. The SV amplification depends on the optimization time T , the forecast
time during which perturbation growth is maximized. For values ranging from 0.5 to 35 yr, maximum ampli-
fication is achieved for T = 10.5 yr (see Fig. 5, top right). The corresponding leading SV for T = 10.5 yr is
shown in Fig. 5 (left). Its location is in the north of the basin, well away from the target region. The linear
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Figure 4: Average vertical energy profiles (over the leading 12 SVs) for (left) TESVs and (right) full HSVs.
Values at initial time (thin lines) have been scaled by a factor of 100. From Lawrence et al. (2009).

evolution with unit initial norm is presented in Fig. 5 (right) showing a maximum impact on the MOC intensity
at T = 10.5 yr. Comparison with nonlinear model integrations indicate that the linear approximation holds well
for realistic SSS perturbations. Using typical amplitudes of the Great Salinity Amplitude (Belkin et al., 1998)
an upper bound of the MOC intensity variability is obtained of 0.8 Sv (1 Sv = 106m3s−1), which is 10.5% of
the mean circulation. Also SVs were considered solely with amplitude in the sea surface temperature at initial
time. These structures, although quite similar to the one of SSS, appeared to be less effective
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Figure 5: (left) Sea Surface Salinity (SSS) perturbation, which most efficiently modifies the intensity of the
Atlantic Meridional Overturning Circulation (MOC) after 10.5 yr. The contour interval is 0.1 psu. (top
right) Growth of the MOC as a function of the optimization time, and (top left) MOC intensity during the
time integration of the linear model initialized by the SSS perturbation shown in Fig 5 (left). From Sévellec
et al. (2008)

Seminar on Diagnosis of Forecasting and Data Assimilation Systems, 7-10 September 2009 7



BARKMEIJER, J.: ADJOINT DIAGNOSTICS FOR THE ATMOSPHERE AND OCEAN

3.6 Forcing

In stead of diagnosing the role of the initial condition perturbations by means of adjoint models, the same
approach can be applied to studying the impact of model tendency perturbations on, for example, forecast
performance. This means that an additional error source term is added to the linear model eq. 6:

dε/dt = Lε + f(t) (18)

where f(t) is a model tendency perturbation, which is allowed to vary in time. Solutions of eq. 18, which now
describes the combined evolution of initial and tendency perturbations, are given by:

ε(t) = Mε(0)+
∫ t

0
f(s)ds (19)

= Mε(0)+M f (20)

Just like regular SVs so-called forcing singular vectors (FSVs) can be computed (Barkmeijer et al., 2003) by
searching for unit forcings f that result in maximal response < M f,M f >=< M ∗M f, f > at optimization
time for a suitable innerproduct < ., . >. The Reynolds system (see also Farrell and Ioannou, 2005) provides an
easy example to compute FSVs. It also nicely illustrates that short-term amplification is possible even in stable
systems. The Reynolds system is defined by choosing

L =
(
−1 10
0 −2

)
The left panel of Fig. 6 shows both components of the leading FSV with an optimization time of 4 units and
the right panel gives the norm of the perturbation at optimization time for the leading regular SV and FSV.
Note that from a certain optimization time onward it is not possible anymore to find growing initial condition
perturbations.

Figure 6: (left) Both components (red and blue line) of the leading time varying FSV of the Reynolds system,
together with the norm (dashed line); (right) Norm of the response for the leading SV (blue line) and leading
FSV (red line) as a function of optimization time.

When applied in the sensitivity calculation at ECMWF, the tendency perturbations f were quite capable to im-
prove 10 day forecasts, see Fig 7. In determining the forcing f the same set-up was used as for the regular
sensitivity calculation at ECMWF, such as the number of iterations employed in the minimization of the cost-
function. The only difference with the default sensitivity calculation is that the costfunction, given by the total
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energy of the 2-day forecast error, can only decrease by searching for a suitable tendency perturbation. To
simplify the computation the forcing was kept constant during the optimization time of 2 days. More details
can be found in Barkmeijer et al. (2003). Recently (Iversen et al., 2008) the forcing approach in the sensitivity
calculation has also been used to determine the climate sensitivity with respect to the so-called ’cold-ocean-
warm-land’ flow regime.

Figure 7: Average TL159 forecast performance (39 cases) for northern hemisphere geopotential height in
terms of RMS error at 500 hPa. The lines represent unperturbed forecasts (red), with analysis perturbations
(blue) and with tendency perturbations (green).

3.7 Increasing the Atlantic subtropical jet

The triggers for abrupt climate changes have generally been thought of as residing in the coupled land-ice/ocean
system. For example, massive outflows of glacial meltwater would dilute the waters of the northern North
Atlantic to the point that deep convection, essential for maintaining the Meridional Overturning Circulation
(MOC), would be halted. This would reduce the oceanic heat transport drastically, resulting in a much cooler
climate for the circum-Atlantic region. Recently this hypothesis has been challenged (Broecker, 2006). An
alternative hypothesis on the trigger of rapid climate change involves a more active role for the atmosphere.
In this view, the Atlantic eddy-driven jet shifts from a southeast-northwest orientation to a zonally oriented
position near the subtropical jet. Consequently, the atmospheric meridional heat transport into mid- and high-
latitudes is drastically reduced. In a recent study (Lee and Kim, 2003) the repositioning of the eddy-driven jet
can be achieved by strengthening the subtropical jet. Van der Schrier et al. employ ECBilt-Clio, a coupled
ocean atmosphere-sea ice general circulation model of intermediate complexity (Opsteegh et al. 1998, Goose
and Fichefet, 1999) to determine tendency perturbations f (see section 3.6) which are designed to strengthen
the subtropical jet over the North Atlantic sector. More precisely, the linear response M f of f will project
maximally on a target pattern, which is associated with a strong subtropical jet. During the coupled model run
such forcings f are computed every 72 h and using an optimization time of 72 h. After the computation of the
forcing, the coupled model is continued applying the constant tendency perturbation f during the model inte-
gration. This forcing is then updated again in the next 72 h. During 10-year simulations the model atmosphere
is thus forced to a desired pattern, while at the same time synptic-scale variability internal to the atmospheric or
climatic system is not surpressed and can adjust to the changes in the large-scale atmospheric circulation. Fig.
8 shows the change in 2 m DJF- temperature with respect to the control climate, showing an overall cooling
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with a decrease in temperature reaching up to 5◦C in Western-Europe.

Figure 8: Change in surface air temperature (◦C) for winter (DJF) in the tendency perturbed simulation
compared to the control simulation. From Van der Schrier et al. (2007).
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