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Past and future changes in the North Sea extreme waves are investigated in this article. 
Estimates obtained from non-stationary extreme value analyses, expressing the extreme 
value distribution parameters as functions of time and wind speed related covariates, are 
given. The results show that there is a significant trend of about 9 mm/yr in the current 
climate extremes of significant wave height and a trend of 1 mm/yr in the projections 
from 2001 to 2100. The characteristics of the extremes of wave period depend on whether 
swell  or  wind-sea  events  are  considered.  If  both  types  of  events  are  considered,  the 
extremes are dominated by swell events and no present or future changes are identified. 
Considering wind-sea events only, a trend of less than 0.01s/yr in the present climate 
wave periods and a trend an order of magnitude smaller in the projections from 2001 to 
2001 were detected.

1.
Introduction

The current approach to obtain hydraulic boundary conditions for the Dutch 
water defences involves stationary extreme value analysis of wave conditions that 
are measured at offshore locations. In such approach the extreme wave climate is 
assumed  to  be  stationary.  However,  it  is  believed today  that  climate  is  not 
stationary, as the detection of both decadal variability and long term time trends in 
different climate variables, reported by several authors, indicates. The past and 
future changes in the North Sea wave extremes have been investigated in this 
paper,  trying  to  answer  questions such as:  Has  the  North  Sea  extreme  wave 
climate changed in the last decades? How is it expected to change in the future?

Previous studies on the influence of climate changes on wave extremes were 
based only on changes in significant wave height (see e.g. Wang and Swail, 2006 
and Caires et al., 2006b). For the design of coastal defences the wave period is 
also an important parameter. Therefore, in this study we have not only analysed 
changes in extremes of significant wave height (Hs) but also changes in extremes 
of wave period.

A problem involved in the estimation of future wave extremes is  that  no 
projections of future wave conditions are available in the global climate model 
computations (IPCC 2007). Using the available global climate model results, two 
approaches could in principle be used to quantify future changes in the wave 
extremes:

- Dynamically, by using climate models wind speed projections to force a 
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wave model and then carry out a (non-stationary) extreme value analysis 
of the projected timeseries.

- Statistically, by determining the dependence of the parameters of a non-
stationary extreme value distribution on covariates and then using such 
dependences and the climate projection data  to  directly  compute  the 
changes in extremes. 

Both  approaches  were  considered  by  Wang  et  al.  (2007)  for  the  North 
Atlantic and it was concluded that, given the coarse resolution with which global 
climate models are presently run, the statistical approach provides more accurate 
results. 

When in addition to the global climate model results a regional climate model 
is also available, another approach is to run the regional climate model using the 
global climate model results as boundary conditions and use the winds resulting 
from the regional climate model results to force a wave model. Such approach has 
been considered by Grabemann and Weisse (2008).

The  statistical  approach  mentioned  above  will  be  used  in  this  study. 
Quantitative results are to be presented, but the study is in essence illustrative. It is 
the authors’ opinion that it is not only important to raise the awareness of the 
effects  of  wave climate  changes  in  coastal  engineering,  but  also  to  establish 
methodologies that can quantify such effects.

Caires  et  al.  (2006a)  have  shown that  the  usual  approach  of  estimating 
nearshore  extreme  storms  by  translating  offshore  extreme  storms  with  an 
associated return period to nearshore is conservative. The approach by which the 
entire offshore timeseries are translated to nearshore and the resulting nearshore 
timeseries subsequently analysed for extreme values is preferable. Therefore, as a 
first step in this study, we have created a long-term wave data set (1957-2002) for 
a  strip of the Dutch coast  by running the wave model SWAN (Simulation of 
Waves in Nearshore Areas, Booij et al. 1999) in non-stationary mode and using 
the ERA-40 data (European reanalysis data set, Uppala et al., 2005) as boundary 
conditions. The hindcasted nearshore wave timeseries in front of the Dutch Petten 
sea defence (see the MP1 location in Figure 1) are subsequently analysed by using 
both stationary and non-stationary extreme value theory. 

Using  climate  projections  of  the  wind speed  and  the  dependence  of  the 
parameters  of  non-stationary  extreme  value  distribution  on  wind  related 
covariates, we have determined projections of changes in return value estimates of 
Hs and wave period up to the end of the 21st century. The wind projections used 
are obtained from the ESSENCE project (http://www.knmi.nl/~sterl/Essence/); a 
17-member ensemble simulation from 1950 till 2100. During the historical period 
(1950-2000) they are forced by observed concentrations of greenhouse gases and 
anthropogenic aerosols. For the future the forcing follows the SRES A1b scenario 
(described as: a "Balanced" progress across all resources and technologies from 
energy supply to end use, and considered to be one of the most realistic futures 
emission scenarios). 

In the following sections we shall present the extreme value theory used to 
perform stationary and non-stationary extreme value analysis of the data; describe 
the creation of the long-term wave dataset; describe and present the results. We 
end with a discussion of the results and with conclusions.
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2.
Extreme value theory

One of the currently most used methods in stationary extreme value analyses 
is the  peaks-over-threshold (POT) method, in which the occurrence of ‘storms’ 
above  a  certain  threshold  and  the  magnitude  of  peak  observations  from 
‘independent’ storms are modelled with Poisson and Generalized Pareto (GPD) 
distributions, respectively (see e.g. Coles 2001). 

More precisely, in the POT method, the peak excesses over a high threshold 
u of a timeseries are assumed to occur according to a Poisson process with rate 

u
λ  and to be independently distributed with a GPD, whose distribution function is 

given by

( ) 1
( ) 1 1 /uF x x
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where 0x > ,  0σ >  and ξ− < < . The two parameters of the GPD are 

called the scale (σ) and shape (ξ) parameters. For 0ξ =  the GPD is said to have 

a type I tail and it is the exponential distribution with mean σ, for  0ξ >  has a 
type II tail and it is the Pareto distribution, and for 0ξ <  has a type III tail and it 
is a special case of the beta distribution. 

The 1/m-yr return value based on a POT/GPD analysis, zm, is given by
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In choosing the threshold there is a trade off between bias and variance: Too 
low a threshold is likely to violate the asymptotic basis of the model, leading to 
bias; too high a threshold will generate fewer excesses with which to estimate the 
model, leading to high variance. An important property of the POT/GPD approach 
is the threshold stability property: if a GPD is a reasonable model for excesses of 
a threshold  u0, then for a higher threshold  u a GPD should also apply; the two 
GPD’s have identical shape parameter and their scale parameters are related by 

( )
0 0u u u uσ σ ξ= + − , which can be reparameterized as *

u uσ σ ξ= + . 

Consequently, if u0  is a valid threshold for excesses to follow the GPD then 
estimates of both σ* and ξ, hence the quantile estimate itself, should remain nearly 
constant above u0. This property of the GPD can be used to find the minimum 
threshold at which a GPD model applies to the data.

The  non-stationary analog  of  the  POT/GPD  approach  is  the  non-
homogeneous Poisson process (NPP). In the point process approach to modelling 
extreme values (Smith 1989), one looks at the times at which “high values” occur 
and at their magnitude. If t denotes the generic time at which a high value occurs 
and if x is the corresponding magnitude of the variable of interest, then the point 
process consists  of a  collection of points  ),( xt  in a  region of the positive 
quadrant of the plane. Thus our point process, or rather its “realization”, consists 
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of a collection of points belonging to the plane set  { }( , ) : , 0C t x x u t T= >  

where  T  is  the number of years  (in our case) over  which observations are 
available and u  denotes the threshold at time t . The non-homogeneous Poisson 
process  (NPP) model of extremes is specified by the following two properties. 
Firstly, if  A  is a subset of  C , then the number of points occurring in  A , 
which  we  denote  by  N(A), is  a  random variable  with  a  Poisson probability 
function with mean )(Aρ , where, writing ),0max( xx =+  for real x,
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and  )(tµ ,  )(tσ  and  )(tξ  are  respectively  the  location, scale  and 
shape parameters - or rather “parameter functions” - that may depend on time and 
need to be specified and estimated in practice.

The  1/m-yr  return  value,  mx ,  is  determined  by  solving 
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In order to incorporate non-stationarity into the process we shall consider the 
following models for its parameters: 

0 1 2( ) ( ) ( )t P t G tµ µ µ µ= + + , 0 1 2( ) ( ) ( )t P t G tσ σ σ σ= + +  and ( )tξ ξ= , (5)

t=1,2,...,T, where 1µ , 2µ , etc., are constants and P(t) and G(t) are covariates, 
i.e., observations from a timeseries which for each time t are to a certain degree 
related to the peak x occurring at t. 

The  parameters  of  the  NPP  (and  the  GPD) model  outlined  above  are 
estimated by the maximum likelihood method (ML). The uncertainties are to be 
obtained using the profile likelihood method (Coles 2001), which is based on the 
deviance function and yields asymmetric confidence intervals.

In order to assess whether the dependence of the NPP location and scale 
parameters  on  the  time  covariates  are  statistically  significant,  we  use  the 
likelihood ratio test (Coles 2001).

In the case of the NPP model the choice of the threshold is less obvious than 
in the POT/GPD approach, where some experience and empirical rules exist. We 
will  therefore,  in  the  non-stationary  extreme  value  analysis,  use  the  same 
threshold defined in the stationary extreme value analysis.

The  data  sampling  follows  the  usual  POT  approach,  with  the  peak 

exceedances and the times at which they occur being represented by { }jiji xt ,, ,

, inj ,...,2,1= , Ti ,...,2,1= , where in is the number of clusters in the i-
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th year. They correspond to the peaks of cluster exceedences above the threshold 
u  and the times at which they occur obtained from the 6-hourly timeseries of the 
hindcast data at MP1. The declustering method we use in order to arrive at this 
sample is the usual one of identifying clusters and picking their maxima and times 
where they occur. We have taken care in treating cluster maxima at a distance of 
less than 48 h apart as belonging to the same cluster (storm) and hence collecting 
only the highest of the two.

3.
Data description

The ERA-40 data, which is freely available for scientific purposes, includes 
6-hourly fields of wind speed at 10 meters height (U10) and wave parameters, such 
as Hs (i.e. Hm0), mean zero-upcrossing wave period and mean wave direction on a 
global 1.5º x 1.5º latitude/longitude grid (covering thus also the North Sea) from 
September 1957 to August 2002. However, given its resolution and the fact that 
no shallow water effects are accounted for in the ERA-40 wave model, a finer 
resolution shallow water have model needs to be used in order to transfer 
the  ERA-40  offshore  information  to  our  location  of  interest,  MP1, 
nearshore; see Fig. 1. The shallow waters wave model SWAN was used in non-
stationary mode to produce a timeseries of nearshore long-term wave conditions 
at MP1 from 1958 to 2001.

Figure 1 shows the locations  of  the ERA-40 grid  points  surrounding  the 
Petten region and the nearshore Petten buoy (MP1). Figure 2 shows the region 
covered by the SWAN grid and the corresponding bathymetry. The grid on which 
the bathymetry is given coincides with the computational grid.

The model was run using the same calibration of the ERA-40 data and model 
settings as described in Caires et al. (2006) except for two improvements:

1. In order to improve the accuracy of the hindcasts in general a more 
refined time step of 20-min instead of 1 hour was used.

2. In  order  to  improve  the  wave  period  hindcasts,  which  were 
underestimated  in  the  previous  study,  the  wind  growth  and 
whitecapping dissipation formulation, as recommended by Rogers et 
al.  (2003),  was  used  in  place  of  SWAN’s  default  (WAM3) 
formulation (Booij et al. 2007). 
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Figure 1.  Google Earth aerial view of the Petten region. The white circles indicate 
the location of the ERA-40 gridpoints. The location of the nearshore MP1 location is 
flagged.

Figure 2.  Region covered by the SWAN grid and the associated bathymetry. The 
asterisks indicate the ERA-40 grid point locations.
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Figure 3. MP1 measurements of the January 1995 storm (light full and dashed lines) 
and the corresponding SWAN hindcasts using the WAM3 (triangles connected with 
a thick dashed-dotted line),  Westh. (crosses connected with a thick dashed line) 
and Rog. (circles connected with a thick dotted line) configurations.

Figure 4. The same as Figure 3, but for the February 1999 storm.

Figures 3 and 4 show measurements at MP1 and SWAN hindcasts for a storm 
in 1995 and 1999, respectively. The hindcasts shown were computed using three 
wave growth and dissipation configurations in SWAN:

1. SWAN’s default WAM3 formulation;
2. the recently implemented Westh configuration (Westhuysen 2007), 

an improved version of the implementation considered in Caires et 
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al. 2006;
3. and  the  configuration  recommended  in  Rogers  et  al.  (2003), 

hereafter named the Rog configuration.
The figures  show that  all  three  configurations  produce Hs hindcasts  that 

compare  rather  well  with  the  measurements;  the  hindcasts  using  the  WAM3 
configuration reproducing just slightly better the measurements. In terms of mean 
wave  period,  the  hindcast  using  the  wind growth  and  whitecapping  settings 
recommended by Rogers et al. (2003) clearly reproduce the measurements better. 
Given that in this study we would also like to analyse wave period data, we have 
carried out the 44-year hindcasts using the Rog configuration.

Figure 5. Density scatter of the hindcast 44-yr Hs and Tm-1,0 data. The full line crudely 
separates wind-sea from swell events.

Figure 5 shows the density scatter of the 44-yr Hs and Tm-1,0
4 data at MP1. The 

figure  shows  that  the wave  conditions  nearshore  the  Petten Sea Defence are 
characterized by both swell  (which here we define as  wave events with long 
periods and low wave heights that occur mainly outside storm periods) and wind-
sea events. To perform the extreme value analysis a crude separation of wind-sea 
and swell was used with the events for which Tm-1,0 exceeds (Hs/4.5)1.8+0.45 being 
defined as swell events (cf. black line in Figure 5).

4  The wave period Tm-1,0 is since the work of Van Gent (1999, 2001) used widely as the 
characteristic wave period when describing the influence of wave energy in process related to 
water defences and is therefore the period parameter being considered in this study.
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4.
Data analysis

4.1 Stationary analysis
We begin by presenting the results of the stationary extreme value analysis. 

We have used the threshold stability property mentioned above to choose the most 
appropriate threshold for selecting a sample of peak excesses and fitting the GPD 
to it. The chosen threshold, model parameter and 1/100-yr return values estimates 
are given in Table 1. The estimates were obtained with the whole Hs data, Tm-1,0 

considering just wind-sea data and the whole Tm-1,0 data, respectively. It is worth 
mentioning  that  when  considering  the  whole  Hs data  set  the  extremes  are 
dominated by wind-sea events while when considering the whole Tm-1,0 data set the 
extreme are dominated by swell events. Note that in Table 1 the shape parameter 
estimate for the Hs data is negative, suggesting a Type III tail; this is consistent 
with the fact that  waves in this location are in principle depth-limited,  and in 
contrast to the Type I tail behaviour typically observed in deep waters (Caires and 
Sterl 2005). For Tm-1,0 data the estimates suggest that the wind-sea data have a 
Type III tail, i.e. that Tm-1,0 at the peaks of the win-sea storms has an upper bound. 
This is in contrast  to the tail  characteristics of the whole (i.e. including swell 
events as well) Tm-1,0 population.

Table 1. Parameter estimates and associated 95% confidence intervals of the GPD 
model fitted to the POT data

Variable Sample
size u λ ξ̂ σ̂ 100ẑ

Hs

(all) 198 3.89 4.50
-0.20

(-0.31,-0.08)
0.74

(0.60, 0.89)
6.51

(6.21,7.42)
Tm-1,0

(wind-sea) 278 7.71 6.32
-0.13

(-0.24, -0.01)
0.81

(0.67, 0.98)
11.25

(10.68, 12.54)
Tm-1,0 (swell)

185 8.58 4.20
-0.01

(-0.15, 0.13)
0.82

(0.66, 0.99)
13.37

(12.50, 15.95)

4.2 Non-stationary analysis
In order to look for trends or other systematic temporal variations of Hs and 

Tm-1,0 in the last decades at MP1, we have analyzed the hindcast timeseries using a 
non-stationary extreme value approach. We have chosen time (t) and its square 
(t2) as covariates, i.e.,  P(t)=t and G(t)=t2 in (5). Note that the influence of these 
covariates may be felt in the form of shifts ( 1µ  and/or 2 0µ ) and/or changes in 

spread  ( 1σ  and/or  2 0σ )  in  the  distribution  of  extremes,  which  can  be 
interpreted as increases/decreases in severity and/or variability in extreme wave 
systems, respectively.

As regards the dependence of the parameters on the covariates, the results of 
the likelihood ratio tests show that for the whole Tm-1,0 data there are no significant 
correlations  and that  for  the Hs and for  the  wind-sea Tm-1,0  data  the  location 
parameter  is  significantly correlated with  t and not with  t2,  and that the scale 
parameter is not significantly correlated with either t or t2. Thus, time influences 
the distribution of extremes in the form of shifts (linear trend) but not in the form 
of changes in spread. Specifically, the changes are in the form of a linear trend of 
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about 9 mm/yr and less than 0.01s/yr in the location parameter of the extreme 
value distribution of Hs and wind-sea Tm-1,0, respectively. However, the resulting 
changes in the 1/100-yr return value estimates are well within the 95% confidence 
interval  of  the  estimate  obtained from the  stationary  extreme value  analysis. 
Figure 6 compares the time dependent NNP 1/100-yr return value estimate with 
the estimate obtained from the stationary extreme value analysis.

Figure 6.  Stationary  estimates  (dashed line)  and  corresponding  95% confidence 
intervals (dotted lines) and non-stationary 1/100-yr return value estimates (full line) 
based  on  the  44-year  timeseries  of  Hs (left  panel)  and  wind  Tm-1,0  (right  panel) 
hindcasts at MP1.

In order to look for trends in the future Hs and Tm-1,0 extremes at MP1, we have 
analyzed the hindcast timeseries using the non-stationary extreme value approach. 
We have chosen the U10 and the U10 square monthly mean anomalies relative to 
the ERA-40 1971-2000 baseline climate as covariates:  P(t) and  G(t) in (5). The 
results  of  the  likelihood  ratio  tests  show  that  the  location  parameter  is 
significantly correlated with both  P  and  G, and that the scale parameter is not 
significantly correlated with either P or G. Having adopted the model 

0 1 2( ) ( ) ( )t P t G tµ µ µ µ= + + ,  0( )tσ σ=  and  ( )tξ ξ=  to  describe  the  NPP 
parameters  in  terms  of  the  wind speed  covariates,  and  having  estimated  its 
coefficients, we have further assumed that the fitted model in each case is also 
valid  under  the  future  climate  scenario  A1b.  We  have  therefore  computed 
projections of the location parameter and of the 1/100-yr return values from 2001 
to  2100 based  on each ensemble  member  using  the projections  of  P  and  G, 
obtaining a total of 17 time series of projections (one for each ensemble member) 
for each variable non-stationary model of extremes. Next, we have analysed the 
time variability of the projected series of the location parameter from 2001 to 
2100 for each variable and tested whether linear or quadratic trends were present 
in the projections. 

Similarly  to  the  present climate  estimation,  no trends were found in  the 
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projections of the Tm-1,0  extremes which include the swell events. Linear trends 
were found to be  significantly different from zero at the 5% level for both the Hs 

and wind-sea Tm-1,0 data. In the case of Hs the trend is of 1 mm/yr and for wind-sea 
Tm-1,0 data of 0.001 s/yr. Figure 7 shows the projections of Hs and wind-sea Tm-1,0 

1/100-yr return values.

Figure 7. Projections of the  Hs (left panel) and wind-sea Tm-1,0  (right panel) 1/100-yr 
return values.

5.
Discussion and conclusions

Past and future changes in the North Sea extreme waves were investigated in 
this study. The results can be summarized as follows: 

- The nearshore significant wave height data indicate a type III tail.
- There is a significant trend in the current climate (1958-2001) extremes 

of Hs of about 9 mm/yr and a trend in the projections from 2001 to 2100 
of 1 mm/yr.

- The characteristics of the wave period extremes depend on whether swell 
or wind-sea events are considered. Considering only wind-sea events, the 
data indicate a type III tail. Considering also the swell events the data 
indicate a type I tail.

- If both types of events are considered, the extremes are dominated by 
swell events and no present or future changes are identified.

- Considering wind-sea events alone, a trend of less than 0.01s/yr in the 
present climate wave periods and a trend an order of magnitude smaller 
in the projections from 2001 to 2100 were detected. 

There are  several  uncertainties  associated with  the future  trend  estimates 
presented here that are not accounted for in the statistical uncertainty estimated 
here. Firstly, only one climate scenario was considered. Secondly, this study is 
based on wind speed projections from only one climate model. Both scenario and 
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climate model uncertainties are known to be large. Furthermore, the covariates 
chosen are monthly mean anomalies; in order to improve non-stationary extreme 
value fits, covariates that are more closely related to the considered extremes need 
to be used. However, that can only be done when the reliability of wind higher 
percentiles from global climate model results is known.
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