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Abstract

An algorithm is introduced to downscale the 0.6 and 0.8 micron spectral channels of the
METEOSTAT SEVIRI satellite imager from 3× 3 km2 (LRES) to 1× 1 km2 (HRES) res-
olution utilizing SEVIRI’s high-resolution visible channel (HRVIS). Intermediate steps
include the coregistration of low- and high-resolution images, lowpass filtering of the5

HRVIS channel with the spatial response function of the narrowband channels, and
the estimation of a least-squares linear regression model for linking high-frequency
variations in the HRVIS and narrowband images. The importance of accounting for the
sensor spatial response function for matching reflectances at different spatial resolu-
tions is demonstrated, and an estimate of the accuracy of the downscaled reflectances10

is provided. Based on a 1-year dataset of Meteosat SEVIRI images, it is estimated that
on average, the reflectance of a HRES pixel differs from that of an enclosing LRES
pixel by standard deviations of 0.049 and 0.052 in the 0.6 and 0.8 micron channels, re-
spectively. By applying our downscaling algorithm, explained variance of 98.2 and 95.3
percent are achieved for estimating these deviations, corresponding to residual stan-15

dard deviations of only 0.007 and 0.011 for the respective channels. For this dataset,
a minor misregistration of the HRVIS channel relative to the narrowband chan-
nels of 0.36 ± 0.11 km in East and 0.06 ± 0.10 km in South direction is observed
and corrected for, which should be negligible for most applications.

1 Introduction20

Accurate information on cloud properties is a prerequisite for understanding the influ-
ence of clouds on the Earth radiation budget and the global hydrological cycle. Due
to their dominant role as forcing of the surface energy budget, accurate information
on surface radiative fluxes in cloudy conditions is of particular interest (Woods et al.,
1984; Wielicki et al., 1995). Passive meteorological satellite imagers provide important25

information for investigating cloud properties (Stephens and Kummerow, 2007), and for
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quantifying their influence on solar (Deneke et al., 2005) and thermal (Schmetz et al.,
1990) radiation. Several projects generate data records of cloud properties, includ-
ing the International Satellite Cloud Climatology Project (ISCCP, Rossow and Schiffer,
1991), the Pathfinder Atmospheres project (PATMOS, Jacobowitz et al., 2003), the
MODIS project (Platnick et al., 2003), and the Satellite Application Facility on Climate5

Monitoring (CM-SAF, Schulz et al., 2009).
Geostationary imagers such as the Spinning Enhanced VIsible Radiometer (SEVIRI,

Schmetz et al., 2002) are unique in their capability to fully resolve the diurnal cycle of
clouds (e.g., Roebeling and van Meijgaard, 2008). However, the nadir spatial sampling
resolution of 3 × 3 km2 offered by SEVIRI’s narrowband channels lags significantly10

behind that of polar-orbiting satellite imagers (e.g., AVHRR with 1.1×1.1 km2 or MODIS
down to 0.25 × 0.25 km2). Due to the highly nonlinear relationship between radiances
and cloud properties, differences in sensor resolution can cause large random and
systematic differences in cloud properties such as optical thickness and liquid water
path (Oreopoulos and Davies, 1998; Deneke et al., 2009b), and causes uncertainties15

classification of cloud thermodynamic phase (Wolters et al., 2009). In addition, the
considered spatial (Greuell and Roebeling, 2009; Schutgens and Roebeling, 2009)
and temporal (Deneke et al., 2009a) scales of variability have a strong impact on the
correspondence of satellite and ground observations, and thus the task of satellite
product validation.20

Moreover, the spatial resolution of SEVIRI’s narrowband channels is insufficient to
resolve small cloud structures. As demonstrated by Heidinger and Stephens (2001),
unresolved spatial heterogeneity can cause errors in retrieved cloud properties large
enough to render them useless. To partly overcome this problem, Klüser et al. (2008)
utilized the high-resolution broadband visible channel (HRVIS) with a sampling resolu-25

tion of 1× 1 km2 at nadir to study the lifecycle of shallow convective clouds.
There are two important drawbacks of the HRVIS channel: first, it covers only a

subset of the field of view of the narrowband channels; second, its spectral response
is too broad for an accurate quantitative estimation of cloud properties. While there
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is little to be done about the first point, the purpose of this paper is to overcome the
second point.

Cros et al. (2006) have demonstrated that the relationship between reflectances from
SEVIRI’s 0.6 and 0.8 micron channels and the MVIRI (Meteosat Visible and InfraRed
Imager) broadband visible channel onboard Meteosat-7 (Meteosat First Generation) is5

highly linear and stable in time, due to the spectral overlap of these channels. Since
the MVIRI channel of Meteosat First Generation and the HRVIS channel of Meteosat
Second Generation have very similar spectral responses (Schmetz et al., 2002), their
finding should also hold for the HRVIS channel, and indicates that the variations ob-
served in the HRVIS reflectances will be strongly correlated to those observed in the10

0.6 and 0.8 micron channel.
The goal of Cros et al. (2006) was to predict the broadband channel reflectance

from the narrowband channels so as to generate input for legacy applications based
on MVIRI. In contrast, the purpose of this paper is to introduce a novel algorithm to es-
timate the reflectances of the 0.6 and 0.8 micron channels at the threefold higher spa-15

tial resolution of the HRVIS channel, by utilizing the HRVIS reflectances as predictor.
As constraint, the statistical properties of the narrowband reflectances should be pre-
served at their native channel resolution. Such methods are referred to as downscaling
(Liu and Pu, 2008) in climate research or disaggregation (Walker and Mallawaarachchi,
1998) in geostatistics. Following Cros et al. (2006), we have decided to use image-wide20

linear models for simplicity, and neglect any scene-type dependencies. Other SEVIRI
narrowband channels apart from 0.6 and 0.8 micron are ignored at the moment. This
work nevertheless constitutes a first step towards producing higher spatial resolution
products from SEVIRI such as cloud water path (e.g., Roebeling et al., 2008) and solar
surface irradiance (e.g., Deneke et al., 2008; Müller et al., 2009) over Europe.25

In this paper, special attention is paid to some technical details which might
affect the quality of our proposed algorithm. First, the spatial response of the
SEVIRI channels does not correspond to the idealized form of a rectangular func-
tion, and the radiance field is significantly oversampled, as has been pointed out

4



by Schmetz et al. (2002). This causes radiance contributions from a region sig-
nificantly larger than the 3 × 3 km2 sampling resolution (referred to as LRES in
the following) of the narrowband channels, and the 1 × 1 km2 resolution of the
HRVIS channel (referred to as HRES). Thus, it is insufficient to use simple arith-
metic averages of 3× 3 km2 pixels to reduce the resolution of the HRVIS images5

to that of the narrowband channels, and the true sensor spatial response should
be used instead. In addition, an accurate coregistration of the LRES channels
with the HRVIS channel is crucial for the quality of our downscaling scheme. As
Dürr and Zelenka (2008) and Dürr et al. (2009) report systematic biases in the
navigation of the HRVIS channel, we have decided to investigate the accuracy of10

the image coregistration. Our algorithm uses frequency-domain methods based
on the discrete Fourier transform for modeling the spatial response function of
SEVIRI’s detectors (Markham, 1985) and to determine the image coregistration
(Anuta, 1970). These methods have the advantage of being both mathematically
elegant and computationally efficient.15

This paper is structured as follows. In Sec. 2, the instrumental dataset is described.
An outline of the proposed downscaling algorithm is given in Sec. 3, with some general
background provided as Appendices. In Sec. 4, examples of results obtained with
these methods are reported, and the accuracy of our method is demonstrated and
discussed. Finally, conclusions and an outlook are given in Sec. 5.20

2 Instrumental Data

Meteosat Second Generation is the current series of European geostationary satellites,
which began operational data acquisition in January 2004 and is described in detail by
Schmetz et al. (2002) . Its Meteosat-8 and 9 satellites carry the SEVIRI imager as
primary instrument, and are positioned above the equator at longitudes of 0.0◦W and25

9.6◦E, respectively, at the time of writing. In operational service, the SEVIRI imager
scans the complete disk of the earth with a 15 minute repeat cycle. Meteosat-9 is cur-
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rently the operational satellite, while Meteosat-8 is used as hot stand-by, and scans a
subregion with a 5 minute repeat cycle in Rapid Scan Mode. SEVIRI has 3 narrow-
band solar channels (0.6, 0.8 and 1.6 micron), the broadband HRVIS channel (0.3-1.1
micron), and 8 thermal infrared channels (3.9, 6.2, 7.3, 8.7, 9.7, 10.8, 12.0 and 13.4
micron).5

Only the 0.6 and 0.8 micron channels, and the HRVIS channel are considered in
this study. Their spectral response functions are shown in Fig. 1 for the Meteosat-9
instrument, while parameters characterizing their spectral characteristics are listed in
Tab. 1 for Meteosat-8 to 10. The SEVIRI imager acquires pixels at sampling resolutions
of 1 × 1 km2 and 3 × 3 km2 for the high-resolution visible channel (HRVIS) and the10

narrowband channels, respectively. It has to be realized, however, that SEVIRI has
a lower optical resolution and oversamples the reflectance field by a factor of about
1.6 at both LRES and HRES resolution (Schmetz et al., 2002). Thus, the effective
area contributing to an individual pixel radiance is significantly larger than the sampling
resolution. This is illustrated in Fig. 2b, which displays the response of the SEVIRI15

detectors to a unit pulse of radiance as function of distance from the pixel center, and
shows significant contributions from regions outside the nominal sampling resolution.
Its calculation is explained in Sec. 3.3

3 Methodology

This section presents our proposed downscaling algorithm. In overview, it consists of20

the following sequence of steps:

1. coregistration of the HRVIS and the narrowband images to ensure an optimal
alignment of the satellite images;

2. Filtering of the HRVIS image with the spatial response function of the LRES detec-
tors, to separate the image into low-frequency variability resolved at LRES scale,25

and unresolved high-frequency variability;
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3. Determination of a least-squares linear model based on LRES reflectances to link
the HRVIS, 0.6 and 0.8 micron channels as proposed by Cros et al. (2006);

4. Inversion of the linear model found in step 3 to determine estimates of the high-
frequency variations in the 0.6 and 0.8 micron images using the HRVIS high-
frequency variability from step 2 as predictor; least-squares estimators are used5

to overcome the underconstrained nature of this inversion;

5. trigonometric interpolation of the 0.6 and 0.8 micron channels to obtain images at
HRES resolution, but lacking high-frequency variability;

6. addition of high-frequency variability found in step 4 to the 0.6 and 0.8 micron
HRES images as estimate of the true HRES image;10

More details about these steps are described in the following. A brief summary of the
Fourier Transform is given first. Then, its application to the tasks of image coregistra-
tion, and to the separation of low- and high-frequency spatial variations is described.
Next, the determination of a linear model for linking the 0.6µm, 0.8µm and HRVIS ra-
diances, and for inverting this model is outlined, in order to estimate the unresolved15

variability in the narrowband channels. Finally, some implementation details are noted.

3.1 The Fourier transform

The discrete Fourier transform f̂k,l of a 2D image fx,y consists of Nx × Ny samples,
and projects the original image onto an orthonormal basis set of sinusoidal waves with
circular frequencies of ωk = 2πk

Nx
, k ∈ 0 . . . (Nx − 1) and ωl = 2πl

Ny
, l ∈ 0 . . . (Ny − 1).20

Vectors ω and x can be used to compactly represent the 2-dimensional case of the
Fourier transform.

Fourier analysis implicitly treats signals as periodic. To avoid the influence of result-
ing discontinuities at the edges, it is common practice to subtract the mean and to use
a window function to reduce the deviations from zero at the edges of the image prior25
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to the Fourier transform. Here, the Tukey window with a transition width of 25 percent
along both dimension is used. A detailed discussion of window functions and their
relevance for Fourier analysis can be found in Harris (1978).

3.2 Image coregistration

Our approach for image coregistration relies on the so-called Fourier shift theorem: the5

Fourier transform of a function f ′(x) ≡ f(x − x0) shifted by an offset x0 versus the
original function f is given by

f̂ ′(ω) = f̂(ω) exp [iωx0] . (1)

Thus, the translation of a function changes only the complex phase of its Fourier trans-
form, while leaving its amplitude invariant. To align a satellite image g relative to an10

image f , a function h is defined as follows:

h ≡ ĝ f̂∗ = ‖ĝ‖ ‖f̂‖ exp
[
i(arg(ĝ)− arg(f̂))

]
. (2)

Here, the arg operator determines the phase of a complex number. If g(x) = f(x−x0),
arg(h) will only depend on the shift x0 according to

arg(h) = arg(f̂) + ωx0 − arg(f̂) = 2π
[
k

Nx
x0 +

l

Ny
y0

]
(3)15

In our case, the complex phase of h is calculated from the Fourier transforms of the
HRVIS and the narrowband images for individual SEVIRI scenes. A linear combination
of the 0.6 and 0.8 image is used for this purpose, as is explained in Sec. 3.4. Fourier
coefficients of the HRVIS image beyond the Nyquist frequency of the LRES images are
ignored. Theoretically, Eq.3 suggests a perfect linear relation. In practice, deviations20

from this equation are expected due to image differences and the discrete sampling. A
2-dimensional linear least-square regression of Eq.3 nevertheless provides a reliable
and accurate estimate of the image shifts x0 and y0. As noise introduces larger phase
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errors for complex numbers with small modulus, a weighted linear regression is used
here with the modulus used as weight. Once the shift has been found, the HRVIS
image is aligned to the narrowband images by multiplying its Fourier transform with the
complex factor exp[−iωx0]. It should be noted that this method is thus able to correct
even for a fractional shift of the pixel resolution.5

3.3 Spatial response of a detector

To separate high-frequency variability not resolved at LRES scale from low-frequency
variability in the HRVIS channel, the effects of the spatial response function of the
LRES detectors need to be considered.

We assume that the signal S of an individual SEVIRI pixel can be determined by10

spatial integration of the radiance L(x) reflected from the earth surface at location
x, weighted by a function w(x − x0) which characterizes the spatial response of the
detector:

S(x0) =
∫
A
w(x− x0)L(x) dx

= (w ∗ L)(x0). (4)15

Here, x0 is the displacement from the center of the detector field of view. The weighting
function w is commonly referred to as point spread function. We require w to be non-
zero only in a finite region A around the pixel center, and to be normalized to the area
of this region. The latter condition ensures that S corresponds to a spatially weighted
mean of the radiance. Eq.4 neglects internal feedbacks in the detector, and character-20

izes its output as a class of digital filters known as finite-impulse response (FIR) filters
in signal processing. In principle, it is possible to determine w by moving a point source
of unit radiance across the detector field of view. In the second line of Eq.4, the sym-
bol ∗ denotes the convolution of two functions. To evaluate this convolution efficiently,
the Fourier convolution theorem can be used, which states that the convolution in spa-25

tial domain is equivalent to a multiplication in frequency domain. Hence, the impact
9



of a detector’s spatial response on scene sampling can be accounted for by a simple
multiplication of the Fourier transforms of L and w.

The modulus of the Fourier transform of w is called the modulation transfer function
(MTF), and describes the ratio of the amplitudes of a sinusoidal wave before and after
passing through an optical system. The MTF is thus a commonly used quantity to5

characterize the spatial resolution of optical systems. Fig. 2a displays the average
MTFs of Meteosat-9 SEVIRI’s 0.6, 0.8 micron and HRVIS channels as reported by
EUMETSAT (2006a). As the MTF of the narrowband channels differ only slightly, they
have been averaged, and any deviations between the two channels and individual
detectors are neglected. The figure also illustrates the difference in spatial response10

in North-South and East-West direction. In Fig. 2b, the point spread function w is
shown, which has been calculated from the MTF by the inverse Fourier transform.
Even symmetry about the origin has been assumed for w to ensure that both w itself
and its Fourier transform are real functions. This makes w a zero-phase FIR filter, a
property which implies that the original and the filtered image remain unshifted relative15

to each other.
In our downscaling algorithm, the HRVIS image is filtered with the MTF as low-pass

filter to simulate an LRES image. This filtering operation is carried out in the frequency
domain by multiplication of the Fourier transform with the MTF. High-frequency vari-
ability not resolved by the LRES images is then found as difference of unfiltered and20

filtered HRVIS image.

3.4 Linear Relation of Channel Radiances

Our paper builds upon the study of Cros et al. (2006). Based on collocated satellite im-
ages from Meteosat-7 and Meteosat-8, they have demonstrated that SEVIRI’s 0.6 and
0.8 micron channel radiances can be used in a linear model to predict the broadband25

solar channel of the MVIRI instrument onboard Meteosat-7 with high accuracy. They
motivate this assumption with the overlap of the narrowband channels and the MVIRI
broadband channel. As the spectral response of SEVIRI’s HRVIS channel is similar to
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the MVIRI broadband solar channel (Schmetz et al., 2002), we also adopt this assump-
tion. Instead of radiances, however, the LRES reflectances of the 0.6 micron (r06), 0.8
micron (r08), and the HRVIS (rH ) channels are used here in the linear model:

rH = a r06 + b r08. (5)

In this equation, a and b are fit coefficients determined by least -squares linear regres-5

sion. No offset is incorporated into the linear model, as it has been found to cause only
a negligible improvement in model quality.

For a formal look at the arguments of Cros et al. (2006), the channel center and
width, as well as similar quantities weighted by the extraterrestrial solar spectrum are
defined in Appendix A to characterize the spectral response function η of a satellite10

detector. Fig. 1 graphically displays these quantities for the SEVIRI instrument on
Meteosat-9, while numerical values as reported by (EUMETSAT, 2006b) are listed in
Tab. 1 for Meteosat-8, 9 and 10. Both narrowband channels lie completely within the
range of the HRVIS channel. Weighting by the solar spectrum reduces the width of all
channels, and shifts the channel centers towards the maximum of the solar spectrum.15

Both effects are most pronounced for the HRVIS channel due to its large width.
These numbers also reveal that both narrowband channels cover less than a third

of the solar energy contained in the spectral range of the HRVIS channel. Hence,
channel overlap is only a partial explanation of the high accuracy of the linear model
reported by Cros et al. (2006). A high degree of autocorrelation of the reflectances20

across the spectral region of the HRVIS channel is thus also required. This spectral
autocorrelation also ensures that the results presented here are relatively insensitive
to the width of the narrowband channels of the SEVIRI instrument, and motivates our
choice of reflectance instead of radiance as variables in Eq.5.

3.5 Estimation of unresolved variability25

In contrast to Cros et al. (2006), our aim is to estimate high-frequency variations in
both narrowband channels from corresponding HRVIS variations, by inversion of Eq.5.
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Mathematically, it is impossible to determine two unknowns from one linear equation,
as this is an underconstrained problem. Due to a strong correlation of the 0.6 and the
0.8 micron channel, an accurate estimate can nevertheless be obtained using standard
least-squares estimators.

In Appendix B, general formulae are derived for calculating the slope (Eq.B6) and5

the expected fraction of explained variance (Eq.B8) of the linear model minimizing the
least-squares deviations based on fundamental relations of bivariate statistics are de-
rived. Both formulae depend only on the coefficients a and b from Eq.5, the correlation
between the 0.6 and 0.8 micron reflectance, and the ratio of the variances of both
channels. It has to be recognized, however, that these parameters might vary with the10

spatial scale of variability, and that we require their values at HRES scale here, which
is not available from SEVIRI. To still obtain an estimate of their value, and to mini-
mize errors caused by scale mismatch, both parameters are calculated considering
the smallest resolved scale of variability present in the LRES images. For the pur-
pose of parameter estimation, we thus use difference images obtained by subtracting15

a shifted from an unshifted image, with shifts of 1 pixel applied in both the North-South
and East-West direction. This procedure corresponds to a highpass filter, with max-
imum filter response at the Nyquist frequency of the LRES images, which is half the
sampling frequency, and thus the maximum frequency captured in the LRES images.

3.6 Implementation Details20

At the beginning of this section, the sequence of steps comprising the downscaling
algorithm has been listed. In practise, the individual steps of our implementation are
not independent as suggested by that list. As first step, the HRVIS image is shifted
relative to the narrowband channels to account for misregistration. As reference, the
linear combination of the 0.6 and 0.8 micron channel given by Eq.5 is used. The25

required coefficients are only found in step 3, however. In addition, it is more accurate
to account for integer HRVIS pixel shifts by changing the subregion of the HRVIS image
instead of adding a phase shift to the Fourier transform.
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Therefore, mean values of the linear weights and pixel shifts are used initially, and
steps 1 to 3 are carried out iteratively until the remaining image misregistration is
smaller than half a HRVIS pixel size. Most of the time, this condition is met already
by the first iteration.

4 Results and Discussion5

In this section, results of the proposed downscaling algorithm are presented, and sev-
eral aspects relevant to the accuracy of the algorithm are discussed.

A sub-region containing 1024 × 512 LRES pixels from SEVIRI’s field of view has
been selected for our study, which is shown in Fig. 3. It covers Northern Africa, the
Mediterranean Sea, and a large part of Europe. A smaller number of pixels in North-10

South than in East-West direction is used to limit the change in pixel resolution caused
by the increase of satellite viewing angle away from the equator. The Tukey window
function applied to the data prior to the Fourier transform is also shown by red contours,
which corresponds to a cosine-shaped transition from 0 to 1 over 64 LRES pixels at
the Northern and Southern edges, and 128 LRES pixels at the Eastern and Western15

edge, respectively. One year’s worth of satellite scenes acquired at 12:00 UTC during
2008 has been analyzed. This yields a total number of 345 scenes from Meteosat-9,
and 10 scenes acquired by Meteosat-8 operating as backup during satellite anomalies
of Meteosat-9. The remaining 10 scenes are missing or corrupted in KNMI’s archive.

Fig. 4 shows the English channel and the Benelux states as example output in a20

SEVIRI scene acquired at 12:00 UTC on June 26th, 2008. This subregion is marked
in Fig. 3 by a black shaded rectangle. Panel (a) displays this scene in grey scales
as observed by the HRVIS channel. Panel (b) shows the same scene using the day
natural color false-color composite described in detail by Lensky and Rosenfeld (2008)
at LRES resolution. This scheme uses the 1.6, 0.8 and 0.6 micron spectral channels25

as red, green, and blue signals, respectively, and facilitates the physical interpretation
of the image, as it allows to easily distinguish different surface types, as well as ice and
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water clouds. Panel (c) shows this scene once more using the color scheme of (b), but
based on the downscaled 0.6 and 0.8 micron spectral channels (the resolution of the
1.6 micron channel has been increased to HRES by sinc interpolation).

During that day, a high pressure ridge extended from the Azores over France and
Germany with moderate summer temperatures and relatively dry air, and temporarily5

replaced hot and humid air masses. A low pressure system was located to the North of
the British Isles. The satellite scene shows scattered fair-weather cumuli over South-
Eastern England and mainland Europe. A large cirrus cloud over the North Sea can
be recognized by its typical blue color, which is due to the low reflectance in the 1.6µm
channel caused by ice absorption (Knap et al., 2002). While the LRES day natural color10

composite in panel (b) misses a lot of the spatial structures visible in the HRVIS image,
it allows a much easier interpretation of the image due to its use of multi-spectral infor-
mation. Visually, panel (c) clearly demonstrates that our downscaling scheme is able
to combine the advantage offered by the day natural color composite with the higher
spatial resolution of the HRVIS channel. It could therefore become a valuable tool for15

assessing the synoptic situation in operational weather forecasting environments.
While these qualitative results are encouraging, a proper uncertainty analysis is re-

quired to judge the suitability of the downscaled reflectances as input for quantitative
satellite retrievals. For this purpose, two separate sources of uncertainty are consid-
ered, which are assumed to be statistically independent. The first source results from20

deviations from the linear model between the 0.6, 0.8 micron and HRVIS reflectance
given by Eq.5. The second source of uncertainty lies in the underconstrained nature of
the downscaling problem, which has been discussed in Sec. 3.5 and is quantified by
Eq.B8. Average values of the required parameters have been calculated for the entire
dataset and are listed in Tab. 2.25

As measure of uncertainty, the fraction of unexplained variance UV is considered,
which is related to the explained variance EV by UV = 1−EV . Assuming independent
error propagation, the combined fraction of unexplained variance is given as the sum
of the two individual fractions of unexplained variance. Calculating the total unresolved
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variability based on the values given in Tab. 2, values of 1.8% and 4.7% are found,
with corresponding values of total explained variance of 98.2% and 95.3% for the 0.6
and 0.8 micron channels, respectively. Looking at the relative contributions to the un-
certainty, fractions of 80.6% and 91.6% are attributable to the inversion carried out by
Eq.B6, and identifies it as the dominating source of uncertainty. The uncertainty is5

larger for the 0.8 micron than for the 0.6 micron channel, as its influence on the HRVIS
channel is smaller, as is indicated by the value of b being smaller than a in Eq.5.

Fig. 5a displays the annual time series of the slopes S(r06) and S(r08) calculated for
individual satellite scenes. To relate the fraction of unexplained variance to an estimate
of the absolute accuracy of the downscaling algorithm, the increase in variance going10

from LRES to HRES resolution is needed. It is expressed as standard deviation by use
of the square root of the variance here. Fig. 5b shows annual time series for the 0.6,
0.8 micron and HRVIS channels. The 0.6 and 0.8 micron values are estimated from the
HRVIS values using the slopes S(r06) and S(r08), and applying the general property
of the variance that Var(a x) = a2 Var(x) for a constant a and a random variable x.15

Panel Fig. 5c plots the time series of the expected residual standard deviation of the
downscaled and true HRES images, based on the estimate of unresolved variability
outlined in the previous paragraph.

Panel a of Fig. 5 shows that on average, the narrowband reflectances of a HRES
pixel within the 3× 3 km2 sampling resolution of a LRES pixel deviates from the LRES20

reflectance by absolute amounts of 0.049 and 0.051 for the 0.6 and 0.8 micron images,
respectively. This variability is not taken into account if only the LRES images are
used. By applying our downscaling algorithm, we are able to reduce these deviations
to values of only 0.007 and 0.011.

In the introduction, we have argued that the effects of sensor spatial response25

and image misregistration will affect the accuracy of the proposed downscal-
ing scheme. To support this argument, the resulting improvements reflected in
the mean value of explained variance for the linear model Eq.5 are reported in
Tab. 3. As reference, the value obtained by our proposed algorithm as described
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in Sec. 3.4 is used. Four alternative filtering strategies have been tested to obtain
LRES images from the HRVIS channel. Denoted by LP48, all Fourier coefficients
with a frequency above 0.5× 4.8−1 km−1 were set to zero in the filtering process,
corresponding to a perfect lowpass filter for the 4.8×4.8 km2 resolution reported
by Schmetz et al. (2002). An alternative is the use of arithmetic averaging of a5

neighborhood of pixels. Here, square regions consisting of 1 × 1, 3 × 3 pixels
and 5 × 5 pixels were considered. The values given in the table support that
accounting for the functional form of the MTF does provide the highest values
of explained variance by a significant margin. The Fourier method used here for
image coregistration is able to detect and correct for shifts of the HRVIS images10

relative to the LRES images, and is not limited to integer multiples of the pixel
resolution. Fig. 6 shows histograms of the individual shift found, having a mean
value of 0.06± 0.10 in South and 0.36± 0.11 km in East direction. These values in-
dicate a good coregistration accuracy of the satellite images after EUMETSAT’s
image rectification procedure. In consequence, not correcting for image misreg-15

istration reduces the correlation reported in Tab. 3 only slightly (NoCoReg). It
can thus be argued that the additional complexity of coregistering the images is
not worth the extra effort. For some extreme cases, however, the shift can vary
by more than half a HRVIS pixel, and the coregistration procedure can prevent a
degradation of accuracy.20

5 Conclusions and Outlook

In this paper, a downscaling algorithm is presented to enhance the spatial resolution of
Meteosat SEVIRI 0.6 and 0.8 micron narrowband images by a factor of 3. Our algorithm
utilizes the broadband HRVIS channel in a linear model to resolve the high-frequency
spatial variability for the lower spatial resolution narrowband channels. In addition, the25

spatial response functions of the SEVIRI channels are accounted for by an explicit
convolution with the sensor modulation transfer function and the Fourier shift theorem
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is used to coregister the HRVIS broadband channel to the narrowband channels.
The results of our uncertainty analysis reveal that our approach resolves high-frequency

variability in the narrowband channels with an explained variance of 98.2% and 95.3%
in the 0.6 and 0.8 micron channels, respectively, corresponding to residual standard
deviations of 0.007 and 0.011 for the downscaled narrowband reflectances. In compar-5

ison, average values of 0.049 and 0.052 are expected as standard deviation between
the reflectance of a HRES and an enclosing LRES pixel, variability which is completely
neglected in the lower resolution narrowband images. These numbers support that the
algorithm is able to provide physically consistent 0.6 and 0.8 micron reflectance images
at the spatial resolution of the HRVIS channel.10

Two sources of uncertainty of the proposed algorithm have been identified. First, it
is assumed that the reflectance of the HRVIS channel is a linear combination of the
0.6 and the 0.8 micron reflectance. Second, the accuracy of the inversion of this linear
relation relies on the correlation between the 0.6 and 0.8 micron channel reflectance,
and the ratio of their variance. The latter uncertainty has been found to dominate, and15

is larger for the 0.8 micron channel, as its contribution to the HRVIS reflectance is less
than that of the 0.6 micron channel. This fact is also reflected by the lower value of
explained variance of the downscaled 0.8 micron channel given above.

Two aspects relevant to the accuracy of the downscaling algorithm have been
studied in this paper. First, the correspondence of spatial variations between20

the narrowband and downsampled HRVIS channels improves significantly if the
modulation transfer function of the SEVIRI sensors is explicitly used in the down-
sampling procedure. Second, the coregistration of the HRVIS and narrowband
channels has been quantified, and only a minor shift has been found of 0.06±0.10
and 0.36 ± 0.11 km in South and East direction, respectively. Methods based on25

the discrete Fourier transform have been introduced to address both aspects.
During daylight hours, the presented downscaling algorithm provides important ad-

ditional information for the narrowband observations that fall within the field of view
of the HRVIS channel. In the future, we intend to apply this algorithm to reduce the
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resolution mismatch between cloud products estimated from geostationary and polar-
orbiting satellite platforms, which introduces biases in retrievals of cloud properties
(Deneke et al., 2009b), as well as cloud radiative forcing (Oreopoulos et al., 2009).
Other applications, such as the early detection of convective activity and the retrieval
of land surface properties, can likely also benefit from the enhanced spatial resolution5

of the narrowband channels.
The main limitation of the approach in its current form is the fact that only a single

linear model is used to downscale the entire SEVIRI scene. Since clouds dominate the
spatial variations in reflectance (Deneke et al., 2009a) they also dominate the spectral
variations and correlations in reflectance, and thus the applicability of the linear model.10

The relationship between narrowband and broadband radiances is known to be de-
pendent on scene type (Li and Leighton, 1992). The use of scene-dependent linear
models, using a previous pixel classification, could be a promising algorithm extension.
Another promising extension could be the use of external sources of information within
the downscaling process. For example, MODIS products could provide some of the15

required statistical parameters at high-resolution, such as the correlation between the
0.6 and 0.8 micron channel.

The algorithm presented in this paper is a physical downscaling method, which ex-
ploits the availability of higher spatial resolution information from the HRVIS channel
as predictor (see Liu and Pu (2008) for the distinction between statistical and physical20

downscaling methods). The combination with statistical techniques could help extend
the downscaling to additional SEVIRI spectral channels. It also needs consideration
that the HRVIS channel is only available for part of the disk of the earth observed by
SEVIRI, and that it still has a lower resolution than comparable polar-orbiting satellite
imagers. Moreover, Deneke et al. (2009b) showed that biases in satellite-estimated25

cloud climatologies can also be reduced by using estimates of the unresolved vari-
ance. Alternatively or complementary, these biases may also be reduced by using
approaches that simulate realistic surrogate variability at sub-pixel scale (see e.g., Ven-
ema et al., 2009; Schutgens and Roebeling, 2009).
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Finally, our results demonstrate the potential of combining satellite images with dif-
ferent spatial and spectral resolution, to benefit from their individual strengths. This
point will become even more important in the future for Meteosat Third Generation,
which will acquire images with several different spatial resolutions.

Appendix A5

Spectral Channel Characteristics

The following quantities are introduced to characterize the spectral response function
η of a satellite detector. η is assumed to be normalized to a maximum value of unity
here. The spectral width δλ of a channel is given by10

δλ =
∫ ∞

0
η(λ) dλ. (A1)

Then, the central wavelength λC can be defined as

λC =
1
δλ

∫ ∞
0

λ η(λ) dλ. (A2)

The band-averaged extraterrestrial solar spectral irradiance φC of a channel is finally
calculated by15

φC =
1
δλ

∫ ∞
0

φ(λ) η(λ) dλ. (A3)

Here, φ is the extraterrestrial solar spectrum at a sun-earth distance of 1 astronomical
units.

The quantities λC and δλ are well-suited to determine bulk optical properties of a
medium illuminated by a spectrally constant source of irradiance. In case of the earth’s20

atmosphere, however, the incident solar irradiance varies strongly with wavelength. It
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is therefore more appropriate to use the product η∗ = ηφ of spectral response and
solar spectrum instead of η to weight the reflection and transmission properties of the
earth’s atmosphere and surface for a spectral interval. Replacing η with η∗ in Eq.A1
and Eq.A2, analoguous quantities λ∗C and δλ∗ can be obtained.

Appendix B5

Statistical Inversion

This appendix presents general statistical relations used by this paper, and applies
them in order to invert Eq.5. First, we consider a random variable y which is assumed
to be linearly related to an independent variables x by10

y = a x+ b. (B1)

Here, a denotes the slope and b the offset of the linear model. Using standard defi-
nitions of variance and covariance, an estimate â of the slope of the linear relation is
given by

â =
Cov(x, y)

Var(x)
= Cor(x, y)

√
Var(y)
Var(x)

, (B2)15

which minimizes the sum of the squared deviations of y from the linear equation. In
the second equality, the linear correlation coefficient has been used, which is related
to the covariance through

Cor(x, y) =
Cov(x, y)√

Var(x) Var(y)
. (B3)

The standard deviation σy of the difference between modeled and observed values can20

be calculated by

σy =
√

Var(y) [1− Cor(x, y)2]. (B4)
20



This equation also motivates the name explained variance EV (x, y) for the square of
Cor(x, y), as σ2

x

Var(y) specifies the fraction of variance not explained by the linear model.
We now consider the downscaling problem discussed in this paper. Here, y depends

linearly on two random and correlated variables x1 and x2 without any offset

y = a x1 + b x2. (B5)5

We are interested in the inversion of this linear model, to estimate x1 and x2 from y.
Eq.B2 can provide the slope S(x1) of the least-squares solution for predicting x1 from
y. Inserting Eq.B5 into Eq.B2, and simplyfing with general properties of covariance
and variance, we obtain:

S(x1) =
Cov(x1, y)

Var(y)
10

=
1 + kCor(x1, x2)

a [1 + k2 + 2 kCor(x1, x2)]
, (B6)

with k given by

k =

√
a2 Var(x2)
b2 Var(x1)

. (B7)

As measure of the accuracy of this linear model, the explained variance EV (x1, y) of
x1 given y is used. We obtain15

EV(y, x1) =
Cov(y, x1)2

Var(y) Var(x1)

=
[1 + kCor(x1, x2)]2

1 + k2 + 2 kCor(x1, x2)
. (B8)

These results show that both the slope and the explained variance of the inversion
depend only on the correlation of x1 and x2, the slopes a and b, as well as the ratio
of the variances of x1 and x2. To apply these general results to the purposes of this20

paper, a, b, x1 and x2 have to be chosen appropriately.
21
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Meteosat VIS006 VIS008 HRVIS
λ0 δλ φC λ0 δλ φC λ0 δλ φC

8 640.2 74.5 1594.8 809.3 57.3 1106.8 708.2 421.3 1395.6
9 640.3 73.4 1594.4 808.2 57.3 1109.6 706.4 422.2 1400.1

10 638.2 70.9 1601.3 808.2 57.0 1109.5 707.0 428.7 1398.9
λ∗0 δλ∗ - λ∗0 δλ∗ - λ∗0 δλ∗ -

8 639.0 73.7 - 808.6 54.6 - 669.7 388.6 -
9 639.1 72.5 - 807.4 55.1 - 668.0 387.5 -

10 637.0 70.3 - 807.5 54.4 - 668.2 385.0 -

Table 1. Central wavelength λ0, channel width δλ (both in nm), and band-averaged extraterres-
trial solar spectral irradiance φC (W/m2/µm) at a sun-earth distance of 1 astronomical units for
the SEVIRI radiometers onboard the Meteosat-8 to 10 satellites and for the 0.6 micron, 0.8 mi-
cron (VIS008) and HRVIS channels, calculated from the spectral response functions provided
by EUMETSAT (2006b) and the solar spectrum of Gueymard (2004). The central wavelength
λ∗0 and channel width δλ∗ for the spectral response weighted by the solar spectrum are also
listed.
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a b EV(Eq.5) S(r06) S(r08) EV(r06) EV(r08) Cor(r06, r08)
Mean 0.667 0.368 99.7 0.949 1.000 98.5 95.6 0.945
SDev 0.025 0.020 0.1 0.036 0.041 0.5 1.6 0.020

Table 2. Annually averaged parameters (Mean) and their standard deviation (SDev) obtained
by the downscaling algorithm. This includes: the slopes a and b of Eq.5, and the explained
variance EV(Eq.5) of the underlying linear equation; the slopes S(r06) and S(r08) used to
scale high-frequency variations in the HRVIS channel to estimate unresolved variability in the
0.6 and 0.8 micron reflectance (based on Eq.B6); the explained variance EV(r06), EV(r06) of
these estimates; and the correlation coefficient between variations in the 0.6 and 0.8 micron
reflectance. Explained variances (EV) are listed in units of percent.
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Ref LP48 3x3 1x1 5x5 NoCoReg
EV 99.68 99.08 99.04 96.83 94.60 99.61
SDev 0.11 0.28 0.27 0.94 2.32 0.14

Table 3. Effect of image coregistration and spatial averaging methods on the explained vari-
ance (EV) and its standard deviation (SDev) for the linear model of HRVIS, 0.6 and 0.8 micron
reflectance expressed by Eq.5 and given in percent. For a description of the different methods,
see the text.

28



0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

Wavelength [ µµm ]

S
pe

ct
ra

l r
es

po
ns

e

HRVIS
VIS006
VIS008
MS7_VIS

0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

Wavelength [ µµm ]

W
ei

gh
te

d 
sp

ec
tr

al
 r

es
po

ns
e

HRVIS
VIS006
VIS008
MS7_VIS

Fig. 1. Spectral response functions of the Meteosat-9 SEVIRI radiometer for the 0.6 micron
(red), 0.8 micron (green) and HRVIS channel (black) (EUMETSAT, 2006b). The central wave-
length of each channel is marked by a thick colored line, and the spectral region covered by the
channel width has been shaded. The response of the Meteosat-7 MVIRI solar channel is also
included for comparison (blue). The normalized spectral response functions are plotted in (a),
while the spectral response functions weighted by the solar spectrum of Gueymard (2004) are
displayed in (b). The solar spectrum is added as dotted line to both plots.
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Fig. 2. (a) Modulation transfer function (MTF) of the 3 × 3 km2 low-resolution(LRES) 0.6 and
0.8µm channels and the res1 high-resolution visible channel (HRES) for Meteosat-9 in North-
South (NS) and East-West (EW) directions (EUMETSAT, 2006a). The Nyquist frequencies
corresponding to the sampling resolution are shown in grey, with values of 1

6 km−1 (LRES)
and 1

2 km−1 (HRES). (b) Point spread function of the SEVIRI detectors reconstructed from the
MTFs (see text for details), as a function of distance from the pixel center. In grey, a perfect
step response at LRES and HRES sampling resolution is also shown.
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Fig. 3. Region of the SEVIRI field of view used for this paper, consisting of 1024× 512 pixels.
Also shown are contours of latitude and longitude in blue, and of the amplitude of the window
function used for Fourier analysis in red. The subregion shown in Fig. 4 is marked by a black
shaded rectangle.
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Fig. 4. Example output of the downscaling algorithm in comparison to standard SEVIRI images,
based on a scene from June 26th 2008 of England, the British channel, north-eastern France,
Belgium and the Netherlands. Panel (a) shows the HRVIS reflectance in grey levels, while
(b) shows the day natural colors RGB composite of Lensky and Rosenfeld (2008) at standard
SEVIRI resolution. Panel (c) is based on the downscaled 0.6 and 0.8 micron reflectances
at HRVIS channel resolution, combined with an 1.6 micron image obtained by trigonometric
interpolation.
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Fig. 5. Annual time series of (a) the linear regression slopes found to link variations in the
HRVIS channel to unresolved variations in the 0.6 (VIS006, red) and 0.8 micron (VIS008, green)
channel; (b) the estimated standard deviation of the difference between 1 × 1 (HRES) and
3 × 3 km2 (LRES) images for the three spectral channels; and of (c) the estimated residual
standard deviation of the proposed downscaling algorithm. Periods when Meteosat-8 replaced
Meteosat-9 as operational satellite due to spacecraft anomalies have been shaded in grey.
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Fig. 6. Histogram of the shifts of the HRVIS image relative to the 0.6 and 0.8 micron channel
in Northern and Eastern direction, obtained for 345 Meteosat-9 scenes from 2008. The shift of
the images is expressed as distance at the nadir point of the satellite in kilometers (km).
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