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Decadal prediction skill in a multi-model ensemble
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Abstract Decadal climate predictions may have skill due to predictable components in

boundary conditions (mainly greenhouse gas concentrations but also tropospheric and strato-

spheric aerosol distributions) and initial conditions (mainly the ocean state). We investigate

the skill of temperature and precipitation hindcasts from a multi-model ensemble of four cli-

mate forecast systems based on coupled ocean-atmosphere models. Regional variations in
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skill with and without trend are compared with similarly analysed uninitialised experiments

to separate the trend due to monotonically increasing forcings from fluctuations around the

trend due to the ocean initial state and aerosol forcings.

In temperature most of the skill in both multi-model ensembles comes from the ex-

ternally forced trends. The rise of the global mean temperature is represented well in the

initialised hindcasts, but variations around the trend show little skill beyond the first year

due to the absence of volcanic aerosols in the hindcasts and the unpredictability of ENSO.

The models have non-trivial skill in hindcasts of North Atlantic SST beyond the trend.

This skill is highest in the northern North Atlantic in initialised experiments and in the

subtropical North Atlantic in uninitialised simulations.

A similar result is found in the Pacific Ocean, although the signal is less clear. The

uninitialised simulations have good skill beyond the trend in the western North Pacific. The

initialised experiments show some skill in the decadal ENSO region in the eastern Pacific,

in agreement with previous studies. However, the results in this study are not statistically

significant (p≈0.1) by themselves.

The initialised models also show some skill in forecasting 4-yr mean Sahel rainfall at

lead times of 1 and 5 years, in agreement with the observed teleconnection from the Atlantic

Ocean. Again, the skill is not statistically significant (p≈0.2). Furthermore, uninitialised

simulations that include volcanic aerosols have similar skill. It is therefore still an open

question whether initialisation improves predictions of Sahel rainfall.

We conclude that the main source of skill in forecasting temperature is the trend forced

by rising greenhouse gas concentrations. The ocean initial state contributes to skill in some

regions, but variations in boundary forcings such as aerosols are as important in decadal

forecasting.
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1 Introduction

Observations, supported by climate models, indicate that the Earth’s climate fluctuates over

a wide range of time scales. Several regions, such as the North Atlantic and Pacific Oceans,

are characterised by variations on decadal to inter-decadal timescales, which are manifested

in substantial changes in sea surface temperature and ocean heat storage. Through coupling

with the atmosphere, these low-frequency variations have been linked to changes in precip-

itation and temperature over land, hurricane activity in the Atlantic Ocean and Indian mon-

soon intensity (e.g., Zhang and Delworth 2006; Meehl et al 2006; Knight et al 2006; Smith

et al 2010). Because of their potentially large socio-economic impact, climate predictions

over interannual to decadal time scales have recently gained increased attention (Zhang and

Delworth 2006; Räsänen and Ruokolainen 2006; Ruokolainen and Räsänen 2007; Meehl

et al 2009; Keenlyside and Ba 2010). They bridge the gap between seasonal forecasts and

century-scale climate projections for the 21st century and have the potential to provide valu-

able information on near-future climate, which ultimately may serve as a base to inform

climate change adaptation policy (Cox and Stephenson 2007).

Centennial-scale climate predictions are mainly determined by the prescribed boundary

conditions: the scenario chosen to describe the future emissions of aerosols and greenhouse

gases to the atmosphere, solar forcing and volcanic activity. On shorter time scales the nat-

ural variability is larger than the trend, so that the skill of seasonal forecasts with lead times

of a month to a year is mainly due to the initial state. Decadal predictions are intermediate
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to these two: they are controlled by both the initial and boundary conditions (Hawkins and

Sutton 2009).

The importance of including realistic initial conditions in decadal predictions has been

illustrated in a number of recent studies. Smith et al (2007) found that initialising with ob-

served ocean and atmosphere conditions improves the skill in predicting global temperature

and heat content anomalies a decade ahead. Subsequent analysis (Robson 2010) found that

the regional patterns of skill presented in Smith et al (2007) were affected by model drifts.

After correcting for this, regional improvements through initialisation were found mainly in

the North Atlantic ocean (Robson 2010).

Other studies also found only regional improvement in skill, mainly over the North

Atlantic and Pacific Oceans. Keenlyside et al (2008) showed that including a sea surface

temperature (SST) initialisation scheme leads to improved skill in predicting surface tem-

perature in the North Atlantic area, which was attributed to an improved Atlantic meridional

overturning circulation (AMOC) in the initialised hindcasts. However, salinity was not con-

strained in the initial conditions, and it is unclear whether SST alone is sufficient to constrain

the AMOC (Dunstone and Smith 2010). The predictability over the ocean was corroborated

by Pohlmann et al (2009) using ocean synthesis fields as initial conditions. Similar results

were recently found by Smith et al (2010); Robson (2010). For the Pacific ocean, Mochizuki

et al (2010); Yasunaka et al (2011) demonstrated that proper initialisation of their coupled

atmosphere-ocean model leads to skilful predictions of upper-ocean temperatures in the re-

gions typically affected by the Pacific Decadal Oscillation (PDO).

These investigations all used a single model, and compared the skill over the unini-

tialised simulations with the same model. Here, we investigate the hindcast skill of a multi-

model ensemble of decadal hindcasts made within the European ENSEMBLES project

(van der Linden and Mitchell 2009). In seasonal forecasting, it has been shown that the
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skill of a multi-model ensemble frequently exceeds the skill of the best contributing model

(Hagedorn et al 2005; Doblas-Reyes et al 2005; Weigel et al 2008). Unfortunately, unini-

tialised simulations of identical models are not available. We investigate the total skill of

the hindcasts, and separate the skill in a fraction proportional to a non-linear trend, and a

fraction that is not described by this simple trend. To aid in the identification of the sources

of skill we compare the results to those of the same analysis of the multi-model ensemble

from the World Climate Research Programme’s (WCRP) Coupled Model Intercomparison

Project phase 3 (CMIP3) multi-model dataset (Meehl et al 2007).

Skill in these simulations of past climate comes from the following sources (Hawkins

and Sutton 2009).

1. The rising trend of well-mixed greenhouse gases, mainly CO2 (Keeling et al 1976; IPCC

2007). This trend can be predicted well on the decadal time scale. This is included in all

simulations under consideration.

2. Temporal variations in solar activity and stratospheric aerosols due to volcanic eruptions

(Robock 2000). These variations cannot be predicted years ahead of time (except in the

case of an analysis just after a major tropical eruption). This is included in half the

models of the the uninitialised CMIP3 ensemble but not in the initialised ENSEMBLES

hindcasts.

3. The temporal and spatial evolution of tropospheric aerosol fields (e.g. Rotstayn and

Lohmann 2002; Wild 2009). These can be predicted to some extent on the 10-yr time

scale based on historical data and scenarios of emissions of aerosols and their precursors.

This is in principle included in all simulations, although the effects differ strongly among

the models (e.g., Ruckstuhl and Norris 2009).
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4. The predictable component of natural climate variability. In principle included in the

initialised ENSEMBLES hindcasts, although deficiencies in the model and initial state

limit the skill.

We therefore see that the CMIP3 simulations include some information that in a real forecast

setting will usually not be available (variations in solar activity and stratospheric aerosols),

whereas the ENSEMBLES hindcasts mainly use information that will also be available to

real initialised forecasts. From the differences in skill between the initialised and unini-

tialised ensembles in the trend and beyond the trend we attempt to distinguish between

these sources.

2 Methods

2.1 Models

The ENSEMBLES multi-model for the decadal prediction consists of four forecast systems

denoted by ARPEGE4.6, IFS33r1, ECHAM5 and HadGEM2. All models include the main

radiative forcings and none have flux adjustments at the ocean surface. ARPEGE4.6 is the

atmospheric model employed by CERFACS, it was coupled to the ocean model NEMO

(Salas Mélia 2002). The weather forecast model IFS33r1 (Bechtold et al 2008) was used

by the ECMWF at a resolution of TL159/L62 coupled to the HOPE-E ocean model at 1◦.

The ECHAM5 model (Jungclaus et al 2006) was used by IFM-GEOMAR coupled to ocean

model MPI-OM1. UKMO used HadGEM2-AO, an improved version of the model used

for the IPCC AR4 (Johns et al 2006) with atmospheric resolution N96/L38. Except for the

ECMWF model, the forecast systems are the same as those used for the ENSEMBLES

seasonal to annual hindcasts (Weisheimer et al 2009).
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Ten three-member ensemble hindcasts were run for ten years starting on November 1 of

1960, 1965, . . . , 2005. Volcanic aerosol concentrations from eruptions before the analysis

date were relaxed to zero with a time scale of one year in ECHAM5, while the other three

models did not include any volcanic aerosol effect. In all cases, the effects of eruptions

during the hindcasts were not included to reproduce a realistic forecasting context.

Three of the four models (the IFS33r1, HadGEM2 and ARPEGE4.6 models) were used

with a full state initialisation strategy similar to the one employed in seasonal forecast-

ing: starting the hindcasts from an ocean analysis that is close to the observations, with

perturbations in past wind stress and SST added to sample some of the uncertainties. In

contrast, IFM-GEOMAR employed anomaly initialisation, where observed SST anomalies

were added to the model climatology and the combined SST restored into the coupled model

(Keenlyside et al 2008). Full details can be found in Doblas-Reyes et al (2010).

The CMIP3 ensemble used consists of 23 models (SST was only available for 22). To

cover the period up to 2010, results from the SRES A1b scenario were used to extend the

simulations of the twentieth century (20C3M). The temperature change over the last ten

years is not dependent on the scenario chosen (Stott and Kettleborough 2002). All models

were weighted equally, i.e., first the different ensemble members of each model were aver-

aged, and next the model means were interpolated to a common 2.5◦ grid and averaged into

a multi-model mean. Half the models (11) include volcanic aerosols, the majority of these

also account for variations in solar radiation. This subset is denoted by CMIP3v here. The

other half that does not include volcanic aerosols (and often solar variability) is denoted by

CMIP3n.
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2.2 Observations

For the global mean temperature we used the estimate published by the National Climatic

Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA)

of the U.S. (Smith et al 2008). The results were checked against other estimates from the

Goddard Institute of Space Science (GISTEMP, Hansen et al 2010) and Hadley Centre /

Climatic Research Unit (CRU) (HadCRUT3, Brohan et al 2006) and no large differences

were found (see Fig. 1). The CO2 concentrations were taken from the Mauna Loa series

(Keeling et al 1976) obtained from the Earth System Research Laboratory (ESRL).

Land temperatures were taken from the National Centers for Environmental Prediction

(NCEP) GHCN/CAMS dataset (Fan and van den Dool 2008), SST from the NCDC ERSST

V3b dataset (Smith et al 2008). These datasets have little coverage north of 60◦N. In this

area values from the GISTEMP dataset with 1200 km decorrelation scale were used (Hansen

et al 2010). The large decorrelation scale is justified for the multi-year averages investigated

here. Teleconnections were computed using the longer CRU TS 3.0 analysis (Mitchell and

Jones 2005).

Precipitation estimates were taken from the Global Precipitation Climatology Centre

(GPCC) v5 (Rudolf et al 2010).

2.3 Verification measures

As the number of verification points is rather low (9 or 10, depending on the lead time) we

use simple measures of skill: the correlation coefficient r and the root mean square error

RMSE. More sophisticated probability-based measures have very large uncertainties for

such a small sample (for an example from seasonal forecasting see van Oldenborgh et al

2008). All forecasts have been bias corrected in the mean, for each model separately, taking
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into account the evolution of the bias with lead time. Cross-validation was not used, note

that correlation coefficients are the same if only a single point would have been left out.

We consider three lead times: the first year (Nov–Oct) has different characteristics from

the other ones due to important initial-condition predictability similar to that found in sea-

sonal forecasting. The rest of the hindcasts is split up in equal-length near-term (yrs 2–5)

and long-term predictions (yrs 6–9). Assuming normal distributions for predictor and pre-

dictand, a one-sided Student’s t-test appropriate for a skill score shows that the p-value

p=0.1 is reached for r=0.44 for 10 independent data points (yr 1), whereas it has to be

r=0.47 to reach this significance with 9 data points (yrs 2–5 and 6–9) (Press et al 1992).

Serial correlations in the residuals have been taken into account by lowering the effective

number of freedom using the lag-1 autocorrelation where this is significantly different from

zero.

2.4 Trend definition

A large part of the skill in decadal temperature forecasts is due to the trend. To study this

trend separately from variability around the trend a good definition of the trend is required.

Fig. 1 shows the global mean 2m temperature (T2m) anomalies in the observations and in

the uninitialised climate model experiments for the 20th century and SRES A1b from 2001

onward (20c3m and sresa1b). The simulated global mean temperature rises smoothly but

non-linearly in the mean of the 11 models without volcanic aerosols (CMIP3n). The curve

can be described very well by the observed CO2 concentrations at Mauna Loa from 1959

onwards, scaled by the regression (11.6± 0.2)10−3 K/ppm. The correlation coefficient is

r=0.994. This indicates that over this period the global mean effect of other anthropogenic

forcings, such as aerosols, are proportional to the CO2 forcing in these climate models. The
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Fig. 1 Global mean 2m temperature anomalies (Jan–Dec annual mean relative to 1931–1960) in the CMIP3

20c3m/sresa1b experiments (with/without volcanoes) compared to the NCDC, GISTEMP and HadCRUT3

SST/T2m reconstructions. The model simulations without volcanic aerosols are compared to observed CO2

concentration anomalies scaled by a factor that minimises the RMS difference between the two series.

same result holds for the individual models, with of course a larger contribution from internal

variability. The regression coefficients do vary by a factor two, from (8.0±0.6)10−3 K/ppm

to (18.6±0.5)10−3 K/ppm, due to the differing climate responses. In all models the global

mean temperature changes can be described well by the scaled CO2 concentration changes.

Correlations with the observed global mean temperature are less good (r=0.90 for the multi-

model ensemble mean). The regression of the modelled global mean temperature on the

observations over 1959–2009 is compatible with one (1.05 K/K, with individual models

ranging from 0.7 to 1.7 K/K).

The other 12 models in the CMIP3 database do include the effects of large tropical

volcanic eruptions (and often variations in the solar constant). The average global mean

temperature of this subset is also shown in Fig. 1. Including the effects of large tropical

volcanic eruptions brings the modelled temperature anomalies into closer agreement with



11

the observed ones (r=0.92). The multi-model mean of the 12 models that include volcanic

aerosols is also compatible with the observed trend 1959–2009 with a regression of 1.11

K/K, individual model results vary from 0.9 to 1.5 K/K.

The decadal hindcasts can be expected to reproduce the warming trend and some of

the natural variability around the trend, but not the effects of volcanic eruptions or solar

variability after the analysis date. We therefore define the trend as the part of the signal

proportional to the rising CO2 concentrations as a proxy for the smooth rise of the CMIP3

runs without volcanic aerosols. This part is determined mainly by the boundary conditions

of rising greenhouse gas and aerosol concentrations. The residual of the fit gives the vari-

ability around the trend. Apart from the effects of solar variability, volcanic aerosols and

tropospheric aerosols, this also includes the natural variability of the system, part of which

may be predictable from the initial state.

For regional averages, the temperature trend has been attributed to increased greenhouse

gases (eg Stott 2003). We therefore use the same trend definition on the local scale. This

does not imply that we attribute trends to greenhouse gases on the local scale (which is hard

given the deficiencies of climate models). This trend definition merely describes a large

part of the temperature behaviour over most of the globe (cf. Knutson et al 2006). This is

illustrated in Fig. 2, which compares the observed local long-term temperature trends over

1960–2010 (Fig. 2a, estimated as the long-term regression on the CO2 concentration times

the rise in this concentration over 1960–2010) with the standard deviation of running 4-yr

mean residuals around this trend (Fig. 2b). It is clear that the trend is much larger than the 4-

yr standard deviation except in areas with low trends (North Pacific, North Atlantic). Fig. 2c

shows the part of the 4-yr standard deviation that is not explained by uncorrelated annual

variability. Similar results based on climate model ensembles were found by Collins (2002);

Boer (2004); Pohlmann et al (2004).
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Fig. 2 a) Observed temperature trend between 1960 and 2010, computed as the difference in CO2 levels be-

tween 1960 and 2010 times the regression of temperature on the CO2 concentration over all data. b) Standard

deviation of 4-yr running means of the residual of this regression. c) As in b) minus the contribution from

uncorrelated interannual variability. Lighter colours indicate areas where this is not significantly different

from zero (p > 0.1).

Given the size of the trend in comparison with other variability in temperature predic-

tions, we analyse the trend separately from the variability around the trend. The trend is

mainly a forced signal but does include climate variability periods of O(100) years or more

(twice the 60-year hindcast period). The variability around the trend includes the effects of
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initialisation in the ENSEMBLES ensemble, but also the effects of forcings such as aerosols

that are not proportional to the trend. An attempt will be made to distinguish the effects of

time- and space-varying forcings from effects of the initialisation by comparing the skill

beyond the trend in the initialised ENSEMBLES ensemble by the skill of the uninitialised

CMIP3 ensemble using the same trend definition.

In contrast to temperature, for precipitation hindcasts the trend is not larger than natural

variability and we only consider the full hindcast skill.

The exact definition of the trend does not affect the results. The fluctuations in the fore-

casts and observations are so much larger than the non-linearities in the trend that other

choices, such as the modelled or observed global mean temperature (used in e.g. van Olden-

borgh et al 2009a) or even a linear trend over this period, give essentially the same results.

We prefer the regression on the CO2 concentration on physical grounds and because we

expect that it gives better extrapolations into the future than a linear trend definition.

Note that this procedure does not attempt to assess the effect of initialisation on the

hindcasts, which would require runs with the same models without initialisation (no-assim)

that are not available for the ENSEMBLES experiments. We also do not attempt to separate

forced variability from natural variability, which is very hard (Solomon et al 2011). Finally

we avoid the assumption that the trends are correctly modelled by climate models. The

trends are strong enough now to identify problems with this assumption (eg. Stainforth et al

2005; Knutson et al 2006; van Oldenborgh et al 2009a). In a comparison of an initialised

run with a no-assim run, a trend bias gives rise to a bias correction that varies as a function

of both lead time and analysis time. At lead time zero, it is small as the trend in the analyses

is close to the observed trend, but as a function of lead time the gap between the observed

trend and modelled trend increases as the model is influenced less by the initial state and

more by the forced response. Such a bias structure is very hard to correct for (Robson 2010).
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Fig. 3 Comparison of predicted global mean temperature anomalies (w.r.t. 1961–1990) with observed ones

(NCDC) of the ENSEMBLES decadal hindcast experiments (a–c) and the CMIP3 ensemble subsets with

(CMIP3v) and without (CMIP3n) volcanoes (d–f) for yr 1 (a,d), yrs 2–5 (b,e) and yrs 6–9 (c,f). The red line

denotes the best fit to the multi-model (a–c) and CMIP3v (d–f) data, the dashed line the ideal 1:1 agreement.

The correlation coefficient, RMSE and regression a (with 1σ error) are given for the multi-model ensemble

mean in (a–c) and for the CMIP3v mean in (d–f). The CMIP3n,v ensembles are sampled at the same years as

the ENSEMBLES hindcasts.

A skilful simple statistical forecast model would be to extrapolate the non-linear trend

up to now given a CO2 concentration scenario. This analysis method addresses the question

whether climate models can do better than this baseline forecast.

3 Global mean temperature

First we consider hindcasts of the global mean temperature anomalies relative to their re-

spective 1961–1990 climatologies. The model hindcasts of global mean T2m are compared

to the NCDC global mean SST/T2m estimate in Fig. 3a–c including the trend. There is good
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Fig. 4 As Fig. 3 but with the trend subtracted.

skill in the total global mean temperature at all three lead times with correlations coefficients

well above 0.9 for the ensemble mean. The hindcast trend is compatible with the observed

trend except in yr 1, when it is slightly lower. The skill scores are comparable to those of the

CMIP3 ensemble with volcanoes included (Fig. 3d–f). The skill is obviously mainly due to

the trend.

Figs. 4a–c show the skill after subtracting the trend as defined in section 2.4 in both

the ENSEMBLES hindcasts and observations, Figs. 4d–f show the same for the CMIP3

ensembles, both the subset that includes solar variability and volcanic aerosols and the subset

that does not include these. The skill in the variations beyond the trend is still sizeable in yr 1,

r≈0.8 both in the initialised ensemble and the uninitialised one. In the initialised hindcasts

this can be understood as the effects of persistence of the global SST combined with the

evolution of ENSO, which can be predicted well for the half year starting in November

(r=0.94±0.04, see also van Oldenborgh et al 2005a) and has a large influence on the global



16

mean temperature 3–6 months later (r≈0.7, see e.g. Thompson et al 2008). The CMIP3v

ensemble profits from the inclusion of volcanic aerosols, knowledge of which is not always

available in real forecasts. This is confirmed by the absence of skill beyond the trend in the

CMIP3n ensemble.

The multi-model initialised ensemble also does not show any skill in yrs 2–5 beyond

the trend. The positive skill in yrs 6–9 is not significant at p<0.1. The negative and positive

skill scores for yrs 2–5 and 6–9 can be interpreted as random fluctuations around a low

correlation. In contrast the CMIP3v ensemble still shows positive correlations due to the

influence of solar variability and volcanic aerosols on the global mean temperature.

These results do not depend on the definition of the trend. Subtracting a linear trend

again gives a negative correlation skill score for the initialised hindcasts in yrs 2–5 and the

same skill score for yrs 6–9.

The low skill scores beyond the first year can be understood from the main causes of

the variability of the global mean temperature around the trend. The largest fluctuations in

Fig. 1 are due to cooling effects after large volcanic eruptions (Robock 2000). In the 1960–

2009 time frame these are the eruptions of Gunung Agung (1963), El Chichón (1982) and

Pinatubo (1991). These eruptions cannot be predicted with a lead time of years and are

therefore not included in the hindcasts.

Another factor that strongly affects the 4-yr averaged global mean temperature in all

simulations is the temperature variation in Asia and North America north of 30◦N. The 4-yr

smoothed detrended temperature in this area is strongly correlated with the detrended global

mean temperature (r=0.7 over 1960–2010). The low-frequency variability of this tempera-

ture is dominated by late winter (January–March). This variability cannot be predicted well

by these models beyond the trend (cf. Fig. 5c,d). Variability in these regions is mainly driven

by the atmospheric variability described by the Arctic Oscillation, Scandinavia Pattern and
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Pacific-North America Pattern, which are to a large extent driven by the chaotic nature of

the mid-latitude westerly flow.

4 Local temperature forecast skill

Having established that the ENSEMBLES multi-model ensemble shows limited skill in the

global mean temperature beyond the first year we next consider the spatial distribution of

forecast skill. For sea points we verify SST against ERSST v3b, land point T2m is verified

against the GHCN/CAMS dataset and polar regions (south of 60◦S, north of 60◦N) against

the GISTEMP 1200km T2m dataset. In Fig. 5 we show the correlation skill in the total

temperature forecasts and the skill after subtracting the local trends in the observations and

models. (Using the model T2m fields over sea instead of SST does not make a noticeable

difference.)

The skill of the T2m/SST forecasts including trends is shown in Figs. 5a,b. The corre-

lation coefficients have values of 0.5 to 0.8 over most of the globe. These values are statis-

tically significant at p<0.1. Exceptions are SST in the North Pacific and Southern Oceans

and T2m in parts of the Andes where other datasets have no data. These are all regions with

low trends in the observational datasets used.

The next question is how much of the skill is due to factors beyond the trend. We subtract

local trends (i.e., the local regressions against CO2 concentration) from both the hindcasts

and the observations, and recompute the skill scores. (Note that the trends are not necessarily

the same in the model and the observations, the trends are compared in section 5.) The

correlation coefficients are much lower without trends, see Figs. 5c,d.

Statistically, the correlation in these maps is on average positive. We computed the field

significance of this signal to be p≈0.1 using the method of Sterl et al (2007), which entails
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Fig. 5 Correlation skill of T2m/SST hindcasts for yrs 2–5 (a,c) and yrs 6–9 (b,d) including the trend (a,b) and

the skill that is left after subtracting the local trends (regressions on the CO2 concentration) of both model and

observations (c,d). For comparison the 5-yr and 9-yr lag correlations of 4-yr averaged detrended observations

are given (e,f). Correlations that are not significant at p<0.1 are plotted in light colours. SST: ERSST v3b

from NCDC, T2m: GHCN/CAMS from NCEP, polar regions: GISTEMP (1200 km decorrelation).

estimating the number of degrees of freedom from the autocorrelation of the maps of local

p-values under the assumption that this autocorrelation is the same over the whole globe.

The number of degrees of freedom is then 4π/(πa2) with a the decorrelation scale in radian.

A Monte Carlo test showed that this procedure gives comparable results to the method of
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(Livezey and Chen 1983) that requires a time-dependent field. Our method here results in

an estimate of O(200) degrees of freedom, which together with the mean and standard

deviation give p≈0.1 with a one-sided t-test.

However, the signal to noise ratio for each individual region is so large that one cannot

identify regions of skill based on statistics alone. There are almost as many regions with

negative correlation coefficients as there are regions with positive ones. Instead, we focus

on two well-known areas of low-frequency variability that have also been identified in long

climate model runs (Collins 2002; Boer 2004; Pohlmann et al 2004). There is positive skill

over the North Atlantic (significantly in yrs 2–5) and the eastern subtropical Pacific in yrs

6–9. Both these signals are stronger than persistence (Figs. 5e,f), which has been computed

from the detrended observational datasets over the same time period 1960–2009. Other areas

of positive skill can at this stage not be distinguished from random fluctuations.

The positive skill scores can either be due to the initialisation of the hindcasts or to forc-

ings that are not proportional to the smooth rise of the CO2 concentration. Fig. 6 shows the

same separation between trend and other variability for the CMIP3 multi-model ensemble,

separated in the subsets with and without volcanic aerosols. Although consisting of differ-

ent models, it shows areas in which climate models show skill including the trend (a,b) and

in the variability around the trend (c,d). In the latter case, the highest skill scores are ob-

tained in the western North Pacific, western North Atlantic and eastern Europe / Middle

East, but only when volcanic aerosols were included in the simulation. Intriguingly, the lo-

cation downstream of major aerosol emitting areas (East Asia, North America and Europe)

suggests that the effect of tropospheric aerosol forcing leads to skill in these areas rather

than the stratospheric volcanic aerosols. Skill in the northern North Atlantic is lower than in

the initialised runs and may be related to the effect of volcanic eruptions on the overturning

circulation (Stenchikov et al 2009). The negative skill in the tropical Pacific Ocean is also
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Fig. 6 Correlation skill over 1960–2010 of 4-yr running mean T2m/SST in the CMIP3 multi-model ensemble

including volcanic aerosols (a) and without volcanic aerosols (b). Panels (c,d): the same after subtraction of

local trends. Cf. Fig. 5. Correlations that are not significant at p<0.1 are plotted in light colours.

unexpected given the reported influence of solar forcing in this area (Meehl and Arblaster

2009). An investigation which aspect of the forcing is responsible for these signals in the

CMIP3 ensemble is beyond the scope of this article.

Comparing Figs. 5c,d with 6c,d, the initialised ensemble shows more skill than the unini-

tialised ones in the northern North Atlantic (yrs 2–5) and the eastern Pacific (mainly yrs

6–9). We discuss these region in sections 6 and 7 respectively.

5 Trends

From Fig. 5 we concluded that in most of the world the skill in temperature hindcasts of the

ENSEMBLES multi-model ensemble is due to the trend over 1960–2009. A high correlation
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Fig. 7 The SST/T2m trend [K/ppm] in the ENSEMBLES multi-model ensemble yrs 2–5 (a) and 6–9 (b), for

the observations (c) and for the full CMIP3 multi-model mean over 1960–2010 (d, T2m only). The difference

between the ENSEMBLES multi-model trend and the observed one is shown in (e,f), the same for the CMIP3

ensemble 1960–2010 in (g). Grid boxes in which the trend (difference) is not significant at p<0.1 are plotted

in light colours.
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coefficient between observed and modelled trends does not indicate accurately how well the

trends are represented in these models: as long as there is a trend in both that is larger than

the noise the correlation coefficients will be high. A direct comparison of the modelled and

observed trends over the hindcast period, defined as a regression of the nine or ten data

points on the CO2 concentration, is given in Fig. 7.

We also compare the trends in the ENSEMBLES decadal forecast models with those in

the CMIP3 multi-model ensemble mean. Again, these figures do not depend strongly on the

definition of the trend. A linear trend gives virtually the same results, as the variability per

grid point is much larger than the difference between a linear increase and the accelerating

increase implied by using the CO2 concentration.

The trends are fairly similar in yrs 2–5 and yrs 6–9 (cf. Figs. 7a,b). The differences

with observed trends are shown in Figs. 7e,f). For comparison we also show the trend in the

full CMIP3 ensemble multi-model mean, and its deviation from the observed trend over the

same period. The subsets with and without volcanoes have similar trends.

The agreement with the observed trends is similar in the initialised ENSEMBLES en-

semble and the uninitialised CMIP3 ensemble mean outside the polar regions: the spatial

standard deviations of the trend differences averaged over the ocean 60◦S–60◦N are indis-

tinguishable between the three maps Figs. 7e,f,g. The same holds for the spatial standard

deviations over the land trend biases. The patterns are also similar, with a common failure

to reproduce the absence of a heating trend in the North Pacific Ocean and around Florida.

Over land, the lack of temperature rise over central North America is not simulated, whereas

temperature trends in Europe (van Oldenborgh et al 2009a) and China are underestimated

by all ensembles. Note that the IFS33r1 model does not include a sea ice model, which can

explain part of the poor performance of the initialised ensemble in the Arctic.
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Fig. 8 Comparison of predicted AMO index with observed ones based on ERSST v3b for yr 1 (a), yrs 2–5

(b) and yrs 6–9 (c). Panels (d) and (e) show the same for the CMIP3 ensemble with and without volcanic

aerosols. No bias or trend correction has been applied. The correlation coefficient, RMSE and regression a

(with 1σ error) are given for the ENSEMBLES multi-model ensemble mean in (a–c) and for the CMIP3

models with volcanic aerosols in (d–e).

We conclude that the initialised ENSEMBLES hindcasts do not simulate the observed

temperature trends better or worse than the uninitialised CMIP3 hindcasts, except in the

Arctic. The poor representation of this main predictable signal is cause for caution in using

climate models for local climate forecasts.

6 Atlantic Multi-decadal Oscillation

SST in the North Atlantic shows variability on time scales of 20 years and more, known as

the Atlantic Multi-decadal Oscillation (AMO, Schlesinger and Ramankutty 1994). On these

time scales, global warming also affects North Atlantic SST. In model studies the effect of

AMO fluctuations on global mean temperature is fairly small; van Oldenborgh et al (2009b)
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find a maximum correlation of 0.25 in the MPI ECHAM5/OM-1 model and in the CCSM 3

control run the correlations are even lower (Hofer et al 2011)1. We therefore use the AMO

index proposed by Trenberth and Shea (2006): SST anomalies averaged over EQ–60◦N, 80–

0◦W minus global SST anomalies averaged over 60◦S–60◦N. By coincidence, this index is

also almost orthogonal to the global mean temperature on the short period 1960–2009 and

the response of the full CMIP3 ensemble. This justifies a posteriori the method to separate

the trend from the variability described in section 2.4 for this region, even in the presence

of multi-decadal variability. Note that no bias or trend is subtracted beyond the definition of

the AMO index itself.

Fig. 8 shows the AMO observations and hindcasts. The interannual variability of the

AMO is not captured well in the first year of the decadal forecasts. In contrast, the slower

variations are simulated well in yrs 2–5 (r=0.74, p≈0.03 taking serial correlations into ac-

count) and yrs 6–9 (r=0.57, p≈0.05). These numbers are similar to the ones obtained by

Pohlmann et al (2009) (r≈0.7 for years 1–5, 0.6 for years 5–10). The amplitude of the

variations is underestimated by the multi-model mean, however. The uninitialised CMIP3

ensemble captures some of the cooling trend around 1960, but does not capture the warming

trend of the last two decades. Consequently, the correlation is much lower than for the ini-

tialised ensemble, −0.1 for all years 1960–2010 in the full ensemble, 0.4 for the subset that

includes volcanic aerosols (CMIP3v). The difference is explained by the subset that does

not include volcanic aerosols (CMIP3n) simulating a decline of the AMO index throughout

the interval.

From theoretical arguments and model analyses it is expected that the skill in forecasting

the AMO is to some extend based on predictable fluctuations of the Atlantic Meridional

Overturning Circulation (AMOC) (Delworth and Mann 2000; Knight et al 2005; Dijkstra

1 Priv. Comm., C. C. Raible
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Fig. 9 Observed (a) AMO and (b) decadal ENSO teleconnections to temperature based on correlations of

the AMO and decadal ENSO indices defined in the text with detrended CRU TS 3 temperatures, ERSST v3b

SST and GISTEMP 1200km (polar regions) using a 4-yr running mean over 1901–2006. The detrending was

against the observed CO2 distribution. Areas with correlations with p<0.1 are denoted by light colours.

et al 2006). However, direct observations of the AMOC are only available since 2004. An

intercomparison of the AMOC hindcasts does not show much coherency beyond a few years

(not shown). This may explain the relatively short lead time of skilful forecasts compared

with the time scales of the AMO.

The predictability of the AMO with a lead time of around five years opens the possibil-

ity to regional decadal forecasts beyond the trend using AMO teleconnections, although the

combination of imperfect skill in the AMO forecast and the weakness of the teleconnections

(r<0.5 in all but a few land areas) may not lead to useful skill. An estimate of AMO tele-

connections over 1901–2006 with a 4-yr running mean is shown in Fig. 9a. The comparison

with Fig 5c shows that the positive skill in northern Africa and the Middle East may be

related to the AMO teleconnection to these regions, although the Middle East also shows

a clear aerosol signature (Figs. 6c,d). The AMO teleconnection to central and eastern US

temperature does not lead to skill in temperature hindcasts in these regions in the initialised

ENSEMBLES multi-model ensemble. Attributing skill to teleconnections requires a much

more detailed analysis of the physical mechanisms, and is beyond the scope of this study.
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Fig. 10 First EOF of 4-yr mean detrended Pacific SST (50◦S–50◦N, 100◦E–70◦W) in (a) the observations

(ERSST), the (b) IFS33r1, (b) HadGEM2, (c) ARPEGE4.6 and (d) ECHAM5 decadal forecast models at

years 2–5. The accompanying Principal Components (time series) have been normalised to one.

7 Decadal ENSO

To investigate the skill in forecasting low-frequency variability in the Pacific Ocean we

define a decadal ENSO index as the normalised principal component of the first EOF of

detrended SST in the region 50◦S–50◦N, 100◦E–70◦W for each model separately. For yr

1 we take 12-month averaged (Nov–Oct) SST, for yrs 2–5 and 6–9 we taken 4-yr running

means of Nov–Oct SST before computing the EOFs. The EOFs are taken to be the eigen-

values of the correlation matrix rather than the covariance matrix, i.e., the SST variability is

normalised at each grid point prior to the computation. The resulting patterns are similar to

the Interdecadal Pacific Oscillation (Power et al 1999), but not constrained to be orthogonal

to the trend by construction. The regressions of the associated time series on SST are shown

in Fig. 10 for the observations and the four decadal forecast models.

For one-year means this decadal ENSO index is highly correlated to the Niño3.4 index

(r≈0.9). For 4-yr means the pattern becomes much wider meridionally and the correlation

drops to r≈0.6. The decadal ENSO index of yrs 2–5 and 6–9 is more similar to the Pacific

Decadal Oscillation (r≈0.8). Like the PDO, our decadal ENSO index is almost orthogonal
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Fig. 11 Comparison of predicted decadal ENSO index with observed ones based on ERSST v3b for yr 1

(a), yrs 2–5 (b) and yrs 6–9 (c). Panels (d) and (e) show the same for the CMIP3 ensemble with and without

volcanic aerosols. The correlation coefficient, RMSE and regression a (with 1σ error) are given for the multi-

model ensemble mean in (a–c) and for the CMIP3 models with volcanic aerosols in (d–e).

to global warming as both are characterised by a dipole SST pattern. The orthogonality also

holds for the short verification period 1960–2009.

For the ENSEMBLES initialised multi-model ensemble, we computed the EOFs for

each model separately in order to capture the differences in the patterns of the different

models. The normalised time series were then averaged into a multi-model mean. For the

CMIP3 ensembles we used the observed pattern to define time series of decadal ENSO

variability and checked the results with the patterns of the initialised ensemble, Fig. 10.

Figs. 11 compares the decadal ENSO indices in the hindcasts and observations. As

ENSO can be predicted well for the first half year from November, the good skill (r=0.67)

of the initialised models in yr 1 is not unexpected. In yrs 2–5 and 6–9 there is an indication

of possible skill, r≈0.4, in agreement with Figs 5c,d. Statistically this is not significant at
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p<0.1, but it is in agreement with other reports of skill in decadal hindcasts (Mochizuki

et al 2010; Yasunaka et al 2011). As expected from Figs. 6c,d, the uninitialised models do

not show skill in simulating this Pacific-wide pattern with correlation coefficients ranging

from −0.2 to +0.1 depending on the pattern used. The subset with volcanic aerosols does

not show more skill (−0.25 to +0.25).

The strongly positive skill scores over Alaska in Figs. 5c,d is probably for only a small

part due to the teleconnection from decadal ENSO (r≈0.5 in the observations, Fig. 9b)

combined with the low skill in predicting decadal ENSO itself. The high skill score results

from the correct hindcasts of only three cold events that coincided with extended La Niña

events, indicating that chance fluctuations played a major part.

Conversely, some of the the negative skill scores in the western Pacific can be under-

stood from the difference of modelled decadal ENSO patterns with he observed ones. In

the observations SST in this area is strongly anti-correlated to the eastern Pacific (Fig. 10a).

Most climate models extend the equatorial cold tongue too far into the central Pacific (e.g.,

Guilyardi 2006) and hence represent ENSO activity too far to the west (e.g., van Oldenborgh

et al 2005b). In all ENSEMBLES models this results in a decadal ENSO pattern in which

the region positively correlated to the eastern Pacific extends all the way to the tropical West

Pacific, three even into the maritime continent (Figs. 10b–e). A point-wise SST verification

hence produces negative correlations in these areas. Taking model pattern biases into ac-

count (e.g., with a procedure as in Coelho et al 2006; Shongwe et al 2006) could transform

them into positive scores.
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Fig. 12 Correlation skill of precipitation hindcasts for yrs 2–5 (a) and yrs 6–9 (b) over 1960–2007. This is

compared with observed teleconnections: the correlation of 4-yr averaged precipitation with the AMO index

(c) and decadal ENSO index (d) over 1901–2007. Also shown are the corresponding skill maps of the full

CMIP3 ensemble (e) and the subset implementing volcanic aerosols (f) over 1960–2010. Areas in which the

correlation were not significant at p<0.1 are plotted in light colours. Precipitation is taken from the GPCC

v5 analysis 1901–2007, demanding at least one observation per 2.5◦ grid box.

8 Local precipitation forecast skill

The skill of the ENSEMBLES multi-model ensemble precipitation hindcasts is shown in

Figs. 12a,b. In precipitation the trends are less important than in temperature as they are
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smaller than the natural interannual and decadal variability over 1960–2009, with the ex-

ception of small areas such as Scandinavia, northern Canada and the south coast of West

Africa. We therefore show the total skill without subtracting the trends first.

The skill scores are compared with teleconnections of 4-yr averaged precipitation with

the AMO and decadal ENSO over the period 1901–2007 from observations. Given the skill

in forecasting the AMO and to some extent decadal ENSO, one expects that the areas with

positive (orange/red) or negative (green/blue) teleconnections in Figs. 12c,d will translate to

some extent into areas of positive (orange) skill in Figs. 12a,b. As was argued in the case

of temperature teleconnections, the added effects of the unexplained variance in the AMO

forecast and the weakness of the AMO teleconnection implies that one should not expect

correlations higher then roughly 0.5, which are both at the edge of statistical significance in

the limited data sample and of limited practical value. For comparison, the same skill scores

are also plotted for the uninitialised CMIP3v and CMIP3n ensembles (Figs. 12e,f).

In the Sahel there is positive but pointwise not significant skill in hindcasting rainfall

both in yrs 2–5 and yrs 6–9, both in the initialised ENSEMBLES hindcasts and in the unini-

tialised CMIP3v ensemble with volcanic aerosols. The ENSEMBLES multi-model mean

area-averaged rainfall over 10◦–20◦N, 18◦W–20◦E has a correlation skill of r=0.38 (p≈0.2

taking serial correlations into account) in yrs 2–5, r=0.46± 0.20 (p≈0.1) in yrs 6–9. For

the CMIP3v ensemble with volcanic aerosols we obtain 0.54+0.13
−0.28 for 4-yr means 1960–

2010, which is significantly different from zero at p<0.06. The CMIP3n ensemble without

volcanic aerosols however does not show any skill (r=−0.11+0.36
−0.11). The errors are 1σ er-

rors determined with a non-parametric bootstrap method taking the serial correlations into

account.

Although not or barely statistically significant, combined with the expected physical

teleconnection to the AMO (e.g., Zhang and Delworth 2006; Ting et al 2009) and PDO
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Fig. 13 Comparison of predicted Sahel rainfall anomalies [mm/dy] against observed anomalies (GPCC V5

and monitoring analysis) for yr 1 (a), yrs 2–5 (b) and yrs 6–9 (c). Panels (d) and (e) show the same for the

CMIP3 ensemble with and without volcanic aerosols. The correlation coefficient, RMSE and regression a

(with 1σ error) are given for the ENSEMBLES multi-model ensemble mean in (a–c) and for the CMIP3

models with volcanic aerosols in (d–e).

(Figs. 12c,d) and the effect of aerosol cooling of SST (Rotstayn and Lohmann 2002) these

numbers indicate that probably 4-yr mean Sahel rainfall is to some extent predictable with

a lead time of one year with a relatively low skill. The slightly higher skill in the CMIP3v

ensemble including volcanic eruptions cannot be regarded as evidence for predictability as

these eruptions are not predictable and the CMIP3n ensemble without them does not show

any skill. However, there are other differences between the three ensembles that make it

impossible to draw firm conclusions. Only experiments with the same multi-model ensemble

with and without different forcings and initialisation can show where the skill comes from.

A good independent check on the skill would be to perform hindcasts in the 1950s, although
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the limited ocean data for this period is problematic. A simulation of the high anomalies in

that decade would strengthen confidence in the skill.

The skill is even lower in the central and western USA, where we expect predictability

due to weak teleconnections to the AMO and stronger ones to decadal ENSO (McCabe et al

2004). In spite of the fact that these teleconnections were also active over the period 1960–

2009, the multi-model ensemble does not show skill in these regions, nor in other regions

with AMO or decadal ENSO teleconnections.

In Scandinavia there is a strong trend in the observed precipitation (0.15±0.03 %/ppm

averaged over the land points north of 60◦N and west of 30◦E over 1901–2007) that is

reproduced to some extent by the ENSEMBLES (0.05±0.02 %/ppm in yrs 2–5, 0.09±0.02

%/ppm in yrs 6-9) and CMIP3 (0.07 ± 0.01 %/ppm) multi-model means, giving rise to

positive skill. The underestimation of the trend in this area is common to most climate

models (Zhang et al 2007; Bhend and von Storch 2008).

To summarise, there seems to be some skill in forecasting 4-yr averaged Sahel rainfall

with a lead time of one year, but it is unclear whether this is due to the ocean initialisation or

the aerosol forcing. In Scandinavia the trend in (winter) precipitation gives skill, although the

magnitude of the trend is underestimated. Other regions do not show skill in the precipitation

hindcasts of this ensemble.

9 Conclusions

A 4-model 12-member ensemble of 10-yr hindcasts has been analysed for skill in SST, 2m

temperature and precipitation. The main source of skill in temperature is the trend, which

is primarily forced by greenhouse gases and aerosols. This trend contributes almost every-

where to the skill. Variation in the global mean temperature around the trend do not have any
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skill beyond the first year. However, regionally there appears to be skill beyond the trend in

the two areas of well-known low-frequency variability: SST in parts of the North Atlantic

and Pacific Oceans is predicted better than persistence. A comparison with the CMIP3 en-

semble shows that the skill in the northern North Atlantic and eastern Pacific is most likely

due to the initialisation, whereas the skill in the subtropical North Atlantic and western North

Pacific are probably due to the forcing.

In the Atlantic, the ensemble shows clear skill in predicting an AMO index that is or-

thogonal to the trend in yrs 2–5, and reasonable skill in yrs 6–9. The skill in decadal ENSO

is lower, not statistically significant, but in agreement with other studies. The CMIP3 ensem-

ble shows less skill in both these indices. There is also an indication of skill in hindcasting

decadal Sahel rainfall variations, which are known to be teleconnected to North Atlantic

and Pacific SST. The uninitialised CMIP3 ensemble that includes volcanic aerosols repro-

duces these variations as well, but the models without volcanic aerosols do not. It therefore

remains an open question whether initialisation improves predictions of Sahel rainfall.

The modelled trends agree well with observations in the global mean, but the agreement

is not so good at the local scale.

These experiments are only a first step towards decadal forecasting using non-optimised

methods from seasonal forecasting. The skill assessment does not take into account the con-

siderable biases and drift of the models. It is based on only nine or ten data points and hence

suffers from large statistical uncertainties. Larger ensembles sizes per model and more fre-

quent and earlier starting dates will be required to characterise the skill of decadal forecasts

better. The verification of decadal hindcasts can then be used to improve the climate models,

their forcings and initialisation procedures to give more reliable and skilful climate forecasts.
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