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ABSTRACT

A theoretical framework is developed for the evolution of baroclinic waves with latent heat release parameterized in
terms of vertical velocity. Both wave-CISK and large-scalerain approaches are included. The new quasi-geostrophic
framework covers evolution from general initial conditions on zonal flows with vertical shear, planetary vorticity
gradient, a lower boundary and a tropopause. The formulation is given completely in terms of potential vorticity,
enabling partition of perturbations into Rossby-wave components, just as for the dry problem. Both modal and
non-modal development can be understood to a good approximation in terms of propagation and interaction between
these components alone. The key change with moisture is thatgrowing normal modes are described in terms of
four counter-propagating Rossby wave (CRW) components rather than two. “Moist CRWs” exist above and below
the maximum in latent heating, in addition to the upper and lower level CRWs of dry theory. Four classifications
of baroclinic development are defined by quantifying the strength of interaction between the four components and
identifying the dominant pairs: ranging from essentially dry-instability to instability in the limit of strong heating
far from boundaries, with “type-C cyclogenesis” and “diabatic Rossby waves” being intermediate types. General
initial conditions must also include “passively-advectedresidual PV”, as in the dry problem.

1. Introduction

Case studies indicate that condensation of water vapor often
plays an important role in baroclinic life cycles (e.g. Gyakum
1983; Wernli et al. 2002). Structural changes, a more rapid in-
tensification and propagation, as well as a reduction in scale of
the ascent region, are well-documented differences relative to
cyclone development in the absence of moisture (e.g. Emanuel
et al. 1987; Kuo et al. 1991; Moore and Montgomery 2004).
Despite this evidence, it is still a challenge to satisfactorily un-
derpin these differences with theory. One of the difficulties is
the parameterization of the link between latent heat release and
dynamical variables. The two main approaches for baroclinic
waves to date both link latent heat release to saturation in as-
cending air masses: either based on the large-scale ascent rate at
every point (Emanuel et al. 1987; Montgomery and Farrell 1991;
Whitaker and Davis 1994), or associated with ascent rate at a
specified “cloud base” with an assumed heating profile repre-

senting deep convection (Mak 1982; Snyder and Lindzen 1991;
Parker and Thorpe 1995).

Since diabatic cooling in the unsaturated descending air (as-
sociated with radiative transfer or evaporation of precipitation)
does typically not occur as rapidly, the feedback between con-
densational heating and the baroclinic wave dynamics is intrin-
sically asymmetrical and nonlinear. In contrast, much of the
theory on ‘dry’ baroclinic instability is firmly rooted in linear
wave theory and concepts such as propagating Rossby waves
and their interactions in geophysical shear flows. There aretwo
well known necessary conditions that determine whether a given
zonal flow could support exponentially amplifying disturbances,
known as growing normal modes (gNM). The first states that
the meridional potential vorticity (PV) gradient (denotedq̄y)
changes sign at least once within the domain (Charney and Stern
1962). The second condition states thatq̄y should be positively
correlated with the zonal flow (Fjørtoft 1950). Both criteria are
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derived for dry adiabatic dynamics. It is an open question what
are the necessary and sufficient conditions for ‘moist’ baroclinic
instability. Partly, this question is still unanswered because the
realism of linear moisture parameterizations is debated. Never-
theless, in this paper the moisture parameterizations are taken
mostly in their linearized forms. This linearization can bejusti-
fied in the weak-heating limit when large-scale adiabatic motion
dominates. For higher diabatic heating rates the wave structure
becomes distorted and is no longer pure sinusoidal in the zonal
direction (e.g. Emanuel et al. 1987; Parker and Thorpe 1995).
From the perspective of Fourier decomposition, the linearized
theory accounts for the dominant effect of diabatic heatingoc-
curring at wavenumberk on the dynamics of wave-k. Inter-
actions between waves of differing wavenumber are ignored at
leading order.

The principal objective of this paper is to construct a frame-
work for the analysis of linear quasigeostrophic baroclinic wave
development from general initial conditions in the presence of
simple moisture parameterizations. The two parameterizations
that are considered both relate diabatic heating to vertical ve-
locity and are referred to aslarge-scale rain(Emanuel et al.
1987) andwave-CISK1 or cumulus convection(Mak 1982). The
framework uses Rossby wave (RW) components as its basis.
RW components are defined as untilted waves in PV. PV is used
because of its well-known Lagrangian conservation property as
well as its invertibility (Hoskins et al. 1985). Moreover, in ab-
sence of moisture, there exists a framework for interpreting modal
baroclinic instability on zonal jets in terms of two mutually rein-
forcing, phase-locking counterpropagatingRossby waves (CRWs)
[Heifetz et al. (2004a), H04 from here]. CRWs have a particular
untilted PV structure that can be obtained by linear superposi-
tion of a gNM and its complex conjugate (H04). They are direct
generalizations of the well-known boundary edge waves of the
Eady (1949) model (Davies and Bishop 1994) allowing for non-
zero interior PV gradient.

CRW theory can explain the growth from infinitesimal per-
turbations that have been created by meridional displacements
of PV contours from a zonally symmetric basic-state. How-
ever, PV anomalies can have a different origin and could, for
instance, be remnants of earlier diabatic processes. Recently,
De Vries et al. (2009) [V09 from here] have shown that the
transient linear development from general initial conditions can
also be compactly described, by considering the evolution of
these two CRWs plus a passively advected remainder. One of
the reasons why this so-calledpassively advected residual PV
(PAR-PV) approximation works, is that it captures three essen-
tial growth mechanisms available to the dry dynamics (De Vries
and Opsteegh 2007, V09): (I)Shear instability, the interactions
between CRWs; (II)Resonance, the excitation of CRWs by the
passive remainder PV; and (III)Orr mechanism, the transient
growth arising due to the differential advection of interior PV
structures by the shear flow, first described in Orr (1907).

1CISK stands for Conditional Instability of the Second Kind.Wave-CISK
was introduced in Lindzen (1974).

Realistically, however, diabatic heating occurs while thewave
develops. Thus the instantaneous PV disturbance field in a moist
atmosphere has three different origins:

(I) Displacement PV, labelledq(d), which is obtained through
advection of the basic-state PV contours by the perturba-
tion meridional wind.

(II) Diabatic PV, labelledq(m), resulting from the ‘active’ di-
abatic processes.

(III) Passive PV, labelledq(p), which describes ‘remnant’ PV
from past diabatic processes. Passive PV is simply pas-
sively advected with the zonal flow.

The above partitioning of the PV disturbance field is attractive
because of its conceptual simplicity and similar approaches have
been used in diagnosis of numerical weather prediction models
(e.g. Gray 2006). Many authors discuss the PV dynamics of
moist baroclinic waves, as a qualitative tool to understandbetter
the unstable wave’s vertical structure (e.g Montgomery andFar-
rell 1991; Snyder and Lindzen 1991; Raymond and Jiang 1990;
Whitaker and Davis 1994; Parker and Thorpe 1995; Moore and
Montgomery 2004). To the authors’ knowledge however, no at-
tempt has yet been made to formulate a general framework for
the PV analysis of moist baroclinic initial value problems that is
applicable to a wide range of quasigeostrophic models, withor
without interior PV gradients. Such a framework is presented in
this paper, extending V09 by including diabatic heating andthe
generation of “diabatic PV anomalies”,q(m). RW components
will be defined based on the three different types of PV anoma-
lies described above, and their interactions will be analyzed.

Section 2 details key aspects of the model dynamics and
the moisture parameterizations. Two models, where the RW
components assume a particularly simple form, are discussed
in section 3. In section 4 a tropopause is added in the form of a
rigid lid (Mak 1994). Four classifications of baroclinic develop-
ment are defined by quantifying the strength of interaction be-
tween the four components and identifying the dominant pairs:
ranging from essentially dry-instability to instability in the limit
of strong heating far from boundaries, with “type-C cyclogene-
sis” and “diabatic Rossby waves” being intermediate types.The
generalization of the theory to include a planetary vorticity gra-
dient, large-scale rain parameterization and more generalinitial
conditions are given in sections 5-7. Conclusions are presented
in section 8.

2. Model description

a. Quasigeostrophic potential vorticity dynamics

The QG evolution of perturbations to a zonal flow in the
presence of a diabatic heatingΘ̇ can be described by the QGPV
equation:

∂q

∂t
+ ū

∂q

∂x
+ v

∂q̄

∂y
= S, S =

1

ρ̄

∂

∂z

(

ρ̄f2
0 Θ̇

N2

)

, (1)
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whereq = Lψ [ψ] = ∇2
hψ + ρ̄−1∂z(ρ̄f

2
0N

−2∂zψ) is the per-
turbation PV (∇2

h = ∂2
x + ∂2

y), v = ∂ψ/∂x is the geostrophic
meridional wind,ψ is the perturbation stream function andρ̄(z)
is a reference density profile. Basic-state quantities carry a bar.
The interior mean PV gradient (q̄y) is given by

∂q̄

∂y
= β −

∂2ū

∂y2
−

1

ρ̄

∂

∂z

(

ρ̄f2
0

N2

∂ū

∂z

)

, (2)

whereβ is the planetary vorticity gradient andN2 is the buoy-
ancy frequency. We restrict to two-dimensional perturbations al-
though meridional wavenumbers are easily included. The equa-
tions are made non-dimensional using a height-scaleH = (f0/N)2Λ/β ∼
15km wheref0 andβ values are set to those for Earth at 45◦N.
The horizontal scaleL = (N/f0)H , timescaleN/(f0Λ) and
other scalings are as in Heifetz et al. (2004b). Rigid lids may be
prescribed atzb andzt, and are taken into account by setting the
vertical velocityw to zero in the thermodynamic equation

∂θ

∂t
+ ū

∂θ

∂x
+ v

∂θ̄

∂y
= 0 z = (zb, zt), (3)

whereθ = ∂ψ/∂z is the potential temperature re-scaled by the
constantg/(f0θ0) such that thermal wind balance reduces to
θ̄y = −∂ū/∂z. Heating at lids as in Mak and Bannon (1984), is
not considered.

b. Moisture parameterization schemes

The simplest parameterization relates heating to verticalve-
locity on the premise that ascending air saturates rapidly and
experiences latent heat release. Two types of parameterization
have been investigated: wave-CISK (Mak 1982; Craig and Cho
1988; Snyder and Lindzen 1991; Parker and Thorpe 1995), which
is referred to as cumulus convection (CCV), and large-scale rain
(LSR), as discussed for instance by Emanuel et al. (1987) and
Whitaker and Davis (1994, WD94).

The wave-CISK (CCV) parameterization is based on the as-
sumption that ascending air saturates and precipitates above level
z∗ (usually taken to be near 900 hPa), producing diabatic heat-
ing, Θ̇ccv, in a column vertically abovez∗ with a particular heat-
ing profileh(z), normalized such that

∫

h(z)N2dz = 1. If we
assume unsaturated adiabatic descent, the diabatic heating takes
the following conditional form:

Θ̇ccv(x, z, t) = ǫccvh(z)

{

w(x, z∗, t) + |w(x, z∗, t)|

}

(4)

wherew(z∗, t) is the vertical velocity at levelz∗, andǫccv is the
heating intensity parameter. Snyder and Lindzen (1991, SL91)
have argued thatǫccv is likely to be proportional to the depth of
the heating layer,∆z = z2 − z1 (a deeper cloud requires more
intense diabatic heating) and thatǫccv/∆z = O(1) is consistent
with (idealized) estimates of the large-scale budgets of heat and
moisture. However, there is no implied form for the structure
of the heating layerh(z). Mathematically simplest is to make

h(z) a top-hat, i.e.,N2h(z) = [H(z − z1) −H(z2 − z)]/∆z,
whereH(z) is the Heaviside step function (Mak 1982, SL91).
Another option is a triangularly shaped heating profile (Craig
and Cho 1988; Parker and Thorpe 1995).

The large-scale rain (LSR) parameterization assumes that the
diabatic heating rate is proportional to the local verticalvelocity
w(z) (rather than tow(z∗) as in wave-CISK):

Θ̇lsr(x, z, t) = ǫlsrr(z)

{

w(x, z, t) + |w(x, z, t)|

}

, (5)

where the functionr(z) is a moisture profile. Emanuel et al.
(1987) use constantr(z) for reasons of simplicity. WD94 ar-
gue that a thermodynamically more consistent profile ofr(z)
will decay almost linearly with height in the lower troposphere
and more rapidly aloft, such thatr(z) is zero at the tropopause.
Moore and Montgomery (2004) assume a linear decrease ofr(z)
with height (the notationr(z) differs from that used in the pa-
pers cited above).

As described in the Introduction, the conditionality on the
sign ofw renders the parameterizations intrinsically non linear.
This paper describes the simpler problem where symmetry be-
tween ascent and descent is enforced such that diabatic cooling
occurs in descending air (i.e., dropping the|w| term from (5).
The linearization guarantees that a perturbation with a single
wavenumberk does not interact with others. The more complex
problem of conditional diabatic heating is left to a future paper
(Frame et al. 2010).

c. Quasigeostrophic omega equation

The evolution of perturbations in balanced adiabatic flows
can be described fully by the PV advection equation (1) together
with the PV inversion equation,q = Lψ[ψ], and the thermody-
namic equation on the boundaries (3). However, in moist prob-
lems when latent heating depends on vertical velocity, it isnec-
essary also to consider the omega-equation. In the presenceof
diabatic heating, the QG omega-equation can be written as:

Lw[w] = F (d) + F (h), (6)

whereLw[w] = N2∇2
hw + ∂z [ρ̄

−1∂z(ρ̄w)]. The two terms on
the right hand side of (6) can be thought of as ‘forcings’, driving
the vertical circulation (Hoskins et al. 2003). The first term is

F (d) =
∂

∂z
[(ū + u)·∇h(ξ̄+ξ)+βv]−∇2

h[(ū + u)·∇h(θ̄+θ)]

whereu = (u, v) andξ = ∇2
hψ is the relative vorticity. After

linearization about a zonal basic state, one obtains

F (d) = Llin[v] =

[

2
∂ū

∂z
∇2
hv + (β − 2

∂2ū

∂y2
)
∂v

∂z

]

, (7)

expressed entirely in terms of the perturbation meridionalve-
locity v andF (d) is referred to as the ‘dynamical forcing’. The
second term,F (h) = ∇2

hΘ̇, depends explicitly on heating.
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d. Inverting the omega-equation: unconditional case

By ignoring the conditional aspect of the parameterizations,
F (h) becomes linear inw. It is then possible to express the ver-
tical motion completely in terms of streamfunction, by inverting
the omega equation. Here, a Green function method is used
for the inversion (e.g. Mak 1982, 1994). The situation without
large-scale rain (ǫlsr = 0) is discussed below, the extension with
large-scale rain is derived2 in Appendix A.

The first step is to construct the Green functionGw for the
operatorLw in (6), assuming a horizontally wavelike perturba-
tion. Because the vertical velocity vanishes at rigid lids,Gw
satisfies simple homogeneous boundary conditions. By multi-
plying (6) from the left byGw and integrating over the domain,
one obtains

w(z, t) = w(d)(z, t) + w(h)(z, t), (8)

where the rhs contains the two contributions

w(d)(z, t) =

∫

Gw(z, z′)F (d)(z′, t)dz′, (9)

w(h)(z, t) = ǫccvαk(z)w(z∗, t), (10)

whereαk(z) ≡ −(k2 + l2)
∫

Gw(z, z′)h(z′)dz′. The first con-
tribution to (8),w(d), is referred to as the ‘dynamic’ vertical
velocity, since it can be solved givenψ. The second,w(h), is
only non-zero whenǫccv 6= 0. It warrants to emphasize that in
absence of baroclinic shear, moist normal modes can only ex-
ist if w(z) = w(h)(z), implying that ǫccvαk(z∗) = 1. This
limit, which defines the so-called “CISK-threshold” (Craigand
Cho 1988), also enters the baroclinic problem. Equation (8)is
solved by requiring it to be self consistent atz∗, giving

w(z∗, t) =
w(d)(z∗, t)

1 − ǫccvαk(z∗)
. (11)

Sincew(d)(z∗, t) is known from (9), using (11) one can ob-
tain w(z∗, t). Usingw(z∗, t) in (10) givesw(h)(z, t), which
upon substitution into (8) givesw(z, t). It is clear from (11)
thatw(h)(z∗, t) (and thereforew(z∗, t)) becomes singular at the
“CISK-threshold”ǫccvαk(z∗) = 1 unlessw(d)(z∗, t) = 0. The
singular behavior near the “CISK-threshold” is an intrinsic as-
pect of moisture parameterizations based on the total vertical
velocity. It typically occurs at a particular(k, ǫccv) combination
and is the basic result of a positive feedback between heating
and vertical velocity. Although it might be relevant for thezero-
shear situation, we will use the CISK-threshold mainly to deter-
mine an upper bound on the heating intensity. The maximum al-
lowed heating intensity will be chosen such thatǫccvαk(z∗) 6= 1
for all wavenumbers3.

2Alternatively, the unconditionalLSR parameterization can be described us-
ing the “reduced-N2 ” approach, introduced by Eady (1949), where theN2 is
changed from its dry value, to an effectivẽN2(z) ≡ N2 − ǫlsrr(z).

3Another way to prevent the formation of the singularity through the heat-
ing vertical velocity feedback, is to use only the ‘dynamic’vertical velocity
w(d)(z∗, t) (rather thanw(z∗, t)), in theCCV parameterization (Mak 1982).

e. Model basis formulated using kernel Rossby waves

For a single zonal wave numberk, the differential operator
Lψ, which relates streamfunction to PV viaLψ [ψ] = q, can be
inverted by means of a Green functionGψ, such thatψ(z) =
∫

Gψ(z, z′)q(z′)dz′. By using∂Gψ/∂z = 0 at rigid lids, and
Gψ → 0 at infinity if no upper boundary is present,Gψ(z, z′)
represents the streamfunction that can be associated with aPV
δ-function atz = z′ and zero potential temperature at rigid lids.
Such a structure was called akernel Rossby wave(KRW) by
Heifetz and Methven (2005). UsingGψ , the PV equation can be
written as

∂q

∂t
+ ikA[q] = S, (12)

whereA[q] is a linear integral operator acting on the PV stateq
(e.g., V09), andS represents diabatic processes acting on wave
k. In formulating (12), the Bretherton (1966) approach is used to
interpret boundary potential temperature contributions in terms
of boundary-PVδ-functions. If the parameterizations are taken
in their unconditional form,S can be expressed entirely in terms
of PV, implying that (12) can be written more compactly as

∂q

∂t
+ ikÃ[q] = 0. (13)

Appendix B gives a rigorous derivation of (13), including the
definition ofÃ, on the basis of KRW theory. The problem has
been reduced from a set of coupled partial differential equations
(PV equation and omega equation) to a single linear ordinary
differential equation for the PV.

3. Two simple examples

This section describes two examples, where (13) assumes
a particularly simple form, yet retains the primary effectsof
moisture. The first is wave-CISK instability for a constant-shear
flow in a vertically unbounded domain, previously discussedby
SL91. In the second a lower boundary is added. The main fo-
cus will be on the normal modes for which a classification is
proposed in section 3c.

a. Vertically unbounded shear flow with cumulus heating (f -plane)

A constant-shear flow in a vertically unbounded domain on
the f -plane, is the simplest geometry supporting gNMs in the
presence of a wave-CISK moisture parameterization. Sinceq̄y =
0 throughout the domain, there can be no dry baroclinic insta-
bility. If the heating profile takes the form of a top-hat, diabat-
ically induced PV growth can only occur at the two edges of
the heating profile. The normal-mode analysis of this systemis
given in SL91, who used a different route – avoiding the omega
equation – to obtain the normal-mode results. Here we focus on
aspects that either have not been addressed by SL91, or that are
important to later sections, when more complicated geometries
are introduced. Following SL91, the heating intensityǫccv is
made proportional to the “cloud depth”∆z (depth of the heat-
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ing layer):
ǫccv = E∆z (14)

where the parameterE = O(1) is called the ‘diabatic heating
efficiency’. The system has two intrinsic vertical scales: the
Rossby height scaleHR ≡ 1/K (in units ofH), whereK =
(k2 + l2)1/2, and∆z = z2 − z1, the depth of the heating layer.
The normal-mode dispersion relation is a function ofk∆z and
the diabatic heating efficiencyE only. To avoid reaching the
CISK-threshold for anyk, we impose the constraintE < 2.

With the previous approximations Eq. (13) reduces to a 2–
wave problem for the PV-waves at the bottom (labelled 1) and
top (labelled 2) of the heating profile. The total PV can be writ-
ten asq(z, t) = q1(z, t)+q2(z, t) = a1(t)δ(z−z1)+a2(t)δ(z−
z2), wherea1,2(t) = A1,2(t) exp[iǫ1,2(t)] andAi andǫi denote
the amplitude and phase of the PV and circulation anomalies as-
sociated with the two CRWs. The time-evolution ofai is given
by (H04,V09):

ȧi(t) = −ik
∑

j

cijaj(t), i, j ∈ (1, 2) (15)

where cij = ū(zi)δij − γij/k. The interaction coefficients
γij = γ(zi, zj) are computed in (B7) [note thatγ(d)(zi, zj) = 0
in this case]. The expressions forcij show that the propagation
and interaction of the PVδ-functions (KRWs), that exist on the
edges of the heating layer, is very similar to the propagation of
KRWs on a dry PV gradient. In the dry case, the sign ofq̄y de-
termines the propagation direction, and the actual propagation
speed is given by the product ofq̄y and the PV-induced local
meridional wind. Since the meridional velocity of a KRW is in
quadrature with its PV, isolated KRWs are neutral, and unstable
waves can only form if there are at least two KRWs. A simi-
lar situation occurs in the moist case. Vertical motion induces a
positive PV tendency in regions where there is a positive gradi-
ent in heating,hz > 0 (at the lower edge of the heating profile),
and a negative PV tendency wherehz < 0 (at the top edge).
Because the vertical velocity associated with a KRW is also in
quadrature with its PV, the diabatic processes are able to propa-
gate an existing PV pattern relative to the flow, with the signof
hz determining the propagation direction. The actual propaga-
tion speed is given by the product ofhz and the vertical velocity
induced atz∗.

There are two necessary conditions for instability to occur.
In terms of the notation of (15), these conditions are (i)γijγji <
0, and (ii)ūiγij > 0. In physical terms, these conditions require
that the waves must propagate in opposite directions to one an-
other and counter to the shear in the zonal flow, respectively.
This is true both for the dry and the moist problem and agrees
with Hayashi and Young (1987).

b. Semi-infinite Eady model with cumulus heating (f -plane)

Due to the absence of a lower boundary, the problem studied
in the previous section is over-simplified as a model for moist
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FIG. 1. Dispersion relations for the unbounded andsemi-infinite
constant-shear flow with cumulus heating. Top panels show growth
rate (scaled by max dry Eady growth rate) and bottom panels show
the scaled phase-speed(cr − ū(z∗))/∆z. Thin full lines show the
unbounded SL91 problem; the heavy black/gray curves show the un-
stable/neutral normal modes of the semi-infinite problem. Black lines
in the bottom panels show the propagation rates(cii − ū(z∗))/∆z of
the three CRW components (cBB dotted,c11 dashed andc22 dash-dot).
Heating parameter values, defined by (14) and (16), are: (left) E = 1,
R = 0.4 and (right)E = 1, R = 0.8.

atmospheric cyclogenesis. In the second example the lower
boundary is added atzb = 0. Other conditions are unchanged.

The main difference between the unbounded and the semi-
unbounded domain is that the latter supports potential temper-
ature edge waves, which propagate on the surface mean merid-
ional temperature gradient. These boundary potential temper-
ature perturbations are interpreted as boundary-PV anomalies,
which propagate relative to the mean flow on the negative sur-
face mean PV gradient (Bretherton 1966). Thus there are now
three spatially distinct PV-waves that define three RW compo-
nents:qB (the surface edge wave), andq1,2 (the PV-waves at the
lower-edge and the top-edge of the heating profile). With three
PV components, there exist three possible pairings, namely(qB, q1),
(qB, q2) and (q1, q2). Instability and sustained mutual growth
can however only occur between components of two of the three
pairs that can be formed, since the(qB, q1) pair does not satisfy
the conditions for mutual amplification for heating intensities
below the CISK-threshold.

With the lower boundary included, a new dynamically im-
portant height scale appears: the distance between the top of the
heating layer and the surface. This motivates the introduction of
R, the ratio of height scales:

R =
∆z

z2 − zb
. (16)

For given values ofE and0 ≤ R ≤ 1, the normal-mode growth
rate is a function ofk∆z. Realistic values ofR can be obtained
from estimates ofz1 − zb ∈ [0.1, 0.3] (in units ofH) andz2 −
zb ∈ [0.5, 0.9], giving R ∈ [0.4, 0.9]. To remain below the
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CISK-threshold, a further constraint is thatE < 2 (at least if
z∗ = z1).

Figure 1 shows the normal-mode dispersion relation for two
characteristic cases in which the diabatic heating efficiencyE =
1. For each wave number there are three normal modes, two of
which possibly form a growing-decaying conjugate pair. The
third mode (gray lines) remains neutral over the entirek∆z do-
main and only for this modeq2 plays a negligible role. At large
k∆z it resembles the isolated boundary edge wave, whereas
qB ∼ −q1 in the limit k∆z → 0. The attention will be on
the other two modes. Comparing the dispersion relation to the
unbounded problem, one immediately notices that the maxi-
mum growth rate is reduced due to the presence of the lower
boundary, and further that the maximum growth rate decreases
with R. ForR 6= 0 a long-wave cut-off wavenumber appears
and, as expected, no growth remains in the limitR → 1 (when
z1 → zb, or z2 → ∞). Interestingly, the long-wave cut-off is
never far offk∆z ∼ R, or, in other words, the Rossby height
scaleHR = 1/K ∼ (z2 − zb).

The results imply, perhaps counter-intuitively, that the lower
boundary acts to suppress, rather than to invigorate the baro-
clinic instability, and that this suppression occurs increasingly
at longer zonal wavelengths. The reason is that the wave-CISK
parameterization cannot operate efficiently ifz∗ is ‘near the sur-
face’ (‘near the surface’ here meansk(z∗ − zb) ≪ 1), because
it is difficult to generate sufficient vertical motion at suchsmall
distances abovezb. This becomes even more clear when look-
ing at the self-interactions of the PV waves above and below
the heating,c11 and c22, for R = 0.8 (bottom right panel in
Fig. 1, dashed and dash-dotted black lines respectively), which
hardly vary withk∆z, their values being roughly predicted by
the mean zonal wind at their home base.

c. Classification of growth mechanisms

Only two out of three possible pairings of CRWs may pro-
duce sustained growth in the case of the semi-infinite wave-
CISK Eady model [(q2, q1) and (q2, qB)], suggesting that its
growing normal modes fall into two classes. It is easy to de-
termine to which “regime” a particular gNM belongs, since for
a fixed set of parameters the equations describing the evolution
of the three CRW components (qB, q1, q2) are identical to (15),
except that the system is now 3x3. The growth rate of each RW
component follows from the real part of (15):

d

dt
lnAi = −k

∑

j

cij
Aj
Ai

sin(ǫi − ǫj), (17)

where now(i, j) ∈ (B, 1, 2). Eqn. (17) is used to determine
which of the two eastward-propagating components (qB or q1)
contributes the most to the growth rate of the westward-propagating
component (q2), yielding two classes of unstable normal modes:

(I) Q2-Q1: q2 amplifies mostly due toq1 and vice versa. This
is the type of instability discussed in SL91 in the limit of
strong heating far from boundaries.

FIG. 2. Classification diagram for the semi-infinite Eady model with
wave-CISK parameterization. Also shown are contours of normal-
mode growth rate (scaled by the dry maximum Eady growth rate).
(Above) fixed diabatic heating efficiencyE = 1 (Eqn. 14), and varying
k∆z andR (Eqn. 16). (Below) fixedR = 0.8, and varyingk∆z and
E. The black crosses mark the location of the most unstable wave for
each value on the vertical axis.

(II) Q2-QB: q2 amplifies mostly due toqB and vice versa.
This will be referred to as adiabatic Rossby wave (DRW)
since its existence depends on both near surface baroclin-
icity and latent heating.

This classification can be extended in a natural way if an upper
boundary and interior mean PV gradient are present (next sec-
tions). Please note that in the classification, the amplitude ratios
Ai/Aj and phase differencesǫj − ǫi assume the values for a
specific normal mode and are not free parameters.

Figure 2 shows the normal-mode classification diagram for
a situation in which either the diabatic heating efficiencyE or
the ratio of height scalesR is fixed, andR orE is varied along
with k∆z. The dark-grey shaded highlights normal modes of
type Q2-QB (DRW), the light-grey area those of type Q2-Q1.
(White areas indicate zero normal mode growth rate). The first
observation is that both regimes indeed occur. The Q2-Q1-
regime is largely confined to largeE values and smallR values
(i.e., efficient heating far from boundaries), whereas the Q2-QB-
regime is confined to longer wavelengths (smallk∆z), largeR
(deep heating close to ground) and smallE (heating efficiency).
Note that there are no regions of overlap possible followingthe
regime definition. The black crosses mark thek∆z value of
the fastest growing normal mode for a given value of they-
ordinate. Interestingly, fastest growing normal modes canbe
found of both types.
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For a range of points in theER-plane the fastest growing
normal mode was found, and its type analyzed. This produced
the classification diagram for the fastest growing normal mode,
shown in figure 3. In the lower-right half of theER-plane the
most unstable waves are of the Q2-Q1-type, whereas for small
values ofE and larger values ofR, they resemble the DRW. The
transition between the different regimes is smooth, implying that
in the transition-zone, the modes are of a mixed type, involving
significant interaction between all 3 CRWs.

4. Eady model with cumulus heating

Continuing the progression of increasing model-complexity,
the next step is to add a tropopause in the form of a rigid lid.
If S = 0 the model is the classic Eady (1949) model. Mak
(1982,1994)studied the Eady model with cumulus heating. Since
the Eady model supports dry baroclinic instability, one of the
questions is how the normal-mode classification changes.

The upper lid introduces an additional Rossby edge wave,
qT , propagating along the positive PV gradient there. Based
on the possible pairings between the four CRW components
(qB, q1, q2, qT ) (waves on the ground, lower and upper edges
of the heating and the tropopause respectively) that may lead to
sustained modal growth, two new regimes are defined:

(III) QT-QB: qT amplifies mostly due toqB and vice versa.
Also referred to asDRYgrowth.

(IV) QT-Q1: qT amplifies mostly due toq1 and vice versa.
Also referred to asTYPE-Cgrowth due to the interaction
between tropopause troughs and the heating layer (Plant
et al. 2003).

The regime classification algorithm is as before and uses the4x4
equivalent of (15) and (17). Obviously, with the introduction of
the tropopause, the tropopause-height appears as a new dynami-
cally important height-scale. As a result, the dispersion relation

FIG. 4. Classification diagrams for the wave-CISK Eady model. Also
shown: contours of normal-mode growth rate (scaled by the dry max-
imum Eady growth rate). (a) fixedE = 1, and varyingk andR. (b)
fixed R = 0.8, and varyingk and E. The black crosses mark the
location of the most unstable wave for each value on the vertical axis.

is no longer a function ofE, R andk∆z only. The strategy
chosen for the parameter sensitivity study, is to setzt− zb = H
andz1 − zb = 0.1H , and to vary the cloud depth∆z = z2 − z1
andE (H is the height scale from section 2a). The height of the
moist layer (z∗) is kept constant, although changing its location
will have some effect (Mak 1994).

Figure 4 shows the normal-mode classification diagram for
cases similar to those discussed for the semi-unbounded do-
main. Note that thex-ordinate isk, rather thank∆z in Fig. 2.
The reason for usingk is that in this way the dry Eady short-
wave cutoff atk ∼ 2.4 becomes very obvious, and further-
more that all long-wave modes withk ≤ 2.4 classify as QT-QB
(DRY), with diabatic heating playing an insignificant role for all
R. For smallR values these DRY modes are separated from the
modes in which moisture plays a more important role, by a clear
‘gap’ indicated by the white region in which no modal instabil-
ity is found. At the short-wave end, the figures look very similar
to those of Fig. 2 (e.g., moist short wave cutoff atk∆z ∼ 2.2
for smallR).

The QT-Q1 regime is not identified for the current set of
parameters. However, it is clear that because of the symmetry of
the Eady model, the area covered by Q2-QB would be covered
by QT-Q1, if instead of(z1 = a, z2 = b, z∗ = z1), the model
setup had been(z1 = zt− b, z2 = zt− a, z∗ = z2). However, it
is unlikely that physically realistic values ofz∗ are near the top
of the cloud. Therefore, despite the fact thatz∗ is much closer
to the bottom of the heating layer,z1, than to the top,z2, the PV-
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wave at the top of the cloud,Q2, is more important for baroclinic
growth thanQ1. Of course, this picture would change if the
bottom of the cloudz1 andz∗ are located much higher, e.g., in
the mid troposphere, with a cloudtop at tropopause level. But
again, these are not considered to be the most realistic cases.

Figure 5 gives the classification diagram in theER-plane
for the most unstable waves. As expected a significant part
of the left half of theER-plane is covered by the QT-QB, or
DRY regime. Note further that there is no overlap between the
regimes in this figure, although this is not obvious: For instance,
according to our simple classification algorithm, a gNM could
in theory qualify both as Q2-Q1 or as QT-QB (if for both pairs
these components have largest mutual amplification rates),since
they describe interactions between different pairs (similarly for
Q2-QB and QT-Q1). As in the previous figure, fastest growing
normal modes dominated by TYPE-C interaction are not found
in this figure. The transition between Q2-Q1 and QT-QB is a
discontinuity rather than smooth.

5. More general basic states including interior PV gradients

In the previous sections we have considered flows for which
there was a clear spatial separation between the PV anomalies
that played a role in growing normal modes. As a result, CRW
components were readily identified and analyzed. H04 have
shown that such a partitioning into CRW components is also
possible for the dry problem in the more general situation when
the interior PV gradient is non-zero throughout the domain.In
this section the theory is extended to the moist initial value prob-
lem following the approach of V09.

a. On the origin of PV perturbations

In the Eady model with a top-hat cumulus heating parame-
terization, two of the CRWs (namely of the surface and tropopause
edge waves) that appear in the gNM can be related to meridional
displacementsη of the basic-state PV contours. Following V09,
thisdisplacement PVis denoted as:

q(d) = −η
∂q̄

∂y
. (18)

In the same way, the PV associated with the remaining two RW
components can be related to the diabatic heating, and is de-
noted byq(m). Note that the CRWs are always labelled with a
subscript (e.g.,qB, q1) and that PV of different origin is denoted
with superscript (e.g.,q(m)). By substituting the definition of
q(d) into (1), and using the kinematic relation∂η∂t + ū∂η∂x = v,
the following evolutions equations are obtained

∂q(d)

∂t
+ ū

∂q(d)

∂x
= −v

∂q̄

∂y
, (19)

∂q(m)

∂t
+ ū

∂q(m)

∂x
= S, (20)

∂q(p)

∂t
+ ū

∂q(p)

∂x
= 0. (21)

In general, initial conditions include PV that cannot be related
to meridional displacements or heating. Eqn. (21) shows that
this remaining PV is simply advected by the basic state zonal
flow as if passive. These equations are coupled throughv andS
which depend on all 3 PV components.

The above partitioning can be readily applied in the more
general situation where distributed heating occurs, and a non-
zero interior PV gradient is present. However, whenever there
is spatial overlap between the regions whereq̄y 6= 0 andS 6=
0, there may be ambiguity how to partition a general PV state
vectorq into q(d), q(m) andq(p), at least as long as one does not
know the exact history of the air. In contrast, for a NM with PV
q = Re{qG(z) exp[ik(x− ct)]}, the partitioning is given by:

q
(d)
G =

−q̄yvG
ik(ū− c)

, q
(m)
G =

SG
ik(ū− c)

, q
(p)
G = 0,

wherevG andSG are the meridional wind and diabatic PV term
of the gNM respectively. These expressions are only non-singular
at the steering level for growing (or decaying) NMs with com-
plex phase speedc.

For example, in the Eady model with top-hat heating:q(d)

consists of boundary PV only,q(m) consists of interior PV at the
two heating edges only. In the Eady model with large-scale rain:
q(d) exists only at the boundaries butq(m) is distributed every-
where in the interior. In the Charney model with top-hat heating:
q(d) is distributed everywhere butq(m) exists at only two levels.
Two further examples are shown in Figure 6. Note the similar-
ity in modal structures for the CCV and LSR parameterizations,
especially the displacement PV and associated winds.

b. Definition of general RW components

In this section RW components are defined as suitable su-
perpositions ofq(d)G and its complex conjugate, and ofq(m)

G and
its complex conjugate. We start with a brief summary of the dry
theory. In absence of diabatic heating (S = 0), the gNM must be
associated exclusively with displacement PVq(d)G . In that case
a framework exists to analyse baroclinic instability in terms of
two interacting RW components, known as counter-propagating
Rossby waves (CRWs) (H04). Central to CRW-theory is that
the dry gNM and its decaying complex conjugate (dNM) can be
suitably rewritten as a sum of two vertically untilted RW com-
ponents called CRWs. Because CRWs have vertically untilted
PV structure, their associated wind-field is also vertically un-
tilted. As a result, the CRWs are neutral and self-propagating in
isolation, but will excite each other in time, and may eventually
phase-lock in a mutually amplifying configuration.

In the dry theory, the CRWs can be unambiguously defined
from the gNM: they are constructed to be orthogonal with re-
spect to pseudomomentumand with respect to the wind-weighted
term in the expression for pseudoenergy (H04). Denoting the
CRWs’ PV structures byqB,T , the orthogonality conditions are

{qB,NdqT } = 0, {qB,NdūqT } = 0 (22)
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FIG. 6. Decomposition of the gNMqG = q
(d)
G + q

(m)
G for a wave

with k = 1.6 (dry Eady maximum) growing on the Green model basic
state (with rigid lid andβ 6= 0). (Left) Case with cumulus heating
(E = 1, z1 = 0.1, z2 = 0.7). (Right) Large-scale rain [ǫlsr = 0.9
andr = exp(−z/0.3)]. From top to bottom: fullq, displacementq(d)

and moistq(m). Displayed are: PV (shading, dark +ve), boundary PV
(circles, dark +ve), meridional wind (black contours, -ve dashed) and
vertical wind (red contours, -ve dashed). The cumulus heating case has
slightly larger growth rate (0.36 vs 0.33).

where the brackets define the inner product{X,Y } =
∫

X∗Y dz
andNd = (q̄y)

−1 is the weighting. The same technique is used

to obtain two “dry CRWs”,qB,T , fromq
(d)
G and its complex con-

jugate in caseS 6= 0; so called because in the limitS → 0 they
become the CRWs of the dry theory.

Two further ‘moist’ CRWs (labelledq1,2) are derived from

the ‘moist’ PV associated with the gNM,q(m)
G , and from its

complex conjugate. Similar to the ‘dry’ CRWs, the ‘moist’
CRWs are also defined to be orthogonal with respect to two

global integrals,

{q1,Nmq2} = 0, {q1,Nmūq2} = 0. (23)

The weightingNm for simplicity is taken to be equal toNd.
Some comments on the particular choice ofNd,m are now

given. Held (1985) showed that the discrete normal modes of the
dry problem are orthogonal to all continuous spectrum modes
(CMs) in the pseudomomentum inner product,{qi,Ndqj} =
δij . Therefore, by making the CRWs of the dry theory also
orthogonal in this inner product, the CRWs and CMs form a
complete and orthogonal basis. In the case with moisture pa-
rameterizations included, dry pseudomomentum is no longera
conserved quantity, implying that the modes are no longer or-
thogonal under the pseudomomentum inner product. Although
one can easily demonstrate that the moist normal modes are or-
thogonal with respect to some matrix norm4, the authors have
not been able to express this norm in quadratic physical quan-
tities. The one exception is the case where there is cumulus
heating only,̄qy = 0 and there are no boundaries. In that limit,
the moist normal modes can be shown to be orthogonal with
respect to the inner product{qi,Nmqj} = δij whereNm is
proportional to5 ∂h/∂z)−1.

c. Evolution equations for general RW components

For the moment it is assumed that the PV state vector can be
expressed entirely in terms of linear combinations of the gNM
and dNM. By projecting (19-20) onto the four RW components

4The vertically discretized normal-mode eigenvalue problem is of the form
Ay = cy. SinceA in the problems considered is both real and non-singular, it
is always possible to ‘symmetrize’ the eigenvalue problem with a symmetrizer
X (X is real symmetric) that satisfiesXA = (XA)† (e.g. Sen and Venkaiah
1988). By writingX = P T DP the eigenvalue problem becomesBx = cDx,
whereB = PXAP T , x = Py andD a diagonal matrix. It can be shown that
neutral modes are orthogonal in the sense that(c2 − c∗1) {x1, Dx2} = 0.

5In this caseN−1
m = ǫccv ρ̄−1K−1

w (z∗, z) ∂
∂z

h

ρ̄(z)h(z)
N2(z)

i

with ρ̄ the den-

sity andKw the vertical velocity kernels introduced in Appendix B.
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using the brackets, one obtains [cf. (15)]:

ȧi(t) = −ik
∑

j

cijaj(t), i, j ∈ (B, 1, 2, T ) (24)

whereaj = Aj(t) exp[iǫj(t)] denotes the complex amplitude of
CRW-j, andcij are the propagation and interaction coefficients,

cij = ũiδij − γ̃ij/k, (25)

where

ũi =
{qi,N ūqi}

{qi,N qi}
, γ̃ij =

{qi,N γ̄qj}

{qi,N qi}
,

with N = Nd andγ̄ = γ(d) for i ∈ (B, T ), andN = Nm and
γ̄ = γ(m) for i ∈ (1, 2) – see Appendix B. A key-difference
between (15) and (24) is that (24) describes the evolution of
amplitude and phase of general RW components which have
possibly highly intricate, vertically overlapping PV structures,
whereas (15) describes the evolution of spatially separated PV
δ-functions that formed the RW components in the wave-CISK
Eady model. However, the interaction mechanisms are still basi-
cally the same. Therefore, the same normal-mode classification
algorithm can be applied as in the Eady model with cumulus
heating, where the general RW components replace the PVδ-
functions [cf. (17)]. Results for the Green (1960) model (Eady
model with non-zeroβ) and the Charney (1947) model with cu-
mulus heating are shown in Fig. 5. Note how similar these fig-
ures are, while the structure of the ‘dry’ CRWs is significantly
different in the models (see e.g. Methven and De Vries (2008)
for the structure of the CRWs in the Green model).

6. Large-scale rain examples

Examples of baroclinic waves including the large-scale rain
moisture parameterization are now explored. Attention is re-
stricted to the semi-infinite and bounded Eady model, with or
without β. The large-scale rain parameterization involves the
specification of a moisture profiler(z). Here we take the mois-
ture profile to be exponentially decaying,r(z) = exp(−z/Hm),
whereHm is a moisture scale-height (we takeHm = 0.3 in
units ofH). Figure 7 shows the normal-mode dispersion rela-
tion for various values ofǫlsr in the various domains. As has
been noted in other studies (WD94, Moore and Montgomery
2004) the short-wave cutoff disappears, but even forǫlsr = 0.9
the growth rate of the most unstable wave increases only by
10-20%. For a rapidly decreasing moisture profile one clearly
needs to approach the limit of potential moist convective insta-
bility (ǫlsr → 1) to obtain growth rates that greatly exceed those
of the dry Eady model. One implication for the atmosphere,
is that cases when baroclinic growth far outstrips that obtained
from dry models require warm moist air through a greater depth
and may need to be convectively unstable in the regions of satu-
rated ascent such that deep convection can distribute latent heat-
ing through the troposphere. Figure 8 shows the classification
diagrams for the Eady (1949) model, the Green (1960) model
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FIG. 7. (Top) Dispersion relation for the Eady model (zt = 10 km
height) with large-scale rain parameterization andǫlsr ∈ (0.5, 0.9).
Gray lines show the results when no upper rigid boundary is present.
(bottom) Dispersion relation for the Eady model withβ = 0 (heavy)
andβ = 1 (thin) and large-scale rain forǫlsr = 0 (dashed),ǫlsr = 0.5
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and the Charney (1947) model with large-scale rain. Similarto
the examples with cumulus heating (Fig. 4b), long waves with
k ≤ 2 (as well as shorter waves for smallǫlsr) mostly clas-
sify as DRY gNMs. For larger wavenumbers the gNMs all clas-
sify asdiabatic Rossby waves, implying that there is a signifi-
cant influence from the heating. Note that the other two classes
Q2−Q1 (Snyder-Lindzen limit) andQT −Q1 (Type-C cyclo-
genesis) do not occur with large-scale rain for any basic state.
This is because the water vapor is concentrated in the lower tro-
posphere so that heating layer is naturally near the ground where
the boundary temperature wave ofQB plays a major role. Also,
in the Charney and Green models which have an interior merid-
ional PV gradient, the “dry” upper CRW can exist at any level
since it is not confined to the tropopause as in the Eady model.
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FIG. 8. Classification diagrams for baroclinic waves including thelarge-scale rain parameterization in the Eady model (left), the Green model
(middle), and the Charney model (right). In case of the Eady and Green model, the rigid lid was located at 10 km height.

As wavelength and the Rossby height scale are decreased, the
upper CRW (and therefore the dynamically induced vertical ve-
locity) move closer to the ground, and consequently so does the
heating maximum. The dry regime always exists at short wave-
lengths for sufficiently weak heating in models withβ.

7. General initial conditions

The aim of this section is to show that when moisture is
present, the general initial-value problem can be accurately pre-
dicted by considering just the four CRW components associated
with the moist growing NM, and a passively-advected residual
PV (PAR-PV). The starting point is Eqns. (19-21). De Vries
et al. (2009) (V09) have shown that the dry adiabatic (S = 0)
evolution from a broad range of initial conditions such as PV
monopoles and dipoles, is described accurately by attributing all
the initial PV to the passiveq(p) component and then integrat-
ing simple ODEs which describe the excitation of CRWs by the
meridional velocity associated withq(p) and their subsequent
propagation and interaction. The approach works because the
displacement PV anomaliesq(d) created through meridional ad-
vection project almost entirely onto a linear combination of the
two CRW structures. The projection is not perfect and some ad-
ditional displacement PV anomalies,q(n), are generated. How-
ever, in dry modelsq(n) is orthogonal to both CRWs and there-
fore has no influence on their amplitude and phase evolution and
also cannot influenceq(p) (V09). V09 use the term“passively-
advected residual PV (PAR-PV) approximation”to describe the
reduced model whereq(n) is neglected, such that any PV not
projected onto the CRWs is advected as if passive.

In problems with parameterized latent heating, the first step
is to decompose the initial perturbation PV into three partsq(0) =
q(d)(0)+q(m)(0)+q(p)(0). Onceq(p)(0) has been identified, its
evolution is given by (21), simply ‘passive’ advection withthe
basic-state wind̄u. However, the meridional wind induced by
q(p) is able to excite the two ‘dry’ CRWs through meridional
advection of basic state PV. Its induced vertical motion also
produces diabatic heating and the excitation of the two ‘moist’
CRWs. The winds associated withq(p) may further project onto

PV, denoted asq(n), that cannot be attributed to the CRWs. Once
q(n) is non-zero, it may further alter the dynamics of the four
CRWs. The above sketched picture suggests that for general
initial conditions the CRW evolution equations (24) contain two
additional ‘forcings’:

ȧi(t) = −ik

[

∑

j

cijaj(t) + F
(p)
i (t) + F

(n)
i (t)

]

, (26)

whereF (p)
i results from the ‘passive’ RW componentq(p) and

is computed as

F
(p)
i (t) =

{

qi,N γ̄q(p)
}

{qi,N qi}
,

andF (n)
i (t) represents the forcing fromq(n). However, unlike

F
(p)
i , the functionF (n)

i (t) is a priori unknown. For dry adia-

batic evolution, it can be proved thatF (n)
i (t) = 0 at all times,

even ifq(n) 6= 0 (V09). This arises becauseq(n) is orthogonal to
the dry CRWs as mentioned above. However, this is not true in
general when including the heating parameterizations. Never-
theless, in systems with moisture the PAR-PV approximationis
defined by neglectingq(n) at all times and equating the full evo-
lution to the sum of the PAR-PV componentq(p) and the four
CRWs, as described by (26) withF (n)

i (t) = 0.

a. Evolution of a PV monopole in the presence of large-scale rain

The previous discussion is illustrated with an example where
the PAR-PV approximation reproduces the perturbation evolu-
tion quite accurately. A basic state is considered with smooth
shear (positive in the troposphere, slightly negative in the strato-
sphere) and buoyancy frequency (N = 1 in the troposphere,
N = 2 in the stratosphere), non-zeroβ and with a density scale-
height of 7.5 km (Fig. 9). Large-scale rain is included with a
moisture profile that decays exponentially away from the sur-
face with a height-scale of 4 km. We takeǫlsr = 1 which is
the largest value for which there is no potential moist convec-
tive instability in the lower troposphere (WD94). Because of
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FIG. 10. Evolution of a PV monopole with large-scale rain parameterization on the basic state shown in Fig. 9. Viewed from frame ofmoving
with the gNM phase-speed. Plotting convention as in Fig. 6. The contour interval increases exponentially withσG. From top to bottom: Full PV
q; q(p); qT ; qB ; q2; q1; andq(n) (the PV neglected by making the PAR-PV approximation). One time unit corresponds to approximately 10 hours
of physical time. The simulation starts atT = 0 with all PV attributed toq(p).
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the non-trivial basic state, the Green’s functions are obtained
numerically.

The initial condition takes the form of a mid-tropospheric
PV monopole. The monopole is given a zonal wavelength of
0.8 of the wavelength of the most unstable dry Eady mode. The
gNM growth rate at this wavelength is about 30 percent larger
than that of the most unstable dry Eady mode and we expect the
moist CRWs to contribute significantly to the evolution. Basic
state and initial perturbation are shown in Figure 9. Note how
both the meridional wind and the vertical wind are in quadrature
with the initial PV and how these fields quickly vanish in the
stratosphere due to the higher stratification.

The KRW model (Section 2e) was run forward to obtain the
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full PV, shown in the top row of Fig. 10. Already att = 1
the perturbation structure has changed significantly. A negative
tropopause PV anomaly is generated at the location where the
initial northward winds were maximal, while below at the sur-
face a warm potential temperature anomaly associated with pos-
itive boundary-PV (black circles) appears. The tropopause-level
negative PV induces an anti-cyclonic circulation, while the pos-
itive boundary-PV induces a cyclonic circulation, such that the
meridional wind (black contours) rapidly develops a westward
tilt with height even though the initial PV tilts over eastwards in
the shear. Similarly, the vertical velocity (red contours)also de-
velops a westward tilt. In time the perturbation gradually starts
to resemble the gNM, which has a significant contribution from
the low to mid-tropospheric PV.

The other rows in Fig. 10 show the partition of the full per-
turbation into RW components. The first row is theq(p) com-
ponent which equals the initial condition att = 0 and is simply
sheared by the zonal flow. Note that its PV maximum is in-
variant, but the contour interval used in the plot increasesexpo-
nentially at the gNM growth rate. Its meridional wind, and toa
lesser extent vertical wind, tilt eastwards with time reflecting the
tilt in PV. The evolution is also shown in a frame moving with
the gNM phase speed (about 10 m s−1), significantly slower
than that of the mid-tropospheric basic state zonal wind, sothe
tilting PV pattern translates to the right.

The next two rows are the upper and lower “dry CRWs” re-
spectively. Both are untilted and amplify faster than the gNM
growth rate, since their projection from the initial conditions
is defined to be zero and they are excited through meridional
advection associated with the PAR-PV component. A positive
anomaly inq(p) induces cyclonic circulation which advects ba-
sic state positive PV from the north on its western side, espe-
cially at tropopause level. As a result the dry upper CRW is
excitedπ/2 upstream relative to the wave inq(p). The same pos-
itive q(p) anomaly advects warm air from the south on its eastern
side which at the ground is equivalent to a positive boundary-PV
anomaly (black dot in figure). Although, the dry lower CRW
contains a negative interior PV anomaly in the warm air, the
positive boundary-PV anomaly immediately below is dominant
in the inversion to obtain the winds such that the circulation is
cyclonic around it. Consequently, the air to the east of the warm
anomaly of the lower CRW moves polewards and ascends. The
circulation associated with the upper and lower CRWs is there-
fore excited in anti-phase, owing to the opposing PV gradients
upon which they exist. In this phase the wind induced by one
CRW at the level where the other is focused acts tohinder the
propagation of the other CRW counter to the flow there. Con-
sequently, the upper CRW is advected eastwards relative to the
lower CRW such that the westward tilt between them reduces
with time.

In a similar way, the moist CRWs are excited by the vertical
velocity associated withq(p). The moist upper CRW is excited
in phase with the dry upper CRW. The moist lower CRW is in
anti-phase with it because the two moist CRWs exist in regions

of opposing vertical gradient in heating (above and below the
maximum). Although the structure of the two moist CRWs ap-
pears to have only a minor contribution to the full perturbation,
it is found that their surface circulation has a major influence on
the lower dry CRW and thus the whole evolution.

Note that the individual RW components were obtained by
numerical integration of the reduced-model (26) in time using
the PAR-PV approximation (F (n)

i (t) → 0), where the initial
condition was assigned entirely to the passive componentq(p).
The bottom row shows that part of the full model disturbance
(top row) that is neglected under the PAR-PV approximation.
Clearly it has largest amplitude relative to the other components
at intermediate times (it is zero initially and becomes small for
t > 7). The error made by making the PAR-PV approxima-
tion can be measured as the maximal instantaneous total energy
contained in the neglected perturbationq(n), which is about 3
percent of the full model total energy in this example.

b. Phase space trajectories

To examine the evolution of the RW components and in par-
ticular their propagation and interaction more quantitatively, we
go back to the CRW-evolution equations (26). By separating
real and imaginary parts in (26), one obtains expressions for two
key aspects of the CRWs: their instantaneous propagation rate ǫ̇i
and growth rateȦi/Ai. Assuming the PAR-PV approximation

(settingF (n)
i = 0), one obtains

ǫ̇i = −k

[

∑

j

cij
Aj
Ai

cos(ǫi − ǫj) +
F

(p)
i

Ai
cos(ǫi − ηpi )

]

,(27)

Ȧi
Ai

= −k

[

∑

j

cij
Aj
Ai

sin(ǫi − ǫj) +
F

(p)
i

Ai
sin(ǫi − ηpi )

]

.(28)

whereF (p)
i = |F

(p)
i | andηpi = arg(F

(p)
i ). The evolution of

CRW-i can be represented as a trajectoryZi(t) = [Xi(t), Yi(t)] =
[ǫ̇i, Ȧi/Ai] in the two-dimensional “propagation rate” x “growth
rate” plane. Since both growth and propagation rate asymptote
to constant values, the CRW trajectories will ‘end’ at a fixed
point. The evolution of each CRW (i.e., the trajectory in “prop-
agation rate” x “growth rate” space) results from CRW self-
propagation and from the interactions with the other RW com-
ponents [all terms on the rhs of (27-28)]. The contributionsof all
these interactions can be compared quantitatively, by displaying
them as separate trajectories in the same figure. By zooming in
on the evolution of the individual CRWs, the trajectory analysis
further deepens the understanding of the perturbation evolution.

For the lower dry CRW, the trajectory is labelled ZB in Fig. 11.
Also shown is the trajectory of the lower dry CRW, as obtained
with the full model (i.e., by projecting the fullq(d) obtained
from (19) onto the lower CRW). In this example the trajecto-
ries are very similar but not identical. The CRW evolution is
most easily understood by analyzing the separate contributions.
First of all, QB denotes the self-contribution of the CRW. Asfor
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FIG. 11. Phase-space trajectory (ZB) of the lower dry CRW and the
contributions to its zonal propagation (x-axis) and growth rate (y-axis)
from itself (QB) and the other RW components (QP , QT , Q1, Q2
and QN which is neglected in the PAR-PV approximation). Thick
lines indicate the trajectories of the full model, thin lines those of the
reduced (PAR-PV) model. Numbers indicate nondimensional times.
Dots are separated one nondimensional time unit. The inner and outer
dotted circle have radius 0.5 and 1.0, the dashed circle has aradius
|kc| = |kcr + iσ| (in unitsfΛ/N ).

all vertically untilted PV-waves, it does not contribute toits own
growth but it has an important contribution to its phase propa-
gation (eastward propagation), which is smaller thanfΛ/N of a
pure boundary edge wave, due to the presence of interior PV of
opposing sign in the lower CRW’s PV structure. The contribu-
tion from the passive component (QP) to the CRW’s growth rate
dominates the growth rate for timest ≤ 2.5 (it excites the lower
CRW π/2 downstream att = 0), while also adding to the east-
ward propagation rate of the CRW. Its influence however rapidly
decreases, both because theqp structure itself is in the decaying
phase of the Orr-mechanism, and because the other components
amplify rapidly. Interestingly, Q1, the lower moist CRW always
helps the propagation of QB and promotes its growth. (Since
both (dry and moist) lower CRWs propagate as on a negative
PV gradient, the former statement implies that the lower dry
CRW acts to reduce the growth of Q1 at all times). Q2 and QT
act in concert to hinder the propagation rate of QB and promote
its growth by the same amount in the gNM configuration. Also,
their combined hindering behavior is almost cancelled out by
the helping effect of Q1 such that the net speed of the lower dry
CRW is not much smaller than its self-propagation rate (QB).

The trajectories obtained by making the PAR-PV approxi-
mation are almost identical to those of the full model, implying
that neglecting the PV not involved with the components is jus-
tified.

8. Conclusions and remarks

This paper describes how the Rossby-Wave (RW) perspec-
tive of baroclinic instability (e.g. Hoskins et al. 1985; Heifetz

et al. 2004a; Methven and De Vries 2008; De Vries et al. 2009)
can be extended to include diabatic generation of PV, resulting
from simple moisture parameterizations. Two different types
of moisture parameterizations (wave-CISK and large-scalerain)
have been included in the QG system for basic states of varying
complexity. Although realistically the parameterizations should
be conditional on ascent, in this paper the parameterizations are
taken in unconditional (linearized) form. The nonlinear problem
will be addressed in future work (Frame et al. 2010)

In order to understand baroclinic instability with diabatic
heating from moisture parameterizations, it is important to re-
alize that PV anomalies can have roughly three different ori-
gins. PV anomalies can be created through advection of the
basic-state PV contours in regions where the mean meridional
potential vorticity gradient̄qy 6= 0. This is called ‘displacement
PV’, q(d). Unstable normal modes in the absence of moisture
are fully described by such displacement PV. PV anomalies can
also be generated diabatically through active moist processes, in
which case it is referred to as ‘moist PV’,q(m). Finally, there
can be PV anomalies that are remnants of diabatic processes,
which are no longer active. This PV is called ‘passive PV’q(p),
because it is simply advected by the basic state windū. V09 has
presented a RW framework for interpreting baroclinic develop-
ment where the PV distribution contains both displacement PV
q(d) and passive PVq(p), but where the diabatic PV generating
processes were absent.

This work explicitly includes moist PVq(m) and details a
RW framework where all PV components are present. Four RW
components are used to interpret baroclinic instability ofmoist
normal modes. Two of these are similar to the counterpropagat-
ing Rossby waves (CRWs) appearing in the dry theory (H04).
The other two components are defined from the ‘moist’ PV, that
can be attributed exclusively to the moist processes. The main
advantage of using RW components to describe the flow, is that
it gives a robust framework for analysis. The dynamics is first
reduced to one PDE by relating vertical velocity to the PV dis-
tribution and then reduced to four coupled ODEs describing the
amplitude and phase evolution of the RW components. Based on
the occurrence of mutually amplifying pairs of RW components,
four growth regimes have been defined, which range from es-
sentially dry baroclinic instability (two dry CRWs dominate the
interaction) to fully moist (two moist CRWs dominate, SL91),
with a diabatic Rossby wave and Type-C cyclone growth being
intermediate types. The RW framework makes transparant that
instability and sustained mutual amplification can only occur if
the RW components (whether dry or moist) propagate in op-
posite directions to one another and counter to the shear in the
zonal flow (cf. Hayashi and Young 1987).

The RW components have further been used in the inter-
pretation of the baroclinic initial value problems with moisture.
General initial conditions involve PV of all three origins:dis-
placement, diabatic and passive. A reduced model can be con-
structed based on the four RW components and a passive com-
ponent, in an approach which has previously been termed the

14



passively advected residual PV approximation (PAR-PV approx-
imation, V09). The reduced model captures the main propaga-
tion and interaction mechanisms available to the system andac-
curately describes the evolution for many initial conditions. The
evolution can be succinctly summarized in terms of the trajecto-
ries of the components in phase space. The trajectories obtained
from the reduced model are almost identical to those from the
full system projected onto the RW components. The reduced
model approach however has similar caveats as those described
in V09, but can be expected to work well in cases in which the
underlying normal modes have reasonably large growth rates.

The present paper discusses a partitioning into four CRW
components. This number is motivated physically by the par-
tition first by process into the displacement and diabatic PV
anomalies and second by the requirement for two orthogonal
structures in each (necessary for modal growth).

Finally, by defining the classification, we are making ex-
plicit the relative importance of the different interactions and
processes within the flow, and determining their distributions
in parameter-space. Despite the fact that the present studyis
inherently over-simplifying many aspects of moist baroclinic
instability occurring in the real atmosphere, it is hoped that in
this way the diabatic Rossby wave moves from being a concept
used in case studies (e.g. Wernli et al. 2002), to being something
which might be expected to be observed in a certain region of
parameter space.
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APPENDIX A

Inverting the omega-equation: with large-scale rain

This appendix extends section 2d by including large-scale
rain. As in the main text a Green function method is used. First,
in (6) the term proportional toǫlsr is moved from the rhs to
the lhs. A (new) Green functioñGw is constructed for the (new)
differential operator̃Lw ≡ Lw−ǫlsrr(z)∇2

H . UsingG̃w instead
of Gw, one can repeat the steps as in section 2d. The result is
[cf. (8)]

w(z, t) = w̃(d)(z, t) + w̃(h)(z, t), (A1)

where the two contributions are now given by

w̃(d)(z, t) =

∫

G̃w(z, z′, ǫlsr)F
(d)(z′, t)dz′, (A2)

w̃(h)(z, t) =
ǫccvw̃

(d)(z∗, t)

1 − ǫccvα̃(z∗, ǫlsr)
α̃(z, ǫlsr), (A3)

with α̃(z, ǫlsr) = −(k2 + l2)
∫

G̃w(z, z′, ǫlsr)h(z
′)dz′. Obvi-

ously, G̃w depends explicitly on theLSR moisture intensity pa-
rameterǫlsr and the moisture profiler(z). Therefore, although
w̃(d) has been given the superscriptd [because of its similar-
ity to (9)], it is influenced by theLSR heating parameterization.
In some cases,̃Gw can be obtained analytically. For a uniform
moisture profile,G̃w is described by hyperbolic functions. If
the moisture profile decays exponentially with height,G̃w is ex-
pressible in terms of Bessel functions. For more general mois-
ture profiles, one will have to use numerical methods. Note that
w̃(h) = 0 if ǫccv = 0, and thatǫccvα̃(z∗, ǫlsr) = 1 again defines
a “CISK-threshold” (which now depends onk, h(z), r(z), z∗
andǫccv andǫlsr).

APPENDIX B

Derivation of (13) using kernel Rossby wave theory

Following Heifetz and Methven (2005), the starting point is
to write the PV as a continuous integral over Rossby wave ker-
nels, called kernel Rossby waves (KRWs). KRWs can simply
be thought of as being unique objects, which have associated
with them various “attributable fields”, such as PV, streamfunc-
tion etc. Central to the KRW definition is its PV distribution,
denoted asKq(z, z′), which takes the form of aδ-function:

Kq(z, z
′) = δ(z − z′). (B1)

All KRWs are labelled uniquely by the vertical position of their
PV. KRWs are orthogonal in PV such that they form a proper
basis. Associated with the KRW, or ‘induced’ by its PV, are
a streamfunction, meridional and vertical velocity distribution,
denoted asKψ(z, z′), Kv(z, z′) andKw(z, z′) respectively.

The KRW PV induces a streamfunctionKψ(z, z′) that sat-
isfiesLψ [Kψ(z, z′)] = Kq(z, z′). ThereforeKψ(z, z′) is sim-
ply given by the Green functionGψ(z, z′). By integrating over
all kernels with the appropriate amplitudes the streamfunction
is recovered, i.e. ,ψ(z, t) =

∫

Kψ(z, z′)q(z′, t)dz′. In the
same spirit each KRW is assigned a meridional velocity density
Kv(z, z

′), andv is written as

v(z, t) =

∫

Kv(z, z
′)q(z′, t)e−iπ/2dz′, (B2)

whereKv(z, z′) = −kGψ(z, z′). The factorexp(−iπ/2) is
merely convention: it guarantees that the meridional velocity
kernelKv(z, z′) is real and positive definite.

As shown in Section 2d, the linearized omega equation (6)
can be inverted to obtain the vertical velocity. The dynamical
“forcing” appearing in (6),F (d), was shown in (7) to be ex-
pressible entirely in terms ofv, F (d) = Llin[v]. By substitut-
ing for v the KRW velocity distributionKv(z, z′) and defining
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F̂ (d)(z, z′) ≡ Llin[Kv(z, z′)], the ‘dynamic’ part of the vertical
velocity,w(d)(z) can be written as

w(d)(z, t) =

∫

K(d)
w (z, z′)q(z′, t)e−iπ/2dz′, (B3)

whereK(d)
w (z, z′) =

∫

Gw(z, z′′)F̂ (d)(z′′, z′)dz′′ andGw the
Green function corresponding to the operatorLw appearing in
(6). [If LSR also occurs, one needs a decomposition ofw̃(d)

(A2), which follows by replacingGw by G̃w in (B3) above]. It
was further shown that self-consistency leads to a relationbe-
tweenw(h) andw(d), suggesting that the total vertical velocity
w can also be written as

w(z, t) =

∫

Kw(z, z′)q(z′, t)e−iπ/2dz′ (B4)

for some kernelKw(z, z′) (not shown). UsingKv andKw, the
PV equation reads

∂q

∂t
= −ikÃ[q], Ã[q] = ū(z)q(z) −

1

k

∫

γ(z, z′)q(z′)dz′,

(B5)
where the interaction coefficientsγ(z, z′) = γ(d)(z, z′)+γ(m)(z, z′)
are defined as

γ(d)(z, z′) =
∂q̄(z)

∂y
Kv(z, z

′), (B6)

γ(m)(z, z′) =
ǫccv
ρ̄(z)

∂

∂z

[

−ρ̄(z)h(z)Kw(z∗, z
′)

N2(z)

]

+
ǫlsr
ρ̄(z)

∂

∂z

[

−ρ̄(z)r(z)Kw(z, z′)

N2(z)

]

. (B7)

Eq. (B5) is equal to (13). Note that becauseKw contains both
ǫccv andǫlsr (if both parameterizations act simultaneously), it is
not possible to separate contributions from large-scale rain and
wave-CISK.
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