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ABSTRACT

A theoretical framework is developed for the evolution ofd@dinic waves with latent heat release parameterized in
terms of vertical velocity. Both wave-CISK and large-saai® approaches are included. The new quasi-geostrophic
framework covers evolution from general initial conditoan zonal flows with vertical shear, planetary vorticity
gradient, a lower boundary and a tropopause. The formulagigiven completely in terms of potential vorticity,
enabling partition of perturbations into Rossby-wave congmts, just as for the dry problem. Both modal and
non-modal development can be understood to a good apprbaima terms of propagation and interaction between
these components alone. The key change with moisture igtbating normal modes are described in terms of
four counter-propagating Rossby wave (CRW) componenierdhan two. “Moist CRWs” exist above and below
the maximum in latent heating, in addition to the upper anklolevel CRWs of dry theory. Four classifications
of baroclinic development are defined by quantifying thergth of interaction between the four components and
identifying the dominant pairs: ranging from essentialty-thstability to instability in the limit of strong heatin

far from boundaries, with “type-C cyclogenesis” and “ditd&rossby waves” being intermediate types. General
initial conditions must also include “passively-advectedidual PV”, as in the dry problem.

1. Introduction senting deep convection (Mak 1982; Snyder and Lindzen 1991;
Case studies indicate that condensation of water vapar OﬁePark_er and_Thorpe 1995)'. . .
) . o Since diabatic cooling in the unsaturated descending sir (a
plays an important role in baroclinic life cycles (e.g. Gyak . . L . =
] ) . . sociated with radiative transfer or evaporation of preaipin)
1983; Wernli et al. 2002). Structural changes, a more rapid i . .
does typically not occur as rapidly, the feedback between co

tensification and propagation, as well as a reduction iresofl ' . L o
. . . densational heating and the baroclinic wave dynamics iigint
the ascent region, are well-documented differences veladi : . i
X . sically asymmetrical and nonlinear. In contrast, much &f th
cyclone development in the absence of moisture (e.g. Enhanu e S IO o
eory on ‘dry’ baroclinic instability is firmly rooted inriear

et al. 1987; Kuo et al. 1991; Moore and Montgomery 2004)'wave theorv and concents such as probacating Rossby wave:
Despite this evidence, it is still a challenge to satisfeltain- y P propagating y :

derpin these differences with theory. One of the difficslie and their interactions in geophysical shear flows. There¢vese

the parameterization of the link between latent heat releasl well known necessary conditions thatdetermlr)ewhethamlgl
. . . ..zonal flow could support exponentially amplifying distunicas,
dynamical variables. The two main approaches for baraclini . .
. . _known as growing normal modes (gNM). The first states that
waves to date both link latent heat release to saturatiorsin a . . - . _
; . o the meridional potential vorticity (PV) gradient (denotgg
cending air masses: either based on the large-scale aateat r . . .
. ) changes sign at least once within the domain (Charney and Ste
every point (Emanuel etal. 1987; Montgomery and Farrelil199 1962). The second condition states tiashould be positivel
Whitaker and Davis 1994), or associated with ascent rate at a j P Y

specified “cloud base” with an assumed heating profile reprec_:orrelated with the zonal flow (Fjgrtoft 1950). Both criteere



derived for dry adiabatic dynamics. It is an open questioatwh
are the necessary and sufficient conditions for ‘moist’ blma
instability. Partly, this question is still unanswered &ese the
realism of linear moisture parameterizations is debatexiielN
theless, in this paper the moisture parameterizationsasent
mostly in their linearized forms. This linearization canjbsti-
fied in the weak-heating limit when large-scale adiabatitiomo
dominates. For higher diabatic heating rates the wavetsteic
becomes distorted and is no longer pure sinusoidal in thalzon
direction (e.g. Emanuel et al. 1987; Parker and Thorpe 1995
From the perspective of Fourier decomposition, the lireeati
theory accounts for the dominant effect of diabatic heatiag
curring at wavenumbek on the dynamics of wavk: Inter-
actions between waves of differing wavenumber are ignoted
leading order.

The principal objective of this paper is to construct a frame
work for the analysis of linear quasigeostrophic baroclimave
development from general initial conditions in the preseat
simple moisture parameterizations. The two parametéizat
that are considered both relate diabatic heating to véniea
locity and are referred to darge-scale rain(Emanuel et al.
1987) andvave-CISK or cumulus convectiofMak 1982). The
framework uses Rossby wave (RW) components as its basi
RW components are defined as untilted waves in PV. PV is us
because of its well-known Lagrangian conservation propest
well as its invertibility (Hoskins et al. 1985). Moreoven, ab-
sence of moisture, there exists a framework for interpgetiodal
baroclinic instability on zonal jets in terms of two mutyaiéin-
forcing, phase-locking counterpropagating Rossby waRes\(s)
[Heifetz et al. (2004a), HO4 from here]. CRWSs have a parécul
untilted PV structure that can be obtained by linear sum+po

tion of a gNM and its complex conjugate (H04). They are direct.[he

generalizations of the well-known boundary edge waves ®f th
Eady (1949) model (Davies and Bishop 1994) allowing for non
zero interior PV gradient.

CRW theory can explain the growth from infinitesimal per-
turbations that have been created by meridional displantme

of PV contours from a zonally symmetric basic-state. How-

ever, PV anomalies can have a different origin and could, fo
instance, be remnants of earlier diabatic processes. Rgcen

De Vries et al. (2009) [VO9 from here] have shown that the

transient linear development from general initial coradis can

also be compactly described, by considering the evolutfon o

these two CRWSs plus a passively advected remainder. One
the reasons why this so-call@éssively advected residual PV
(PAR-PV) approximation works, is that it captures threeeass
tial growth mechanisms available to the dry dynamics (De¥ri
and Opsteegh 2007, V09): (Bhear instabilitythe interactions
between CRWs; (IIResonancghe excitation of CRWs by the
passive remainder PV; and (lIQrr mechanismthe transient
growth arising due to the differential advection of interiRvV
structures by the shear flow, first described in Orr (1907).

1CISK stands for Conditional Instability of the Second Kindlave-CISK
was introduced in Lindzen (1974).

€,

Realistically, however, diabatic heating occurs whilewlzee
develops. Thusthe instantaneous PV disturbance field ingt mo
atmosphere has three different origins:

(I) DisplacementPMabelled;(¥), which is obtained through
advection of the basic-state PV contours by the perturba-
tion meridional wind.

(I1)

)
(I

Diabatic PV, labelledg("™, resulting from the ‘active’ di-
abatic processes.

Passive PYlabelledg®, which describes ‘remnant’ PV
from past diabatic processes. Passive PV is simply pas-
sively advected with the zonal flow.

8 he above partitioning of the PV disturbance field is ativact

because of its conceptual simplicity and similar approatiase
been used in diagnosis of numerical weather prediction tsode
(e.g. Gray 2006). Many authors discuss the PV dynamics of
moist baroclinic waves, as a qualitative tool to understastter

the unstable wave’s vertical structure (e.g Montgomeryfearel

rell 1991; Snyder and Lindzen 1991; Raymond and Jiang 1990;
Whitaker and Davis 1994; Parker and Thorpe 1995; Moore and
Montgomery 2004). To the authors’ knowledge however, no at-
& mpt has yet been made to formulate a general framework for
the PV analysis of moist baroclinic initial value problerhatis
applicable to a wide range of quasigeostrophic models, @rith
without interior PV gradients. Such a framework is preseirie
this paper, extending V09 by including diabatic heating el
generation of “diabatic PV anomalies}{™. RW components
will be defined based on the three different types of PV anoma-
lies described above, and their interactions will be aredyz
Section 2 details key aspects of the model dynamics and
moisture parameterizations. Two models, where the RW
components assume a particularly simple form, are disdusse

in section 3. In section 4 a tropopause is added in the form of a
rigid lid (Mak 1994). Four classifications of baroclinic dgop-
ment are defined by quantifying the strength of interactien b
tween the four components and identifying the dominantspair
rranging from essentially dry-instability to instability the limit
of strong heating far from boundaries, with “type-C cycloge
sis” and “diabatic Rossby waves” being intermediate typés
generalization of the theory to include a planetary vastigra-
dient, large-scale rain parameterization and more geiretial
nditions are given in sections 5-7. Conclusions are ptede

a
in section 8.

2. Model description
a. Quasigeostrophic potential vorticity dynamics

The QG evolution of perturbations to a zonal flow in the
presence of a diabatic heatifgcan be described by the QGPV

equation:
o4 ou, 00 o o 10 (136
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whereq = L[] = Vi + p 0, (pfEN~20,4) is the per-  h(z) atop-hat, i.e.N?h(z) = [H(z — z1) — H(22 — 2)]/Az,
turbation PV 7 = 97 + 9;), v = ¢ /0x is the geostrophic whereH (z) is the Heaviside step function (Mak 1982, SL91).
meridional windy) is the perturbation stream function apit) Another option is a triangularly shaped heating profile {@ra
is a reference density profile. Basic-state quantitiesy@byar.  and Cho 1988; Parker and Thorpe 1995).

The interior mean PV gradieng,) is given by The large-scale rain.6R) parameterization assumes that the
diabatic heating rate is proportional to the local vertiegbcity
93 _ , 9%u 109 (pfgou (2) w(2) (rather than toy(z.) as in wave-CISK):
oy dy? poz\N29z)’
whereg is the planetary vorticity gradient amd? is the buoy- OLar(x, 2,1) = Elsrr(z){w(x’ 2t + |w(z, Z’t)|}’ )

ancy frequency. We restrict to two-dimensional pertudoatial-

though meridional wavenumbers are easily included. Thaequ Where the function(z) is a moisture profile. Emanuel et al.
tions are made non-dimensional using a height-state ( f, /N )2A(A987) use constant(z) for reasons of simplicity. WD94 ar-
15km wheref, and values are set to those for Earth atM5  gue that a thermodynamically more consistent profile (@af)
The horizontal scald. = (N/fo)H, timescaleN/(foA) and  Will decay almost linearly with height in the lower troposph
other scalings are as in Heifetz et al. (2004b). Rigid lidyima  and more rapidly aloft, such thatz) is zero at the tropopause.
prescribed at, andz;, and are taken into account by setting the Moore and Montgomery (2004) assume a linear decrease pf

vertical velocityw to zero in the thermodynamic equation with height (the notatiom(z) differs from that used in the pa-
- pers cited above).
a0 00 00 As described in the Introduction, the conditionality on the
—tu—+v—=0 z=(2,2), 3)

sign ofw renders the parameterizations intrinsically non linear.
This paper describes the simpler problem where symmetry be-
whered = 9y /0 is the potential temperature re-scaled by theyyeen ascent and descent is enforced such that diabatiogool
gonstantg/(fOHO) such that thermal wind balance reduces toOCCUrS in descending air (i_e_, dropping qhﬁ term from (5)

0y = —0u/0z. Heating at lids as in Mak and Bannon (1984), is The linearization guarantees that a perturbation with glsin

ot ox dy

not considered. wavenumbet; does not interact with others. The more complex
problem of conditional diabatic heating is left to a futuappr
b. Moisture parameterization schemes (Frame et al. 2010).

The simplest parameterization relates heating to venieal _ ) _
locity on the premise that ascending air saturates rapidty a ¢ Quasigeostrophic omega equation

experiences latent heat release. Two types of parameteriza  The evolution of perturbations in balanced adiabatic flows
have been investigated: wave-CISK (Mak 1982; Craig and Chean be described fully by the PV advection equation (1) toget
1988; Snyder and Lindzen 1991; Parker and ThOI’pe 1995)hNh|9V|th the PV inversion equatio@, — £¢ [w], and the thermody_

is referred to as cumulus convectiay), and large-scale rain  namic equation on the boundaries (3). However, in moistrob
(LSR), as discussed for instance by Emanuel et al. (1987) anggms when latent heating depends on vertical velocity, rieis-
Whitaker and Davis (1994, WD94). essary also to consider the omega-equation. In the presénce

The wave-CISK ¢cv) parameterization is based on the as-diapatic heating, the QG omega-equation can be written as:
sumption that ascending air saturates and precipitate®dbeel

z. (usually taken to be near 900 hPa), producing diabatic heat- Loy[w] = F@ 4 ph), (6)
ing, O v, in @ column vertically above, with a particular heat-

ing profile h(z), normalized such thaf h(z)N2dz = 1. Ifwe ~ WhereLy[w] = N*Viw + 9.[p~'0.(pw)]. The two terms on
assume unsaturated adiabatic descent, the diabaticpéasitaes  the right hand side of (6) can be thought of as ‘forcingsVitig
the following conditional form: the vertical circulation (Hoskins et al. 2003). The firshtes

Ocev(T,2,1) = Ecwh(z){w(x, 2z t) + Jw(z, z*,t)|} (4) F@ = %[(ﬁ + 1) Vi (E4+8&)+Bv] - Vi[(T+u)- Vi (0+0))

whereu = (u,v) and¢ = V34 is the relative vorticity. After

wherew(z,, ¢) is the vertical velocity at leved,, ande., is the linearization about a zonal basic state, one obtains

heating intensity parameter. Snyder and Lindzen (19911FL9
have argued that..,, is likely to be proportional to the depth of @ Ot
the heating layerAz = 2, — 2, (a deeper cloud requires more FY = Lin[v] = 25 Vvt (B - 2
intense diabatic heating) and that,/Az = O(1) is consistent

with (idealized) estimates of the large-scale budgets af aipd  expressed entirely in terms of the perturbation meridioeal
moisture. However, there is no implied form for the struetur locity v andF(%) is referred to as the ‘dynamical forcing’. The

of the heating layeh(z). Mathematically simplest is to make second termf(") = V20, depends explicitly on heating.

0%u . Ov



d. Inverting the omega-equation: unconditional case e. Model basis formulated using kernel Rossby waves

By ignoring the conditional aspect of the parameterizatjon For a single zonal wave numbky the differential operator
F®™ pecomes linear imv. It is then possible to express the ver- £,,, which relates streamfunction to PV v, [¢/] = ¢, can be
tical motion completely in terms of streamfunction, by iy~ inverted by means of a Green functigr, such that)(z) =
the omega equation. Here, a Green function method is useflG,(z, z")q(z")dz’". By usingdG, /0= = 0 at rigid lids, and
for the inversion (e.g. Mak 1982, 1994). The situation witho G, — 0 at infinity if no upper boundary is presemty (z, z’)
large-scale raire(,- = 0) is discussed below, the extension with represents the streamfunction that can be associated \with a
large-scale rain is derivédh Appendix A. o-function atz = 2’ and zero potential temperature at rigid lids.

The first step is to construct the Green funct@nfor the  Such a structure was calledkarnel Rossby wavéKRW) by
operatorZ,, in (6), assuming a horizontally wavelike perturba- Heifetz and Methven (2005). Using,, the PV equation can be
tion. Because the vertical velocity vanishes at rigid lids,  written as
satisfies simple homogeneous boundary conditions. By multi % +ikAlq] = S, (12)
plying (6) from the left byG,, and integrating over the domain, ot
one obtains whereA[q] is a linear integral operator acting on the PV state

@ ) (e.g., V09), andS represents diabatic processes acting on wave
w(z,t) = w9 (z,t) + 0 (z,1), (8) k. Informulating (12), the Bretherton (1966) approach isitse
interpret boundary potential temperature contributionterms

where the rhs contains the two contributions . o
of boundary-PW-functions. If the parameterizations are taken

(d) _ N / in their unconditional form$ can be expressed entirely in terms
w (1) /g“’(z’ ZFE ©) of PV, implying that (12) can be written more compactly as
w (z,t) = €ccvar(2)w(zs,t), (20) 94 B
2y ikAlq = 0. (13)
whereay,(z) = —(k* +1?) [ Gu(z, 2')h(2")dz". The first con- ot

tribution to (8)’_w(d)’ is referred to as the ‘dynamic’ vertical appendix B gives a rigorous derivation of (13), includingth
velocity, since it can be solved given The secondw™, is  gefinition of A, on the basis of KRW theory. The problem has
only non-zero whem,.., 7 0. It warrants to emphasize thatin peen reduced from a set of coupled partial differential §qoa
absence of baroclinic shear, moist normal modes can only expy equation and omega equation) to a single linear ordinary
istif w(z) = w™(2), implying thate..,ar(z.) = 1. This  jifferential equation for the PV.

limit, which defines the so-called “CISK-threshold” (Craigd

Cho 1988), also enters the baroclinic problem. Equations(8) 3 Two simple examples

solved by requiring it to be self consistentzat giving
This section describes two examples, where (13) assumes

a particularly simple form, yet retains the primary effeofs
moisture. The first is wave-CISK instability for a constahiear
flow in a vertically unbounded domain, previously discudsgd
Sincew(? (z,,t) is known from (9), using (11) one can ob- SL91. In the second a lower boundary is added. The main fo-
tain w(z.,t). Usingw(z.,t) in (10) givesw™ (z,t), which  cus will be on the normal modes for which a classification is
upon substitution into (8) gives(z,t). It is clear from (11) proposed in section 3c.

thatw (z,, t) (and thereforev(z,, t)) becomes singular at the

“CISK-threshold”e ., (2.) = 1 unlessw(¥ (z,,t) = 0. The  a. Vertically unbounded shear flow with cumulus heatifiglane)
singular behavior near the “CISK-threshold” is an intrinas-
pect of moisture parameterizations based on the totalcadrti
velocity. It typically occurs at a particulék;, e..,,) combination
and is the basic result of a positive feedback between geati
and vertical velocity. Although it might be relevant for thero-
shear situation, we will use the CISK-threshold mainly ttede
mine an upper bound on the heating intensity. The maximum a
lowed heating intensity will be chosen such that oy (z.) # 1

for all wavenumbers

w@ (z,,1)

Zy,t) = —————————.
w( ’ ) 1- Gccvak(z*)

(11)

A constant-shear flow in a vertically unbounded domain on
the f-plane, is the simplest geometry supporting gNMs in the
presence of a wave-CISK moisture parameterization. Sinee
0 throughout the domain, there can be no dry baroclinic insta-
bility. If the heating profile takes the form of a top-hat, loki-
Ii_caIIy induced PV growth can only occur at the two edges of
the heating profile. The normal-mode analysis of this system
given in SL91, who used a different route — avoiding the omega
equation — to obtain the normal-mode results. Here we foous o
2Alternatively, the unconditional SR parameterization can be described us- aspects that either have not been addressed by SL91, or¢hat a

ing the “reducedd2” approach, introduced by Eady (1949), where ftié is . . . .
changed from its dry value, to an effectifé?(2) = N2 — e,..r(z). important to later sections, when more complicated geaesetr

3Another way to prevent the formation of the singularity thgh the heat- ~ @re€ introduced. Following SL91, the heating intensity, is
ing vertical velocity feedback, is to use only the ‘dynamvertical velocity made proportional to the “cloud deptiX> (depth of the heat-
w(® (2, t) (rather thanw(z«, t)), in theccv parameterization (Mak 1982).




|ng Iaye r‘) Growth rate (R=0.4, E=1.0) Growth rate (R=0.8, E=1.0)

€ccr = EAz (14) 1

; 15/\
1 1
where the parametdf = O(1) is called the ‘diabatic heating OE )
efficiency’. The system has two intrinsic vertical scalelse t iy w
Rossby height scalé/p = 1/K (in units of H), whereK = -2
(k2 +1%)'/2, andAz = z, — 21, the depth of the heating layer. R
The normal-mode dispersion relation is a functiorkafz and Phace speed (orue Phase speed (oot
the diabatic heating efficiencl only. To avoid reaching the 5.
CISK-threshold for any:, we impose the constraitit < 2. B
With the previous approximations Eq. (13) reduces to a 2— o .=
wave problem for the PV-waves at the bottom (labelled 1) and™] —
top (labelled 2) of the heating profile. The total PV can be-wri o o5 1 Is 2 25 & o o5 1 15 2 25 3
tenasy(z,t) = q1(z,t)+q2(2, 1) = a1(t)d6(z—21) +az(t)d(z —
z2), Whereay »(t) = Ai »(t) explie 2(t)] andA; ande; denote  Fig. 1. Dispersion relations for the unbounded asei-infinite
the amplitude and phase of the PV and circulation anomadies aconstant-shear flow with cumulus heating. Top panels shawttr
sociated with the two CRWs. The time-evolutionagfis given  rate (scaled by max dry Eady growth rate) and bottom panei® sh

2 25 3

by (H04,V09): the scaled phase-speéd. — @(z.))/Az. Thin full lines show the
unbounded SL91 problem; the heavy black/gray curves shewith

a;(t) = —ik Z cijai(t), i,5€(1,2) (15)  stable/neutral normal modes of the semi-infinite probleracBlines

i in the bottom panels show the propagation rdtes— (z.))/Az of

the three CRW componentsgz dotted,c11 dashed ands» dash-dot).
wherec;; = (z)d;; — 7vi;/k. The interaction coefficients Heating parameter values, defined by (14) and (16), are) @ist= 1,
Yij = (2, z;) are computed in (B7) [note that? (z;, ;) =0 R =04and (igh)E =1, R = 0.8.
in this case]. The expressions fgf show that the propagation
and interaction of the PV-functions (KRWSs), that exist on the
edges of the heating layer, is very similar to the propagatio  atmospheric cyclogenesis. In the second example the lower
KRWs on a dry PV gradient. In the dry case, the sigg,0fle-  boundary is added at = 0. Other conditions are unchanged.
termines the propagation direction, and the actual prapaya The main difference between the unbounded and the semi-
speed is given by the product gf and the PV-induced local unbounded domain is that the latter supports potential éemp
meridional wind. Since the meridional velocity of a KRW is in ature edge waves, which propagate on the surface mean merid
quadrature with its PV, isolated KRWs are neutral, and Wnista jonal temperature gradient. These boundary potential éemp
waves can only form if there are at least two KRWs. A simi- ature perturbations are interpreted as boundary-PV anesnal
lar situation occurs in the moist case. Vertical motion iceia  which propagate relative to the mean flow on the negative sur-
positive PV tendency in regions where there is a positiveligra face mean PV gradient (Bretherton 1966). Thus there are now
entin heatingh. > 0 (at the lower edge of the heating profile), three spatially distinct PV-waves that define three RW compo
and a negative PV tendency where < 0 (at the top edge). nents:qp (the surface edge wave), apgd: (the PV-waves at the
Because the vertical velocity associated with a KRW is aiso i lower-edge and the top-edge of the heating profile). Witbehr
quadrature with its PV, the diabatic processes are ableofgepr PV components, there exist three possible pairings, nafggly; ),
gate an existing PV pattern relative to the flow, with the sfin (4B,q2) and(¢1, q2). Instability and sustained mutual growth
h.. determining the propagation direction. The actual propagacan however only occur between components of two of the three
tion speed is given by the product/ef and the vertical velocity  pairs that can be formed, since thg, q1) pair does not satisfy

induced at.. the conditions for mutual amplification for heating inteies
There are two necessary conditions for instability to occurpelow the CISK-threshold.
In terms of the notation of (15), these conditions are/{j);; < With the lower boundary included, a new dynamically im-

0,and (ii)z;v;; > 0. In physical terms, these conditions require portant height scale appears: the distance between thé tiop o
that the waves must propagate in opposite directions to one aheating layer and the surface. This motivates the introducif
other and counter to the shear in the zonal flow, respectivelyr, the ratio of height scales:

This is true both for the dry and the moist problem and agrees

with Hayashi and Young (1987). R= 2% (16)
zZ9 — Zp

b. Semi-infinite Eady model with cumulus heatifigp{ane) For given values off and0 < R < 1, the normal-mode growth

Due to the absence of a lower boundary, the problem studiete is a function ok Az. Realistic values of? can be obtained

in the previous section is over-simplified as a model for tois from estimates o, — z;, € [0.1,0.3] (in units of H) andz, —
zp € [0.5,0.9], giving R € [0.4,0.9]. To remain below the



CISK-threshold, a further constraint is that < 2 (at least if Rerimos or 1 0L and i)

Zy = 21). 0.8

Figure 1 shows the normal-mode dispersion relation for two
characteristic cases in which the diabatic heating effayidn =
1. For each wave number there are three normal modes, two of ~os
which possibly form a growing-decaying conjugate pair. The
third mode (gray lines) remains neutral over the eritife: do-

main and only for this mode, plays a negligible role. At large
kAz it resembles the isolated boundary edge wave, whereas
qg ~ —q in the limit KAz — 0. The attention will be on
the other two modes. Comparing the dispersion relationdo th
unbounded problem, one immediately notices that the maxi-
mum growth rate is reduced due to the presence of the lower
boundary, and further that the maximum growth rate deceease
with R. For R # 0 a long-wave cut-off wavenumber appears

©
w

kA 7

and, as expected, no growth remains in the liRit> 1 (when
z1 — 2p, OF 29 — o0). Interestingly, the long-wave cut-off is
never far offkAz ~ R, or, in other words, the Rossby height

scaleHgp = 1/K ~ (22 — 2). °
The results imply, perhaps counter-intuitively, that theer
boundary acts to suppress, rather than to invigorate the barFIG. 2. Classification diagram for the semi-infinite Eady model with
clinic instability, and that this suppression occurs imsiagly — wave-CISK parameterization. Also shown are contours ofnadr
at longer zonal wavelengths. The reason is that the wavéClSmode growth rate (scaled by the dry maximum Eady growth rate)
parameterization cannot operate efficiently,ifis ‘near the sur- ~ (Above) fixed diabatic heating efficiendy = 1 (Eqn. 14), and varying
face’ (‘near the surface’ here meah&, — z,) < 1), because kAz andR (Egn. 16). (Below) flxecR_ = 0.8, and varyingkAz and
it is difficult to generate sufficient vertical motion at susrhall £. The black crosses mark the location of the most unstable feav
. . each value on the vertical axis.
distances above,. This becomes even more clear when look-
ing at the self-interactions of the PV waves above and below
the heatingcy; and cos, for R = 0.8 (bottom right panel in
Fig. 1, dashed and dash-dotted black lines respectiveyiphw (1) Q2-QB g» amplifies mostly due tg and vice versa.

hardly vary withkAz, their values being roughly predicted by This will be referred to as diabatic Rossby wave (DRW)
the mean zonal wind at their home base. since its existence depends on both near surface baroclin-

icity and latent heating.

c. Classification of growth mechanisms . . . .
g This classification can be extended in a natural way if an uppe

Only two out of three possible pairings of CRWs may pro-boundary and interior mean PV gradient are present (next sec
duce sustained growth in the case of the semi-infinite wavetions). Please note that in the classification, the ammitatios
CISK Eady model (g2, ¢1) and (¢2,¢5)], suggesting that its A4;/A; and phase differences — ¢; assume the values for a
growing normal modes fall into two classes. It is easy to despecific normal mode and are not free parameters.
termine to which “regime” a particular gNM belongs, since fo Figure 2 shows the normal-mode classification diagram for
a fixed set of parameters the equations describing the éwolut a situation in which either the diabatic heating efficiedeyr
of the three CRW componentgy|, ¢1, ¢2) are identical to (15), the ratio of height scaleB is fixed, andR or F is varied along
except that the system is now 3x3. The growth rate of each RWith kAz. The dark-grey shaded highlights normal modes of

component follows from the real part of (15): type Q2-QB (DRW), the light-grey area those of type Q2-Q1.
d A (White areas indicate zero normal mode growth rate). The firs
T InA; = —chijZf sin(e; — €;), (17)  observation is that both regimes indeed occur. The Q2-Q1-
j ' regime is largely confined to large values and smalk values

(i.e., efficient heating far from boundaries), whereas tRe(@B-

regime is confined to longer wavelengths (sniallz), large R

(deep heating close to ground) and sniallheating efficiency).

Note that there are no regions of overlap possible folloviireg

‘regime definition. The black crosses mark th&z value of

() Q2-QI ¢ amplifies mostly due tg; and vice versa. This the fastest growing normal mode for a given value of the
is the type of instability discussed in SL91 in the limit of ordinate. Interestingly, fastest growing normal modes loan
strong heating far from boundaries. found of both types.

where now(i, j) € (B,1,2). Eqgn. (17) is used to determine
which of the two eastward-propagating componeqtsdr ¢1)

contributes the most to the growth rate of the westward-ggafing
componentds), yielding two classes of unstable normal modes



Classification diagram for the most unstable waves Regimes for 21=0.1 and E=1
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FIG. 3. ER-plane classification diagram for the most unstable wave of )
the semi-infinite Eady model with wave-CISK parameterzatiAlso = ol 2]
shown: growth rate (full contours, scaled by Eady max groxatie)
andkAz of the wave (dashed contours).

For a range of points in th& R-plane the fastest growing
normal mode was found, and its type analyzed. This produceBiG. 4. Classification diagrams for the wave-CISK Eady model. Also
the classification diagram for the fastest growing normatleyo  shown: contours of normal-mode growth rate (scaled by thierdx-
shown in figure 3. In the lower-right half of thE R-plane the  imum Eady growth rate). (a) fixel’ = 1, and varyingk and R. (b)
most unstable waves are of the Q2-Q1-type, whereas for smdiked £ = 0.8, and varyingk and £. The black crosses mark the
values ofE and larger values ok, they resemble the DRW. The location of the most unstable wave for each value on theozgrixis.
transition between the different regimes is smooth, imgjythat
in the transition-zone, the modes are of a mixed type, irnkglv

significant interaction between all 3 CRWs. is no longer a function ofy, R andkAz only. The strategy
chosen for the parameter sensitivity study, is tozget z, = H
4, Eady model with cumulus heating andz; — z, = 0.1H, and to vary the cloud depthz = 25 — 2

andF (H is the height scale from section 2a). The height of the
moist layer £..) is kept constant, although changing its location
will have some effect (Mak 1994).

Figure 4 shows the normal-mode classification diagram for
cases similar to those discussed for the semi-unbounded do-

Continuing the progression of increasing model-compjexit
the next step is to add a tropopause in the form of a rigid lid
If S = 0 the model is the classic Eady (1949) model. Mak
(1982,1994) studied the Eady model with cumulus heatingceSi

the Eady model supports dry baroclinic instability, one fu t main. Note that the--ordinate isk, rather tharkAz in Fig. 2.

guestions is how the normal-mode classification changes. R o s
The upper lid introduces an additional Rossbhy edge waveThe reason for using is that in this way the dry Eady short

. . . ave cutoff atk ~ 2.4 becomes very obvious, and further-
qr, propagating along the positive PV gradient there. Base(\:fv i s . ;
on the possible pairings between the four CRW component%Ore thafc all I_ong wave ”_”'Odes W'r‘h— 224 c_Ias_s_|fy as QT-QB
(4,91, 2, qr) (waves on the ground, lower and upper edges RY), with diabatic heating playing an insignificant rote &ll
95,41, 92, 9T P R. For smallR values these DRY modes are separated from the
of the heating and the tropopause respectively) that majttea . . : ;
sustained modal growth, two new regimes are defined: modes in which moisture plays a more important role, by arclea

‘gap’ indicated by the white region in which no modal instabi
(1) QT-QB ¢ amplifies mostly due tgpz and vice versa. ity is found. At the short-wave end, the figures look very sami

Also referred to aDRY growth. to those of Fig. 2 (e.g., moist short wave cutoffkatz ~ 2.2
y _ for small R).
(IV) QT-QI ¢r amplifies mostly due te; and vice versa. The QT-Q1 regime is not identified for the current set of

Also referred to aJ YPE-Cgrowth due to the interaction parameters. However, it is clear that because of the syrngroitr
between tropopause troughs and the heating layer (Plaffie Eady model, the area covered by Q2-QB would be covered
etal. 2003). by QT-Q1, if instead of z; = a,2, = b, z, = z;), the model
setup had beefx; = z; — b, 23 = z; — a, z. = z2). However, it

is unlikely that physically realistic values of are near the top

of the cloud. Therefore, despite the fact thatis much closer

to the bottom of the heating layes,, than to the topz, the PV-

The regime classification algorithm is as before and usebte
equivalent of (15) and (17). Obviously, with the introdoctiof
the tropopause, the tropopause-height appears as a nemidyna
cally important height-scale. As a result, the dispersaation



wave at the top of the cloud)s, is more important for baroclinic In general, initial conditions include PV that cannot beated!
growth than@;. Of course, this picture would change if the to meridional displacements or heating. Eqgn. (21) shows tha
bottom of the cloudt; andz, are located much higher, e.g., in this remaining PV is simply advected by the basic state zonal
the mid troposphere, with a cloudtop at tropopause levek Buflow as if passive. These equations are coupled thratayid S
again, these are not considered to be the most realistis.case which depend on all 3 PV components.

Figure 5 gives the classification diagram in th&-plane The above partitioning can be readily applied in the more
for the most unstable waves. As expected a significant padeneral situation where distributed heating occurs, andra n
of the left half of the ' R-plane is covered by the QT-QB, or zero interior PV gradient is present. However, wheneverethe
DRY regime. Note further that there is no overlap between thés spatial overlap between the regions wheye# 0 and.S #
regimes in this figure, although this is not obvious: Foranse, 0, there may be ambiguity how to partition a general PV state
according to our simple classification algorithm, a gNM ebul vectorg into ¢(?, ¢ andq®), at least as long as one does not
in theory qualify both as Q2-Q1 or as QT-QB (if for both pairs know the exact history of the air. In contrast, for a NM with PV
these components have largest mutual amplification raiesg ¢ = Re{qc(2) exp[ik(x — ct)]}, the partitioning is given by:
they describe interactions between different pairs (siryilfor -

Q2-QB and QT-Q1). As in the previous figure, fastest growing q(d) _ e q(m) _ e q(p) -0
normal modes dominated by TYPE-C interaction are notfound © k(i —c¢) °¢  ik(u—c)” ¢ 7

m_ this f_|gu_re. The transition between Q2-Q1 and QT-QB is awherevg andSq are the meridional wind and diabatic PV term
discontinuity rather than smooth.

of the gNM respectively. These expressions are only nogedan
at the steering level for growing (or decaying) NMs with com-
plex phase speed

In the previous sections we have considered flows for which  For example, in the Eady model with top-hat heating
there was a clear spatial separation between the PV ana@malieonsists of boundary PV onlyi”) consists of interior PV at the
that played a role in growing normal modes. As a result, CRWwo heating edges only. In the Eady model with large-scaite ra
components were readily identified and analyzed. HO04 have(?) exists only at the boundaries byt is distributed every-
shown that such a partitioning into CRW components is alsavhere in the interior. In the Charney model with top-hat hreat
possible for the dry problem in the more general situatioenvh ¢(® is distributed everywhere byt™ exists at only two levels.
the interior PV gradient is non-zero throughout the domé&in. Two further examples are shown in Figure 6. Note the similar-
this section the theory is extended to the moist initial ggdtob- ity in modal structures for the CCV and LSR parameterizatjon
lem following the approach of V09. especially the displacement PV and associated winds.

5. Moregeneral basic statesincluding interior PV gradients

a. On the origin of PV perturbations b. Definition of general RW components

In the Eady model with a top-hat cumulus heating parame- In this section RW components are defined as suitable su-
terization, two of the CRWs (namely of the surface and trapmse  perpositions of](G?l) and its complex conjugate, and ﬁ*ﬁ and
edge waves) that appear in the gNM can be related to meridiongis complex conjugate. We start with a brief summary of the dr
di_splgcementa of tht_e basic-state PV contours. Following V09, theory. In absence of diabatic heatirfty£ 0), the gNM must be
this displacement P\& denoted as: associated exclusively with displacement BY. In that case
0q a framework exists to analyse baroclinic instability innterof

(18)  two interacting RW components, known as counter-propagati
Rossby waves (CRWs) (H04). Central to CRW-theory is that
In the same way, the PV associated with the remaining two Rwhe dry gNM and its decaying complex conjugate (dNM) can be
components can be related to the diabatic heating, and is deuitably rewritten as a sum of two vertically untilted RW com
noted byq("™). Note that the CRWs are always labelled with aponents called CRWs. Because CRWs have vertically untilted
subscript (e.945, ¢1) and that PV of different origin is denoted PV structure, their associated wind-field is also verticaih-
with superscript (e.g4(™). By substituting the definition of tilted. As aresult, the CRWs are neutral and self-propagati
¢'? into (1), and using the kinematic relatiégig + a% — p, isolation, but will excite each other in time, and may eveiiu
the following evolutions equations are obtained phase-lock in a mutually amplifying configuration.
In the dry theory, the CRWs can be unambiguously defined

9q(® N gD 9g (19) from the gNM: they are constructed to be orthogonal with re-
ot “or T 77 oy’ spectto pseudomomentum and with respect to the wind-wezight
dglm) g™ term in the expression for pseudoenergy (HO4). Denoting the
5 Tl = S, (20)  CRWs’ PV structures by 1, the orthogonality conditions are
(») (®) _
a‘étp + aag Y _ (21) {aB,Nagr} =0, {gm,Naugr} =0 (22)
xXr
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FIG. 5. ER-plane classification diagram for the most unstable waveddpus wave-CISK models with a top-hat heating profile ane= z; =
0.1. (a) Eady model, (b) Green model, (c) Charney modelvés increased to give the same wavelength of the most uasddaplave as in the
Eady model). Also shown: growth rate (full contours, scdlgdady max growth rate).

global integrals,
{a1, Nm@2} =0, {q1, Nintigz} = 0. (23)

The weightingV,,, for simplicity is taken to be equal t&/;.

Some comments on the particular choice\df,,, are now
given. Held (1985) showed that the discrete normal modédseof t
dry problem are orthogonal to all continuous spectrum modes
(CMs) in the pseudomomentum inner produf;, Nqg;} =
0i;. Therefore, by making the CRWs of the dry theory also
orthogonal in this inner product, the CRWs and CMs form a
complete and orthogonal basis. In the case with moisture pa-
rameterizations included, dry pseudomomentum is no loager
conserved quantity, implying that the modes are no longer or
thogonal under the pseudomomentum inner product. Although
one can easily demonstrate that the moist normal modes-are or
thogonal with respect to some matrix ndinthe authors have
not been able to express this norm in quadratic physical-quan
FIG. 6. Decomposition of the gNMjg = ¢ + ¢ for awave tities. The one exception is the case where there is cumulus
with k = 1.6 (dry Eady maximum) growing on the Green model basic heating onlyg, = 0 and there are no boundaries. In that limit,
state (with rigid lid ands # 0). (Left) Case with cumulus heating the moist normal modes can be shown to be orthogonal with
(F =1,z = 0.1, z2 = 0.7). (Right) Large-scale_ raire[;, = 0.9 respect to the inner produét;, N;.q;} = 6&;; whereN,, is
andr = exp(—z/0.3)]. From top to bottom: full, displacemeng(® roportional t8 0h/9z)~! ! !
and moistg"*). Displayed are: PV (shading, dark +ve), boundary py PP '
(circles, dark +ve), meridional wind (black contours, -\asked) and
vertical wind (red contours, -ve dashed). The cumulus hgatase has
slightly larger growth rate (0.36 vs 0.33). For the moment it is assumed that the PV state vector can be
expressed entirely in terms of linear combinations of thé/gN
and dNM. By projecting (19-20) onto the four RW components

where the brackets define the inner produ€t Y’} = [ X*Ydz 4The vertically discretized normal-mode eigenvalue pnubis of the form
and\; = (g,) ! is the weighting. The same technique is usedAy = cy. SinceA in the problems considered is both real and non-singular, it

- « » (d) . ) is always possible to ‘symmetrize’ the eigenvalue probleith @ symmetrizer
to obtain two “dry CRWs"g,, fromq;~ and its complex con- (X is real symmetric) that satisfie§ A = (X A)T (e.g. Sen and Venkaiah

jugate in cases # 0; so called because in the limfit — 0 they  1088). By writing X = PT DP the eigenvalue problem becomBs: = cDz,
become the CRWs of the dry theory. whereB = PXAPT, 2 = PyandD a diagonal matrix. It can be shown that

Two further ‘moist’ CRWs (labelled; ») are derived from neutral modes are orthogonal in the sense that- c({));{l:(cl), Dzs} = 0.
. . . ’ . 5In thi L= ecrp KT 2 | 2)niz) | with 5 the den-
the ‘moist’ PV associated with the gNM{_™, and from its " caseNm = cccvp " Ku (24, 2) 5 [ N2(z) ]W'_ pthe den
. . ey . .., sity andKC,, the vertical velocity kernels introduced in Appendix B.
complex conjugate. Similar to the ‘dry’ CRWSs, the ‘moist
CRWs are also defined to be orthogonal with respect to two

c. Evolution equations for general RW components




using the brackets, one obtains [cf. (15)]: Eady model; large—scale rain, r=exp(-z/0.3)

12f T T R ]

ai(t) = =ik Yy ciya;(t), i€ (B,1,2,T) (24)

wherea; = A;(t) explie;(t)] denotes the complex amplitude of

©
CRW-j, andc;; are the propagation and interaction coefficients, g
- - £
Cij = Uiij — Yij [k, (25) s
o
where B _
_ Aa.Nug}y . A, Nyg}

YT Ney T T e Nay

with A" = N andy = 4@ fori € (B,T), andN = N,, and
5 = 4™ fori € (1,2) — see Appendix B. A key-difference

between (15) and (24) is that (24) describes the evolution of Zonal wavenumber k
amplitude and phase of general RW components which have Eady model; large—scale rain, r=exp(-z/0.3)
possibly highly intricate, vertically overlapping PV sttures, 1.2f : ‘ ‘ ‘
whereas (15) describes the evolution of spatially separaié

d-functions that formed the RW components in the wave-CISK 1.0f

Eady model. However, the interaction mechanisms are stilb
cally the same. Therefore, the same normal-mode clasgificat
algorithm can be applied as in the Eady model with cumulus
heating, where the general RW components replace thé-PV
functions [cf. (17)]. Results for the Green (1960) modeld¥a

o
fos)

Growth rate o
o
(2]

model with non-zer@) and the Charney (1947) model with cu- 0.4f

mulus heating are shown in Fig. 5. Note how similar these fig- : —

ures are, while the structure of the ‘dry’ CRWs is signifidgant 0.2 ™\ ST i

different in the models (see e.g. Methven and De Vries (2008) ! '-Idry : T
for the structure of the CRWs in the Green model). 00 = 2 ;1 é é 10

Zonal wavenumber k
6. Large-scalerain examples
FIG. 7. (Top) Dispersion relation for the Eady mode} (= 10 km

moisture parameterization are now explored. Attentioreis r S9N with large-scale rain parameterization and < (0.5,0.9).
Gray lines show the results when no upper rigid boundary eseont.

st_rlcted to the semi-infinite an_d bounded E_ady mc_)del, with or(bottom) Dispersion relation for the Eady model with= 0 (heavy)
without 3. The large-scale rain parameterization involves they 4 3 = 1 (thin) and large-scale rain faf,, — 0 (dashed)¢sr = 0.5
specification of a moisture profilgz). Here we take the mois-  (pjack) ande,,, = 0.9 (gray).

ture profile to be exponentially decayingz) = exp(—z/H,,),

where H,,, is a moisture scale-height (we také, = 0.3 in

units of H). Figure 7 shows the normal-mode dispersion rela- ) ) o
tion for various values of,., in the various domains. As has and the Charney (1947) model with large-scale rain. Sintdar

been noted in other studies (WD94, Moore and Montgomery€ €xamples with cumulus heating (Fig. 4b), long waves with

2004) the short-wave cutoff disappears, but everefgr= 0.9 & = 2 (as well as shorter waves for small,) mostly clas-
the growth rate of the most unstable wave increases only b§!fy @ DRY gNMs. For larger wavenumbers the gNMs all clas-

10-20%. For a rapidly decreasing moisture profile one gearl Sify asdiabatic Rossby wavesmplying that there is a signifi-
needs to approach the limit of potential moist convectigtan ~cantinfluence from the heating. Note that the other two efss
bility (€. — 1) to obtain growth rates that greatly exceed thos¢®@2 — @1 (Snyder-Lindzen limit) and)T" — Q1 (Type-C cyclo-

of the dry Eady model. One implication for the atmosphereJenesis) do not occur with large-scale rain for any basiesta
is that cases when baroclinic growth far outstrips thatioeth NS iS because the water vapor is concentrated in the lower t
from dry models require warm moist air through a greaterlept POSPhere so that heating layer is naturally near the grounedev
and may need to be convectively unstable in the regions of sat (€ boundary temperature wave@f; plays a major role. Also,
rated ascent such that deep convection can distribute lasatr " the Charney and Green models which have an interior merid-
ing through the troposphere. Figure 8 shows the classificati 1onal PV gradient, the “dry” upper CRW can exist at any level
diagrams for the Eady (1949) model, the Green (1960) modeiince it is not confined to the tropopause as in the Eady model.

Examples of baroclinic waves including the large-scale rai
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Eady model with large-scale rain Green model with large—scale rain Charney model with large-scale rain
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FIG. 8. Classification diagrams for baroclinic waves including lduge-scale rain parameterization in the Eady model (I#f8 Green model
(middle), and the Charney model (right). In case of the Eady@reen model, the rigid lid was located at 10 km height.

As wavelength and the Rossby height scale are decreased, tA¥, denoted ag(™, that cannot be attributed to the CRWs. Once
upper CRW (and therefore the dynamically induced vertieal v ¢ is non-zero, it may further alter the dynamics of the four
locity) move closer to the ground, and consequently so does t CRWs. The above sketched picture suggests that for general
heating maximum. The dry regime always exists at short waveiitial conditions the CRW evolution equations (24) cont&io
lengths for sufficiently weak heating in models with additional ‘forcings’:

7. General initial conditions a;(t) = —ik {Zcijaj (t) + ]:i(p) (t) + ];i(n) ®)]1, (26)
J

The aim of this section is to show that when moisture is
present, the general initial-value problem can be acclyrpte-
dicted by considering just the four CRW components assediat
with the moist growing NM, and a passively-advected redidua
PV (PAR-PV). The starting point is Egns. (19-21). De Vries ®) {q“/\/@q(m}
et al. (2009) (V09) have shown that the dry adiabafic£ 0) Ft) = T NaT
evolution from a broad range of initial conditions such as PV @ A

monopoles and dipoles, is described accurately by atinitpad| and]-‘i(m () represents the forcing frogi™. However, unlike

initi ive®) i -
f[he |r_1|t|al PV to the passive'™’ component gnd then integrat }'Z-(p), the function}'i(”)(t) is a priori unknown. For dry adia-
ing simple ODEs which describe the excitation of CRWs by theb i lution. i b q (n) i
meridional velocity associated witf?) and their subsequent atic evolution, it can be proved thay (1) = 0 at all times,

; : : ifg(™) ic ari oy
propagation and interaction. The approach works becagse tfVeN if¢™ # 0 (V09). This arises becaugé" is orthogonalto
displacement PV anomalig&?) created through meridional ad- (€ dry CRWs as mentioned above. However, this is not true in
vection project almost entirely onto a linear combinatibthe general yvhen mcludmg the_ heating parametenzatlon_s.e_Nev
two CRW structures. The projection is not perfect and some adN€!€ss, in systems W('fg moisture the PAR-PV approximation
ditional displacement PV anomalieg™, are generated. How- de_flned by neglecting'™ at all times and equating the full evo-
ever, in dry modelg(™ is orthogonal to both CRWs and there- lution to the sum of the PAR-PV componeyit) and the four

fore has no influence on their amplitude and phase evolutidn a CRWS, as described by (26) with ™ (t) = 0.
also cannot influencg® (V09). V09 use the terrtpassively-
advected residual PV (PAR-PV) approximatido’describe the
reduced model wherg(™ is neglected, such that any PV not  The previous discussion is illustrated with an example wher
projected onto the CRWs is advected as if passive. the PAR-PV approximation reproduces the perturbationtevol
In problems with parameterized latent heating, the firgt ste tion quite accurately. A basic state is considered with stmoo
is to decompose the initial perturbation PV into three pait$ =  shear (positive in the troposphere, slightly negative énstato-
¢'Y(0)+4¢"™(0)+4¢®(0). Onceg*)(0) has been identified, its  sphere) and buoyancy frequency (= 1 in the troposphere,
evolution is given by (21), simply ‘passive’ advection witte v — 2 in the stratosphere), non-zesand with a density scale-
basic-state windi. However, the meridional wind induced by height of 7.5 km (Fig. 9). Large-scale rain is included with a
q'¥) is able to excite the two ‘dry’ CRWs through meridional moisture profile that decays exponentially away from the sur
advection of basic state PV. Its induced vertical motioro als fgce with a height-scale of 4 km. We take, = 1 which is
produces diabatic heating and the excitation of the two &thoi the |argest value for which there is no potential moist ceave
CRWs. The winds associated wigt) may further projectonto  tive instability in the lower troposphere (WD94). Because o

whereZ") results from the ‘passive’ RW componepit) and
is computed as

a. Evolution of a PV monopole in the presence of large-scaile r

11
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FiG. 10. Evolution of a PV monopole with large-scale rain parametgidon on the basic state shown in Fig. 9. Viewed from frammoting
with the gNM phase-speed. Plotting convention as in Fig.t&e @ontour interval increases exponentially with. From top to bottom: Full PV
7. 4™ qr; qB; q2; q1; andg™ (the PV neglected by making the PAR-PV approximation). Gme winit corresponds to approximately 10 hours
of physical time. The simulation starts’&t= 0 with all PV attributed ta; .

the non-trivial basic state, the Green’s functions are iobth
numerically.

The initial condition takes the form of a mid-tropospheric
PV monopole. The monopole is given a zonal wavelength of
0.8 of the wavelength of the most unstable dry Eady mode. The
gNM growth rate at this wavelength is about 30 percent larger
than that of the most unstable dry Eady mode and we expect the
moist CRWSs to contribute significantly to the evolution. Bas
state and initial perturbation are shown in Figure 9. Note ho
both the meridional wind and the vertical wind are in quaghet
FIG. 9. Basic state and initial condition. Plotting conventionsras ~ With the initial PV and how these fields quickly vanish in the

Fig. 6. Note thatv < 0 andv > 0 contours are not shown. stratosphere due to the higher stratification.
The KRW model (Section 2e) was run forward to obtain the

u(z) N(z) da/dy Initial condition

w<0 and v>0 not displayed
V<O .

=
1

-

Height [10 km]

o
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0 05

1 1 2 0 510
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full PV, shown in the top row of Fig. 10. Already at= 1 of opposing vertical gradient in heating (above and belosv th

the perturbation structure has changed significantly. Aatieg  maximum). Although the structure of the two moist CRWs ap-

tropopause PV anomaly is generated at the location where thgears to have only a minor contribution to the full pertuidiat

initial northward winds were maximal, while below at the-sur it is found that their surface circulation has a major inflceepn

face a warm potential temperature anomaly associated with p the lower dry CRW and thus the whole evolution.

itive boundary-PV (black circles) appears. The tropopdesel Note that the individual RW components were obtained by

negative PV induces an anti-cyclonic circulation, while fjos-  numerical integration of the reduced-model (26) in timengsi

itive boundary-PV induces a cyclonic circulation, suchttiie  the PAR-PV approximation?(i(”)(t) — 0), where the initial

meridional wind (black contours) rapidly develops a westiva condition was assigned entirely to the passive compogi&ht

tilt with height even though the initial PV tilts over east@lain  The bottom row shows that part of the full model disturbance

the shear. Similarly, the vertical velocity (red contowalsp de-  (top row) that is neglected under the PAR-PV approximation.

velops a westward tilt. In time the perturbation gradualéyts  Clearly it has largest amplitude relative to the other congmis

to resemble the gNM, which has a significant contributiomfro  at intermediate times (it is zero initially and becomes $ffical

the low to mid-tropospheric PV. t > 7). The error made by making the PAR-PV approxima-
The other rows in Fig. 10 show the partition of the full per- tion can be measured as the maximal instantaneous totajyener

turbation into RW components. The first row is #1&¢) com-  contained in the neglected perturbatigft), which is about 3

ponent which equals the initial conditionfat 0 and is simply  percent of the full model total energy in this example.
sheared by the zonal flow. Note that its PV maximum is in-

variant, but the contour interval used in the plot incre@sg®- b. Phase space trajectories
nentially at the gNM growth rate. Its meridional wind, andito
lesser extent vertical wind, tilt eastwards with time reflegthe
tilt in PV. The evolution is also shown in a frame moving with
the gNM phase speed (about 10 m'} significantly slower
than that of the mid-tropospheric basic state zonal windheo
tilting PV pattern translates to the right.

The next two rows are the upper and lower “dry CRWs” re- ; (n) _
spectively. Both are untilted and amplify faster than thevyN (SettingZ;™" = 0), one obtains
growth rate, since their projection from the initial comalits ®)
is defined to be zero and they are excited through meridional & = _k[zcijﬁ cos(e; — €5) + E; cos(e; — np(%7)
advection associated with the PAR-PV component. A positive — A A; !
anomaly ing(?) induces cyclonic circulation which advects ba-
sic state positive PV from the north on its western side, espeﬁ
cially at tropopause level. As a result the dry upper CRW is A
excitedr /2 upstream relative to the wavedf?”). The same pos-
itive ¢ anomaly advects warm air from the south on its easterjynere FP = |F¥)| andn? = arg(F”). The evolution of
side which at the ground is equivalent to a positive bound®fy  CRW-i can be represented as a trajectdrit) = [X;(t), Y;(t)] =
anomaly (black dot in figure). Although, the dry lower CRW [¢; 4, /A,] in the two-dimensional “propagation rate” x “growth
contains a negative interior PV anomaly in the warm air, thQ'ate” plane_ Since both growth and propagation rate asyue]pto
positive boundary-PV anomaly immediately below is dominanto constant values, the CRW trajectories will ‘end’ at a fixed
in the inversion to obtain the winds such that the circulai® point_ The evolution of each CRW (i_e_, the trajectory ino‘pr
cyclonic around it. Consequently, the air to the east of taemw agation rate” x “growth rate” space) results from CRW self-
anomaly of the lower CRW moves polewards and ascends. Thgropagation and from the interactions with the other RW com-
circulation associated with the upper and lower CRWs isether ponents [all terms on the rhs of (27-28)]. The contributiof e
fore excited in anti-phase, owing to the opposing PV grdsien these interactions can be compared quantitatively, byaisg
upon which they exist. In this phase the wind induced by onghem as separate trajectories in the same figure. By zooming i
CRW at the level where the other is focused acthitalerthe g the evolution of the individual CRWs, the trajectory s
propagation of the other CRW counter to the flow there. Confyrther deepens the understanding of the perturbationitgal
sequently, the upper CRW is advected eastwards relativeeto t  For the lower dry CRW, the trajectory is labelled ZB in Fig. 11
lower CRW such that the westward tilt between them reduceg'SO shown is the trajectory of the lower dry CRW, as obtained
with time. with the full model (i.e., by projecting the fuj(®) obtained

In a similar Way, the moist CRWs are excited by the Verticalfrom (19) onto the |ower CRW) In th|S examp|e the trajecto_
velocity associated with®). The moist upper CRW is excited ries are very similar but not identical. The CRW evolution is
in phase with the dry upper CRW. The moist lower CRW is inmost easily understood by analyzing the separate coritsitsit
anti-phase with it because the two moist CRWs exist in regjionFirst of all, QB denotes the self-contribution of the CRW.fAs

To examine the evolution of the RW components and in par-
ticular their propagation and interaction more quanti&dyi, we
go back to the CRW-evolution equations (26). By separating
real and imaginary parts in (26), one obtains expressiarta/fo
key aspects of the CRWSs: their instantaneous propagatieé ra
and growth rated; /A;. Assuming the PAR-PV approximation

—k [ Z cijj sin(e; — €;) + ;1 sin(e; — an]ZS)
j 7

3
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et al. 2004a; Methven and De Vries 2008; De Vries et al. 2009)
can be extended to include diabatic generation of PV, liegult
from simple moisture parameterizations. Two differentetyp
of moisture parameterizations (wave-CISK and large-geahe
have been included in the QG system for basic states of \@ryin
complexity. Although realistically the parameterizasshould

be conditional on ascent, in this paper the parameterizatioe
taken in unconditional (linearized) form. The nonlineastgem

will be addressed in future work (Frame et al. 2010)

In order to understand baroclinic instability with dialoati
heating from moisture parameterizations, it is importante:-
alize that PV anomalies can have roughly three different ori
gins. PV anomalies can be created through advection of the
basic-state PV contours in regions where the mean meriddiona
FIG. 11. Phase-space trajector B) of the lower dry CRW and the  potential vorticity gradieng, # 0. This is called ‘displacement
contributions to its zonal propagation-éxis) and growth rateyfaxis)  PV’, ¢(4). Unstable normal modes in the absence of moisture
from itself (QB) and the other RW component® £, QT', Q1, @2 gre fully described by such displacement PV. PV anomalias ca
and @ which is neglected in the PAR-PV approximation). Thick 3150 pe generated diabatically through active moist psEssn
lines indicate the trajectories of the fu[l model, thin mosg_of the which case it is referred to as ‘moist ij(’m). Finally, there
reduced (PAR-PV) model. Numbers indicate nondimensionags. ., po p\/ anomalies that are remnants of diabatic processes

Dots are separated one nondimensional time unit. The inrteoater hich | tive. This PV i led * . @
dotted circle have radius 0.5 and 1.0, the dashed circle hadias which areé no longer active. 1his Is called ‘passive gV,

\ke| = |ke, + io] (in units fA/N). because it is simply advected by the bas?c state wi_m_109 has
presented a RW framework for interpreting baroclinic depel
ment where the PV distribution contains both displacem&ht P
¢'Y and passive PV, but where the diabatic PV generating
all vertically untilted PV-waves, it does not contributét®own  processes were absent.
growth but it has an important contribution to its phase prop This work explicitly includes moist P\4(™ and details a
gation (eastward propagation), which is smaller tidanf N ofa  Rw framework where all PV components are present. Four RW
pure boundary edge wave, due to the presence of interior PV @omponents are used to interpret baroclinic instabilitynoist
opposing sign in the lower CRW's PV structure. The contribu-normal modes. Two of these are similar to the counterprapaga
tion from the passive component (QP) to the CRW'’s growth ratq:ng Rossby waves (CRWS) appearing in the dry theory (HO4)
dominates the growth rate for times< 2.5 (it excites the lower  The other two components are defined from the ‘moist’ PV, that
CRW /2 downstream at = 0), while also adding to the east- can be attributed exclusively to the moist processes. THe ma
ward propagation rate of the CRW. Its influence however tgpid advantage of using RW components to describe the flow, is that
decreases, both because ghestructure itself is in the decaying it gives a robust framework for analysis. The dynamics ig firs
phase of the Orr-mechanism, and because the other componepdduced to one PDE by relating vertical velocity to the P\ dis
amplify rapidly. Interestingly, Q1, the lower moist CRW @ys  tribution and then reduced to four coupled ODEs descritfieg t
helps the propagation of QB and promotes its growth. (Since@mplitude and phase evolution of the RW components. Based on
both (dry and moist) lower CRWs propagate as on a negativghe occurrence of mutually amplifying pairs of RW comporsent
PV gradient, the former statement |mplles that the lower dl’)four growth regimes have been defined, which range from es-
CRW acts to reduce the growth of Q1 at all times). Q2 and QTsentially dry baroclinic instability (two dry CRWs domirsthe
act in concert to hinder the propagation rate of QB and premotinteraction) to fully moist (two moist CRWs dominate, SL91)
its growth by the same amount in the gNM configuration. Also,with a diabatic Rossby wave and Type-C cyclone growth being
their combined hindering behavior is almost cancelled qut b jntermediate types. The RW framework makes transparant tha
the helping effect of Q1 such that the net speed of the lower drinstability and sustained mutual amplification can onlywdé
CRW is not much smaller than its self—propagation rate (QB). the RW components (Whether dry or moist) propagate in op-
The trajectories obtained by making the PAR-PV approxi-posite directions to one another and counter to the shehein t
mation are almost identical to those of the full model, iniply  zonal flow (cf. Hayashi and Young 1987).
that neglecting the PV not involved with the componentsss ju The RW components have further been used in the inter-

tified. pretation of the baroclinic initial value problems with reire.
_ General initial conditions involve PV of all three origindis-
8. Conclusionsand remarks placement, diabatic and passive. A reduced model can be con-

This paper describes how the Rosshy-Wave (RW) perspeéjructed _based on the four RW compone_nts and a passive com-
tive of baroclinic instability (e.g. Hoskins et al. 1985; ifggz ~ Ponent, in an approach which has previously been termed the
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passively advected residual PV approximation (PAR-PVappr with (2, €,s) = — (k% + 12) [ Gu (2, 7', €15, )h(2')dz’. Obvi-
imation, V09). The reduced model captures the main propagausly, G,, depends explicitly on thesr moisture intensity pa-
tion and interaction mechanisms available to the systenaend rametere, ., and the moisture profile(z). Therefore, although
curately describes the evolution for many initial condi8oThe (9 has been given the superscripfbecause of its similar-
evolution can be succinctly summarized in terms of the¢ttaje ity to (9)], it is influenced by the SR heating parameterization.
ries of the components in phase space. The trajectoriemetta |n some Casei;’wﬁan be obtained analytically. For a uniform
from the reduced model are almost identical to those from thenoisture profile,G,, is described by hyperbolic functions. If
full system projected onto the RW components. The reducethe moisture profile decays exponentially with height.is ex-
model approach however has similar caveats as those describpressible in terms of Bessel functions. For more generasmoi
in V09, but can be expected to work well in cases in which theure profiles, one will have to use numerical methods. Nadé th
underlying normal modes have reasonably large growth.rates (") = 0 if €., = 0, and thak..,a(z., €,s-) = 1 again defines

The present paper discusses a partitioning into four CRW4 “CISK-threshold” (which now depends on h(z), 7(2), 2.
components. This number is motivated physically by the parande,., ande;,,.).
tition first by process into the displacement and diabatic PV
anomalies and second by the requirement for two orthogonal
structures in each (necessary for modal growth).

Finally, by defining the classification, we are making ex- APPENDIX B
plicit the relative importance of the different interactsand
processes within the flow, and determining their distritosgi
in parameter-space. Despite the fact that the present sudy
inherently over-simplifying many aspects of moist banoicli Following Heifetz and Methven (2005), the starting point is
instability occurring in the real atmosphere, it is hopeattin  to write the PV as a continuous integral over Rossby wave ker-
this way the diabatic Rossby wave moves from being a conceptels, called kernel Rossby waves (KRWs). KRWs can simply
used in case studies (e.g. Wernli et al. 2002), to being dunet  be thought of as being unique objects, which have associated
which might be expected to be observed in a certain region ofith them various “attributable fields”, such as PV, streanct
parameter space. tion etc. Central to the KRW definition is its PV distribution

denoted a¥’,(z, z’), which takes the form of &-function:

Derivation of (13) using kernel Rossby wave theory

Acknowledgments.
_ , Kq(z,2") =6d(z = 2'). (B1)
All authors acknowledge the National Environmental Re-
search Council (NERC, Grant NE/D011507/1) for making thea|| KRws are labelled uniquely by the vertical position oth
research possible. HdV acknowledges the Netherlands ®rgampy, KRWs are orthogonal in PV such that they form a proper
sation for Scientific Research (NWO) for a Rubicon Grant. JMpasjs. Associated with the KRW, or ‘induced’ by its PV, are
is grateful for a Research Council UK Academic Fellowship. 3 streamfunction, meridional and vertical velocity distition,
denoted a&’y (z, 2’), Ky (2, 2') andCy, (2, 2”) respectively.

The KRW PV induces a streamfunctid®y (z, ') that sat-
isfies £y [Ky (2, 2")] = Kq4(z,2"). ThereforelCy (z, 2’) is sim-
ply given by the Green functio@, (z, z’). By integrating over
Inverting the omega-equation: with large-scalerain all kernels with the appropriate amplitudes the streantfanc
is recovered, i.e. 1(z,t) = [Ky(z, 2")q(2',t)dz’. In the
same spirit each KRW is assigned a meridional velocity dgnsi
l7Cv(z, z'), andv is written as

APPENDIX A

This appendix extends section 2d by including large-scal
rain. As in the main text a Green function method is usedt Firs
in (6) the term proportional te;s, is moved from the rhs to _
the Ihs. A (new) Green functiog,, is constructed for the (new) v(z,t) = /IC’U(Zv Z)g(2' t)e"m2d, (B2)
differential operatoL,, = L., — e;5,7(2) V3. Usingg,, instead
of G.,, one can repeat the steps as in section 2d. The result shere ,(z,2') = —kGy(z,2’). The factorexp(—in/2) is
[cf. (8)] merely convention: it guarantees that the meridional vgioc

w(z,t) = 0D (z,t) + M (2,1), (Al)  kernelK,(z,z') is real and positive definite.

As shown in Section 2d, the linearized omega equation (6)
can be inverted to obtain the vertical velocity. The dynaahic
. - “forcing” appearing in (6),F(®, was shown in (7) to be ex-
D (z,t) = /gw(z’Z/’EIST>F(d)(Z/’t)dZ/’ (A2) pressible entirely in terms af, F(4) = £;;,[v]. By substitut-
ing for v the KRW velocity distributionC, (z, z’) and defining

where the two contributions are now given by

- (d)
WM (z,1) = —sewt (Z*’t))&(z,elsr), (A3)

1- ECC’U&(Z*7 €lsr
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F@ (2, 2") = L1m[Ky(z, 2")], the ‘dynamic’ part of the vertical Davies, H. C. and C. H. Bishop, 1994: Eady edge waves and

velocity,w(? (z) can be written as rapid developmentl. Atmos. Sci51, 1930-1946.
, De Vries, H., J. Methven, T. H. A. Frame, and B. J. Hoskins
(d) (d) —im /2 3.1 s s f y s
(2:%) /’Cw % 2)4( )e dz,  (B3) 2009: An interpretation of baroclinic initial value probis:

Results for simple basic states with non-zero interior PA£gr
where K\ (z,2) = [ Gu(z,2")F@ (2", 2")d2" andG,, the dients.J. Atmos. Sc;j.66, 864-882.
Green function corresponding to the operafqr appearing in
(6). [If LSR also occurs, one needs a decompositionitt
(A2), which follows by replacing,, by G,, in (B3) above]. It
was further shown that self-consistency leads to a reldi@mn
tweenw" andw(?, suggesting that the total vertical velocity Eady, E. T., 1949: Long waves and cyclone wavEslus 1,

De Vries, H. and J. D. Opsteegh, 2007: Resonance in optimal
perturbation evolution. Part I: Two-layer Eady modgl At-
mos. Sci.64, 673-694.

w can also be written as 33-52.
w(z,t) = /;Cw(% z’)q(z’,t)e‘”/de’ (B4)  Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Barodini
instability in an environment of small stability to slansei
for some kernekC, (=, =) (not shown). UsingC, andkC,,, the moist convection. Part I: Two-dimensional modeélsAtmos.

PV equation reads Sci, 44, 1559-1573.

Jq
ot

B 1 Fjartoft, R., 1950: Application of integral theorems in idérg
= —ikAlq), Alg] = u(2)q(z) — z /'y(z,z')q(z')dz', criteria of stability for laminar flows and for the baroclni
(B5) circular vortex.Geofys. Pub|.17, 1-52.

where the interaction coefficient$z, =') = 4 (2, 2/)+7") (2, ') Frame, T., J. Methven, H. De Vries, and B. Hoskins, 2010: A
are defined as counter-propagating Rossby wave perspective on moist baro

9q(z) clinic instability in a two-layer modeln preparation
’y(d) (Zazl> = /C,U(Z,Z/), (BG)
dy Gray, S. L., 2006: Mechanisms of midlatitude cross-tropega
Ny oy = e 9 {—p(z)h(z)lcw(z*,z’)] transport using a potential vorticity budget approakiGeo-
’ p(z) 0z N2(z) phys. Res111 (D17113), doi:doi:10.1029/2005JD006259.

= /
L s 9 [_p(Z)T(Z)K'W(Z i )] (B7)  Green, J. S. A,, 1960: A problem in baroclinic stabili@uart.

p(z) 0z N2(2) J. Roy. Meteorol. Sog86, 237—251.

Eq. (BS) is equal to (13). Note that becausg contains both — Gyakym, J. R., 1983: On the evolution of the QE I storm. Il

€ccv @ndeg,- (if both parameterizations act simultaneously), it is Dynamic and thermodynamic structukdon. Wea. Rey111
not possible to separate contributions from large-scateanad 1156-1173.

wave-CISK.
Hayashi, Y. Y. and W. R. Young, 1987: Stable and unstablershea
modes of rotating parallel flows in shallow watdr. Fluid

Mech, 184, 477-504.
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