ADM-Aeolus, VAMP, Task 4: Quantification of L2B HLOS wind accuracies for typical wind shear, aerosol and cloud conditions

Vertical Aeolus Measurement Positioning Technical note TN3 Name code: AE-TN-KNMI-VAMP-003 Authors: Jos de Kloe, Gert-Jan Marseille, Ad Stoffelen, KNMI

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

issue number: 1.3 issue date: 24-Mar-2010

Change log

Version	Date	Comment
0.1	10-Apr-2009	A first draft.
0.2	17-Apr-2009	Adapted to internal KNMI comments. Added new KNMI logo.
0.3	21-Apr-2009	Included chapters on Task 4b and LIPAS written by G.J.Marseille
0.4	30-Jun-2009	Adapted to ESA comments of 03-Jun-2009 plus section 4b extension
0.5	13-Jul-2009	Updated section 3.10.4 (Altitude effects) and written section 3.10.5
		(Effect of rangebin size)
0.6	07-Aug-2009	Adapted to ESA comments of 14-Jul-2009, and added Mie Core inner
		loop results.
1.0	02-Dec-2009	Adapted to ESA comments of 8-Oct-2009.
1.1	19-Jan-2010	Adapted to ESA comments of 20-Dec-2009.
1.2	10-Feb-2010	Adapted to remarks made at PM8 2-Feb-2010.
1.3	24-Mar-2010	Adapted to ESA comments of 18-Mar-2010.

Contents

Co	ontents		3
Li	st of Tables		5
Li	st of Figures	к	13
1	G	eneral introduction	14
2	D 2.1 2.2 2.3 2.4 2.5	Documents and acronyms Applicable documents Reference documents Literature Acronyms Document preparation	. 15 . 16 . 17
3	$\begin{array}{c} & \mathbf{T} \\ 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 3.5 \\ 3.6 \\ 3.7 \\ 3.8 \\ 3.9 \\ 3.10 \\ 3.11 \\ 3.11. \\ 3.11.2 \\ 3.11.3 \\ 3.11.4 \\ 3.11.5 \\ 3.11.6 \\ 3.11.7 \\ 3.12 \end{array}$	ask 4a: Mie Core QC Introduction Setup of the tool Simulation of transmission and spectrum Estimation of Signal-to-Noise ratio Mie Core Algorithm Input data Error multiplier Horizontal gradients and turbulence Results: LITE data; signal scaling Results: CALIPSO data; data selection Results: CALIPSO data; Mie Core outputs Outer loop iterations Inner loop iterations Residual error FWHM Altitude effects Altitude effects and SNR Effect of rangebin size Task 4a: QC conclusions and recommendations	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4		'ask 4a: Rayleigh QC Determining the impact of vertical shear in horizontal winds	50
5	5.1 5.2 5.3	Determining the impact of horizontal variation in horizontal winds Vask 4b: LIPAS upgrade Background From LIPAS to LIPAS-2009 Atmospheric return signal	. 50 51 . 51 . 51 . 53
	$5.4 \\ 5.4.1 \\ 5.5 \\ 5.5.1 \\ 5.5.2 \\ 5.5.3 \\ 5.6 \\ 5.6 \\ 5.6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	Mie channel signal and wind retrieval Mie channel Doppler shift estimate Rayleigh channel signal and wind retrieval Fabry-Pérot transfer function Rayleigh channel Doppler shift estimate Cross-talk Results HDAC 2000 E80	$\begin{array}{rrrrr} . & 56 \\ . & 58 \\ . & 58 \\ . & 60 \\ . & 62 \\ . & 63 \end{array}$
	$5.6.1 \\ 5.6.2 \\ 5.6.3$	LIPAS-2009 E2S comparison; case 1 – cloud-free atmosphere	. 65

AEU	DLUS	VAMP TN 3, version 1.3, dated: 24-Mar-2010	erstaat
5.7	$5.7.1 \\ 5.7.2 \\ 5.7.3$	LIPAS-2009 E2S comparison; case 4 – single cloud layer, realistic winds LIPAS-2009 Mie/Rayleigh wind retrieval LIPAS-2009 E2S-L1B-L2B comparison; photon count noise Wind observation representativeness error Atmosphere induced representativeness error Model representativeness error HLOS wind error overview Summary and conclusions	71 72 76 77 82 85
6		Task 4b: Quantification of the L2 HLOS information content for Mie only,	
		Rayleigh only and collocated Mie and Rayleigh sampling	87
6.1		Introduction	87
6.2		Mie and Rayleigh channel quality control	
	6.2.1	Mie channel quality control	
	6.2.2	Rayleigh channel quality control	
6.3		HLOS wind retrieval	88
7		Task 4c: Vertical sampling scenarios information content - global statistics	
			100
	7.0.1	PBL wind information content	100
	7.0.2	Lower-troposphere wind information content	103
	7.0.3	Upper-troposphere lower-stratosphere wind information content	
	7.0.4	Stratosphere wind information content	
	7.0.5	Total wind information content	
	7.0.6	Wind profile information content	111
8		Task 4c: Vertical sampling scenarios information content - new scenarios -	
0			114
	8.0.7	PBL wind information content	
	8.0.8	Lower-troposphere wind information content	
	8.0.9	Upper-troposphere lower-stratosphere wind information content	
	8.0.10	3 Stratosphere wind information content	120
	8.0.1		
	8.0.1	2 Total wind information content	124
9		Task 4c: Vertical sampling scenarios information content - new scenarios - climate zone statistics - two months from the database	125
10		Summary and conclusions	138
A	ndi A	Ventical compling cooperiod	140
		• Vertical sampling scenarios A.1 Vertical sampling scenarios with 500 m Rayleigh bins near the surface	140
_	-	A.1 Vertical sampling scenarios with 500 m Rayleigh bins near the surface	
_	-	 A.3 Vertical sampling scenarios with 1000 m Rayleigh bins near the surface and maximum bin height below 31 km	
Appe	ndix B		147
Appe	ndix C	Correlated wind errors in tropical cirrus	157

List of Tables

1	Parameter values used to simulate the Mie spectral peak, and the Fizeau transmission curves.	21
2	Mie Core algorithm settings.	24
3	Overview of effect of maximum iteration threshold setting for the Mie Core inner loop (based	
	on the LITE scene A dataset, consisting of 5760 valids point with $SNR > 10$ and Validity	
	Flag set to true).	34
4	Overview of effect of innerloop NonLinOpt thresholds (based on the LITE scene A dataset,	
	consisting of 5760 valid points with $SNR > 10$ and Validity Flag set to true)	34
5	Overview of effects of applying the different thresholds	39
6	Overview of effects of applying the different thresholds on different regions of the atmosphere.	41
7	Overview of the data quality for subsequent range bins. The only thresholds applied are	
	SNR>10 and ValidityFlag=True.	48
8	Parameter values used for the ADM performance simulation. The ADM Phase-B design	
	values for the Rayleigh equivalent and earth background equivalent bandwidths are obtained	
	from an e-mail correspondence with ESA (Anne Grete Straume) on Wednesday 3 June 2009.	54
9	Parameter values used to simulate the Fizeau transmission function, see also Table 1	56
10	Parameter values used to simulate the Fabry-Pérot transfer function.	58
11	HLOS wind error bias and standard deviation (std) of DWL wind profiles along one CALIPSO	
	orbit as obtained from E2S-L1B-L2B and LIPAS. Clear air denoting no clouds in the retrieved	
	winds, but possibly aerosol and cloudy air denoting clouds in the retrieved winds	75
12	Bias and variance for Mie and Rayleigh channel wind errors for a 1000 meter vertical bin	
	including a very thin cloud layer with one-way cloud transmission τ_c . A constant wind-shear	
	of 0.004 s^{-1} over the bin is assumed. The table values correspond to 3 different values for	
	the one-way cloud transmission. X means no wind retrieval	81
13	ECMWF zonal wind effective model resolution as a function of pressure level (hPa) as ob-	
	tained from [RD9]. Italic values denote extrapolation by matching Table 4.4 in [RD12] with	
	respective values in [RD9], i.e. equal missing variance at 500 and 150 hPa and linear interpo-	
	lation of the missing variance from 150 to 50 hPa. The effective model resolution of 200 km	
	at 50 hPa is a guess value	83
14	Estimates of Mie channel HLOS wind error contributors; stddev is an abbreviation of standard	
	deviation, repr. is an abbreviation of representativeness	85
15	Estimates of Rayleigh channel HLOS wind error contributors; stddev is an abbreviation of	
	standard deviation, repr. is an abbreviation of representativeness	85

List of Figures

- 2 Mie spectral shape for a wind velocity of 50 ms⁻¹ (blue), compared to the much broader Fizeau transmission curve for accd column 3 calculated in 3 different ways red: using the Lorentzian function as is done in LIPAS; cyan: using the Airy function as in done by the E2S; gray: using the Airy function but without integration over the accd bin surface. Also note that the ACCD columns are numbered between 1 and 16 in this report. The 2 vertical green lines denote the edges of the accd bin used for this example, and the vertical blue line denotes the frequency that corresponds to the Doppler shift of a LOS wind of 50 ms⁻¹. Finally, the small blue peak below the Mie spectral shape, represents the amount of light entering accd bin 3. 21

3	Mie spectral shape for a wind velocity of 50 ms ⁻¹ (blue), compared to the Fizeau trans- mission curves for all 16 accd columns (cyan). The blue curves below the Mie peak denote the fraction of light detected by each of the accd bins. Clearly, due to the long tails of the	
4	transmission curves, all accd bins will receive some signal. The expected signal that will be measured by each accd channel is denoted by the red squares	
4	Location of the selected CALIPSO data.	
$\frac{5}{6}$	Scatterplot of input LOS winds derived from ECMWF u,v,w components, colocated at the	20
	locations of the CALIPSO data used for the majority of simulations, plotted against the wind velocity error found by the simulations (for results with SNR>10 and ValidityFlag set). The overplotted black diamonds and ranges denote the average and standard deviation of 25 devisions along the y-axis. This illustrates that there is no clear relation between the absolute	
	wind velocity value and the data quality, even though at first sight the large amount of data	
_	between wind velocities of 0 and 20 ms ⁻¹ might suggest otherwise. $\dots \dots \dots \dots \dots$	26
7	First simulation results using LITE data. The data shows nonsense retrievals for very low	
	SNR and a clear overflow problem.	27
8	Simulation results using LITE data, after applying a SNR threshold of 10 (left panel), and	
	after discarding data reported invalid by the ValidityFlag as well (right panel). The nonsense	20
0	retrievals for very low SNR have disappeared now but the overflow problem remains.	28
9	A case showing the effect of an integer overflow in the accd counts of the Mie channel (these are internal reference counts, and this case was generated by L1B v1.07).	29
10	Simulation results using LITE data, again using a SNR threshold of 10, and only accepting	29
10	data for which the Validity flag is set to true. In this case a correct signal scaling is applied	
	and the overflow problem disappears (left panel). To illustrate the effect of Poisson noise on	
	the simulations the same case has been run without Poisson noise (right panel)	29
11	Simulation results using LITE data, without wind variability (using zero input wind) and	
	without Poisson noise, to illustrate the numerical inaccuracies of the simulation program	30
12	Simulation results using CALIPSO data, all results without selection (left panel) and after	
	applying a SNR threshold of 10 (right panel)	31
13	Simulation results using CALIPSO data, after applying a SNR threshold of 10 and after	
	discarding data reported invalid by the ValidityFlag. as well (right panel).	31
14	All valid data after discarding points with SNR<10 and invalid ValidityFlag (left panel). The	00
1 5	right panel shows a magnification of the region $10 < \text{SNR} < 100$.	32
15	Number of outer loop iterations, as function of the wind velocity error, for the selected CALIPSO data.	32
16	Average number of inner loop iterations, as function of the number of outer loop iterations	32
10	for the selected CALIPSO data (left panel), and as a function of residual error (right panel).	33
17	Average number of inner loop iterations, as function of the number of outer loop iterations	00
11	for the selected LITE data (left panel), and as a function of residual error (right panel). For	
	this test a maximum of 200 inner loop iterations was allowd, in stead of the default value of 20	. 33
18	Residual error reported by the Mie Core algorithm as function of the wind velocity error, for	
	the selected CALIPSO data.	35
19	Residual error reported by the Mie Core algorithm as function of the wind velocity error,	
	plotted as contour plot. All valid results (left panel) and the region below ResErr=0.01	
	magnified.	35
20	Same data as shown in Fig. 19, again as scatterplot, but now with over plotted lines to show	
	the mean and one std value on both sides of the mean, for a number of Residual Error layers	
	(full range is split in 25 sub-ranges for this calculation). From the right panel the position at	
	which the wind velocity error std exceeds the value of 1 ms^{-1} (requirement for the LOS wind velocity accuracy) can be read, which is at about 0.013	36
21	FWHM reported by the Mie Core algorithm as function of the wind velocity error, for the	50
-1	selected CALIPSO data.	37

22	FWHM reported by the Mie Core algorithm as function of the wind velocity error, plotted as contourplot. All valid results (left panel), and a magnified region around FWHM=2 (right panel). The straight lines in the left panel are plotting artefacts and should be ignored. Also the striping feature in the right panel is an artefact caused by the binning of the data and	
23	probably not relevant	37
24	range is split in 25 sub-ranges for this calculation)	38
25	FWHM layers (full range is split in 25 sub-ranges for this calculation)	38
26	above 50	39
27	and one std value on both sides of the mean, for a number of SNR layers. Clearly the std increases for lower SNR and also the mean FWHM value shifts to larger values for lower SNR. This is caused by the combination of transparant clouds and wind shear LOS wind error std for different climate zones against altitude. The blue dots and curve are for all data (global). The green, red, cyan and purple dots and curves are for tropical, subtropical,	40
	midlatitude and polar data, as is explained in the text. The solid black line indicates the requirement, the dotted black line indicates the requirement including representativeness error, the green dotted line a step in rangebin size and the red dotted line the ground surface (not taken into account in the simulation). The dotsizes represent the amount of valid datapoints used to reconstruct the statistics (symbol size scales linear with the amount of	42
28	LOS wind error std for different climate zones against altitude, plotted in the same way as in Figure 27. Clearly the requirements are met along most of the profile except for a few exceptional points that are not significant due to the low amount of retrievals passing the SNR>100 requirement. Only the PBL result just above the surface significantly fails the	
29	Standard deviation on LOS wind error found by selecting the data below a number of different	43
30	Residual Error Thresholds. This example only shows 1 km rangebins for the mid-latitudes. Residual Error threshold values needed to get a std on LOS wind error that equals the requirement, for each climate zone and range bin. If no threshold was needed the point is plotted at 0.5, if no threshold could be found the point is plotted at 0. The results for all climate zones together are connected by the blue dotted line. The green dotted horizontal lines indicate the jump in rangebin size. The vertical dashed lines indicate the average threshold	44
	1 0	45
31	Standard deviation on LOS wind error found by selecting the data above a number of different SNR Thresholds. This example only shows 1 km rangebins for the sub-tropics.	46
32	SNR threshold values needed to get a std on LOS wind error that equals the requirement, for each climate zone and range bin. The green dotted horizontal lines indicate the jump in rangebin size. The vertical dashed lines indicate the average threshold per climate zone and	
33	range bin size	47
34	Fabry-Pérot channel A (direct, blue) and B (reflected, red) transmission (left panel) and Fizeau reflection, $\tau_{\text{Fiz}}(\nu)$, (right panel). The blue solid and red dotted curves show the channel A, $\tau_{\text{FP}}^{\text{A}}(\nu)$, and B, $\tau_{\text{FP}}^{\text{B}}(\nu)$, transmission respectively as a function of wavelength offset. The	55
	blue dotted line is the reflected signal from the direct channel, $\tau_{\text{FP}}^{\text{A}_{\text{refl}}}(\nu)$. The solid red line is the product of the channel A reflected transmission and the channel B transmission.	59

35	Fabry-Pérot Relay to focus the channel A, $\tau_{\rm FP}^{\rm A-relay}$ and B, $\tau_{\rm FP}^{\rm B-relay}$, signals on the ACCD bins (left panel). The right panel shows the relative signal detected from the A (direct) and B	
36	(reflected) channel	59
	$T=210$ (K) (dashed). Red lines correspond to LIPAS-2009, blue lines to the L2Bp receiver response tables (file AE_TEST_AUX_RBC_L2_20071003T123456_20081002T123456_0001), L2Bp version CY35R2_Jun03, June 2009).	61
37	Rayleigh LOS wind error bias (ms^{-1}) through Mie contamination and as a function of temperature (K). The true LOS wind is 13 ms ⁻¹ . The scattering ratio is a measure of Mie	01
38		64
39	large wind of -110 ms^{-1} (right panel)	65
10	and vertical wind (ms^{-1}) profiles are set to zero (middle). Atmospheric scattering is in the (right) panel. The left/middle curves show aerosol/molecular backscatter $(m^{-1}sr^{-1})$.	65
40	Case 1. Total signal from 14 accumulated measurements on the 16 ACCD bins, after digitisa- tion, of the Fizeau interferometer for 24 range gates. Red/black lines denote the E2S/LIPAS- 2009 result. The blue curve in the lower right panel is the E2S earth radiance background signal. Bin 24 is below the surface and contains no signal in both the E2S and LIPAS. See	
41	the text for further details	66
	details.	67
42	Relative difference between the E2S and LIPAS-2009 Fizeau (left) and Fabry-Pérot (right) ACCD signals. The large difference in Fizeau bin 22 and Fabry-Pérot bin 23 is explained in	
4.9	the text.	67
$\frac{43}{44}$	Typical mid-latitude winter atmospheric temperature (C)	68 68
44 45	Relative difference between E2S and LIPAS-2009 for attenuated backscatter (left) and one- way molecular transmission (right).	69
46	Case 2. Signal on the 16 ACCD bins of the Fizeau interferometer , after digitisation, for 24 range gates. Red/black lines denote the E2S/LIPAS-2009 result. The blue curve in the lower	05
47	right panel is the E2S earth radiance background signal. See the text for further details. Bins 7-9 clearly show an increased signal from cloud particles	69
	24 range gates. Red/black lines denote the E2S/LIPAS-2009 result. Bins 8-10 clearly show an increased signal due to cross-talk from cloud particles. See the text for further details	70
48	Same as Fig. 42 but now for case 2.	
49	Atmospheric temperature (C) (left) and wind (right) for a typical tropical scene. Red/blue/green	
50	Case 3. Signal on the 16 ACCD bins of the Fizeau interferometer, after digitisation, for 24	71
51	range gates. Red/black lines denote the E2S/LIPAS-2009 result. The blue curve in the lower right panel is the E2S earth radiance background signal. See the text for further details Case 3. Signal on the 16 ACCD bins of the Fabry-Pérot interferometer , after digitisation, for	72
91	24 range gates. Red/black lines denote the E2S/LIPAS-2009 result. See the text for further details.	73
52	Same as Fig. 42 but now for case 3.	73
53	Case 4. Signal on the 16 ACCD bins of the Fizeau interferometer, after digitisation, for 24 range gates. Red/black lines denote the E2S/LIPAS-2009 result. The blue curve in the lower right panel is the E2S earth radiance background signal. Bins 7-9 clearly show an increased	
	signal from cloud particles. See the text for further details.	74
54	Case 4. Signal on the 16 ACCD bins of the Fabry-Pérot interferometer , after digitisation, for 24 range gates. Red/black lines denote the E2S/LIPAS-2009 result. Bins 8-10 clearly show	
55	an increased signal due to cross-talk from cloud particles. See the text for further details Same as Fig. 52 but now for case 4.	75 76

Koninklijk Nederlands
Koninklijk Nederlands Meteorologisch Instituut
Ministerie van Verkeer en Waterstaat

56	Single case HLOS wind retrieval from Rayleigh (blue diamond) and Mie (red star) channel. The left panel shows the result for a noise-free instrument, the right panel does include	70
57	instrument noise. HLOS wind retrieval statistics for Rayleigh (blue diamond) and Mie (red star) channel from	76
	100000 simulations. The left panel shows the bias, the right panel the standard deviation. The standard deviation for Mie winds above the surface is close to 85 ms^{-1} (not shown)	77
58	Rounding effect from floating point to integer numbers of electrons. Left, the number of	
	electrons on the ACCD with (red) and without (black) the rounding operator. Middle, the difference of the curves: black minus red. Right, corresponding Rayleigh wind bias (blue diamonds).	77
59	Mie (green/red) and Rayleigh (blue) HLOS wind retrieval statistics from 100000 simulations. The left/middle (zoomed in) panel show the bias (including the rounding effect explained in Fig. 58), the right panel the standard deviation. The green symbols are obtained from the	11
	simplified Mie retrieval algorithm described in MMS, the red symbols are obtained with the Mie Core algorithm.	78
60	Left, scatterplot of E2S-L1B-L2B versus LIPAS HLOS winds including Rayleigh winds in clear (aerosol but no cloud) air (1527 red crosses), Rayleigh winds in cloudy air (140 green crosses), Mie winds in clear air (141 light blue circle) and Mie winds in cloudy air (191 dark blue circles). The black solid lines shows the diagonal. The right plot is the same as the left plot but with all Mie and Rayleigh winds denoted by black crosses and the contour colours	
	showing the data density. The white solid lines shows the diagonal.	78
61	Same as left panel in Fig. 60 but now for the HLOS wind error. The right panel is the same	70
62	as the left panel but zoomed to zero wind errors	78
02	as the left panel but zoomed to zero wind errors.	79
63	L1Bp and L2Bp HLOS wind error statistics obtained from 94 BRCs (observation profiles) along one CALIPSO orbit; error bias (left) and error standard deviation (right). Blue and red symbols correspond to L1Bp and L2Bp winds respectively with stars corresponding to Mie winds and triangles to Rayleigh winds. The E2S was used to simulate the noisy Mie and	
64	Rayleigh channel signals. LIPAS HLOS wind error statistics obtained from about 400 BRCs (observation profiles) along one CALIPSO orbit; error bias (left) and error standard deviation (right). Red stars correspond to Mie winds and the blue diamonds, magenta squares and green triangles to Rayleigh winds obtained with various processing options that are further discussed in section 6.3. LIPAS was used to simulate the noisy Mie and Rayleigh channel signals.	79 80
65	Rayleigh wind error bias (ms^{-1}) (left) and variance (m^2s^{-2}) (right) as a function of one-	00
66	way cloud transmission and cloud layer thickness (m). The measurement bin is 1000 m, the wind-shear is constant over the bin with a value of 0.004 s^{-1}	83
	[RD7]. Bottom: processed data to 3300 m horizontal and 125 m vertical resolution. The	
67	spurious artefacts near 8 km are due to a change of the on-board averaging from 30 to 60 m. Atmosphere scattering ratio at 355 nm along the nighttime part of one CALIPSO orbit, measured on $1/1/2007$ around 00:30 UTC (top) and corresponding zonal wind (bottom) as obtained from the atmospheric database winds and ADM pointing. The horizontal resolution	89
	is 3.5 km, the vertical resolution 125 m.	90
68	Same as Fig. 67 but zoomed in to the Tropics.	91
69	Same as the bottom panel in Fig. 67 but now the HLOS wind.	92
70	Retrieved Mie (top) and Rayleigh (bottom) winds for the scene displayed in Fig. 67 and vertical sampling scenario WVM1. Rayleigh wind retrieval option 1 was used, see text for further details. The LIPAS output quality indicator flags are used to select the good quality winds for plotting. Dark blue grate denote missing winds begad on the guality indicator flags.	
	winds for plotting. Dark blue spots denote missing winds based on the quality indicator flags. Note the different height interval along the y-axis.	93
71	Same as the bottom panel of Fig. 70 but for option 2 (top) and option 3 (bottom) for the Rayleigh wind retrieval, see text for further details.	

72 73	HLOS wind error bias for Mie (red stars) and Rayleigh channel (left) for vertical sampling scenario WVM1. Three processing options for Rayleigh wind retrieval are displayed: option 1, simply accumulating all measurements (blue diamonds), option 2, application of classification (green triangles) and option 3, application of cross-talk correction (magenta squares). Right, the number of data that passed quality control and used in the statistics Wind and temperature statistics for scenes with tropical cirrus on 1/1/2007. Left, zonal (black) and meridional (blue) wind distribution in the tropics. solid and dashed lines denote the mean and mean and mean deviation are statistical processing options.	. 95
74	the mean and mean +/- one standard deviation respectively. Zonal wind (middle) and tem- perature (right) statistics at the location of tropical cirrus. Red lines correspond to the mean value. The tropics is bounded here at 30 degrees latitude	
75	lowest scattering ratio values. Red lines correspond to the mean value.	
76 77	HLOS wind error standard deviation for Mie and Rayleigh channel for vertical sampling scenario WVM1. For an explanation of the symbols see Fig. 72	. 97
78	winds. Same as Fig. 72 but now for sampling scenario WVM2	. 98 . 99
79 80	Same as Fig. 76 but now for sampling scenario WVM2 Number of good (green), moderate (orange), bad (red) and quality controlled (blue) Mie channel HLOS winds in the PBL for the sampling scenarios defined along the y-axis. Data are obtained from one day $(1/1/2007)$ covering 15 (half CALIPSO) orbits and about 6000	. 99
81	HLOS wind profiles	
82	Total number of good, moderate, bad and quality controlled HLOS wind obtained from accumulating the Mie (Fig. 80) and Rayleigh (Fig. 81) winds for processing option 1 (left),	
83	option 2 (middle) and option 3 (right)	. 102
84	about 6000 HLOS wind profiles	
85 86	(middle) and option 3 (right)	
87	HLOS wind profiles	
88 89	Same as Fig. 82 but now for the UTLS. Number of good (green), moderate (orange), bad (red) and quality controlled (blue) Mie channel HLOS winds in the stratosphere for the sampling scenarios defined along the y-axis. Data are obtained from one day (1/1/2007) covering 15 (half CALIPSO) orbits and about	. 106
90	6000 HLOS wind profiles	
91 92	Same as Fig. 92 but now for all atmospheric regions accumulated. These plots show the total	
93	data coverage and HLOS wind quality throughout the atmosphere	. 109
94	channel HLOS winds in the UTLS in the extra-tropics (left) and tropics (right) Same as Fig. 93 but now for the stratosphere above 15 km	

۱.,	Koninklijk Nederlands
5	Meteorologisch Instituut
	Ministerie van Verkeer en Waterstaat

95	Wind vertical decorrelation height profile for two available error statistics datasets of the	
	HARMONIE model for the winter (red) and summer (green) period and from the ECMWF	110
96	model (blue)	112
	covering the full Northern Hemisphere and the Southern Hemisphere up to 61°S were used. Note the different axis scaling.	112
97	DWL profile information content in Extra-Tropics (left) and Tropics (right) relative to ra- diosonde information content including representativeness error inflation for closely spaced	
98	profile bins. The Tropics is bounded at 30 degrees latitude. Retrieval option 2 (classification) was used here for Rayleigh channel winds. Note the different axis scaling	113
00	channel HLOS winds in the PBL for the sampling scenarios defined along the y-axis. Data are obtained from one day $(1/1/2007)$ covering 15 (half CALIPSO) orbits and about 6000	
00	HLOS wind profiles.	115
99	Same as Fig. 98 but now for Rayleigh channel winds retrieved with processing option 1 (left), option 2 (middle) and option 3 (right).	115
100	Total number of good, moderate, bad and quality controlled HLOS wind obtained from accumulating the Mie (Fig. 98) and Rayleigh (Fig. 99) winds for processing option 1 (left),	118
101	option 2 (middle) and option 3 (right)	115
101	channel HLOS winds in the lower troposphere for the sampling scenarios defined along the	
	y-axis. Data are obtained from one day $(1/1/2007)$ covering 15 (half CALIPSO) orbits and about 6000 HLOS wind profiles.	117
102	Same as Fig. 101 but now for Rayleigh channel winds retrieved with option 1 (left), option 2	
	(middle) and option 3 (right).	
$\frac{103}{104}$	Same as Fig. 100 but now for the lower troposphere.	117
104	Number of good (green), moderate (orange), bad (red) and quality controlled (blue) Mie channel HLOS winds in the UTLS for the sampling scenarios defined along the y-axis. Data are obtained from one day $(1/1/2007)$ covering 15 (half CALIPSO) orbits and about 6000	
	HLOS wind profiles.	119
105	Same as Fig. 104 but now for Rayleigh channel winds retrieved with option 1 (left), option 2	
106	(middle) and option 3 (right).	
$\frac{106}{107}$	Same as Fig. 100 but now for the UTLS	119
201	channel HLOS winds in the stratosphere for the sampling scenarios defined along the y-axis.	
	Data are obtained from one day $(1/1/2007)$ covering 15 (half CALIPSO) orbits and about 6000 HLOS wind profiles.	191
108	Same as Fig. 107 but now for Rayleigh channel winds retrieved with option 1 (left), option 2	121
	(middle) and option 3 (right).	
109	Same as Fig. 100 but now for the stratosphere.	121
110	Quality and coverage of Mie HLOS winds in tropical cirrus scenes as a function of vertical sampling scenario: Mie HLOS wind error bias (left), standard deviation (middle) and the	100
111	number of data (right)	122
	as a function of vertical sampling scenario: Rayleigh HLOS wind error bias (left), standard	
	deviation (middle) and the number of data (right).	
112	Same as Fig. 111 but now for Rayleigh channel processing option 2	
$\frac{113}{114}$	Same as Fig. 111 but now for Rayleigh channel processing option 3	123
114	total data coverage and HLOS wind quality throughout the atmosphere.	124
115	Same as Fig. 114 but now for different climate zones: Northern Hemispere (NH) polar region	
	(left), NH mid-latitude region (middle) and the NH sub-tropical region (right). Rayleigh option 3 is used in all plots. Note the different scaling along the x-axis.	124

116		. 125
117	DWL profile information content relative to radiosonde information content excluding (left) and including (right) representativeness error inflation for closely spaced profile bins. Retrieval option 2 (classification) was used here for Rayleigh channel winds. All DWL profiles covering the full Northern Hemisphere and the Southern Hemisphere up to 61°S were used.	
118	Note the different axis scaling	. 125
	responds to PBL/lower-troposphere/UTLS/stratosphere respectively. The 4 columns for each climate zone correspond to scenarios wvm1_1km, wvm2_1km, et-zwc2_1km and tr-zwc2_1km respectively.	126
119	Same as Fig. 118 but now for Mie (left) and Rayleigh (right) winds only.	
120	Same as Fig. 118 but now for the summer (August 2007) period	
121	Same as Fig. 118 but now now for the summer (August 2007) period.	
122	HLOS wind error statistics for sampling scenario wvm1_1km in January 2007: HLOS wind	
	error bias (top left) and HLOS wind error standard deviation (top right). The number of	
	(non-flagged) winds (bottom left). Statistics are based on about 150000 wind profiles i.e. 30	
	days. The symbols are explained in Fig. 72	. 130
123	HLOS wind error statistics for sampling scenario wvm2_1km in January 2007: HLOS wind	
	error bias (top left) and HLOS wind error standard deviation (top right). The number of	
	(non-flagged) winds (bottom left). Statistics are based on about 150000 wind profiles i.e. 30 days.	121
124	HLOS wind error statistics for the extra-tropical sampling scenario wvm-et-zwc2_1km in	. 101
121	January 2007: HLOS wind error bias (top left) and HLOS wind error standard deviation	
	(top right). The number of (non-flagged) winds (bottom left). Statistics are based on about	
	150000 wind profiles i.e. 30 days.	. 132
125	HLOS wind error statistics for the tropical sampling scenario wvm-tr-zwc2_1km in January	
	2007: HLOS wind error bias (top left) and HLOS wind error standard deviation (top right).	
	The number of (non-flagged) winds (bottom left). Statistics are based on about 150000 wind	100
196	profiles i.e. 30 days.	. 133
126	HLOS wind error statistics for sampling scenario wvm1_1km in August 2007: HLOS wind error bias (top left) and HLOS wind error standard deviation (top right). The number of	
	(non-flagged) winds (bottom left). Statistics are based on about 160000 wind profiles i.e. 30	
		. 134
127	HLOS wind error statistics for sampling scenario wvm2_1km in August 2007: HLOS wind	
	error bias (top left) and HLOS wind error standard deviation (top right). The number of	
	(non-flagged) winds (bottom left). Statistics are based on about 160000 wind profiles i.e. 30	
100	days.	. 135
128	HLOS wind error statistics for the extra-tropical sampling scenario wvm-et-zwc2_1km in August 2007: HLOS wind error bias (top left) and HLOS wind error standard deviation	
	(top right). The number of (non-flagged) winds (bottom left). Statistics are based on about	
	160000 wind profiles i.e. 30 days.	. 136
129	HLOS wind error statistics for the tropical sampling scenario wvm-tr-zwc2_1km in August	. 100
	2007: HLOS wind error bias (top left) and HLOS wind error standard deviation (top right).	
	The number of (non-flagged) winds (bottom left). Statistics are based on about 160000 wind	
	profiles i.e. 30 days.	. 137
130	Vertical sampling default scenarios wvm1 (left) and wvm2 (right). The Mie channel reaches	
	the ground for both scenarios thus providing the opportunity for Mie channel zero wind	1 4 1
131	calibration	. 141
191	calibration opportunity. Scenario names from left to right: et_zwc1,et_zwc2,et_nozwc1,et_nozwc	2

132	Tropical vertical sampling with (leftmost two) and without (rightmost two) zero wind calibration opportunity. Scenario names from left to right: tr_zwc1, tr_zwc2, tr_nozwc1, tr_nozwc2.	140
133	Same as Fig. 130 but now with 1000 m range bins for the Rayleigh channel near the surface. Scenario names are wvm1_1km (left) and wvm2_1km (right).	. 142
134	Same as Fig. 131 but now with 1000 m range bins for the Rayleigh channel near the surface. Scenario names from left to right: et_zwc1_1km, et_zwc2_1km, et_nozwc1_1km, et_nozwc2_1km.	
135	Same as Fig. 132 but now with 1000 m range bins for the Rayleigh channel near the surface. Scenario names from left to right: tr_zwc1_1km, tr_zwc2_1km, tr_nozwc1_1km, tr_nozwc2_1km.	
136	Stratospheric scenario with 1000 m (right) Rayleigh bins near the surface. This scenario has no zero wind calibration opportunity. The scenario is denoted wmv_stratos.	
137	Same as Fig. 130 but now with 1000 m range bins for the Rayleigh channel near the surface. Scenario names are wvm1_1km (left) and wvm2_1km (right).	
138	Same as Fig. 131 but now with 1000 m range bins for the Rayleigh channel near the surface. Scenario names from left to right: et_zwc1_1km, et_zwc2_1km, et_nozwc1_1km, et_nozwc2_1km.	1.45
139	Same as Fig. 132 but now with 1000 m range bins for the Rayleigh channel near the surface. Scenario names from left to right: tr_zwc1_1km, tr_zwc2_1km, tr_nozwc1_1km, tr_nozwc2_1km.	. 145
140	HLOS wind statistics for sampling scenario wvm1_1km (upper left): the number of (non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error	. 146
141	standard deviation (bottom right). Statistics are based on 6000 wind profiles HLOS wind statistics for sampling scenario wvm2_1km (upper left): the number of (non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error	. 147
142	standard deviation (bottom right). Statistics are based on 6000 wind profiles	. 148
143	(non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles	. 149
144	(non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles	. 150
	(non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles.	. 151
145	HLOS wind statistics for sampling scenario wvm_et_zwc2_1km (upper left): the number of (non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles.	. 152
146	HLOS wind statistics for sampling scenario tr_nozwc1_1km (upper left): the number of (non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error	
147	standard deviation (bottom right). Statistics are based on 6000 wind profiles	. 153
148	standard deviation (bottom right). Statistics are based on 6000 wind profiles HLOS wind statistics for sampling scenario tr_zwc1_1km (upper left): the number of (non-	. 154
149	flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles	. 155
150	flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles	. 156
150	ratio (bottom panel).	. 158 . 159

1 General introduction

This document describes the work done and the results obtained for Work Package (WP) 4 of the Vertical Aeolus Measurement Positioning (VAMP) project. The objective of this WP is to investigate the quality of the Level-2B (L2B) Horizontal projected Line-of-Sight (HLOS) wind results, in case of separate processing of the Mie and Rayleigh channels, and in case they can be combined. Especially the benefit of Mie oversampling (i.e. having multiple Mie range bins covering a single Rayleigh range bin) will be investigated in conditions with large gradients in for example wind shear (i.e. vertical variation of the horizontal wind components) and optical properties.

This WP and thus this document has been divided in three parts. First, the utilization of Mie Core and Rayleigh processing outputs as quality indicators is described in sections 3 and 4. Then in section 5 the LIPAS tool is described in some detail, including the modifications added to it to make it suitable for use in the current project. In section 6 the L2B HLOS information content for the separate and combined Mie and Rayleigh channels is quantified. A summary of the benefits and drawbacks of the proposed sampling scenarios is discussed in sections 7, 8 and 9. Each chapter is concluded with an overview of the findings, conclusions and recommendations. These can be found in sections 3.12 and 10.

2 Documents and acronyms

2.1 Applicable documents

[AD1] "ADM-Aeolus: Optimization of the Spatial and Temporal Sampling", by: A. G. Straume-Lindner, issue 1.0, dated 20-Apr-2007, reference code: AE-SW-ESA-GS-027.

2.2 Reference documents

- [RD1] "Aeolus Level 2B processor Issue 1.41 Software Release Note (SRN)", 12-Jun-2009, AE-RN-ECMWF-L2BP-001.
- [RD2] "ADM-Aeolus L1B Master Algorithm Document (MAD)", AE-SW-ASU-GS-023, issue 5.1, dated Jun-2008.
- [RD3] "Aeolus Level 1b Processor and End-to-End Simulator, End-to-End Simulator Detailed Processing Model (DPM)", by: P. Saeedi, ADM-MA-52-1801-E2S-DPM, version 2.5, issued 27-Aug-2008.
- [RD4] "ALADIN Incoherent DWL Performance model description", TN written by F. Fabre of Matra Marconi Space, reference code: ADM/MMS/TN007.98, issue 01.00, dated 26-Nov-1998.
- [RD5] "Additional Computational Steps ADM-Aeolus L1B", by Dorit Huber and Ines Leike, issue 1.4, dated 10-Mar-2006, reference code: AE.TN.DLR.ACS-L1B.100306.
- [RD6] "ADM-Aeolus VAMP, Vertical Aeolus Measurement Positioning, Technical note TN1", by: J. de Kloe, G.J. Marseille, and A. Stoffelen, issue 1.0, dated 28-Mar-2007, reference code: AE-TN-KNMI-VAMP-001.
- [RD7] "Assessment of Optical and Dynamical Atmospheric Heterogeneity" (Technical note TN2), by: A. Stoffelen, H. Körnich, G.J. Marseille, K. Houchi, J. de Kloe, issue 7 (final revision), dated 15-Jun-2009, reference code: AE-TN-KNMI-VAMP-002.
- [RD8] "The ADM Atmospheric database, Technical note TN2.4 on WP1400 (L1B study task 2 output)" by: J. de Kloe, issue 1.5, dated 25-Jun-2008, reference code: AE-TN-KNMI-L1B-001.
- [RD9] "TN10.1, Modified ADM-Aeolus Operations Concept (Comparison of Aeolus burst and continuous mode concepts)", by: A. Stoffelen, G.J. Marseille, J. de Kloe, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, D. Tan, dated 10-Oct-2008, reference code: AE-TN-ECMWF-GS-101.
- [RD10] Merci executive summary, Measurement Error and Correlation impact on the Atmospheric Dynamics Mission, by: Ad Stoffelen, Pierre Flamant, Måns Håkansson, Erland Källén, Gert-Jan Marseille, Jean Pailleux, Harald Schyberg, Michael Vaughan.
- [RD11] ADM-Aeolus Science Report, April 2008, SP1311.
- [RD12] Lorenc, A.C., Graham, R.J., Dharsi, I., Macpherson, B., Ingleby, N.B., Lunnen, R.W., Study of preparation for the use of Doppler wind lidar information in meteorological assimilation systems, 1991, ESA study contract 9063/90/HGE-I.
- [RD13] Vamp TN5, "Impact of the Vertical Sampling Scenarios on NWP and Modeling of Stratospheric Circulation", by Harald Schyberg, MetNo, and Heiner Körnich, MISU, reference code: AE-TN-KNMI-VAMP-005, version 19-Nov-2009.
- [RD14] Vaughan, J.M. and D.V. Willetts, "The influence of Atmospheric Turbulence, Shear, and Aerosol Stratification and Cloud Motion on Space Doppler Wind Lidar Signals", DERA Technical note for ESA, contract no. 12006/96/NL/CN, DRA/EL/LPD/CR96/ESTEC/TN2/1.0.

2.3 Literature

- [LR1] Tan, D., Andersson, E., "Simulation of the yield and accuracy of wind profile measurements from the Atmospheric Dynamics Mission (ADM-Aeolus)", Q. J. R. Meteorol. Soc. (2005), 131, pp. 1737-1757.
- [LR2] G.J. Marseille and A. Stoffelen, "Simulation of Wind Profiles from a Space-borne Doppler Wind Lidar", Q. J. R. Meteorol. Soc. (2003), 129, pp. 3079-3098.
- [LR3] Stoffelen, A., Marseille, G.J., Bouttier, F., Vasiljevic, D., de Haan, S. and Cardinali, C., "ADM-Aeolus Doppler wind lidar Observing System Simulation Experiment", Q. J. R. Meteorol. Soc. (2006), 132, pp 1927–1947.
- [LR4] Tan,D.G.H., Andersson, E., Fisher, M. and Isaksen, L. "Observing system impact assessment using a data assimilation ensemble technique: Application to the ADM-Aeolus wind profiling mission", Q. J. R. Meteorol. Soc. (2006), 133, pp 381–390.
- [LR5] Marseille, G.J., Stoffelen, A., "Barkmeijer J., Impact Assessment of Prospective Space-Borne Doppler Wind Lidar Observation Scenarios", Tellus A, 60 (2), 2008., pp. 234–248, doi: 10.1111/j.1600-0870.2007.00289.x.
- [LR6] Paffrath, U., Lemmertz, C., Reitebuch, O., Witschas, B., The airborne demonstrator for the directdetection Doppler wind lidar ALADIN on ADMAeolus: II. Simulations and radiometric performance, submitted to JTECH, 2009

2.4	Acronyms				
ACC	D	Accumulation Charge Coupled Device			
AD		Applicable Document (see section 2.1)			
ADM	1	Atmospheric Dynamics Mission			
ANX	-	Ascending Node Crossing			
ART	S	Anomaly Reporting and Tracking System			
BRC		Basic Repeat Cycle (covering a 200 km orbit section)			
DEM	1	Digital Elevation Model			
DPM	1	Detailed Processing Model			
E2S		End-to-End Simulator (as developed by MDA)			
ESA		European Space Agency			
\mathbf{FP}		Fabry-Perot (spectrometer)			
FSR		Free Spectral Range			
\mathbf{Fz}		Fizeau (spectrometer)			
HLO	S	Horizontal projection of the Line-Of-Sight (component of the wind)			
IRC		Instrument Reponse Calibration			
ISR		Instrument Spectral Registration			
KNN	1I	Koninklijk Nederlands Meteorologisch Instituut			
		(Royal Dutch Meteorological Institue)			
$L1B_{I}$	p/L2Ap/L2Bp	Level $1B/2A/2B$ processor			
LIPA	\mathbf{S}	Lidar Performance Analysis Simulator			
LOS		Line-Of-Sight			
LR		Literature Reference (see section 2.3)			
LTA	N	Local Time Ascending Node			
MMS	5	Matra Marconi Systems			
MRC		Mie Response Calibration			
NWI	2	Numerical Weather Prediction			
OSSI		Observation System Simulation Experiment			
SOS		Sensitivity Observing System Experiment			
PBL		Planetary Boundary Layer			
QC		Quality Control			
RD		Reference Document (see section 2.2)			
RMA		Reference Model Atmosphere			
RRC		Rayleigh Response Calibration			
SNR		Signal to Noise Ratio			
SRN		Software Release Note			
STD		Standard Deviation			
USR		Useful Spectral Range			
UTL		Upper Troposphere, Lower Stratosphere			
VAN		Vertical Aeolus Measurement Positioning			
WGS		World Geodetic System 1984 Earth Gravity Model 96 (EGM96)			
WVI		Wind Vector Mode or Wind Velocity Measurement			
ZWO	2	Zero-Wind-Calibration			

2.5**Document** preparation

This document was written using the IAT_EX typesetting system. Most plots in section 3 have been created using gnuplot and the KNMI gnuplot wrapper module for Fortran90. Some plots in section 3 have been created using the pylab environment (python combined with numpy, scipy and matplotlib) (this includes the lat-lon plots 4 and 5, and the altitude statistics plot 27). All plots in sections 5 and 6 have been created using matlab.

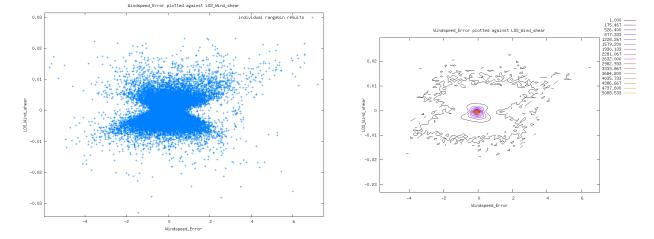


Figure 1: LOS Wind shear plotted as function of the wind velocity error, for the CALIPSO data discussed in section 3.10. Scatterplot (left panel) and contour plot (right panel). The data has been selected on SNR>100, which means this result includes mainly reflections on optically thick clouds. The error in wind velocity is therefore mainly caused by hight assignment errors. Note that the report text uses the phrase wind speed error, but for historical reasons in most plots the phrase wind velocity error is still used to indicate the same property.

3 Task 4a: Mie Core QC

3.1 Introduction

For this sub-task the usefulness of Mie core algorithm outputs to quantify errors caused by wind shear, turbulence and horizontal gradients is studied.

Strong wind shear will lead to a broadened Mie return, caused by the fact that the return signal from a bin is composed of returns with different Doppler widths, as was also studied in [RD14]. In [RD14] the preliminary conclusion is drawn that the lower levels of the atmosphere, up to and around the top of the PBL, Doppler line widths on many occasions will correspond to wind component fluctuations of 2.5 ms⁻¹or more. From single level clouds, line widths corresponding to wind component fluctuations upto 0.5 ms⁻¹may be experienced, but from broken or multi-level clouds much larger values will be found. The spectral broadening may be amplified in case of strong variability in optical properties (cloud tops, aerosol layers), and will especially be present in case of transparent clouds or aerosols combined with vertical wind shear. Therefore the first quantity to be looked at is Mie line-width (FWHM), but also other fit results like Residual Error, number if outer loop iterations and number of inner loop iterations, and the Validity Flag reported by the algorithm will be looked at.

Another effect may be reflection on the top of a dense cloud, which will give an error in the altitude assignment of the wind, i.e. a wind in the top or bottom of the range bin (which may differ significantly due to wind shear) might be assigned to the center of the range bin. An example of this effect is given in Fig. 1. This will not lead to broadening of the Mie spectral signal, and thus cannot be detected by QC on the FWHM. An option to detect this is to look at the corresponding Rayleigh signal, which should be very low if the cloud top is near the top of the range bin, and higher if the cloud top is near the bottom of the range bin.

During this exercise the differences with the existing LIPAS simulation tool have been studied, in order to investigate whether it is suitable for further simulation work in the VAMP study, and what modifications it needs to make it compatible with the way the E2S performs the simulations. This is especially the case in the simulation of the transmission and Mie spectrum as discussed in subsection 3.3.

3.2Setup of the tool

The original idea was to re-use the existing software for this study. This would mean running the matlab E2S simulator, which is very expensive in terms of run-time, then run the L1BP and the L2BP, and analyse the results. Apart from the inconvenient design of especially the E2S software (which has been circumvented partly by embedding it in a python script), the fact that it is implemented using an interpreted script language makes it inefficient in runtime, and this has proven to be a major bottleneck, which makes it impossible to generate sufficient statistics in a reasonable amount of time. Therefore a (somewhat simplified) dedicated Fortran90 simulation tool was build to perform this study. Note that surface reflections have not been included in the current tool. This new tool runs about a factor 25 faster than the E2S matlab code, which makes it possible to run 5 half orbits worth of CALIPSO data in just 5.5 days, in stead of 140 days.

For the design of this new tool the actual algorithms and implementation used for the E2S have been taken as starting point. No additional work has been done in verifying the correctness of the E2S implementation or of the choice of functions and algorithms used by the E2S.

From this the Fizeau spectrometer transmissions have been implemented using Airy functions, and the laser and reflected Mie signal spectral lines have been modeled as Gaussian functions. The choice of Fortran90 for this new tool made it possible to re-use certain pieces of code already implemented in the L2BP software. This especially is the case for the Mie Core algorithm, which we test in this section. Other larger pieces of code that have been reused are the interpolation module, and the reader for the atmospheric database files.

The actual version of the tool used for the simulations described below has been delivered to ESA¹ as part of the L2BP software package version 1.41. It can be found in subdirectory MieCoreProcessing and is automatically compiled when the main make or build command is executed as is detailed in [RD1].

The simulation tool is called MieCoreScan and is started by calling it on the command line, followed by some command line options. Relevant for this study is the option "-do_atm_db_scan" followed by two filenames to be used as input. First the name of the atmospheric database file must be given, then the range bin definition file must be given. In addition the option "-NoPoissonNoise" can be used to switch off the simulation of Poisson noise, and the (debug) option "-AccdPrintSignal" can be used (followed by a profile and bin number) to print the actual accd counts as simulated for a given data point.

The atmospheric database files used by the tool are compatible with the database version 1.6 as delivered to ESA^2 . The range bin definition data files are included in the L2BP software delivery in directory input_data/rangebin_defs.

The output of the simulation tool is a text file listing a number of relevant atmospheric inputs, and the Mie Core outputs for each simulated rangebin. To analyse this text file (or a number of these files glued together) a simple plot program named PlotMieCoreAtmDBScanResult has been added. The plot program reads this ASCII file, and through command line options it can be told which parameter to plot against which other parameter. Also selections on one or more variables can be applied before the data is plotted (i.e. SNR>10 etc.).

The actual steps taken during the simulation are as follows:

- the Fizeau transmission curves are pre-calculated³ and stored in a look-up table (one for each ACCD bin).
- the rangebin and atmospheric database files are read
- if needed the input los wind is calculated from the u,v,w wind components using a fixed incidence angle of 37.5° , using eq. 11 defined on page 53. Also an azimuth angle of 45° is assumed, this is needed since the simulation does not implement an orbit calculation. All simulations described in section 3 have been run using LOS winds as input and output. To keep the program simple, no LOS to HLOS conversion was implemented. Note that some atmospheric database files directly specify the HLOS value at the location of the u component. This is signaled to the software by setting the v component to the missing indicator.

¹It was delivered on 12-Jun-2009. See the eRoom folder: AEOLUS > UPLOAD_ECMWF > L2BP_Release1.41_20090612 2 The database is packed into a single tar file named atm_database. 1.6. tar.gz (size: 585 MB) It was delivered on 21-Aug-2008, and is available from the L1B ftp server: ftp.aeolus.esa.int path /home/aeolus-l1bp/to_estec.

³Note that the current E2S v2.08 does not store these results, but in stead it re-calculates the transmission curves again for each measurement. This is a significant waste of computing power, since these curves remain constant during a simulated experiment.

- the error multiplier method is applied independently on the u and v component profiles to increase the wind shear
- the vertical shear in horizontal wind velocity and optical properties are calculated from the input atmosphere
- the laser light is propagated through the atmosphere using the atmosphere defined by the atmospheric database input file
- for each measurement the actual spectrum is calculated with sub-rangebin precision (using vertical layers of 50 m). The peak height is scaled to match with the numbers produced by the E2S software for a given scenario⁴
- Poisson noise is added
- the spectrum is discretised to a 2 byte integer number (as is done in the actual processing software)
- the measurements are accumulated into an observation (currently a fixed number of 20 measurements per observation is taken).
- the Signal-to-Noise-Ratio (SNR) is calculated from the spectrum using the algorithm implemented in the current L1BP
- the Mie Core algorithm as defined in the L2BP is called on the simulated spectrum
- finally, the results are written to the output file.

Simulation of transmission and spectrum 3.3

The spectrum of the reflected Mie signal is simulated as a simple Gaussian function g(f), with a prescribed FWHM, as defined in eq. 1:

$$g(f) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(f - f_M)^2}{2\sigma^2}\right) \tag{1}$$

in which f is the observed frequency, f_M is the center frequency of the Mie reflected signal (which depends on the local LOS wind velocity), and σ describes the width of the peak, and relates to the σ_{FWHM} as specified in eq. 2:

$$\sigma = \frac{\sigma_{FWHM}}{2\sqrt{2\log(2)}} \tag{2}$$

This is as described in [RD3] (appendix B). The actual value used for FWHM is given in table 1. The frequency shift df caused by the Doppler effect for a wind velocity s is given by eq. 3:

$$df = f_0 - f_M = \frac{-2sf}{c+2s}$$
(3)

In which f_0 is the central frequency of the laser light, and c is the speed of light. An example of this spectral curve for a wind velocity of 50 ms⁻¹ is given in figure 2.

For the Fizeau transmission the E2S uses an Airy function $Y(\lambda)$ for each wavelength as defined in eqs. 4 to 8:

$$Y(\lambda) = \frac{1}{1 + B * \sin^2\left(\frac{A}{\lambda}\right)} \tag{4}$$

$$A' = \frac{\pi}{\frac{1}{\lambda_M} - \frac{1}{\lambda_M + R_{FSR}}}\tag{5}$$

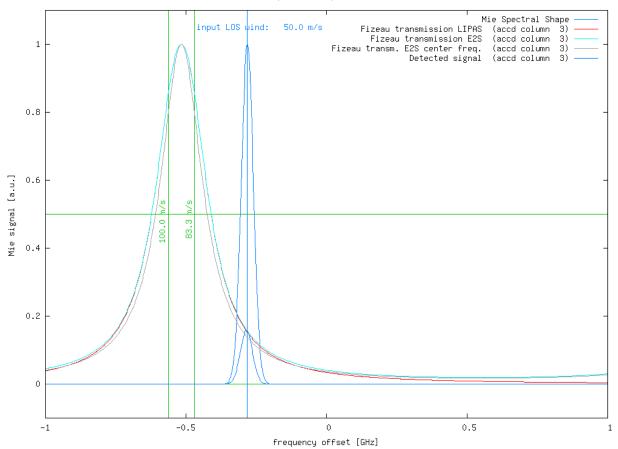

⁴The scenario used for this calibration was single_RMA_midlat_winter_and_cirrus, and the reflection on top of the cirrus cloud has been taken as reference. In this scenario a peak height of 4039 counts (including a detection chain offset of 1444 counts), and a background level of 5 counts occurs, and the current MieCoreScan simulation tool has been tuned to produce exactly these numbers when this same scenario is taken as input. In addition the same scenario was simulated with the LIPAS tool, which resulted in similar signal levels. In addition the background level reported by LIPAS has been added tot the signal.

Table 1: Parameter values used to simulate the Mie spectral peak, and	nd the Fizeau transmission curves.
---	------------------------------------

Parameter	value	unit
Number of frequency steps	1201	
sub-accd bin steps	10	
simulated frequency range	-1 to +1	[GHz]
Mie peak FWHM	50	[MHz]
Fizeau FSR	2.15	[GHz]
Fizeau USR	1.502	[GHz]
Fizeau FWHM	184	[MHz]
Incidence Angle	37.5	[deg]
Background level	5	[counts per measurement]
Peak Height multiplication factor	3555	[times]
accd channel width = $\text{USR}/16$	93.875	[MHz]

test for spectral shape and transmission

Figure 2: Mie spectral shape for a wind velocity of 50 ms⁻¹ (blue), compared to the much broader Fizeau transmission curve for accd column 3 calculated in 3 different ways red: using the Lorentzian function as is done in LIPAS; cyan: using the Airy function as in done by the E2S; gray: using the Airy function but without integration over the accd bin surface. Also note that the ACCD columns are numbered between 1 and 16 in this report. The 2 vertical green lines denote the edges of the accd bin used for this example, and the vertical blue line denotes the frequency that corresponds to the Doppler shift of a LOS wind of 50 ms⁻¹. Finally, the small blue peak below the Mie spectral shape, represents the amount of light entering accd bin 3.

VAMP TN 3, version 1.3, dated: 24-Mar-2010

n

р

$$= \operatorname{floor}\left(\frac{A'}{\pi\lambda}\right) \tag{6}$$

$$A = nA'\lambda_M \tag{7}$$

$$D = \frac{1}{\sin^2 \left(\lambda_M + R_{FWHM}\right)} \tag{8}$$

as described in [RD3] (appendix A). Here R_{FSR} is the FSR converted to a wavelength difference, R_{FWHM} is the FWHM converted to a wavelength difference, λ is the actual observed wavelength, and λ_M is the center wavelength of the simulated accd bin.

Since each accd bin does not detect a single wavelength, but spans a range of wavelengths, this Airy function is calculated 10 times for each accd bin (identical to what is implemented in the E2S) for center wavelengths corresponding to a location that varies over the accd surface. Then the actual transmission function is constructed by averaging these 10 Airy curves. The effect of this is demonstrated in figure 2, a single Airy curve is plotted in grey, and the average of 10 gradually displaced Airy curves is plotted in cyan. A clear broadening of the transmission curve can be seen. These curves are calculated using a frequency range of -1 upto +1 GHz (see table 1), in 1201 steps⁵.

The LIPAS software uses a simplified transmission curve by implementing it as a Lorentzian function (see [RD4], section 5.1, pages 22 and 23). This function is defined by eq. 9:

$$L(\lambda) = \frac{1}{1 + \left(\frac{\lambda - \lambda_M}{\frac{1}{2}R_F W H M}\right)^2} \tag{9}$$

LIPAS then applies an adaptive numerical integration over the accd width, contrary to the 10 steps used by the E2S. The shape of this function is also plotted in figure 2 (red curve). For the largest part of the peak it is very close to the Airy function (maximum difference is only 0.52% for the region with transmission above 10%). In the tail the functions clearly start to deviate because the Airy function is periodic and will have another peak at a distance of R_{FSR} from the displayed peak, while the Lorentzian approaches zero at larger distances of the peak location.

Figure 3 shows the transmission curves of all 16 accd bins, and compares them with the Mie peak. The smaller peaks plotted below the Mie peak represent the photons that are expected to be seen by each accd bin. The integral of each curve will correspond to the signal to be expected on each accd bin, and this is indicated by the red squares.

Looking at these results, there are small differences in the results from the E2S and LIPAS implementations, but these seem very small, much smaller than the typical noise expected on each bin. Typically a noise level of \sqrt{n} is to be expected for a signal level n, so for the signal on top of the cirrus cloud used for calibrating the system of 2600 counts⁶, this would lead to a noise level of 51 counts, so almost 2%, so clearly far above the difference between the Airy and Lorentzian functions in the relevant wavelength range of only 0.52%. In addition the difference between the 2 curves will mainly manifest itself as an additional offset, which is automatically corrected for by the Mie Core fitting procedure⁷. Therefore it seems very well possible to use the LIPAS tool for further simulations, provided that the peak widths used as input are identical to the ones used by the E2S.

3.4 Estimation of Signal-to-Noise ratio

The Signal-to-Noise-Ratio (SNR) is calculated from the spectrum using the algorithm implemented in the current L1BP, see [RD2], section 14.4.4 (page 55). eq. 79.5. Note that this is not the refined SNR which is calculated inside an updated MieCore version in newer L1bP versions, and which is not yet available in the L2bP software.

The procedure is as follows:

• sort the 16 Mie accd bin values in ascending order

⁵This is equivalent to the range -0.42 upto 0.42 pm in steps of 0.00084 pm. In comparison the E2S also uses 1201 steps (see [RD3], section 6.4, p.6-10), but calculates a much wider range of -3. upto 3 pm in steps of 0.005 pm, because the same arrays are used for simulation of the Rayleigh spectrum and transmission curves as well.

⁶this equals the total photon count minus the detection chain offset.

⁷Note that due to this offset correction the actual FWHM to be used by LIPAS should be slightly smaller than the FWHM used by the E2S.

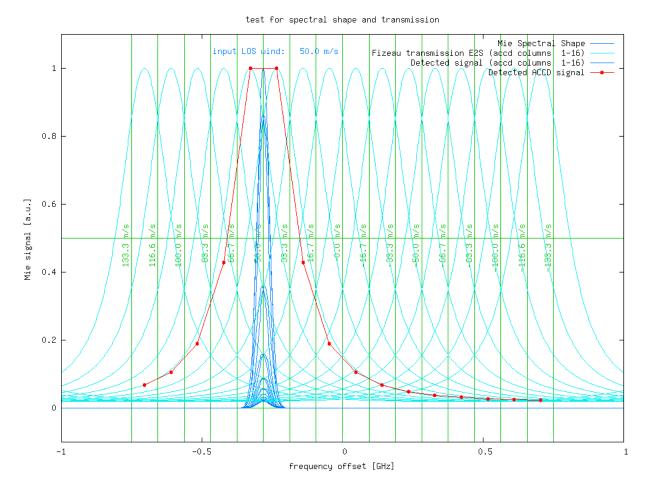


Figure 3: Mie spectral shape for a wind velocity of 50 ms⁻¹ (blue), compared to the the Fizeau transmission curves for all 16 accd columns (cyan). The blue curves below the Mie peak denote the fraction of light detected by each of the accd bins. Clearly, due to the long tails of the transmission curves, all accd bins will receive some signal. The expected signal that will be measured by each accd channel is denoted by the red squares.

- subtract the background level
- average the 4 lowest bin values to calculate s_{lowest}
- average all bin values to calculate s_{all}
- estimate SNR from SNR = $\frac{s_{all} s_{lowest}}{\sqrt{s_{all}}}$

3.5 Mie Core Algorithm

The detected accd signals will be fitted to a Lorentzian function using the Mie Core Algorithm. Currently this routine implements a downhill-simplex method (see [RD5], section 3.2.9) to retrieve the following 4 parameters: peak position, peak height, FWHM, and offset of the Mie signal. In addition the following outputs are available: data validity flag, residual error, and number of iterations (of the outer loop).

Actually this routine implements a double loop. The peak height and offset are treated as linear parameters in the outer loop. The peak position and FWHM are the two non-linear parameters that are optimized using the Downhill Simplex method. Note that the stop condition inside the inner loop uses a threshold that needs FWHM and peak height determined in the outer loop. There is no possibility at the moment to fix one of these 4 parameters during the fitting process.

Table 2. Wie Core algorithm settings.					
Parameter	value	remark			
Start FWHM	2.0				
Res.Err. Threshold	0.001	outer loop threshold			
Max.Iterations Lorentz Fit	30	outer loop threshold			
FWHM Upper Threshold	2.5	used for val flag			
FWHM Lower Threshold	1.5	used for val flag			
Peak height Upper Threshold	1.6	used for val flag			
Peak height Lower Threshold	0.9	used for val flag			
Peak Location Threshold	1.0	used for val flag			
Non Lin. Opt. threshold	0.01	inner loop threshold			
Max. It. Non Lin. Threshold	20	inner loop threshold			
NumSpecSubSamp	5				
tripod obscuration correction	1.0	not used for this simulation			

The Mie Core algorithm has an internal consistency check on the validity of the found fit result. The code checks:

- whether the height of the normalised peak is within a lower and an upper bound
- whether FWHM is within a lower and an upper bound
- whether the peak location found is within a given distance to the location of the accd bin with the highest count

if any one of these conditions is not fulfilled the validity flag is set to False. The thresholds used for these checks are given in table 2. In addition this table gives a start value for the FWHM, thresholds for the allowed number of iterations in the inner and outer loop, for the Residual Error Threshold (used to terminate iterating the outer loop), and for the non-linear optimization threshold (used to terminate iterating the inner loop). Finally NumSpecSubSamp determines how much points of the Lorentzian function are evaluated within a single accd bin. The tripod obscuration correction is ignored in the current study and always set to 1.

3.6 Input data

The specific Mie Core tests described in this section do not depend an the actual rangebin definition. Therefore all tests have been performed with the WVM1 rangebin definition as defined in [RD6], section 6.1.1

The following atmospheric data (as described in the atmospheric database [RD8]) has been used for testing:

- RMA: the single_RMA_midlat_winter_and_cirrus scenario consists of a single profile. It uses the climatological RMA midlattitude winter profiles for temperature, pressure, aerosol and molecular backscatter and extinction (see [RD8] and [RD14]). On top it adds a cirrus layer between 12 and 14 km. Input wind is assumed to be zero. This scene has been used to calibrate the MieCoreScan simulation program with the E2S results as detailed above.
- LITE: the LiteScene_A_and_EcmwfColloc_3.6km scenario consists of 240 profiles separated by 3.5 km. It uses LITE data for aerosol and cloud backscatter and extinction. Colocated ECMWF model data is used for pressure, temperature, (and derived from this molecular backscatter and extinction), and the wind components u,v,w. The location of the selected LITE data is above Indonesia, see Figure 4.
- CALIPSO: 10 half orbits of CALIPSO data have been used to produce the statistics presented in the next sections (sections 3.10 and 3.11). This includes 70 scenarios from the atmospheric database named

Calipso_Orbit[A]_Segment[B]_and_EcrowfColloc in which [A] runs from 1 to 10, and [B] runs from

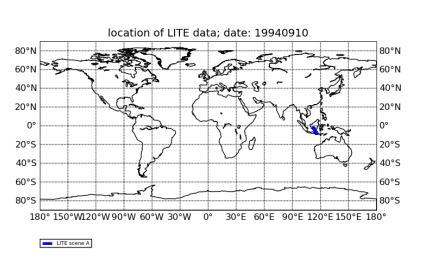


Figure 4: Location of the selected LITE data.

1 to 7 for each value of [A]. Each half orbit consists of about 5600 profiles separated by 3.3 km, so in total about 56.000 profiles have been used. These scenes use CALIPSO data to define the particle backscatter and extinction (clouds and aerosols are not separated in this dataset). Colocated ECMWF model data is used for pressure, temperature, (and derived from this molecular backscatter and extinction), and the wind components u,v,w. The location of the selected LITE data is above Indonesia, see Figure 5.

An example of the ECMWF input data Colocated with the CALIPSO data used is displayed in Fig. 6.

3.7 Error multiplier

By comparing the NWP data with radio sonde measured profiles it was found, as is reported in [RD7], that the variability of the profiles in the NWP model underestimates the real situation significantly. To compensate for this an error multiplier method has been proposed in [RD7] (see section 4.2.1.8, p.43 and section 5, p.187). This multiplier adds noise to the NWP wind profiles in such a way that the statistical properties of the vertical shear in the modified NWP profiles approach the properties of the measured radio sonde profiles. This method has been adopted in the MieCoreScan simulation program and has been applied to the CALIPSO data. In short the error multiplier is implemented on each wind component independantly as follows:

- take vertical atmospheric slices of 1 km thickness
- for each slice calculate the vertical shear profile using 30 m steps
- calculate the variance of this shear within the slice
- multiply this variance with the error multiplier (currently a constant multiplier value of 3 has been used)
- apply this enhanced variance to add extra noise (with a Gaussian distribution) on top of the NWP model wind profile

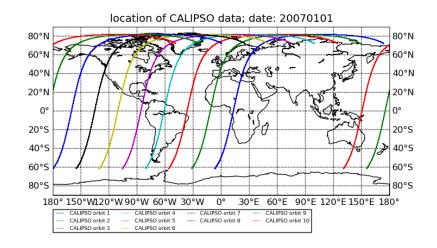


Figure 5: Location of the selected CALIPSO data.

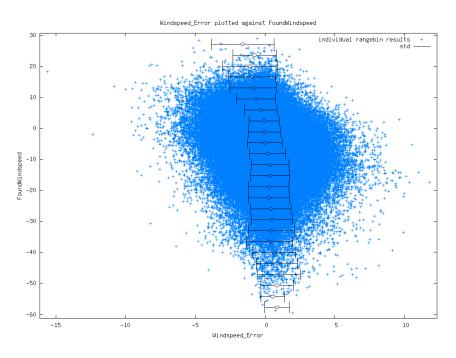


Figure 6: Scatterplot of input LOS winds derived from ECMWF u,v,w components, colocated at the locations of the CALIPSO data used for the majority of simulations, plotted against the wind velocity error found by the simulations (for results with SNR>10 and ValidityFlag set). The overplotted black diamonds and ranges denote the average and standard deviation of 25 devisions along the y-axis. This illustrates that there is no clear relation between the absolute wind velocity value and the data quality, even though at first sight the large amount of data between wind velocities of 0 and 20 ms⁻¹ might suggest otherwise.

26/ 160

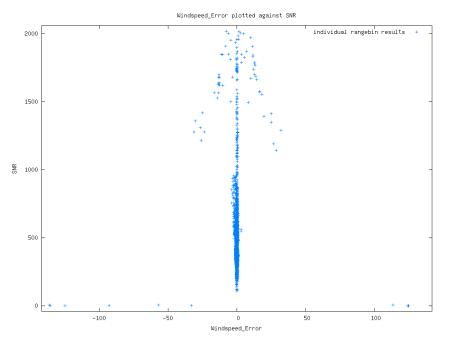


Figure 7: First simulation results using LITE data. The data shows nonsense retrievals for very low SNR and a clear overflow problem.

3.8 Horizontal gradients and turbulence

The ECMWF winds used in the simulations here, lack both vertical and horizontal wind variability ([RD9] and [RD7]). The current simulations use a single profile for all measurements within a BRC. Each measurement therefore sees the same atmosphere, and the same realization of the enhanced shear from applying the error multiplier method, and only the noise realizations differ from measurement to measurement. This allows for simulation of vertical shear in the horizontal wind because the resolution of the atmospheric profile (125 m) is finer than the rangebin sizes (500 m, 1 km and 2 km).

The lacking wind variability in the horizontal is about 0.5 ms⁻¹in standard deviation over 50 km [RD9], while the lacking wind variability in the vertical is about 2 ms⁻¹in standard deviation and much larger [RD7]. Horizontal wind variability has thus not been simulated here, since its contribution is relatively small, while this would make the simulation program much more complicated.

Moreover, no effort has been put in implementing horizontal variability because the effect will be exactly the same when a single rangebin is considered (which is what we do for this Mie Core testing). After all horizontal accumulation of measurements having variable wind into an observation, will give the exact same result as vertical accumulation of sub-rangebin layers having variable wind into one rangebin, as long as the (observation scale) rangebin itself is processed independently from its neighbours.

Turbulence represents coherent vertical and horizontal wind variability, and has not been simulated for the reasons defined above. Enhanced turbulence associated with the formation of cumulus clouds will be correlated with the optical properties of the atmosphere. However, in [RD7] it was established that such updrafts are often largely hidden below the non-transparent cloud tops.

3.9 Results: LITE data; signal scaling

During development of the MieCoreScan simulation program a number of preliminary tests have been done using LITE data. These tests used LITE scene A consisting of 240 profiles, which resulted in simulation of 5760 range bins. For each rangebin the Mie Core algorithm was applied as detailed above, the SNR was determined and the difference between input and retrieved los wind velocity was determined. An interesting result was obtained when SNR was plotted against wind velocity error, see Fig. 7.

The very large wind errors for SNR close to zero can easily be understood since these are cases without

VAMP TN 3, version 1.3, dated: 24-Mar-2010

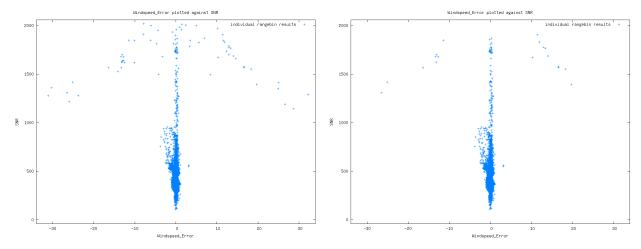


Figure 8: Simulation results using LITE data, after applying a SNR threshold of 10 (left panel), and after discarding data reported invalid by the ValidityFlag as well (right panel). The nonsense retrievals for very low SNR have disappeared now but the overflow problem remains.

significant signal level, for which one cannot expect a good fit result. These can be easily discarded by setting a threshold on the SNR value. A value of SNR=10 has been applied⁸ in Fig. 8 (left panel). This improves the situation, the points around SNR=0 with wind velocity errors upto 120 ms⁻¹ have disappeared.

However, the umbrella like shape for large SNR values needs an explanation. At closer inspection it was found that this was caused by a too high signal level assumed for this test, caused by a wrong calibration of the peak height⁹. This causes too high photon count numbers to be stored in the 2 byte integer fields available for the spectrum. As a consequence the numbers get truncated and become nonsense¹⁰

To illustrate this an example of a spectrum showing this problem for the internal reference pulses is shown in Fig. 9. The blue lines give the measurement data, which is correct and reasonably well fitted in this example. The black lines give the internal reference data, which clearly have been wrapped around. The peak location is just slightly wrong for this example, but from Fig. 8 it is clear that errors upto 15 ms⁻¹ can result from this effect.

A first and obvious approach to solve this processing problem was to discard all data reported invalid by the ValidityFlag which is one of the MieCore algorithm outputs. The result is displayed in Fig. 8 (right panel). In this way a few bad points can be filtered out, but many problematic points remain.

Only when the signal levels where adapted to the proper values the overflow problem disappeared, see Fig. 10.

The same simulation was re-run without Poisson noise. In this case the wind velocity errors are significantly reduced, as expected to the range -0.7 to +2 ms⁻¹, see Fig. 10. The remaining errors are mainly caused by the atmospheric variability within a single rangebin, although also some numerical inaccuracy in the simulation might enter.

To highlight the influence of numerical inaccuracies on the simulations a case was simulated with the

 $^{^8{\}rm the}$ current L1B processing uses a threshold value of SNR=10 as well.

 $^{^{9}}$ in fact measurement level signals had been scaled to match observation level E2S results, causing the peak height to be a factor of 67 too high. Note that this preliminary test assumed 67 measurements per observation. The remainder of this study will use 20 measurements per observation.

¹⁰Note that this has been observed on the actual L1BP v1.07 output as well, but then for the internal reference accd counts, which have higher signal levels and are much more vulnerable for this kind of problem. That particular problem has been solved now, but the software may experience this phenomenon again in case signal levels are higher than anticipated (for example due to some wrong magnification setting). It must be noted that this may happen without any warnings or errors issued by the L1BP code, since this is implemented by means of a simple cast operator (i.e. x = (unsigned short) y.) in line 4875 of aeolus/lobproc/LBC/src/LBC_WVMProcessor.cc, even in the most current L1BP version (5.03 when writing this) (this issue has been reported informally to D. Huber on 08-Apr-2009, and a formal Anomaly report was filed 2-Dec-2009 by J. de Kloe as AE-IPF-81).

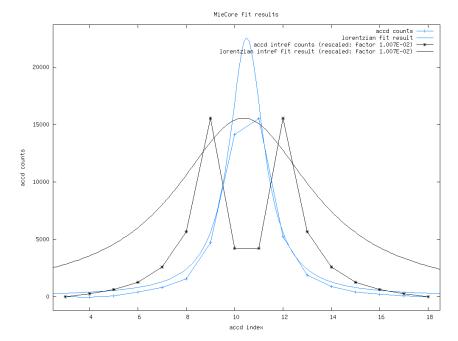


Figure 9: A case showing the effect of an integer overflow in the accd counts of the Mie channel (these are internal reference counts, and this case was generated by L1B v1.07).

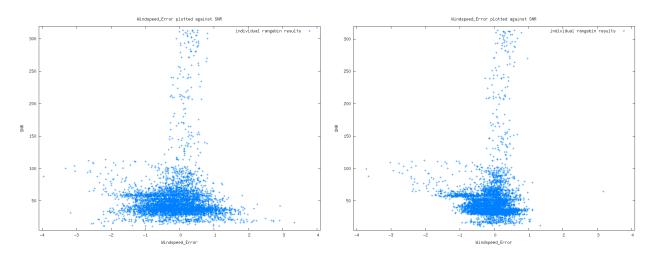


Figure 10: Simulation results using LITE data, again using a SNR threshold of 10, and only accepting data for which the Validity flag is set to true. In this case a correct signal scaling is applied and the overflow problem disappears (left panel). To illustrate the effect of Poisson noise on the simulations the same case has been run without Poisson noise (right panel).

same LITE data but with constant input wind of 50 ms⁻¹. By removing variations in wind velocity also all variations in optical properties should become insignificant for the shape of the spectrum (they may only influence the magnitude of the signal in this case). The results of this tests are shown in Fig. 11 Typical wind velocity errors are now below 0.1 ms^{-1} . However, note that a significant part of these errors are actually caused by the discritisation of the signal to a 2-byte integer number (to simulate the discrete number of photons that will be detected), and there are no further tricks possible to remove this term. This discretization also is probably the reason for the two vertical lines that appear in this plot. The bias

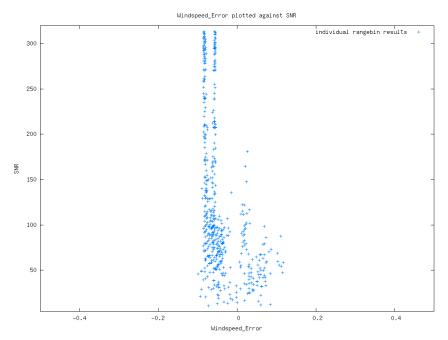


Figure 11: Simulation results using LITE data, without wind variability (using zero input wind) and without Poisson noise, to illustrate the numerical inaccuracies of the simulation program.

of around -0.1 ms⁻¹ in this plot, especially visible for higher SNR values and accentuated by the 2 vertical lines of points is not yet explained. It is not caused by the finite sampling used on the frequency scale, because they remain at the same position when the frequency sampling is doubled. Clearly these remaining numerical and descretisation effects are insignificant compared to the errors that occur when Poisson noise is added, and compared to the variability that occurs when a varying wind profile (including the error multiplier) is used.

3.10 Results: CALIPSO data; data selection

A next series of tests that have been run using CALIPSO data (for details see section 3.6). These tests have been run at observation level, i.e. each rangebin was constructed by simulating 20 measurements with differing noise realizations, and subsequent accumulation of the spectral counts. This yielded about 1.345.000 simulated range bins. Note that about 876.000 range bins (65 %) had to be discarded already at this stage due to lack of signal (SNR below 10 or Mie Core result invalid). The same data selection as presented in section 3.9 above has been applied, i.e. a threshold on SNR of 10 and a selection of results with ValidityFlag set by the MieCore algorithm. To illustrate the effect of these selections, the raw results are displayed in Fig. 12. This plot displays the SNR as function of the wind velocity error found by the simulation (left panel: all data; right panel: points with SNR<10 discarded).

Clearly a number of bad results still are present in this dataset. Fortunately these are all flagged by the ValidityFlag result reported by the MieCore algorithm. If only points are selected that pass this test, this results in Fig. 13. The actual number of points discarded by the SNR threshold of 10 is about 846.000 (62.9 %) and leaves about 499.000 points. The number of additional points discarded by the ValidityFlag is about 30.000 (2.2 %) and leaves about 469.000 valid range bins.

Since interpreting this kind of scatter plots is often easier when the data is displayed as a contour plot, the same data as in Fig. 13 has been displayed as contour plot in Fig. 14. Note that the majority of points seem located near the origin of the plot, so a magnified view zooming in on the region 10 < SNR < 100 is given in the right panel of Fig. 14. Actually about 75% of all accepted datapoints are located in the magnified region.

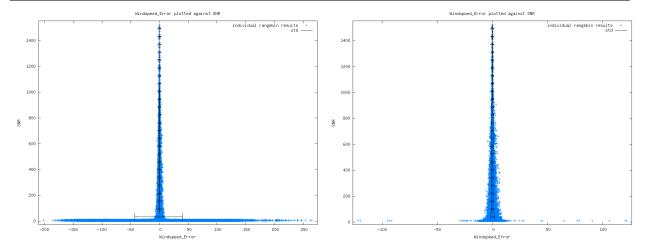


Figure 12: Simulation results using CALIPSO data, all results without selection (left panel) and after applying a SNR threshold of 10 (right panel).

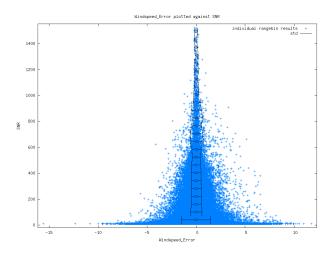


Figure 13: Simulation results using CALIPSO data, after applying a SNR threshold of 10 and after discarding data reported invalid by the ValidityFlag. as well (right panel).

3.11 Results: CALIPSO data; Mie Core outputs

The selected CALIPSO data as described in section 3.10 has been used to look at the available outputs of the MieCore algorithm. This includes the number of outer loop iterations, residual error and FWHM.

3.11.1 Outer loop iterations

Figure 15 shows the number of outer loop iterations used by the MieCore fitting as a function of wind velocity error. The most prominent feature in this plot is the discontinuity in the data, i.e. iterations between 11 and 30 seem never to occur. When looking at the actual number of points in both regions, there are about 133.000 points with 10 or less iterations (25%) and about 335.000 points with 30 iterations (72%). Clearly the Max.Iterations Lorentz Fit threshold can be set tighter, to about 12. Although it has not been investigated, a clear improvement in runtime may be expected from this change. A simple estimation results in about a factor of two¹¹.

¹¹Assuming the inner loop needs a fixed amount of time T (which probably is too simple), and assuming 2 states to represent the 2 regions of the plot, one with 30 and one with 8 iterations, this would mean a total runtime of: 0.75*30T+0.25*8T=26.5T.

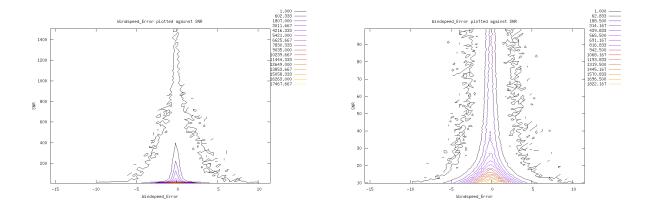


Figure 14: All valid data after discarding points with SNR < 10 and invalid ValidityFlag (left panel). The right panel shows a magnification of the region 10 < SNR < 100.

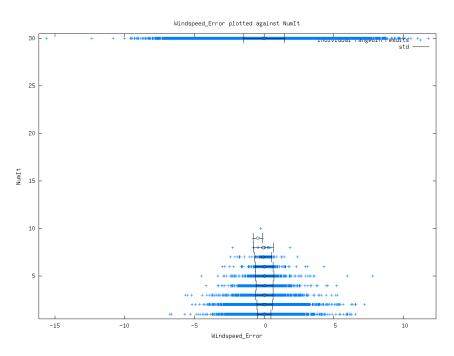


Figure 15: Number of outer loop iterations, as function of the wind velocity error, for the selected CALIPSO data.

3.11.2 Inner loop iterations

To obtain the properties of the inner loop of the Mie Core Algorithm, the Mie Core Response Fortran90 module had to be modified.

Figure 16 (left panel) shows the average number of inner loop iterations against the number of outer loop iterations performed (again using the selection SNR>10 and validityFlag=true). It is again very clear that the data points are mainly found in the top of the diagram. About 49% of all data points (229.000 out

For the changed iteration threshold this would be: 0.75*12T+0.25*8T=13T. The runtime would thus decrease by about a factor of 2.

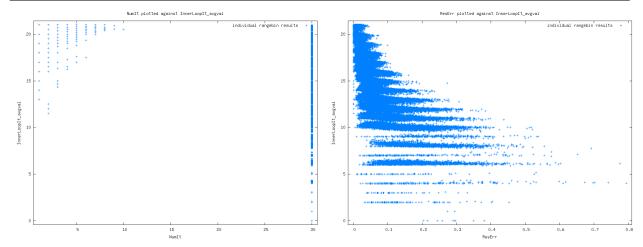


Figure 16: Average number of inner loop iterations, as function of the number of outer loop iterations for the selected CALIPSO data (left panel), and as a function of residual error (right panel).

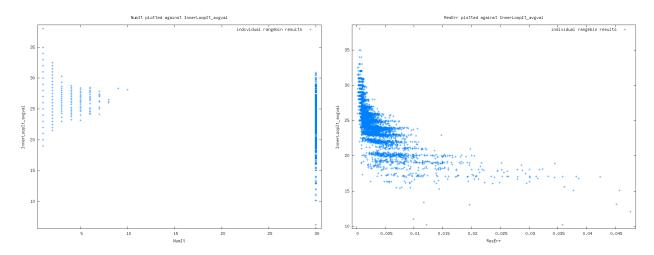


Figure 17: Average number of inner loop iterations, as function of the number of outer loop iterations for the selected LITE data (left panel), and as a function of residual error (right panel). For this test a maximum of 200 inner loop iterations was allowd, in stead of the default value of 20.

of 469.000 valid points) have more than 19.5 inner loop iterations on average. For the points with less then 10 outer loop iterations (which are supposed to be the very good fits) even more than 99% of all points (132963 out of 133433 points) have more than 19.5 inner loop iterations on average, and only break the inner loop when the maximum number of inner loop iterations of 20 is reached.

This indicates that the convergence criterium for the inner loop is almost never reached, especially for the very good fits. This is also illustrated by plotting the average number of inner loop iterations against the residual error after the end of the fitting procedure. Clearly the data points with lower residual error show more inner loop iterations, indicating that the convergence criterium for this loop may not be optimal.

In order to find the point where the threshold on the inner loop stops the iterations, in stead of the maximum allowed iteration count, the maximum number of inner loop iterations allowed was set to 200 (so much higher than the default value of 20). Since regenerating the whole CALIPSO dataset takes a long time (several days), and for the scans below this would have to be done at least 8 times, the results for this additional test are based on the small LITE scenario A dataset.

Table 3: Overview of effect of maximum iteration threshold setting for the Mie Core inner loop (based	on
the LITE scene A dataset, consisting of 5760 valids point with $SNR > 10$ and Validity Flag set to true).

110	The man sector of the state of						
ĺ	MaxNumIt	nr of datapoints left	Windspeed Error	nr of datapoints left	Windspeed Error		
				for ResErr < 0.005	for $\text{ResErr} < 0.005$		
ĺ	10	5720	0.7169 ms^{-1}	4519	0.6728 ms^{-1}		
	15	5720	$0.6396 \ {\rm ms}^{-1}$	4818	0.5889 ms^{-1}		
	20	5719	0.6274 ms^{-1}	4854	0.5764 ms^{-1}		
	25	5719	$0.6267 \ {\rm ms}^{-1}$	4857	0.5761 ms^{-1}		
	200	5719	0.6268 ms^{-1}	4857	$0.5763 \ {\rm ms}^{-1}$		

Table 4: Overview of effect of innerloop NonLinOpt thresholds (based on the LITE scene A dataset, consisting of 5760 valid points with SNR > 10 and Validity Flag set to true)

0	consisting of 5700 valid points with STAT > 10 and validity 1 lag set to trac).						
	NonLinOptThresh	nr of datapoints left	WindspError	nr of datapoints left	Windspeed Error		
				for ResErr < 0.005	for $\text{ResErr} < 0.005$		
	0.01	5719	0.6268 ms^{-1}	4857	0.5763 ms^{-1}		
	0.001	5716	0.6213 ms^{-1}	4876	0.5740 ms^{-1}		
	0.0001	5713	0.6206 ms^{-1}	4878	0.5739 ms^{-1}		

This resulted in the plots shown in figure 17. From this it becomes clear that 200 iterations are never needed in the inner loop. After typically 25 to 30 iterations the minimum is found and the loop is terminated. More than 35 iterations never occur in this example.

To look at the effect on the precision of the Mie Core results, the experiment was repeated with 5 different values for the maximum number of inner loop iterations (MaxItNonLinOpt). This is tabulated in table 3. From this table it is clear that less then 20 iterations clearly results in larger std of windspeed error. However, allowing more than 20 iterations seems not to add anything significant to the retrieval quality.

Next the NonLinOptThresh threshold value has been varied. This threshold currently is set to be 0.01 by default. The result for allowing 200 inner loop iterations, and various values for NonLinOptThresh is shown in table 4. From this table a small quality improvement can be seen when the NonLinOptThresh is refined, but the effect is tiny, even when zooming in on the "very good" fits with ResErr < 0.005. The consequence of increasing this threshold is that the number of iterations needed to reach the stop threshold increases slightly. For NonLinOptThresh=0.001 the number of inner loop iterations typically is between 25 and 40, with a few exceptional points up to 44 iterations. For NonLinOptThresh=0.0001 the number of inner loop iterations typically is between 35 and 45, with a few exceptional points up to 51 iterations. Again, these high iteration counts only occur for the very good fit values at very low residual error.

Looking at these results, the settings for the inner loop of the Mie Core algorithm seem very well tuned, and changing them will only result in a minimal quality change at the cost of a significant increasing the runtime.

3.11.3Residual error

The residual error reported by the Mie Core algorithm is closely related to the number of outer loop iterations, since it is used as criterium to stop iterating in the outer loop. Currently a threshold of 0.001 is used (see section 3.5). As soon as the residual error drops below this value the algorithm stops iterating the outer loop.

The actual found values for the residual error are shown in Fig. 18. At first sight the distribution seems symmetric and centered around the origin.

When zooming in there is a clear concentration of points around ResErr=0.001 and below. These correspond to the range bins that did converge within 11 outer loop iterations. Clearly these converged results are much better than the remaining ones.

When looking at the actual occurrences this still is a minority of all points due to the small surface of the spot. The number of points with ResErr > 0.1 is only 8%, but the number of points with ResErr > 0.01 is

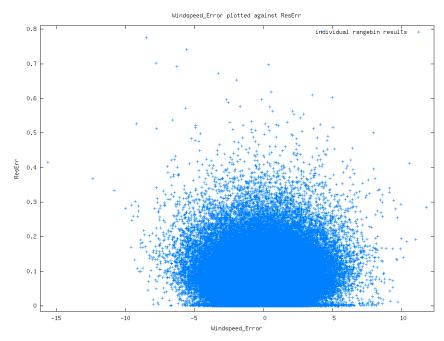


Figure 18: Residual error reported by the Mie Core algorithm as function of the wind velocity error, for the selected CALIPSO data.

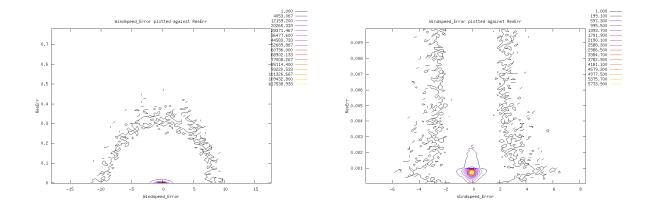


Figure 19: Residual error reported by the Mie Core algorithm as function of the wind velocity error, plotted as contour plot. All valid results (left panel) and the region below ResErr=0.01 magnified.

already 52%, and the number of points with ResErr>0.001 is already 72% (this corresponds to the 72% of cases that did not converge within 30 iterations as presented in the previous subsection). Therefore applying a threshold on the number of outer loop iterations of 12, or on the residual error of 0.001 would significantly improve the quality of the data, but would also reject the majority of all data points.

Since from the contours in Fig. 19 it is not obvious to see the actual distribution of the data for a given residual error, due to the variation of the number of data points, a new figure was made, see Fig. 20. In this scatterplot the mean and 1 standard deviation (STD) on both sides of the mean have been over plotted. The resulting wind velocity error STD values vary between 0.81 and 3.93 ms⁻¹ for the plot showing all data (left panel), and between 0.50 and 1.17 ms⁻¹ for the plot which selects data with a residual error of 0.02 or

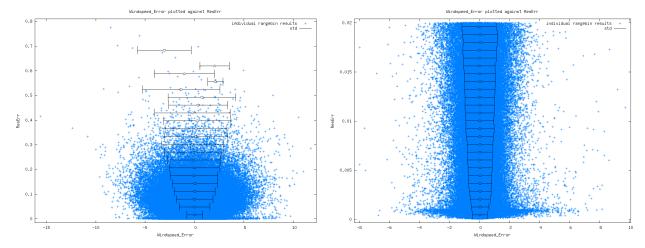


Figure 20: Same data as shown in Fig. 19, again as scatterplot, but now with over plotted lines to show the mean and one std value on both sides of the mean, for a number of Residual Error layers (full range is split in 25 sub-ranges for this calculation). From the right panel the position at which the wind velocity error std exceeds the value of 1 ms^{-1} (requirement for the LOS wind velocity accuracy) can be read, which is at about 0.013.

lower (right panel). From the right panel the position at which the wind velocity error STD exceeds the value of 1 ms^{-1} can be read, which is at about 0.013^{12} .

The overal STD of the wind velocity error distribution decreases from 1.27 to 0.65 ms⁻¹ by applying this selection. This is at the cost of throwing away 229.000 points (so 49% of all data flagged valid by the SNR test and the Validity flag).

Therefore the residual error shows a clear variation of the expected error and could be used to screen or downweight the Mie Core wind results.

3.11.4 FWHM

A last variable to look at is the FWHM of the Mie Core fit result. This variable is expected to be larger when reflected signals from different wind velocities are mixed within a single rangebin. This typically may happen when vertical wind shear occurs in combination with transparent clouds or aerosol layers (as argued in section 3.8). A simple scatterplot of all selected data is shown in Fig. 21 and does not reveil much detail. It clearly has been cut-off at FWHM=1.5 and FWHM=2.5 due to the selection applied by the validity flag.

When plotted as contourplots a bit more detail becomes visible, see Fig. 22. Clearly the majority of all points are concentrated around FHWM=2.05.

When only points are selected close to FWHM=2.05, for example in the range as plotted in Fig. 22 (right panel) between 1.95 and 2.16, a slight beneficial effect can be seen on the wind velocity error distribution¹³. The wind velocity error std of this distribution decreases from 1.27 to 1.10 ms⁻¹. This is at the cost of throwing away 127.000 data points (so 27% of all data flagged valid by the SNR test and the Validity flag).

Since from the contours in Fig. 22 it is not obvious to see the actual distribution of the data for a given FWHM, due to the variation of the number of datapoints, a new figure was made, see Fig. 23. In this scatterplot the mean and 1 standard deviation (STD) on both sides of the mean have been overplotted. The resulting wind velocity error STD values vary between 0.89 and 1.98 ms⁻¹when using all valid data

 $^{^{12}}$ Note that the value of 1 ms⁻¹ is taken just as a simple example value here. The requirement for the HLOS wind velocity accuracy is between 1 and 2 m/s in the PBL, which translates to LOS wind velocity accuracy of between 0.6 and 1.2 m/s.

 $^{^{13}}$ Note that taking 2.16 as boundary has been done on purpose here to prevent the gnuplot contouring routine to crash. This happens when 2.15 is taken as boundary, and is probably related to the binning artefacts that can be seen in Fig. 22 (right panel).

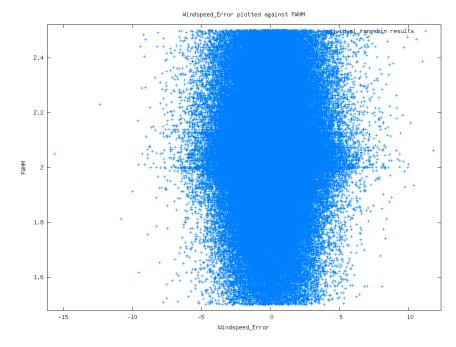


Figure 21: FWHM reported by the Mie Core algorithm as function of the wind velocity error, for the selected CALIPSO data.

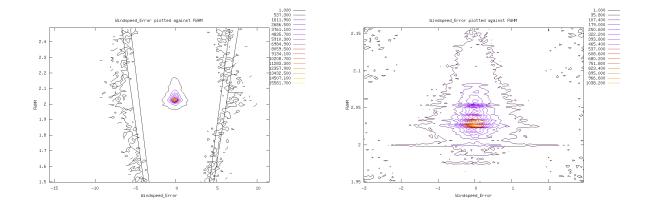


Figure 22: FWHM reported by the Mie Core algorithm as function of the wind velocity error, plotted as contourplot. All valid results (left panel), and a magnified region around FWHM=2 (right panel). The straight lines in the left panel are plotting artefacts and should be ignored. Also the striping feature in the right panel is an artefact caused by the binning of the data and probably not relevant.

(left panel) and between 0.77 and 1.52 ms⁻¹when looking at the region 1.95 < FWHM < 2.16. From this a threshold can be defined using the 1 ms⁻¹ values, as was done for the residual error. This results in the range 2.026 to 2.051.

When these numbers are recalculated on data with a residual error below 0.013 (so applying the residual error threshold as proposed in section 3.11.3) the result improves clearly, see Fig. 24. In this case the STD ranges from 0.56 to 1.67 and by taking a FWHM range of 1.78 upto 2.34, it seems possible to select data that has a STD in wind velocity error of 1 ms⁻¹ or smaller.

VAMP TN 3, version 1.3, dated: 24-Mar-2010

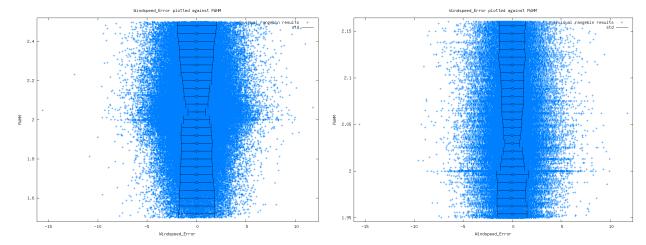


Figure 23: Same data as shown in Fig. 22 again as scatterplot, but now with overplotted lines to show the mean and one std value on both sides of the mean, for a number of FWHM layers (full range is split in 25 sub-ranges for this calculation).

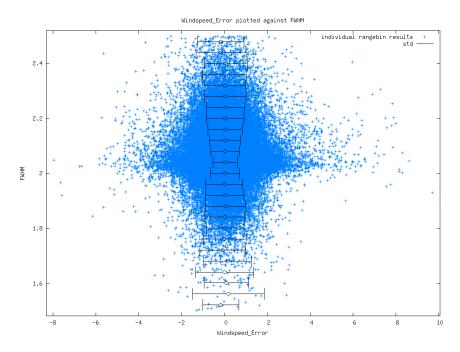


Figure 24: Scatterplot of FWHM against wind velocity error for cases with ResErr<0.013. The overplotted lines show the mean and one std value on both sides of the mean, for a number of FWHM layers (full range is split in 25 sub-ranges for this calculation).

By applying the different thresholds the wind velocity error can clearly be reduced. An overview of the results obtained is given in table 5. The residual error threshold clearly has the strongest effect, but at the cost of throwing away about 50% of all data. The wider FWHM thresholds have only minimal effect. The smaller FWHM thresholds can be used to reduce the error a bit further, but at the cost of discarding a larger fraction of about 80% of all data.

From the results presented above it can be seen that small improvements by applying a tight selection on the reported FWHM can be obtained. Especially when combined with a threshold on residual error.

Table 5: Overview of effects of applying the different thresholds						
Applied thresholds	nr of datapoints left	percentage	std in wind velocity error			
SNR>10, ValFlag set	468781	100%	1.266 ms^{-1}			
SNR>10, ValFlag set,						
ResErr < 0.013	239624	51%	0.651 ms^{-1}			
SNR>10, ValFlag set,						
1.78 <fwhm<2.34< td=""><td>433926</td><td>93%</td><td>1.215 ms^{-1}</td></fwhm<2.34<>	433926	93%	1.215 ms^{-1}			
SNR>10, ValFlag set,						
2.026 < FWHM < 2.051	111360	24%	0.842 ms^{-1}			
SNR>10, ValFlag set,						
1.78 <fwhm<2.34, reserr<0.013<="" td=""><td>238117</td><td>51%</td><td>0.648 ms^{-1}</td></fwhm<2.34,>	238117	51%	0.648 ms^{-1}			
SNR>10, ValFlag set,						
2.026 <fwhm<2.051, reserr<0.013<="" td=""><td>91240</td><td>19.5%</td><td>0.547 ms^{-1}</td></fwhm<2.051,>	91240	19.5%	0.547 ms^{-1}			

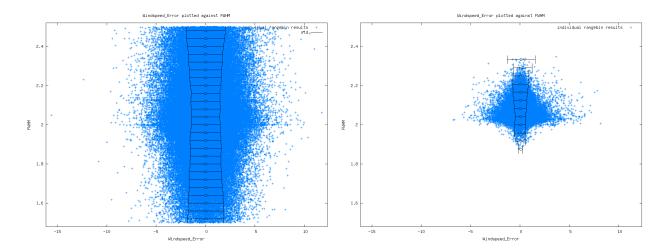


Figure 25: FWHM reported by the Mie Core algorithm as function of the wind shear in the input wind. The left plot selects data with SNR between 10 and 50, the right plot selects data with SNR above 50.

A special case to be looked at is the occurrence of wind shear combined with transparant clouds or aerosol layers. Accumulation of different wind velocities may lead to significant broadening of the Mie peak in this special case. To make this visible FWHM has been plotted as a function of LOS wind shear used as simulation input in Fig. 25. This data shows a strong effect. Data with high SNR is clearly centered around FWHM=2.05, while data with lower SNR shows both much smaller FWHM values (due to noise) and larger FWHM values (due to noise and to broadening of the Mie peak).

Another way of visualising the same effect, is by plotting SNR versus FWHM, see Fig. 26. This plot clearly shows the increase of std in FHWM for lower SNR, but it also clearly shows a shift in the average FWHM value as a function of SNR. This effect can be explained by the fact that broader peaks (larger FWHM) are caused by windshear combined with partially transparant atmospheres. This automatically is correlated with a certain amount of extinction so will yield lower signals and lower SNR values. Note that it has been a mistake in previous versions of this report to assume that peak-broadening would be most easily visible for very large SNR values. This is not true, since these cases mainly are caused by replection on cloud-tops, and the only shear related effect on these cases may be a height assignment error, not a peak broadening.

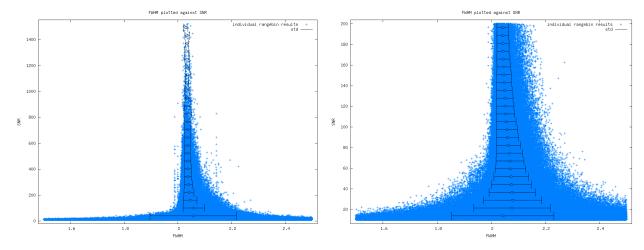


Figure 26: Scatterplot of SNR against FWHM, all cases with SNR>10 and validity flag true (left panel), and zoomed in to the region of SNR<200 (right panel). The overplotted lines show the mean and one std value on both sides of the mean, for a number of SNR layers. Clearly the std increases for lower SNR and also the mean FWHM value shifts to larger values for lower SNR. This is caused by the combination of transparant clouds and wind shear.

3.11.5 Altitude effects

Most good Mie returns are expected in the PBL and on cloud tops. On the other hand problems due to windshear are also expected near the tropopause level. Therefore simulation properties will probably differ for different altitude classes. This has been taken into account in the choice of requirements for the HLOS wind retrievals. Note here that there has been some confusion as to which numbers should be used, since [RD11] mentions two sets of numbers, one set which does not and one set which does take representativeness errors into account. Since the current task only focusses on the instrumental part of the Mie Core retrieval, and not on the way weather models use these retrievals, the numbers used as requirement here are the ones without representativeness errors. These are the lower boundary for the range given in table 3.3 on page 42 of [RD11] for the troposphere (2 ms⁻¹) and the stratosphere (3 ms⁻¹), and the windspeed error given in table 4.1 on page 47 of [RD11] for the PBL (1 ms⁻¹).

To study the altitude effects the atmosphere has been divided into 3 regions, taking the WVM1 rangebin definition as basis.

- altitudes below 2.2 km (the region in which 500 m Mie rangebins are used) The required HLOS wind accuracy in this region is 1 ms⁻¹, which translates to a required LOS wind accuracy of 0.6 ms⁻¹.
- altitudes between 2.2 and 16.2 km (the region in which 1 km Mie rangebins are used) The required HLOS wind accuracy in this region is 2 ms⁻¹, which translates to a required LOS wind accuracy of 1.2 ms⁻¹.
- altitudes above 16.2 km (the region in which 2 km Mie rangebins are used) The required HLOS wind accuracy in this region is 3 ms⁻¹, which translates to a required LOS wind accuracy of 1.8 ms⁻¹.

The results of this exercise are given in table 6

From this table it is clear that the PBL gives much better results than the free troposhere or the UTLS. The presented results indicate that the LOS wind requirement is not met for any altitude region by only applying a SNR threshold of 10, combined with a selection on the Mie Core ValidityFlag. It is also clear that applying an additional threshold on either FWHM or Residual Error is sufficient to meet the requirement.

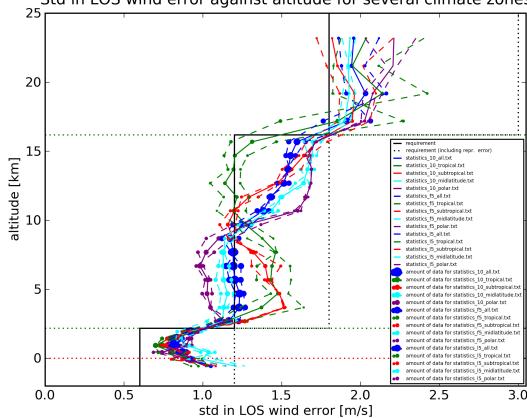
In addition to the results per rangebin, the data has also been divided into several climate zones. The climate regions are defined as follows: between plus and minus 20 latitude (tropics), between plus and minus 20 and 40 N/S (subtropics) between plus and minus 40 70 N/S (mid-latitudes) and greater/smaller

Results for all altitudes combined							
Applied thresholds	nr of datapoints left	percentage	std in wind velocity error				
SNR>10, ValFlag set	468781	100%	1.266 ms^{-1}				
Results for Altitude below 2.2 km							
Applied thresholds	nr of datapoints left	percentage	std in wind velocity error				
SNR>10, ValFlag set	140182	29.0%	0.873 ms^{-1}				
SNR>10, ValFlag set,							
ResErr<0.013	103869	22.2%	0.531 ms^{-1}				
SNR>10, ValFlag set,							
2.026 < FWHM < 2.051	44375	9.5%	0.585 ms^{-1}				
SNR>10, ValFlag set,							
2.026 <fwhm<2.051, reserr<0.013<="" td=""><td>40573</td><td>8.7%</td><td>0.455 ms^{-1}</td></fwhm<2.051,>	40573	8.7%	0.455 ms^{-1}				
Results for altitude between 2.2 and 1	6.2 km						
Applied thresholds	nr of datapoints left	percentage	std in wind velocity error				
SNR>10, ValFlag set	294058	62.7%	1.320 ms^{-1}				
SNR>10, ValFlag set,							
ResErr<0.013	130118	27.8%	0.669 ms^{-1}				
SNR>10, ValFlag set,							
2.026 < FWHM < 2.051	63606	13.6%	0.907 ms^{-1}				
SNR>10, ValFlag set,							
2.026 <fwhm<2.051, reserr<0.013<="" td=""><td>49501</td><td>10.6%</td><td>0.577 ms^{-1}</td></fwhm<2.051,>	49501	10.6%	0.577 ms^{-1}				
Results for altitude above 16.2 km							
Applied thresholds	nr of datapoints left	percentage	std in wind velocity error				
SNR>10, ValFlag set	34541	7.4 %	1.958 ms^{-1}				
SNR>10, ValFlag set,							
ResErr < 0.013	5637	1.2%	1.573 ms^{-1}				
SNR>10, ValFlag set,							
2.026 < FWHM < 2.051	3379	0.7%	1.842 ms^{-1}				
SNR>10, ValFlag set,							
2.026 <fwhm<2.051, reserr<0.013<="" td=""><td>1166</td><td>0.2%</td><td>1.426 ms^{-1}</td></fwhm<2.051,>	1166	0.2%	1.426 ms^{-1}				

Table 6: Overview of effects of applying the different thresholds on different regions of the atmosphere.

than plus/minus 70 (Polar) (matching what was defined in section 4.2.1.7 of [RD7], p.37). The results are presented in Figure 27, together with the global result presented in the previous section. In this plot the different climate zones are represented by the different colors. The amount of data used to calculate the statistics for each rangebin is indicated by the size of the symbol (symbol size should scale linear with the amount of data).

From these results it is clear that there is some difference in quality between the different climate zones at some altitudes.


To test the statistical significance the dataset has been split in 2 parts of 5 halve CALIPSO orbits, which have been independently processed. These results have been overplotted in Fig. 27 as dashed lines, and show that the curves are significant, except for the region above 16 km (which is due to the small amount of retrievals in that area).

In the region 10-16 km clearly the tropical case has best quality, as is to be expected since cirrus clouds may occur in this altitude range in the tropics. For the subtropics there is a small altitude range around 10 km with good quality data (i.e. no further screening needed to reach the requirement), and for the mid-latitude and polar data the region between 2 and 10 km gives good results thanks to the presence of cloud tops at these altitudes. The PBL quality is similar for all regions, and seems mostly determined by the increased aerosol levels near the surface.

From this it can be concluded that all climate zones need additional filtering at some specific altitude ranges to meet the requirements.

Std in LOS wind error against altitude for several climate zones

Figure 27: LOS wind error std for different climate zones against altitude. The blue dots and curve are for all data (global). The green, red, cyan and purple dots and curves are for tropical, subtropical, midlatitude and polar data, as is explained in the text. The solid black line indicates the requirement, the dotted black line indicates the requirement including representativeness error, the green dotted line a step in rangebin size and the red dotted line the ground surface (not taken into account in the simulation). The dotsizes represent the amount of valid datapoints used to reconstruct the statistics (symbol size scales linear with the amount of data).

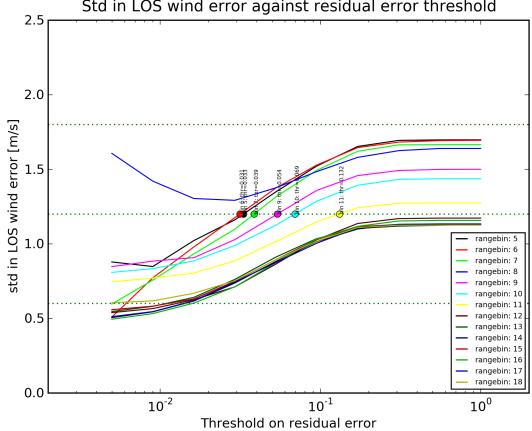
Note that the signal for the higher bins is mostly due to the fact that any noise in the original CALIPSO retrievals is regarded as real aerosol backscatter by the simulation. For real ADM data almost no usefull Mie signal is to be expected above 16 km except maybe from PSC's, so the statistics for the region above 16 km probably have not much relevance. To verify this, the same plot was created using only data with SNR>100, which will consist almost entirely out of cloud top reflections. This result is shown in Figure 28. From this result it is clear that cloud top reflections will yield very good retrievals and meet the requirements for the entire profile. The 2 exceptions in the troposhere are not significant due to the low amount of retrievals passing the SNR>100 requirement. Only the PBL result just above the surface significantly fails the requirement for most climate zones, probably because of the high extinction in this region. This plot also confirms that the highest clouds in the dataset are around 17 km for the tropics, around 15 km for the sub-tropics, around 12 km for mid-latitudes, and around 10 km for the poles, as was expected.

For most climate zones and rangebins it is possible to find a threshold on either Residual Error, FWHM or SNR, which will reduce the standard deviation on wind error to a value at or below the requirement. As example Figure 29 shows the standard deviation on LOS wind error found by selecting the data below

Std in LOS wind error against altitude for several climate zones

Figure 28: LOS wind error std for different climate zones against altitude, plotted in the same way as in Figure 27. Clearly the requirements are met along most of the profile except for a few exceptional points that are not significant due to the low amount of retrievals passing the SNR>100 requirement. Only the PBL result just above the surface significantly fails the requirement for most climate zones.

a number of different Residual Error Thresholds. This example only shows 1 km rangebins for the midlatitudes. Clearly a number of rangebins do not need extra filtering, since they always have std below 1.2 m/s (bins 12-18), but for a number of bins (5-11) clearly a threshold value on Residual Error can be found which reduces the std on wind LOS error to the required value. In this case also one bin (8) does not seem to have such a threshold point. This is due to the fact that for lower Residual Error thresholds only very few retrievals remain, and the statistics for that region are no longer significant.


Residual Error threshold values needed to get a standard deviation on LOS wind error that equals the requirement have been plotted in Figure 30, for each climate zone and range bin. Clearly the result is very scattered so probably the amount of data is not enough yet to make them really significant. Looking at the PBL result, a Residual Error threshold close to 0.03 seems sufficient to obtain on average the required accuracy. For the troposphere a threshold will have to be defined by a more complicated curve, to make it possible to select the data to meet the requirement, without losing too much good retrievals. This line will depend on climate zone and altitude. The stratospheric result suggests a threshold around 0.08 but as was mentioned before, the results for this region are probably not significant.

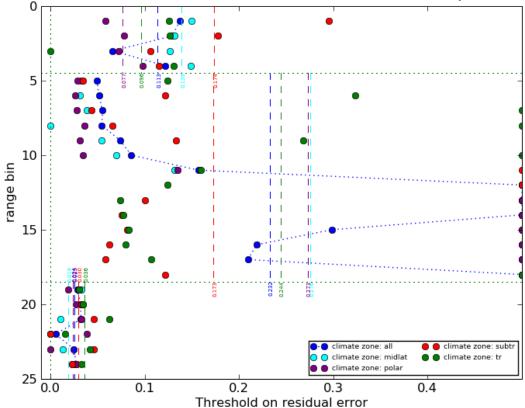
3.11.6 Altitude effects and SNR

Following the result presented in subsection 3.11.5 above that a threshold on Residual Error probably will have to be a profile holding different values at different altitudes, it was decided to look again at the SNR.

Std in LOS wind error against residual error threshold

Figure 29: Standard deviation on LOS wind error found by selecting the data below a number of different Residual Error Thresholds. This example only shows 1 km rangebins for the mid-latitudes.

In a similar way a threshold was imposed discarding all data below a given SNR, and for a range of SNR threshold values the resulting STD in LOS wind error was determined. An example of such a plot for the sub-tropical region for all 1 km range bins is given in Figure 31. The result for all climate zones and all rangebins is given in Figure 32.


Clearly the thresholds are much better behaved than the ones on Residual Error. When looking at the shape of the curves used to determine these thresholds this makes sense. The curves for the threshold on Residual Error have the shape of an arctangent (see Figure 29), and unless the requirement is close to the cross-over point with maximum slope, the determination of the threshold can be very uncertain and susceptable to noise (so needs large statistical samples) because the slope is very small. The curves for the threshold on SNR have the shape of an exponential decreasing function to a constant limiting value (see Figure 31), so usually the location of the threshold can be determined with more confidence (since the slope is much steeper). The exception is the PBL, which has a required STD level close to the limit, and in this case the uncertainty again is rather big (and the slope small).

Effect of rangebin size 3.11.7

Since the current dataset has been produced using the WVM1 range bin definition, there are currently no altitudes for which the effect of changing range bin size can be studied. However, it is possible to display the quality of the individual range bins and tabulate them against altitude. This has been done in Table 7 From this table it is clear that the std of the data of some 1 km rangebins fullfill the mission requirements lower boundary without further selection (see [RD11], table 3.3 on page 42).

Threshold on ResError needed to achieve the los std requirement

Figure 30: Residual Error threshold values needed to get a std on LOS wind error that equals the requirement, for each climate zone and range bin. If no threshold was needed the point is plotted at 0.5, if no threshold could be found the point is plotted at 0. The results for all climate zones together are connected by the blue dotted line. The green dotted horizontal lines indicate the jump in rangebin size. The vertical dashed lines indicate the average threshold per climate zone and range bin size.

As was shown above, additional selection will allow to select the data to meet this limit, and due to the varying quality the threshold values may be choosen to vary with altitude. To make this possible it would be best to make these Mie Core parameters (especially FHWM and Residual Error) available to the user in the L2B product file, for each retrieved wind result.

Especially range bin 24 has relatively large errors. Note however that this one is below the surface. Since surface reflections are not included in the current simulation, the data is reported anyway, based on extrapolated atmospheric data. The poor quality probably is due to the significant aerosol extinction in the layer just above the surface (since aerosol levels are usually highest in the atmospheric bin just above the surface, which is then extrapolated to allow calculations below the surface, and may thus be considerably enhanced), and this also is reflected in the small amount of points from this layer that pass the SNR and ValidityFlag test.

Another clear result from the numbers in this table is the fact that std of wind velocity error increases with range bin size. This is to be expected, because both height assignment problems and peak broadening due to transparant clouds show larger effects for larger range bins.

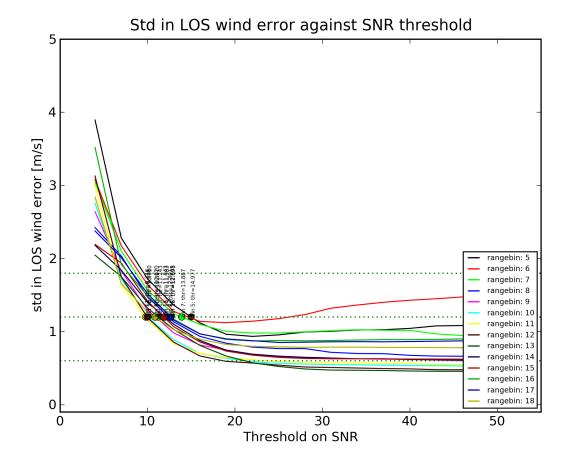
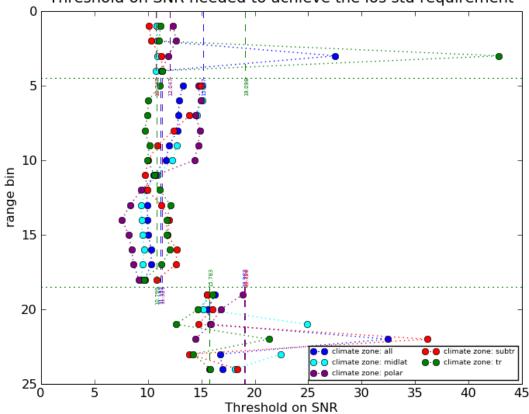


Figure 31: Standard deviation on LOS wind error found by selecting the data above a number of different SNR Thresholds. This example only shows 1 km rangebins for the sub-tropics.

3.12 Task 4a: QC conclusions and recommendations

In section 3.11 the quality of the wind as retrieved by the Mie Core algorithm has been investigated as function of several of the Mie Core algorithm outputs, and as function of SNR. It has been investigated whether these parameters can be used as quality indicators for retrieved Mie channel HLOS winds. More in particular, threshold values for the Mie Core output parameters have been determined to meet the mission wind requirements. This section provides a list of conclusions and recommendations that may serve as input for the L1B and L2B processors for Mie Core parameter threshold settings.

Recommendations:


- 1. although (currently) not strictly a Mie Core output (at least for the L2Bp), screening on SNR is the easiest way to improve the average data quality. For all altitudes SNR>10 remains a requirement to obtain good fit results.
- 2. only data with a ValidityFlag set to true should be used

Note: the set of data points fulfulling (1) and (2) is in the remainder denoted "reference dataset".

- 3. outer loop iterations. The Max. Iterations Lorentz Fit threshold can be set tighter, to about 12, without loss of quality. This may improve runtime up to a factor of 2 (rough estimate).
- 4. Inner loop iterations. The values for MaxItNonLinOpt of 20 and NonLinOptThresh of 0.01 seem close to optimal and not much improvement of wind retrieval quality or runtime is expected by further tuning them.

Threshold on SNR needed to achieve the los std requirement

Figure 32: SNR threshold values needed to get a std on LOS wind error that equals the requirement, for each climate zone and range bin. The green dotted horizontal lines indicate the jump in rangebin size. The vertical dashed lines indicate the average threshold per climate zone and range bin size.

- 5. Residual error. This parameter can be used in two ways
 - 5.1 Applying a threshold on the number of outer loop iterations of 12, i.e. passing only data points that meet the residual error threshold of 0.001 in 12 iterations, would significantly improve the quality of the data, but would also reject the majority of points from the reference dataset (more than 70%).
 - 5.2 Applying a threshold on the residual error of 0.013 would decrease the overall STD of the wind velocity error distribution from 1.27 m/s in the reference data set to 0.65 m/s, at the cost of rejecting 49% of the points in the reference dataset.

In general: finding specific threshold values to reduce the STD of the wind velocity error to the requirement is possible, but requires a large data set to obtain sufficient statistics.

6. SNR. The data may also be selected on SNR. For almost each range bin a SNR threshold value can be found that reduces the STD of the wind velocity error to the mission requirement. This threshold can be more reliably determined with more confidence for the same statistics as used for determining the threshold on Residual Error, and seems much better behaved. Therefore it is recommended to implement selection on SNR using an altitude dependent threshold profile, and not on Residual Error. This altitude dependency should have at least 3 values, corresponding with the 3 different required accuracies for different altitude regions. Note here also that sometimes this threshold may be less than 10, so in principle all accumulated (observation level) Mie spectra should be processed by the

vandityFla	<u> </u>									
bin	bir	1	bir	1	b	in	nr of	percentage	std in	
number	bottom		top		si	ize datapoints			wind velocity error	
All	-		-		-		468781	100%	1.266	ms ⁻¹
1	22.18	km	24.18	km	2	km	3360	0.7%	1.958	ms ⁻¹
2	20.18	km	22.18	km	2	km	5355	1.1%	1.944	ms^{-1}
3	18.18	km	20.18	km	2	km	9777	2.1%	2.033	ms^{-1}
4	16.18	km	18.18	km	2	km	16049	3.4%	1.915	ms^{-1}
5	15.18	km	16.18	km	1	km	15947	3.4%	1.598	ms^{-1}
6	14.18	km	15.18	km	1	km	16850	3.6%	1.557	ms^{-1}
7	13.18	km	14.18	km	1	km	17724	3.8%	1.542	ms^{-1}
8	12.18	km	13.18	km	1	km	17506	3.7%	1.514	ms^{-1}
9	11.18	km	12.18	km	1	km	18781	4.0%	1.432	ms^{-1}
10	10.18	km	11.18	km	1	km	19317	4.1%	1.383	ms^{-1}
11	9.18	km	10.18	km	1	km	19541	4.2%	1.250	ms^{-1}
12	8.18	km	9.18	km	1	km	19205	4.1%	1.176	ms^{-1}
13	7.18	km	8.18	km	1	km	27863	5.9%	1.193	ms^{-1}
14	6.18	km	7.18	km	1	km	26580	5.7%	1.194	ms^{-1}
15	5.18	km	6.18	km	1	km	24742	5.3%	1.204	ms^{-1}
16	4.18	km	5.18	km	1	km	22842	4.9%	1.234	ms^{-1}
17	3.18	km	4.18	km	1	km	21896	4.7%	1.231	ms^{-1}
18	2.18	km	3.18	km	1	km	25264	5.4%	1.166	ms^{-1}
19	1.68	km	2.18	km	0.5	km	28247	6.0%	0.924	ms^{-1}
20	1.18	km	1.68	km	0.5	km	32141	6.9%	0.836	ms^{-1}
21	0.68	km	1.18	km	0.5	km	30934	6.6%	0.809	ms^{-1}
22	0.18	km	0.68	km	0.5	km	26592	5.7%	0.871	ms^{-1}
23	-0.32	km	0.18	km	0.5	km	17932	3.8%	0.920	ms^{-1}
24	-0.82	km	-0.32	km	0.5	km	4336	0.9%	1.052	ms^{-1}
	number All 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	numberbotterAll $-$ 122.18220.18318.18416.18515.18614.18713.18812.18911.181010.18119.18128.18137.18146.18155.18164.18173.18182.18191.68201.18210.68220.1823-0.32	number bottom All - 1 22.18 km 2 20.18 km 3 18.18 km 4 16.18 km 5 15.18 km 6 14.18 km 7 13.18 km 8 12.18 km 9 11.18 km 10 10.18 km 11 9.18 km 12 8.18 km 13 7.18 km 14 6.18 km 15 5.18 km 15 5.18 km 16 4.18 km 17 3.18 km 18 2.18 km 20 1.18 km 21 0.68 km 22 0.18 km 23 -0.32 km	numberbottomtopAll122.18km24.18220.18km22.18318.18km20.18416.18km18.18515.18km16.18614.18km15.18713.18km14.18812.18km13.18911.18km12.181010.18km10.18119.18km10.18128.18km9.18137.18km6.18146.18km5.18155.18km6.18164.18km5.18173.18km3.18191.68km2.18201.18km1.68210.68km1.18220.18km0.6823-0.32km0.18	numberbottomtopAll122.18km24.18km220.18km22.18km318.18km20.18km416.18km18.18km515.18km16.18km614.18km15.18km713.18km14.18km911.18km12.18km1010.18km11.18km119.18km10.18km137.18km9.18km146.18km5.18km155.18km6.18km164.18km5.18km173.18km3.18km182.18km3.18km201.18km3.18km210.68km1.68km23-0.32km0.18km	numberbottomtopsiAll122.18km24.18km2220.18km22.18km2318.18km20.18km2416.18km18.18km2515.18km16.18km1614.18km15.18km1713.18km14.18km1911.18km12.18km1911.18km11.18km11010.18km10.18km1119.18km10.18km1128.18km9.18km1137.18km6.18km1146.18km5.18km1155.18km4.18km1164.18km5.18km1173.18km3.18km1182.18km3.18km1191.68km1.68km0.5201.18km0.68km0.5210.68km0.68km0.523-0.32km0.18km0.5	numberbottomtopsizeAll122.18km24.18km2km220.18km22.18km2km318.18km20.18km2km416.18km18.18km2km515.18km16.18km1km614.18km15.18km1km713.18km14.18km1km911.18km12.18km1km1010.18km11.18km1km119.18km10.18km1km128.18km9.18km1km137.18km5.18km1km146.18km5.18km1km155.18km5.18km1km164.18km5.18km1km173.18km3.18km1km182.18km3.18km1km201.18km1.68km0.5km210.68km1.68km0.5km23-0.32km0.8km0.5km	numberbottomtopsizedatapointsAll468781122.18km24.18km2km3360220.18km22.18km2km5355318.18km20.18km2km9777416.18km20.18km2km9777416.18km18.18km2km16049515.18km16.18km1km15947614.18km15.18km1km16850713.18km14.18km1km17724812.18km13.18km1km193171010.18km11.18km1km19317119.18km10.18km1km19205137.18km9.18km1km27863146.18km7.18km1km22842155.18km6.18km1km21896182.18km3.18km1km22842173.18km2.18km1km228247201.18km1.68km0.5km32141210.68km1.18km0.5km30934220.	numberbottomtopsizedatapointsAll468781100%122.18km24.18km2km3360 0.7% 220.18km22.18km2km5355 1.1% 318.18km20.18km2km 9777 2.1% 416.18km18.18km2km 16049 3.4% 515.18km16.18km1km 15947 3.4% 614.18km15.18km1km 16650 3.6% 713.18km14.18km1km 17724 3.8% 812.18km13.18km1km 17724 3.8% 911.18km11.18km1km 17724 3.8% 1010.18km11.18km1km 19317 4.1% 119.18km10.18km1km 19205 4.1% 137.18km9.18km1km 29% 5.7% 146.18km7.18km1km 2149% 5.3% 155.18km6.18km1km 22842 4.9% 173.18km 3.18 km1km 22842 4.9% 18 2.18 km 3.18 km <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 7: Overview of the data quality for subsequent range bins. The only thresholds applied are SNR>10 and ValiditvFlag=True

Mie Core algorithm. The current threshold implementation used for the decision whether or not to do the retrieval should be changed into setting a flag in the QC section of the output.

- 7. The SNR and Mie Core outputs (Residual Error and FWHM) should be available in the output products. This will allow users the opportunity to choose a non-nominal quality level of the HLOS wind data, and more importantly, this will allow further study of the effect of setting thresholds on these parameters.
- 8. Using these thresholds the L1B/L2B teams should provide their best estimate of data quality and a nominal quality level flag based on the mission requirements. Since the actual threshold values may be subject to revision, this implies that the L1B/L2B processing should read these thresholds as input variables for example through the AuxPar input file.
- 9. The effort to determine these thresholds should be continued on actual measurement data during the Cal-Val and operational phase of the mission, and the retrieval procedures should allow regular updates of these threshold numbers.

We obtained our statistical results in a simulation environment ignoring systematic motions associated with clouds, i.e., cloud dynamics. If further information on this topic could be obtained from measurement data sets, then this assumption should be further tested. The peak FWHM was not studied in detail for use with altitude and latitude dependant thresholds, although it is potentially a good measure of the atmosphere dynamical variability within the ADM observation sampling volume. This was done because this variable requires 2 threshold values in stead of 1, which would require more work than available within the project. The construction of the tool does not enable the assessment of along track dynamical variability. In

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

addition, the database wind-shear is substantially underestimated to realistically assess the peak broadening from vertical atmospheric heterogeneity (because there is little correlation between the artificial small scale wind shear and optical properties, after applying the error multiplier). The use of FWHM as a quality indicator needs further study.

4 Task 4a: Rayleigh QC

4.1 Determining the impact of vertical shear in horizontal winds

To derive QC information related to vertical shear in horizontal winds within a range bin, the Rayleigh spectral shape must be determined with sufficient precision.

Some effort has been invested in understanding the current implementation of the Rayleigh channel simulation in both the E2S and LIPAS. From this it became clear that no wavelength dependant signal is to be expected on the different ACCD bins of the Fabry-Pérot spectrometer. Therefore it is not possible to estimate the line width from these signals, and no possibilities where found to do quality control on the Rayleigh channel ACCD bin signals within an individual rangebin at measurement level.

In case when good quality absolute calibration for both the Mie and Rayleigh channel were available, the Rayleigh background from the Mie channel could in principle be used as 3rd spectral point, next to the channel A and B useful signals, and this would enable to estimate the Rayleigh line width, which then in turn might be used for QC. This would need a very precise cross-talk correction on the Rayleigh usefull signals. Also, since the broadening of Rayleigh signal spectrum is a function of both temperature and wind shear, a relatively accurate knowledge of the temperature would be needed to derive the effect of wind shear on the signal intensities. This has not yet been simulated.

4.2 Determining the impact of horizontal variation in horizontal winds

Alternatively, the oversampling used by the instrument on observation level does provide information of the variability within the 50 km observation length for a given range bin. For cases without Mie signal this variability is an indication of varying Rayleigh peak width, which in turn may be caused by horizonal changes in wind conditions. It is assumed in this case that any temperature variation within the scene can be either neglected, or is known precisely in advance from NWP. Note however that, as soon as any aerosol or transparant cloud layer enters the scene, it will be extremely difficult to discriminate between the effect caused by this layer and the effect caused by the wind variability.

Task 4b: LIPAS upgrade $\mathbf{5}$

Background 5.1

LIPAS, the Lidar Performance Analysis Simulator, has been used for ADM simulation studies and impact experiments for many years. Its development started during the ADM pre-phase A period in the late 1990's. At that time, the selection for the laser wavelength was not definite and LIPAS was made flexible to cover many wavelengths ranging from the UV to the near infrared. Most prefered wavelengths included 0.355, 0.532, 1.064, 2.06 and 10.6 micron. This wide range of optional wavelengths required the simulation of both coherent and incoherent measurement techniques. Before the selection in 1999 as a Core Explorer Mission the wavelength of ADM-Aeolus was fixed at 0.355 micron and further LIPAS developments were dedicated to this wavelength. The algorithms for the simulation of the 0.355 micron combined Mie/Rayleigh system that were implemented in LIPAS were developed by Matra Marconi Systems and are found in [RD4], in the remainder denoted MMS. These algorithms are based on the the phase-A instrument hardware design and include the simulation of the emitted laser beam, atmospheric propagation, receiver blocking filters and detection of the atmosphere backscattered photons by the Fizeau (Mie) and Fabry-Pérot (Rayleigh) interferometers on the ACCD, see also [LR6]. A description of the main characteristics of LIPAS is also found in [LR2]. LIPAS was used for the simulation of ADM and to assess its impact for NWP in many experiments including OSSE [LR3], assimilation ensemble experiments [LR1], [LR4] and SOSE [LR5], the latter mainly focusing on the impact of optional post-ADM scenarios.

Parallel to LIPAS other ADM hardware simulation tools were developed mainly the E2S [RD3] by Astrium-MDA and the DE2S by DLR. The E2S is currently set as the standard. However, as already explained in section 3.2 the E2S is programmed in Matlab and computationally not efficient. For the assessment of the vertical sampling scenarios, defined in [RD6], statistics from large observation samples need to be generated, i.e. ADM needs to be simulated for many orbits. It was concluded that the E2S is not suitable for this purpose. Alternatively it was decided to upgrade LIPAS and to make it compatible with the E2S-L1B-L2B chain, i.e. the Fizeau and Fabry-Pérot ACCD signals simulated by LIPAS should be compatible with the E2S and the HLOS wind quality simulated by LIPAS should be compatible with the L2B-processor output. The next section discusses the LIPAS upgrade. In a subsequent section the upgraded LIPAS, in the remainder denoted LIPAS-2009, is used for the assessment of the vertical sampling scenarios, more in particular the quantification of their L2 HLOS wind information content for Mie only, Rayleigh only and collocated Mie and Rayleigh sampling.

5.2From LIPAS to LIPAS-2009

This section provides an overview of the main issues in the context of the LIPAS upgrade. A more detailed discussion of these issues is found in subsequent sections.

- LIPAS atmosphere input. For the description of the atmospheric scene as observed by ADM LIPAS input was limited to NWP model field parameters. NWP model fields do not include explicit atmosphere optical properties such as cloud, aerosol and molecular backscatter and extinction. Aerosol backscatter and extinction were simulated from climatology datasets and a random process to simulate backscatter variability in the vertical, e.g. [LR2]. NWP model fields also do not include cloud optical properties explicitly but implicitly through model cloud parameters such as cloud cover and cloud liquid water and ice content. A cloud overlap model, that assumes maximum spatial correlation of layered clouds, and randomization were implemented to decide on cloud encounters on a shotby-shot basis and parameterizations to convert cloud model parameters to cloud optical properties (backscatter and extinction), see [LR2]. These options are maintained in LIPAS-2009, but in addition atmospheric profiles from the Level-2 atmospheric database can be used as input to define the atmospheric scene as observed by ADM. This atmospheric database includes explicit aerosol and cloud backscatter and extinction. Molecular backscatter and extinction are calculated from atmospheric pressure and temperature, see [LR2].
- LIPAS simulation of the Fizeau interferometer, also denoted Mie channel. LIPAS does already include the simulation of the number of electrons on the ACCD bins of the Fizeau interferometer. A simple algorithm, described in chapter 7 of MMS, was implemented to retrieve the ACCD peak

location that is related to the particles velocity and a Monte Carlo simulation was performed to generate a lookup table that related Mie channel SNR to LOS wind accuray. As part of the upgrade, the Fizeau interferometer parameters have been made compatible to the E2S and the more advanced socalled Mie Core algorithm for peak-fitting, that is also part of the L1B and L2B processors, has been implemented in LIPAS-2009 and tested against the previously implemented MMS peak-fit method.

- LIPAS simulation of the Fabry-Pérot interferometer, also denoted Rayleigh channel. LIPAS did not include explicit simulation of the number of electrons detected on the Fabry-Pérot ACCD bins. Instead, Eq. (46) from MMS that relates Rayleigh receiver signal SNR to LOS wind accurate was implemented. LIPAS-2009 explicitly simulates the numbers of electrons detected on the Fabry-Pérot ACCD bins. It includes the simulation of the Fabry-Pérot transfer function that maps the incoming atmospheric return signal on the ACCD bins. The receiver response is computed from the signals in the Fabry-Pérot channels A and B and related to a receiver response lookup table to retrieve the Doppler shift and corresponding LOS wind velocity, similar as in the L1B and L2B processors.
- Cross-talk. LIPAS ignored cross-talk, i.e. contamination of the Rayleigh channel signal by particles in the measurement bin. It was assumed that this could be resolved by the L2Bp, once available. LIPAS-2009 explicitly simulates cross-talk. This also paves the way for LIPAS-2009 to test L2Bp algorithms to correct for cross-talk. These algorithms are currently under investigation and development, for instance the L2Bp optical properties code.
- Atmosphere heterogeneity. Initially LIPAS assumed homogeneous atmospheres and no wind biases in retrieved Mie and Rayleigh winds. Biases may be introduced by the atmosphere e.g. through cross-talk and atmosphere heterogeneity as well as by the hardware. During the MERCI [RD10] project, a postprocessing was developed to introduce biases in retrieved winds related to atmospheric heterogeneity. LIPAS-2009 explicitly simulates atmosphere induced biases by subdividing the atmosphere in bins that are much smaller than the ADM vertical bins. For each of these bins the atmospheric return signal and spectrum are calculated in addition to their distribution over the Fizeau and Fabry-Pérot interferometer bins. Integrating the signals of these atmospheric bins to the ADM vertical bins followed by wind retrieval from the integrated signal will yield biases in case of heterogeneous atmospheres. It is assumed that biases induced by hardware are stable and can be corrected in the processing.
- Wind error estimates. Besides a wind observation, LIPAS provides an estimate of the wind error bias and standard deviation. These are needed to give the observation a proper weight in the atmospheric analysis during data assimilation. LIPAS already included instrument wind error estimates based on detected SNR of detected Fizeau and Fabry-Pérot signals and the computation of a representativeness error that quantifies the mismatch of atmospheric scales observed by the instrument but that are not well resolved by NWP models. The representativeness error has been updated based on more recent ECMWF model spectra evaluations, see [RD9]. An additional error related to the unknown location of an aerosol or cloud layer within the vertical range bin has been introduced.
- Quality control (QC). Section 3.12 reports on the output parameters of the Mie core algorithm to decide on accepting or rejecting Mie channel winds: Mie winds are accepted for i) SNR values larger than 10, ii) residual errors smaller than 0.005 and iii) a FWHM in the range 2.017-2.059. In LIPAS currently only the SNR constraint has been implemented that appeared sufficient to avoid excessive outliers. For Rayleigh channel winds quality control flags are set based on measured SNR and estimated cross-talk.
- Hardware design parameters. During the evolution from (pre-)phase A to phase B/C, some of the ALADIN hardware components have evolved. The corresponding parameters are updated and summarized in various tables that are discussed in the corresponding subsequent sections.

The following subsections describe the simulation of the atmospheric return signal in LIPAS-2009 and the propagation of the atmospheric return signal through the instrument detection chain. This includes the simulation of the number of detected electrons on the Fizeau and Fabry-Pérot interferometers followed by wind retrieval from the measured data. The items described above are discussed in more detail in the corresponding sections.

5.3Atmospheric return signal

This section describes the simulation of the atmospheric return signal that is detected on the instrument receiver. LIPAS extracts the atmospheric scene observed by ADM from the atmospheric database. For VAMP we use the same database as used to test the ADM L1B and L2B processors. The database contains profiles of pressure, temperature, zonal, meridional and vertical wind components, particle and molecular backscatter and extinction, all as a function of height from mean sea level to 40 km altitude at 125 m vertical resolution. The horizontal resolution is 3.5 km. The database profiles are interpolated to the range gates of the vertical sampling scenario. Each range gate of the vertical profile of ADM is subdivided in M equidistant subbins. LIPAS-2009 uses M = 20. The atmospheric return signal from particle (Mie) and molecular (Rayleigh) backscatter is simulated for each of these subbins and their spectral distribution is expressed as follows, following MMS Eq. (3):

$$S(\lambda, z) = S_{\text{tot}}(\lambda, z) I_{\lambda_{\text{laser}}}(\lambda)$$
(10)

with $I_{\lambda_{\text{laser}}}(\lambda)$ the normalised spectral distribution of the signal in $[\text{pm}^{-1}]$ and S_{tot} the total signal in photons [ph]. The spectral distribution I is modelled as a Gaussian distribution for both Mie and Rayleigh signals, see also Eq. (3) of MMS i.e. the equivalent of Eqs. (1,2). Note that LIPAS uses units in [m] instead of [Hz]. The peak location is at the Doppler shifted wavelength $\lambda' = \lambda_{\text{laser}} + \nu$ with λ_{laser} the laser wavelength of 0.355 micron and ν denotes the Doppler shift in [m] in the remainder. The latter is related directly to the LOS wind velocity within the sampled subbin. For each subbin the true atmospheric u (zonal), v (meridional) and w (vertical) wind components are obtained from the atmospheric database. Following Eq. (2) from [RD7], the true LOS wind velocity, $v_{\rm LOS}$ equals

$$v_{\text{LOS}} = \left[-u\sin(\psi) - v\cos(\psi)\right]\sin(\phi) - w\cos(\phi) \tag{11}$$

with ψ the azimuth angle defined as the angle (clockwise) between the laser beam direction and geographical north and ϕ the local incidence angle at the earth surface. Although the local incidence angle slightly changes with altitude along the profile LIPAS-2009 assumes it constant with a value of 37.56 degrees for an off-nadir pointing angle of 35 degrees.

The Doppler shifted wavelength, λ' , is obtained from the Doppler shifted frequency, df (Hz), as follows

$$\lambda' = \lambda_{\text{laser}} - \frac{c}{\frac{c}{\lambda} + df} \tag{12}$$

with c the speed of light and df defined in Eq. (3) with s replaced by $v_{\rm LOS}$ defined in Eq. (11). Note that the second term in Eq. (12) is the Doppler shift ν in [m].

The peak location of the spectral distribution is identical for Mie and Rayleigh signals but the width of the peak at FWHM differs substantially. The Mie spectral shape is considered as a duplication of the laser pulse spectral shape with FWHM given in Eq. (1) of MMS, see also table 8. The Rayleigh spectral shape is much broader due to the Brownian motion of molecules. The FWHM of the molecular peak is a function of temperature and obtained from Eq. (2) of MMS. The Doppler shifted wavelength and the Mie/Rayleigh peak FWHM define the normalized spectral distribution of the backscattered Mie/Rayleigh signal I_{laser} .

The total signal at receiver input S_{tot} is obtained following Eq. (4,5) of MMS:

$$S_{\rm tot}(\lambda, z) = \frac{E\lambda}{hc} \frac{\beta(\lambda, z)}{R(z)^2} \frac{\pi D^2}{4} \Delta h_{\rm LOS} T_{\rm atm}(z) T_{\rm RX} T_{\rm TX} \qquad [ph/\text{range gate}]$$
(13)

with

- E is the laser pulse energy [J]
- λ is the laser wavelength [m]
- *h* is Plank constant [Js]
- c is the speed of light $[ms^{-1}]$
- $\beta(\lambda, z)$ is the backscatter coefficient $[m^{-1}sr^{-1}]$ for both Mie and Rayleigh signals

Table 8: Parameter values used for the ADM performance simulation. The ADM Phase-B design values for the Rayleigh equivalent and earth background equivalent bandwidths are obtained from an e-mail correspondence with ESA (Anne Grete Straume) on Wednesday 3 June 2009.

Parameter description	symbol	value	unit
Emitter laser			
pulse repetition frequency		100	[Hz]
linewidth (FHWM)		50	[MHz]
laser pulse energy	E	0.12	[J]
Optics			
transmit optics transmission	$T_{\rm TX}$	0.66	
receive optics transmission	$T_{\rm RX}$	0.42	
telescope diameter	D	1.5	[m]
$\operatorname{Detector}/\operatorname{Receiver}$			
detector quantum efficiency	η	0.82	
peak transmission of the complete Mie receiver	T_p^{Fiz}	0.6	
peak transmission of the complete Rayleigh receiver	$ \begin{array}{c} T_p^{\rm Fiz} \\ T_p^A, T_p^B \end{array} $	see Table 10	
equivalent spectral sampling of the detector on the Mie channel	$\Delta \lambda$	0.0394	[pm]
Rayleigh equivalent bandwidth on Fizeau ¹	$\Delta \lambda_{\rm eq_ray}$	0.15	[pm]
earth background equivalent bandwidth on Fizeau ¹	$\lambda_{_{ m eq_bkg}}^{_{ m Fiz}}$	83.75	[pm]
earth background equivalent bandwidth on Fabry-Pérot ¹	$\lambda_{_{\mathrm{eq.bkg}}}^{_{\mathrm{FP}}}$	297.5	[pm]
Fizeau ADC dynamic range	$n_{ m ADC}^{ m Fiz}$	74000	[el]
Fabry-Pérot ADC dynamic range	$n_{\rm ADC}^{\rm FP}$	120000	[el]
Number of ADC bits	$n_{\rm Bits}$	16	

- R(z) is the range from satellite to the atmospheric layer [m]
- $\Delta h_{\rm LOS}$ is the range gate that equals $\Delta h/\cos(\phi)$ with ϕ the local incidence angle.
- $T_{\rm atm}(z)$ is the 2-way atmospheric transmission between the satellite, at altitude $h_{\rm sat}$ and the observed atmospheric layer at altitude z and is determined as follows from the molecular extinction, α_m , and particle extinction, α_p .

$$T_{\rm atm}(z) = \exp\left[\frac{-2}{\cos(\phi)} \int_{z}^{h_{\rm sat}} \{\alpha_m(\lambda, z) + \alpha_p(\lambda, z)\} dz\right]$$
(14)

Extinction is the result of molecule and/or particle scattering and absorption.

- *D* is the telescope diameter [m]
- T_{TX} is the transmit optics transmission
- $T_{\rm RX}$ is the receive optics transmission

Values for these parameters used in the simulations are found in table $8.^1$. The following subsections describe the propagation of the atmospheric return signal through the instrument detection chain and the resulting signals on the Fizeau and Fabry-Pérot interferometers.

5.4Mie channel signal and wind retrieval

Following Eqs. (9,11) of MMS, the distribution of the atmospheric return signal, described in the previous section, on the 16 spectral channels (also denoted ACCD bins) of the Fizeau interferometer is obtained from

$$ACCD(i) = \int_{\lambda_i}^{\lambda_i + \Delta\lambda} RS_{\lambda_{\text{laser}}}(\lambda) d\lambda$$
(15)

 $^{^{1}}$ This are phase B design values, based on Fizeau FSR = 2190 MHz and FWHM = 137 MHz. These values are no longer up to date in phase C/D.

VAMP TN 3, version 1.3, dated: 24-Mar-2010

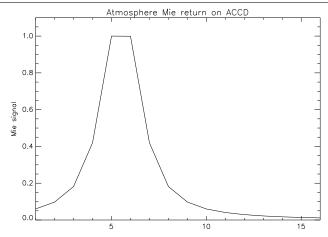


Figure 33: Distribution of the normalized atmosphere Mie peak on the Fizeau interferometer ACCD bins for a 50 ms⁻¹ wind velocity. The ACCD bin numbers are on the horizontal axis.

with RS the unitless spectral response

$$RS_{\lambda_{\text{laser}}}(\lambda) = \int_{x} T(x,\lambda) I_{\lambda_{\text{laser}}}(x) \mathrm{d}x$$
(16)

Here, T is the Fizeau spectral transmission that is modelled as a Lorentzian, see Eq. (9), and with parameters defined in Table 9. $I_{\lambda_{\text{laser}}}$ is the normalized spectral distribution of the backscattered Mie signal, as discussed in the previous section. λ_i Is the starting wavelength [pm] of channel *i* and $\Delta \lambda$ is the equivalent spectral sampling of the detector [pm], index *i* ranges from 1 to 16. Instead of performing the double integration in Eqs. (15,16) for each atmospheric bin, a discretization similar as in the E2S is applied as follows

$$\operatorname{ACCD}(i) \approx \sum_{j=1}^{N_j} RS(\lambda_j) \Delta \tilde{\lambda}$$
 (17)

$$= \sum_{j=1}^{N_j} \sum_{k=1}^{N_k} T(x_k, \lambda_j) I(x_k) \Delta x \Delta \tilde{\lambda}$$
(18)

$$= \Delta \tilde{\lambda} \Delta x \sum_{k=1}^{N_k} I(x_k) \sum_{j=1}^{N_j} T(x_k, \lambda_j)$$
(19)

with $\lambda_j = \lambda_i + (j-1)\Delta \tilde{\lambda}$ and $\Delta \tilde{\lambda} = \Delta \lambda/N_j$. Typical values are $N_j = 10$ meaning that each ACCD bin is discretized in 10 subbins, the same value as used in the E2S. The useful spectral range (USR), denoted with x, is discretized in 1000 steps, i.e. $N_k = 1000$. Thus $x_k = -\text{USR}/2 + (k-1)\Delta x$ with $\Delta x = \text{USR}/N_k$. Eq. (19) follows from rearranging the summations of the equation above. The second summation in Eq. (19) is only a function of the Fizeau interferometer characteristics and independent from the atmosphere. For each x_k this summation is done only once in LIPAS-2009 and the result is saved in a lookup table. This procedure is performed for all 16 ACCD bins, yielding a lookup table matrix, **F**, with dimensions $16 \times N_k$. The distribution of electrons, e, of the atmospheric return spectrum on the ACCD bins of the Fizeau interferometer is then obtained from

$$e_{\rm ACCD}^{\rm Fiz} = \mathbf{F} I_{\lambda_{\rm laser}} \tag{20}$$

where $e_{_{\rm ACCD}}^{_{\rm Fiz}}$ and $I_{\lambda_{\rm laser}}$ are vectors now of dimensions 16 and N_k respectively.

Figure 33 shows an example of the normalized distribution of a Mie peak over the 16 Fizeau bins, similar as in Figure 2 for a 50 ms⁻¹ wind velocity. The useful spectral range (USR) is 1502 MHz or 266.605 ms⁻¹, meaning that the width of each ACCD bin corresponds to 16.66 ms⁻¹. The location of the center of the Mie peak on the ACCD is close to 5.5. Note that for zero wind velocity the peak is located exactly between bin 8 and 9 at 8.5. A shift of -3 bins indeed corresponds to a 50 ms⁻¹ wind velocity i.e. wind velocity =

Table 9: Parameter values used to simulate the Fizeau transmission function, see also Table 1.

Parameter	value	unit
peak transmission	0.60	
FWHM	184	[MHz]
Useful Spectral Range (USR)	1502	[MHz]
Free Spectral Range (FSR)	2150	[MHz]
number of ACCD columns	16	

shift*USR/16. Also note that although the width of the Mie peak is relatively small, its signal is distributed over all bins and not limited to the bins close to the corresponding wind velocity. This is important for the MMS peak-fit method that is discussed later.

5.4.1 Mie channel Doppler shift estimate

The previous section discussed the distribution of the atmospheric Mie return signal on the Fizeau interferometer for one atmospheric subbin. Next, LIPAS-2009 accumulates the signals from the M subbins to get the signal for one ADM range gate. The total number of detected electrons per range gate for a number of accumulated laser shot, N_s , on each of the 16 ACCD bins of the Fizeau interferometer from particles equals, following Eqs. (11) of MMS,

$$N_{\rm Fiz}(i) = C_1^{\rm e^{2s}} \eta N_s S_{\rm tot_mie} T_p^{\rm Fiz} \frac{1}{N} \frac{2}{\pi} \frac{1}{\Delta \lambda} e_{\rm ACCD}^{\rm Fiz}(i) \quad [e]$$
(21)

with

- $C_1^{e_{2s}}$ a constant parameter used to make the signal intensity compatible with the E2S. This is discussed later in section 5.6
- η the detector quantum efficiency, see table 8
- N_s is the number of accumulated shots
- $S_{\text{tot.mie}}$ is the total signal return from particle scattering per laser shot [ph], see Eq. (13)
- $T_p^{\rm Fiz}$ is the peak transmission of the complete receiver
- N is the number of ACCD bins
- $2/\pi$ is the pupil truncation ratio
- $\Delta \lambda$ is the equivalent spectral sampling of the detector
- $e_{\text{ACCD}}^{\text{Fiz}}(i)$ is obtained from Eq. (20)

Values for these parameters used in the simulations are found in table 8. Besides the Mie return, electrons are detected from the Rayleigh return and the earth radiance background. For the former, Eq. (20) could be used, however LIPAS-2009 follows MMS by assuming a flat Rayleigh spectrum within the Fizeau USR. Similarly, the distribution of the earth radiance background on the Fizeau ACCD bins is assumed uniform. Following Eqs. (11,13,14) from MMS, the signal on each of the 16 ACCD bins of the Fizeau interferometer from molecules, $N_{\rm B,Ray}$ and the earth radiance background, $N_{\rm B,BKG}$ is obtained from

$$N_{\rm B_{Ray}}(i) = C_2^{\rm e^{2s}} \eta N_s S_{\rm tot,ray} \left[\frac{\Delta \lambda_{\rm eq,ray} + \Delta \lambda}{\Delta \lambda_{\rm FWHM,ray}} \right] \sqrt{\frac{\ln(2)}{\pi}} T_p^{\rm Fiz} \frac{2}{\pi N}$$
(22)

$$N_{\rm B_{BKG}}(i) = \eta N_s S_{\rm BKG} T_p^{\rm Fiz} \Delta \lambda_{\rm eq.bkg}^{\rm Fiz} \frac{2}{\pi N}$$
(23)

with

56/ 160

- $C_2^{_{22}}$ is a constant parameter used to make the signal intensity compatible with the E2S, as discussed later in section 5.6
- $S_{\text{tot_ray}}$ is the total signal return from molecular scattering per laser shot [ph], see Eq. (13)
- $\Delta \lambda_{\text{eq-ray}}$ is the Rayleigh equivalent bandwidth.
- $\lambda_{\text{FWHM}_{\text{ray}}}$ is the FWHM of the width of backscattered Rayleigh spectrum, see Eq. (2) of MMS.
- $\lambda_{eq,bkg}^{Fiz}$ is the background equivalent bandwidth.
- S_{BKG} is the total earth radiance signal available at receiver input, see Eq. (6) in MMS.

Values for these parameters used in the simulations are found in table 8. No correction parameter is introduced for the earth radiance background term because its contribution to the background noise is generally negligible as compared to the Rayleigh contribution for the dawn-dusk ADM orbit. The total signal per ACCD bin i for the Mie receiver is obtained from

$$N_{\text{tot}}(i) = N_{\text{Fiz}}(i) + N_{\text{B}_{\text{Ray}}}(i) + N_{\text{B}_{\text{BKG}}}(i)$$

$$(24)$$

The resulting signal N_{tot} corresponds to one range gate for a number of accumulated laser shots, called a *measurement*. The accumulation strategy is not fixed at the time of writing but typical values are $N_s = 14$ for a 1-kilometer and $N_s = 50$ for a 3.5-kilometer along track on-board accumulation.

Next, Poisson noise, dark current and the earth radiance background signal, following Eq. (26) from MMS are added to yield the noisy ACCD signal for one measurement that is denoted with a prime: $N'_{tot}(i)$. As explained in section 7.9.10 of [RD3] the charge stored on each column of the ACCD is read out by analogue electronics, amplified and then digitised. The digitisation step includes the analog-to-digital conversion (ADC) as follows:

$$N_{\rm ADC}(i) = \operatorname{round}[N_{\rm tot}'(i) * (2^{n_{\rm Bits}} - 1)/n_{\rm ADC}^{\rm Fiz}]$$
(25)

The integer value $N_{ADC}(i)$ is the output of the FP detection system and is the result of the simulation of the ALADIN Fizeau spectrometer system. Typical values for the Fizeau spectrometer are found in Table 8.

Assuming no advanced classification between aerosol and cloud measurements, the signals from all measurements along a 50 km track are accumulated to yield the signal for one ADM *observation*. The location of the center of the Mie peak on the ACCD corresponds to the LOS wind velocity. This procedure is done for all 24 ADM vertical range gates to yield the Mie channel LOS wind profile.

In chapter 7 of MMS a relative simple algorithm is proposed to esimate to Mie peak center location from the noisy signal on the 16 ACCD Fizeau bins. The spectrum on the Fizeau interferometer shows a peak, from the detected particles, on top of a flat spectrum, from the detected molecules. It is assumed that the Mie peak extends over 5 adjacent bins. The other bins contain noise only. A procedure is proposed to discriminate between bins containing signal plus noise and those containing noise only. From the latter an estimate of the noise level is obtained that is subtracted from the signals of all bins. Next, the bin with maximum signal is determined followed by a weighted average over 5 bins centered at the bin with maximum signal. This yields the location of the peak center. This procedure is very sensitive to the noise level estimate. In addition, the assumption that the Mie signal is found in 5 adjacent bins is too simplistic as observed from Fig. 33. These drawbacks make the method sensitive to wind biases. Improved algorithms to estimate the noise level and peak center, taking into account the (broad) distribution of the Mie signal over all 16 bins, have been implemented in LIPAS-2009 yielding better results, but Mie retrievals by this simple algorithm are still not free of biases as will be showed later in the results in section 5.6.

The estimate of the LOS velocity, \hat{v}_{LOS} , within the measured ADM range gate is obtained from the estimated location of the center of the Mie peak, L_c , on the ACCD as follows

$$\hat{v}_{\text{LOS}} = -(L_c - 8.5) \times \text{USR}/16$$
(26)

with USR the useful spectral range in ms⁻¹, e.g. 266.605 ms⁻¹ for the value of 1502 GHz in table 9. The subsequent estimate for HLOS wind, \hat{v}_{HLOS} , is obtained from

$$\hat{v}_{\rm HLOS} = \frac{\hat{v}_{\rm LOS}}{\sin(\phi)} \tag{27}$$

57/ 160

Table 10: Parameter values use	d to simulate	the Fabry-Pérot	transfer function.
--------------------------------	---------------	-----------------	--------------------

Parameter	value	unit
simulated frequency range	-3 to +3	[GHz]
Number of frequency steps	1201	
peak transmission direct channel (T_p^A)	0.68	
peak transmission reflected channel (T_p^B)	0.61	
crossover wavelength	355	[nm]
peak separation wavelength	2.3	[pm]
FWHM direct channel	1666	[MHz]
FWHM reflected channel	1666	[MHz]
FSR direct channel	10950	[MHz]
FSR reflected channel	10950	[MHz]
beam spot centre pixel x -direction direct channel	8.5	[pxl]
beam spot centre pixel y -direction direct channel	4.5	[pxl]
beam spot centre pixel x-direction reflected channel	8.5	[pxl]
beam spot centre pixel <i>y</i> -direction reflected channel	12.5	[pxl]
beam spot diameter direct channel	3.3	[pxl]
beam spot diameter reflected channel	3.3	[pxl]
number of ACCD rows	16	
number of ACCD columns	16	

As an alternative to the retrieval algorithm described above, the potentially better and more advanced Mie Core has been implemented in LIPAS. The Mie Core algorithm detects the location of the Mie peak from the noisy Fizeau ACCD signal using a downhill simplex method as discussed in section 3.5. The Mie Core algorithm is also part of the ADM L1B and L2B processors. The MMS and Mie Core wind retrieval algorithms are tested in section 5.6 for a number of cases.

5.5Rayleigh channel signal and wind retrieval

LIPAS did not include the explicit computation of the number of electrons on the 2 Fabry-Pérot channels denoted A (direct) and B (reflected). Instead, the theoretical formula, Eq. (46) of MMS, that relates Fabry-Pérot SNR to HLOS wind velocity accuracy (standard deviation) was implemented, see also Eq. (38). The LIPAS upgrade includes the explicit simulation of the signal on the A and B channels, similar as implemented in the E2S. This includes the computation of the signal on the 20 ACCD bins based on the modelling of the Fizeau reflection and transmission-reflection of the Fabry-Pérot channel A and B, followed by the simulation of the focusing of both channel A signal and channel B signal on the ACCD. A more detailed explanation is found in [RD2].

5.5.1Fabry-Pérot transfer function

Figure 34 shows the transmission curves of the direct (A), $\tau_{_{\rm FP}}^{_{\rm A}}(\nu)$, and reflected (B), $\tau_{_{\rm FP}}^{_{\rm B}}(\nu)$ channels as a function of the wavelength offset ν . Also the reflected signal from the direct channel, $\tau_{\rm FP}^{\rm A,refl}(\nu)$, is shown. The right panel shows the reflection transmission curve of the Fizeau interferometer, $\tau_{\rm Fiz}(\nu)$.

The Fabry-Pérot transfer function, $\tau_{\rm FP}(i,\nu)$, for ACCD bin *i* is the sum of the transfer functions of the direct and reflected channels. This includes the focusing of the channel A and B signals by the Relay optics, $\tau_{\rm FP}^{\rm A_relay}(i)$ and $\tau_{\rm FP}^{\rm B_relay}(i)$ respectively, that are displayed in the left panel of Figure 35. The Fabry-Pérot transfer function is then written as

$$\tau_{\rm FP}(i,\nu) = T_p^A \tau_{\rm Fiz}(\nu) \tau_{\rm FP}^{\rm A}(\nu) \tau_{\rm FP}^{\rm A\,relay}(i) + T_p^B \tau_{\rm Fiz}(\nu) \tau_{\rm FP}^{\rm A\,refl}(\nu) \tau_{\rm FP}^{\rm B}(\nu) \tau_{\rm FP}^{\rm B\,relay}(i)$$
(28)

The first term on the right hand side corresponds to the transfer function of the direct channel, the second term to the transfer function of the reflected channel. The peak transmission parameters T_p^A and T_p^B are found in Table 10. Integrating $\tau_{\rm FP}(i,\nu)$ for ν yields the plot in the right panel of Figure 35 and shows that the Fabry-Pérot direct channel A gathers more signal than the reflected channel B.

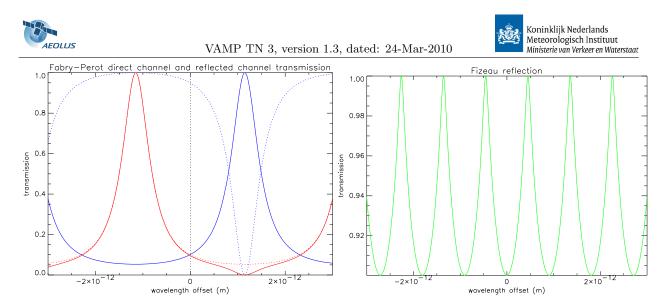


Figure 34: Fabry-Pérot channel A (direct, blue) and B (reflected, red) transmission (left panel) and Fizeau reflection, $\tau_{\rm Fiz}(\nu)$, (right panel). The blue solid and red dotted curves show the channel A, $\tau_{\rm FP}^{\rm A}(\nu)$, and B, $\tau_{\rm FP}^{\rm B}(\nu)$, transmission respectively as a function of wavelength offset. The blue dotted line is the reflected signal from the direct channel, $\tau_{\rm FP}^{\rm A, refl}(\nu)$. The solid red line is the product of the channel A reflected transmission and the channel B transmission.

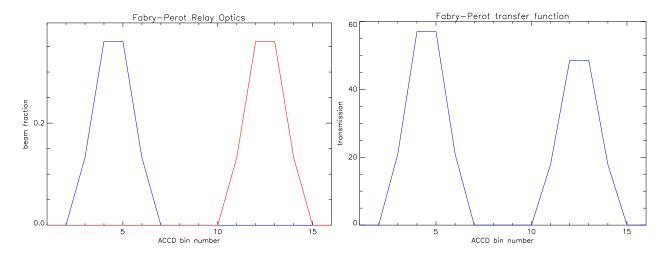


Figure 35: Fabry-Pérot Relay to focus the channel A, $\tau_{\text{FP}}^{\text{A-relay}}$ and B, $\tau_{\text{FP}}^{\text{B-relay}}$, signals on the ACCD bins (left panel). The right panel shows the relative signal detected from the A (direct) and B (reflected) channel.

The distribution of the atmosphere Rayleigh return signal on the Fabry-Pérot interferometer bins is obtained from

$$e_{\rm ACCD}^{\rm FP}(i) = \int_{\nu} \tau_{\rm FP}(i,\nu) I_{\lambda_{\rm laser}}(\nu) d\nu$$
⁽²⁹⁾

with $\tau_{\rm FP}(i,\nu)$ obtained from Eq. (28). Note that here $I_{\lambda_{\rm laser}}(\nu)$ is the broad Rayleigh spectrum as defined in Eq. (10). Rather than computing the integral for each subbin and similar as for the Fizeau interferometer a lookup table for the Fabry-Pérot transfer function is computed once in LIPAS-2009 by discretizing the frequency (or wavelength) range in 1201 steps, see Table 10. The resulting lookup table matrix of dimensions 16×1201 is saved. The explicit simulation of the A and B channels enables the simulation of cross-talk, as discussed in section 5.5.3, that was ignored in MMS.

LIPAS-2009 simulates the Fabry-Pérot signal on the 16 ACCD bins for one ADM range gate similar

as for the Fizeau interferometer by discretizing the atmosphere in M subbins, computing the contribution the atmospheric contribution on the ACCD for each subbin and then accumulating the signals from all subbins to get the total signal for one ADM range gate. Following Eqs. (17,18) from MMS there are two contributors to the signal on each of the 16 ACCD bins; $N_{\rm FP}$ from detected molecules and $N_{\rm B,BKG}$ from the earth radiance background:

$$N_{\rm FP}(i) = C_3^{\rm e^{2s}} \eta N_s S_{\rm tot_ray} T_p^{\rm FP} \frac{1}{2} e_{\rm ACCD}^{\rm FP}(i)$$

$$(30)$$

$$N_{\rm B_BKG}(i) = \eta N_s S_{\rm BKG} T_p^{\rm FP} \Delta \lambda_{\rm eq_bkg}^{\rm FP} \frac{1}{2}$$
(31)

As for the Fizeau interferometer, no correction parameter is introduced for the earth radiance background term because its contribution to the total signal is generally negligible as compared to the Rayleigh contribution for the ADM dawn-dusk orbit.

Rayleigh channel Doppler shift estimate 5.5.2

The total signal on each of the 16 Fabry-Pérot ACCD bins is obtained from

$$N_{\text{tot}}(i) = N_{\text{FP}}(i) + N_{\text{B}_{\text{BKG}}}(i) + N_{\text{Xtalk}}(i)$$
(32)

The first two contributors are obtained from Eqs. (30,31), the third one is the contribution through crosstalk that is discussed in the next section and for now assumed zero. Next, Poisson noise, dark current and the earth radiance background signal are added, following Eq. (28) from MMS, to yield the noisy ACCD signal, $N'_{\rm tot}(i)$, for one measurement. Next, the ACCD signal is digitised with an analog-to-digital converter (ADC) similar as explained in section 5.4.1 to yield $N_{ADC}(i)$ using a value for the ADC dynamic range as found in Table 8. Ignoring scene classification issues for the moment the measurements after digitisation are accumulated to obtain the signal for one observation. Here we note that the analog-to-digital conversion has no impact on Fabry-Pérot receiver response, as discussed below, and the accuracy of retrieved winds. The latter is fully determined by the ACCD signal and additional Poisson noise. For this reason we continue the discussion using the ACCD signal $N'_{tot}(i)$ rather than $N_{ADC}(i)$ unless otherwise stated in the text.

The total Rayleigh signal on the Fabry-Pérot direct channel, denoted A, and the total signal on the reflected channel, denoted B, are obtained from

$$A = \sum_{i=1}^{8} N'_{\rm tot}(i), \quad B = \sum_{i=9}^{16} N'_{\rm tot}(i)$$
(33)

The receiver response, R, is defined as

$$R = \frac{A - B}{A + B} \tag{34}$$

The receiver response is a function of temperature, T in [K], that determines the width of the molecular spectrum, and the Doppler shifted frequency or wavelength ν in [m], that is related to mean LOS wind velocity inside the sampled volume, i.e. $R = R(T, \nu)$.

LIPAS-2009 first generates a lookup table for $R(T,\nu)$. This is done only once and the table is saved. If Rayleigh channel input parameters change, then the Fabry-Pérot transfer function changes and a new lookup table must be generated. The temperature range is from 170-340 Kelvin with 1 degree steps. The Doppler shift range corresponds to LOS wind velocities in the range -150 to +150 ms⁻¹ with 0.1 ms⁻¹ steps. For values of temperature and Doppler shift frequency in the ranges defined above the signals on A and B and subsequent R are computed. The resulting receiver response lookup table has dimensions 171 \times 3001. Figure 36 shows examples of the Rayleigh receiver response function and the receiver sensitivity as a function of temperature. The left panel shows steeper slopes for low temperatures resulting in larger wind errors than for high temperatures. This is also clear when considering the receiver sensitivity that is defined as $\partial LOS/\partial R$ and is an important measure that relates inaccuracies in the measured response (instrument noise, cross-talk, ...) to inaccuracies in the retrieved LOS wind velocity through (first order estimate) dLOS $\approx [\partial LOS / \partial R] dR$. From Eq. (34) we have for a deviation dR and its variance

$$dR = \frac{\partial R}{\partial A} dA + \frac{\partial R}{\partial B} dB$$

Var[dR] = $\frac{4AB}{(A+B)^3} \stackrel{A \approx B}{\approx} \frac{1}{2A}$ (35)

60/ 160

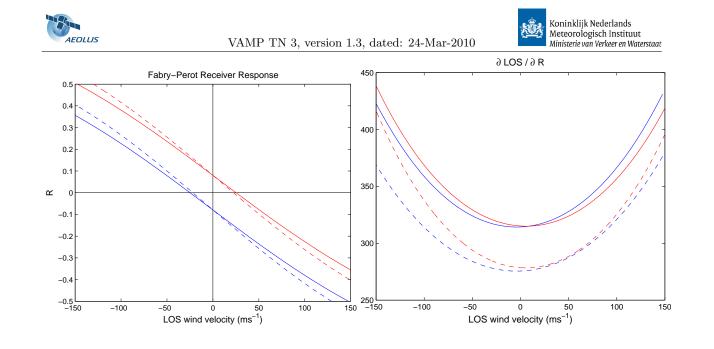


Figure 36: Rayleigh receiver response (left) and receiver sensitivity (right) for T=273 (K) (solid) and T=210 (K) (dashed). Red lines correspond to LIPAS-2009, blue lines to the L2Bp receiver response tables (file AE_TEST_AUX_RBC_L2_20071003T123456_20081002T123456_0001), L2Bp version CY35R2_Jun03, June 2009).

and thus for the (H)LOS wind error standard deviation

$$\frac{\partial LOS}{\partial R} = \frac{\partial \nu}{\partial R} \frac{c}{2\lambda}$$
(36)

$$\sigma_{\rm LOS} = \frac{\partial LOS}{\partial R} \sqrt{\text{Var}[dR]}$$
(37)

$$\sigma_{\rm HLOS} = \frac{\sigma_{\rm LOS}}{\sin(\theta)} \tag{38}$$

The first equation above converts receiver response wavelength sensitivity to LOS wind sensitivity. For a given temperature (estimate), $\partial \nu / \partial R$ is obtained from the $R(T, \nu)$ lookup table. Thus the Rayleigh (H)LOS wind error standard deviation is a linear function of the receiver sensitivity and inversely proportional to the square root of the number of detected photons. From the right panel in Fig. 36 it follows that the receiver sensitivity decreases with decreasing temperature and thus increasing altitude (in general). On the other hand the number of molecules also decreases with altitude yielding a fairly constant (H)LOS wind error standard deviation throughout a particle-free atmosphere.

Figure 36 also shows that the slopes of the Rayleigh receiver response (left panel) is similar for LIPAS-2009 and the latest version of the L2Bp (June 2009). The mirroring in the origin is probably caused by a different definition in the LOS wind retrieval in the L2Bp and LIPAS-2009 (a minus when converting from frequency to wind used in the L2Bp and not in LIPAS-2009) and/or a different definition of the A (direct) and B (reflected) Rayleigh channels and their peak transmission. For a consistent use of defined parameters in the different processors and simulation tools this will not introduce biases in the retrieved winds. The receiver sensitivity in the right panel of Fig. 36 shows good similarity for high temperatures. LIPAS-2009 tends to overestimate the receiver sensitivity for low temperatures in particular for large negative winds. The differences in slope between LIPAS and E2S-L1b-L2b may be largely influenced by inaccuracies in the RBC calibration file.

To retrieve the Doppler shifted frequency ν from the measured R and the lookup table the following procedure, that mimics the L2Bp, is followed. Similar as for the L2Bp a temperature estimate is extracted from the auxiliary meteorological file. The closest table value, T_0 is determined. Given T_0 the value ν_0 is determined such that $R(T_0, \nu_0)$ is closest to the measured $R(T, \nu)$. A first order estimate for $R(T, \nu)$ is

obtained from

$$R(T,\nu) \approx R(T_0,\nu_0) + \frac{\partial R}{\partial T}(T_0)(T-T_0) + \frac{\partial R}{\partial \nu}(\nu_0)(\nu-\nu_0)$$
(39)

From this equation we can write for ν :

$$\nu = \nu_0 + \frac{R(T,\nu) - R(T_0,\nu_0) - \frac{\partial R}{\partial T}(T_0)(T - T_0)}{\frac{\partial R}{\partial \nu}(\nu_0)}$$
(40)

Denoting the indices of T_0 and ν_0 in the R matrix with i and j respectively, then the partial derivaties can be approximated through

$$\frac{\partial R}{\partial T}(T_0) \approx \frac{R(i+1) - R(i)}{T(i+1) - T(i)}$$
(41)

$$\frac{\partial R}{\partial \nu}(\nu_0) \approx \frac{R(j+1) - R(j)}{\nu(j+1) - \nu(j)}$$
(42)

The parameters on the right hand side of the equations above are obtained from the lookup table. Substituting the result in Eq. (40) yields the Doppler shift ν in [m]. The LOS wind component velocity is subsequently obtained from

$$\hat{v}_{\rm LOS} = \frac{-\nu c}{2\lambda} \tag{43}$$

The HLOS wind component velocity then follows from Eq. (27).

Here we note that LIPAS does not take into account Brillouin scattering, in agreement with the E2S. Also the presented L2B results ignore the presence of Brillouin scattering.

5.5.3 Cross-talk

Particles in the measurement bin give a signal on the Fabry-Pérot ACCD channels, also denoted crosstalk, yielding a bias in the Rayleigh wind because the receiver response inversion assumes a particle-free atmosphere. Cross-talk is simulated in LIPAS-2009. The peak of the Mie spectrum is much smaller than the broad tails of the Fabry-Pérot transfer function. LIPAS-2009 therefore simulates the Mie spectrum as a delta-dirac function. Defining the Doppler shifted wavelength by $\hat{\nu}$, the distribution of the Mie peak over the Fabry-Pérot ACCD bins then follows from Eq. (29):

$$e_{\text{ACCD}}^{\text{FP-Xtalk}}(i) = \int_{\nu} \tau_{\text{FP}}(i,\nu) I_{\lambda_{\text{laser}}}(\nu) d\nu$$
(44)

$$= \int_{\nu} \tau_{\rm FP}(i,\nu)\delta(\hat{\nu})\mathrm{d}\nu \tag{45}$$

$$= \tau_{\rm FP}(i,\hat{\nu}) \tag{46}$$

Note that $I_{\lambda_{\text{laser}}}(\nu)$ now relates to the Mie spectrum. LIPAS-2009 applies a linear interpolation to the lookup table to determine $\tau_{\text{FP}}(i, \hat{\nu})$. Following Eq. (30) the total signal from cross-talk is obtained from

$$N_{\rm Xtalk}(i) = C_4^{e_{2s}} \eta N_s S_{\rm tot_mie} T_p^{\rm FP} \frac{1}{2} \tau_{\rm FP}(i,\hat{\nu}) \quad \text{with } i=1,...,16$$
(47)

Effectively, cross-talk reduces the receiver response, Eq. (34), because the signal in channels A and B are increased with the same value leaving the numerator unchanged but increasing the denominator. In the extreme situation of infinite cross-talk, the receiver response equals zero yielding a bias equal to the difference between the true HLOS wind and the wind corresponding to a zero receiver response. The SNR on the other hand also goes to infinite yielding a zero wind error standard deviation. We further elaborate on this to understand the wind error statistics that is produced in section 6. Assume that the true global atmospheric wind, u_t , at a certain height bin is Gaussian distributed with mean \overline{u}_t and standard deviation σ_t . The measured wind may be expressed through $u_m(i) = [1 - f(\rho)] u_t(i) + \epsilon(i)$ with f a value between 0 and 1 as a function of the scattering ratio ρ and ϵ the wind instrument error. The latter is assumed

Gaussian distributed with zero mean and standard deviation $\sigma_m(\rho)$ i.e. a function of the scattering ratio as discussed above, i.e. an increasing scattering ratio yields a larger cross-talk contribution to the Rayleigh channel signal thus increasing the SNR and reducing the wind error standard deviation. Hence $\sigma_m(\infty) = 0$. The scalar f depends on the instrument design and fulfills f(1) = 0 and $f(\infty) = 1$, i.e. for infinite scattering ratio and thus infinite cross-talk contribution, the receiver response equals zero. To simplify the discussion we assumed here that a zero receiver response corresponds to a zero wind which is in general not true, see Fig. 36. Using the formulas above we can write for the Rayleigh wind error

$$du = u_m(i) - u_t(i)$$

= $-f(\rho)u_t(i) + \epsilon(i)$ (48)

The expectation value (bias) and variance of the Rayleigh wind error du equal $E[du] = -f(\rho)\overline{u}_t$ and $\operatorname{Var}[du] = f(\rho)^2 \sigma_t^2 + \sigma_m(\rho)^2$ respectively when assuming uncorrelated wind and instrument error statistics. For a scattering ratio with value 1 (moleculaes only, no particles) the bias equals zero and the wind error variance equals the instrument error, both independent of the wind statistics. For infinite scattering ratio the bias and variance equal \overline{u}_t and σ_t^2 respectively, i.e. fully determined by the wind statistics and not by instrument errors. Hence, the Rayleigh wind bias can still be very small, depending on the wind statistics. Also the Rayleigh wind error standard deviation can be small for small wind variability. In the extreme case of a globally non-changing wind in a certain height bin, $\sigma_t^2 = 0$ and the Rayleigh wind error standard deviation equals zero for extreme cross-talk contribution! If in addition the non-changing wind value equals zero, i.e. $\overline{u}_t = 0$, then the Rayleigh wind error statistics have zero bias and standard deviation, i.e. cross-talk contributes to the Rayleigh wind quality. This is however an unrealistic theoretical situation. In general the Rayleigh wind error statistics is a mixture of instrument error and observed wind statistics. The scattering ratio and subsequent cross-talk in the Rayleigh channel signal determines the relative contribution of both contributors.

Figure 37 shows the sensitivity of the Rayleigh wind error to the scattering ratio, that is a measure of Mie contamination. For a scattering ratio of 1 (no particles) the wind error equals zero. For increased scattering ratio the wind error bias increases, in particular for low temperatures. The Rayleigh wind bias increases substantially in case of both low temperatures and large scattering ratio values. For instance Polar Stratospheric Clouds (PSC) are formed when the temperature drops below -80 degrees Celsius. The typical scattering ratio for PSC's is 1.1 but values above 1.2 are often found, see [RD7]. Yet, wind biases are still below the mission bias requirement of 0.4 ms^{-1} . However, larger Rayleigh wind biases exceeding the mission requirement are found for large aerosol and cloud events in combination with low temperatures, e.g. tropospheric cirrus in the Tropics with scattering ratio values that can easily exceed 5, see the left panel in Figure 38. Also for larger wind velocities the absolute bias increases, see the right panel of Fig. 38, but the relative error stays at the same order of magnitude.

Results 5.6

The simulation of the signal on the Fizeau and Fabry-Pérot interferometers in LIPAS-2009 described above are compared with the E2S for a couple of cases. Here we note that LIPAS uses a different model, following MMS, for the simulation of the background terms than the E2S, i.e. the Rayleigh and earth radiance background, Eqs. (22,23) respectively for the Mie channel and the earth radiance background, Eq. (31), for the Rayleigh channel. As a result the background levels as simulated by LIPAS and the E2S may differ. The earth radiance background was switched off in the E2S and LIPAS-2009 for a useful comparison. Also, the E2S simulates a tripod obscuration, that is not available in LIPAS. The tripod obscuration was therefore switched off in the E2S simulation. For each case one observation (BRC) was simulated that is composed of 14 measurements. Each measurement is the result of 50 (on-board) accumulated shots. The constant parameters C_i^{e2s} were introduced in the equations in the previous sections to correct for small inconsistencies between the E2S and LIPAS. The values of these parameters are determined by comparing the Fizeau and Fabry-Pérot ACCD signals for the cases in the following sections.

5.6.1LIPAS-2009 E2S comparison; case 1 - cloud-free atmosphere

This case is based on the L2Bp test scenario 006, i.e. a sub-arctic winter atmosphere with the RMA aerosol backscatter profile. The wind components are set to a constant value of 0 ms^{-1} throughout the profile,

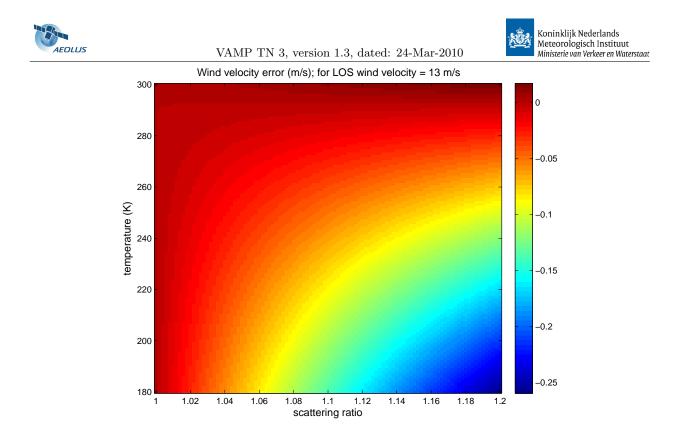


Figure 37: Rayleigh LOS wind error bias (ms^{-1}) through Mie contamination and as a function of temperature (K). The true LOS wind is 13 ms⁻¹. The scattering ratio is a measure of Mie contamination in the Rayleigh chanel signal.

see Fig. 39. No instrument noise was applied and no solar background was assumed. Figure 40 shows the signal on the 16 ACCD bins of the Fizeau interferometer for 24 range gates (in the figure denoted bins). The vertical sampling is the WVM1 range of definition as defined in [RD6] section 6.1.1. Range gate 23 contains the ground return. The different shapes of the E2S signals in the first couple of bins above 18 km is probably caused by rounding photon counts to integer values. LIPAS does not include rounding to integer values. To get similar amplitudes for the E2S and LIPAS-2009 signal the following correction parameter were applied: $C_1^{e_{2s}} = 0.9$, $C_2^{e_{2s}} = 0.9$. These values were obtained by trial and error to get a good match between the E2S and LIPAS signals. Figure 41 shows the signal on the 16 ACCD bins of the Fabry-Pérot interferometer for 24 range gates. Range gate 24 contains the ground return. The following correction parameter were applied: $C_3^{e_{2s}} = 1.0$, $C_4^{e_{2s}} = 1.0$. Overall, LIPAS-2009 compares well with the E2S within 5% for the Fizeau signal and within 2% for the Rayleigh signal, see Fig. 42. A large difference is found in bin 22 for the Fizeau and bin 23 for the Fabry-Pérot, i.e. corresponding to the 500 m range gate positioned between 155 and 655 m above mean sea level in sampling scenario WVM1. This difference is explained by the use of a digital elevation model (DEM) as part of the orbit simulation in the E2S. At the start of the E2S simulation the initial orbit location is determined based on the E2S input start time parameter. in this case (64N, 261E) i.e. over the North American continent. The surface in this area is not flat and the DEM computes a mean surface height for each of the 14 measurements that varies between 37 m and 195 m over the 50 km sampling length. The surface height of one of the 14 measurements exceeds the range gate bottom value of 155 m (namely 195 m). This bin thus contains the earth surface for this particular measurement which explains the larger signal in the E2S than in LIPAS for this range gate, because LIPAS does not include a DEM and obtains the orography from the input atmospheric database.

Other differences between the E2S and LIPAS include a varying local incidence angle with altitude in the E2S and different interpolation strategies in the E2S and LIPAS. Their implications are further discussed for case 2.



Figure 38: Same as Fig. 37 but now for larger scattering ratio values up to 5 (left panel) and an extreme large wind of -110 ms^{-1} (right panel).

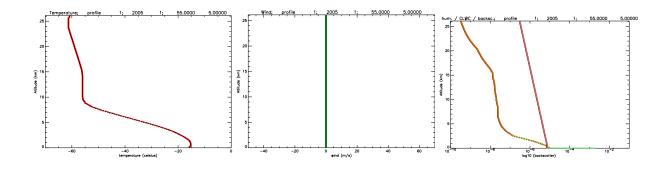


Figure 39: Typical sub-arctic winter atmospheric temperature (C) (left). The synthetic zonal, meridional and vertical wind (ms⁻¹) profiles are set to zero (middle). Atmospheric scattering is in the (right) panel. The left/middle curves show aerosol/molecular backscatter (m⁻¹sr⁻¹).

5.6.2 LIPAS-2009 E2S comparison; case 2 – single cloud layer

This case is similar to the previous case but now based on L2Bp test scenario 002, i.e. a mid-latitude winter atmosphere with temperature in Fig. 43 and the RMA aerosol backscatter profile in the right panel of Fig. 39. A constant HLOS wind of -50 ms⁻¹ was imposed throughout the profile. In addition an optically very thin cloud layer between 12 and 14 km was included with a constant backscatter of 2.2×10^{-5} (m⁻¹sr⁻¹) and an unrealistic high transmission of 0.997. No instrument noise was applied. Figure 44 shows a comparison between E2S and LIPAS used aerosol and molecular backscatter in the left panel and computed total attenuated backscatter in the right panel. The backscatter profiles almost completely overlap. The E2S extrapolates backscatter below the mean sea level, while LIPAS stops at mean sea level. The attenuated backscatter profiles in the right panel also seem to overlap, but the left panel in Fig. 45 reveals an almost 2% underestimate in the E2S (w.r.t. LIPAS) in the free-troposphere that further decreases to about 7% in the PBL. Considering a perfect backscatter match between the E2S and LIPAS, this deviation can only be explained by differences in the transmission computation. This is confirmed by the right panel in Fig. 45 that shows an underestimate of the transmission in the E2S (w.r.t. LIPAS) of between 0.5 and 1.5%. The large spikes near 14 and 12 km in the left panel correspond to the cloud top and bottom that not fully correspond in the E2S and LIPAS probably because of different atmospheric interpolation strategies.

Figure 46 is similar to Figure 40 but the cloud clearly shows up in bins 7-9. Also the peak center is shifted

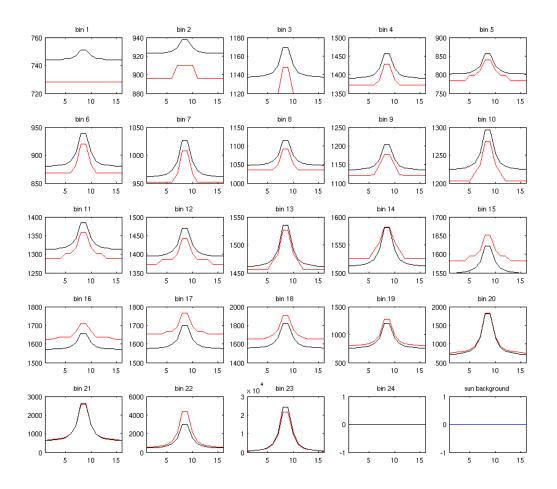


Figure 40: Case 1. Total signal from 14 accumulated measurements on the 16 ACCD bins , after digitisation, of the Fizeau interferometer for 24 range gates. Red/black lines denote the E2S/LIPAS-2009 result. The blue curve in the lower right panel is the E2S earth radiance background signal. Bin 24 is below the surface and contains no signal in both the E2S and LIPAS. See the text for further details.

due to the non-zero wind velocity. Interestingly, the shape of the E2S signal in bin 22 differs substantially from LIPAS. Also, the signal amplitude is substantially higher. This deviation between the E2S and LIPAS is explained by the ground return of one of the measurements in the E2S simulation as discussed in the previous section. The accumulated E2S signal is a mixture of -50 ms^{-1} winds in the PBL and a 0 ms^{-1} ground return which explains the different shape and signal strength. Figure 47 shows the signal on the 16 ACCD bins of the Fabry-Pérot interferometer for 24 range gates. Range gate 24 contains the ground return.

No further effort has been spent to explain the attenuated backscatter differences between the E2S and LIPAS because this would require a complete evaluation of the E2S transmission computation implementation. The resulting differences between measured Fizeau and Fabry-Pérot in Fig. 48 are within 6% for the Fizeau and 1% for the Fabry-Pérot which is sufficient for VAMP purposes. The local negative 'bump' in bins 7-9 in the left panel and positive 'bump' in bins 8-10 in the right panel is explained by the small mis-match of the cloud location in the E2S and LIPAS.

66/160

Figure 41: Case 1. Signal , after digitisation, on the 16 ACCD bins of the Fabry-Pérot interferometer for 24 range gates. Red/black lines denote the E2S/LIPAS-2009 result. See the text for further details.

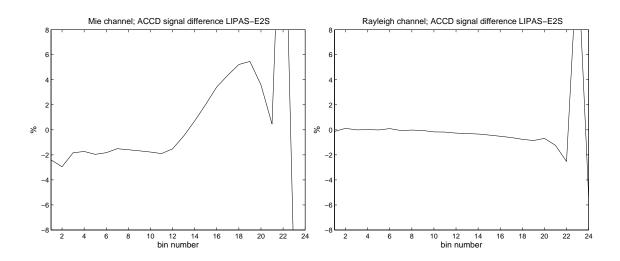


Figure 42: Relative difference between the E2S and LIPAS-2009 Fizeau (left) and Fabry-Pérot (right) ACCD signals. The large difference in Fizeau bin 22 and Fabry-Pérot bin 23 is explained in the text.

67/ 160

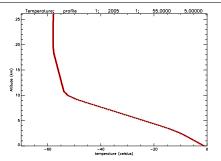


Figure 43: Typical mid-latitude winter atmospheric temperature (C).

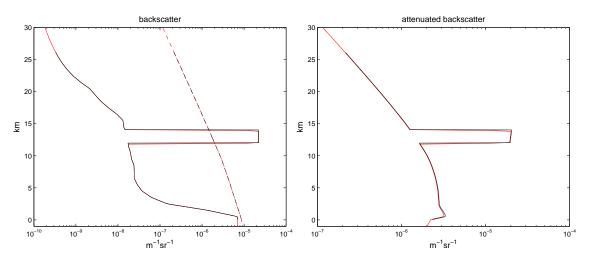


Figure 44: E2S (red) and LIPAS-2009 (black) backscatter (left) and attenuated backscatter (right).

5.6.3 LIPAS-2009 E2S comparison; case 3 – cloud-free atmosphere, realistic winds

This case is a tropical scenario with RMA aerosol backscatter profile and no cloud, see the right panel of Fig. 39. The HLOS wind is copied from a typical MERCI zonal wind profile, see Fig. 49. This database scenario is denoted single_RMA_profile_tropics_and_MERCI. No instrument noise was applied and no solar background was assumed. The E2S DEM was overruled and the surface fixed at 0 m. Figure 50 shows the Fizeau ACCD signal as obtained from the E2S (red) and LIPAS (black). The non-constant wind causes the peak locations to shift for different altitude bins. Overall, the E2S and LIPAS curvatures are similar and the difference between the signal strengths is within 6%, see the left panel of Fig. 52. Figure 51 shows the signal on the 16 ACCD bins of the Fabry-Pérot interferometer for 24 range gates. Range gate 24 contains the ground return. Overall, the E2S and LIPAS curvatures are similar and the difference between the signal strengths is within 2%, see the right panel of Fig. 52.

5.6.4 LIPAS-2009 E2S comparison; case 4 – single cloud layer, realistic winds

This case is identical to the previous section with the addition of a realistic cirrus cloud layer between 12 and 14 km with a constant backscatter of $3.9 \times 10^{-6} (m^{-1} sr^{-1})$ and a realistic 0.9 one-way transmission. Figure 53 is similar to Figure 50 but the cloud clearly shows up in bins 7-9. Below the cloud the signal is smaller by a factor of 0.81 due to cloud transmission. Overall, the E2S and LIPAS curvatures are similar and the difference between the signal strengths is within 10%, see the left panel of Fig. 55. Figure 54 shows the signal on the 16 ACCD bins of the Fabry-Pérot interferometer for 24 range gates. Range gate 24 contains the ground return. The cloud layer clearly shows up in bins 8-10 (cross-talk). Overall, the E2S and LIPAS curvatures are similar and the difference between the signal strengths is within 5%, see the right panel of Fig. 55.

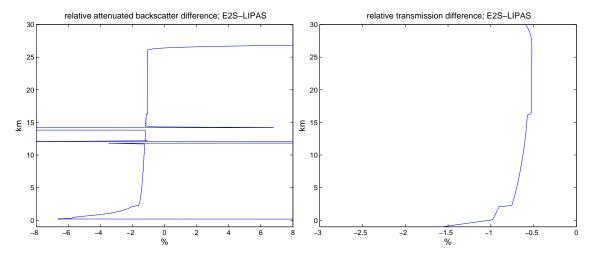


Figure 45: Relative difference between E2S and LIPAS-2009 for attenuated backscatter (left) and one-way molecular transmission (right).

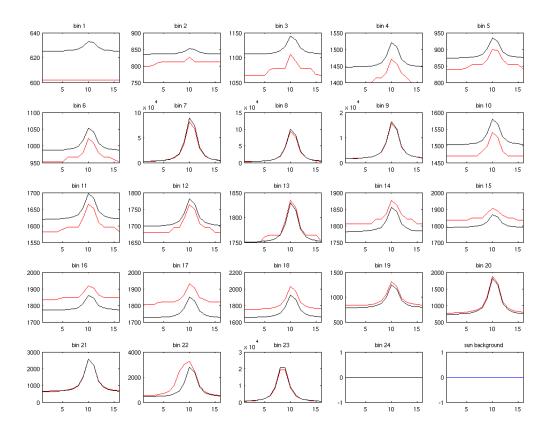


Figure 46: Case 2. Signal on the 16 ACCD bins of the Fizeau interferometer , after digitisation, for 24 range gates. Red/black lines denote the E2S/LIPAS-2009 result. The blue curve in the lower right panel is the E2S earth radiance background signal. See the text for further details. Bins 7-9 clearly show an increased signal from cloud particles.

69/ **160**

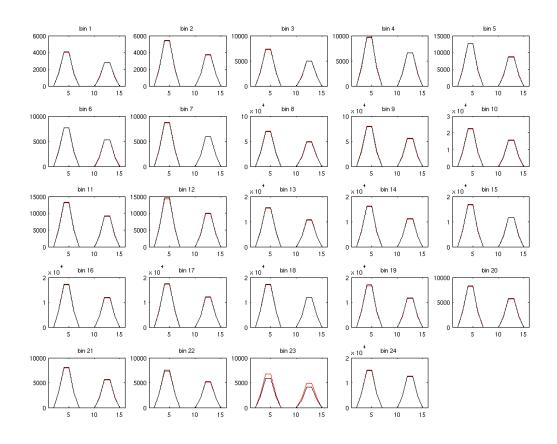


Figure 47: Case 2. Signal on the 16 ACCD bins of the Fabry-Pérot interferometer, after digitisation, for 24 range gates. Red/black lines denote the E2S/LIPAS-2009 result. Bins 8-10 clearly show an increased signal due to cross-talk from cloud particles. See the text for further details.

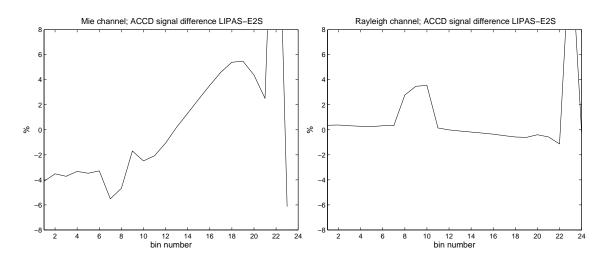


Figure 48: Same as Fig. 42 but now for case 2.

70/ 160

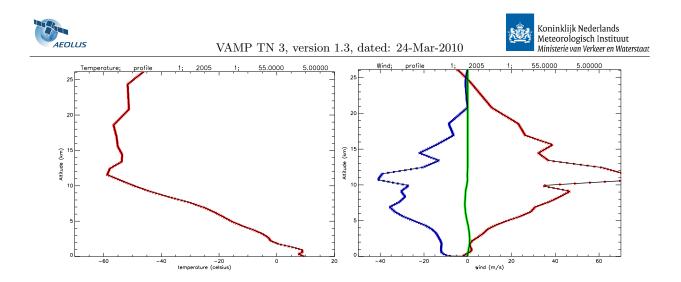


Figure 49: Atmospheric temperature (C) (left) and wind (right) for a typical tropical scene. Red/blue/green denote zonal/meridional/vertical wind (ms^{-1}) respectively.

5.6.5 LIPAS-2009 Mie/Rayleigh wind retrieval

The results in the previous subsections show that a correct setting of the correction parameters $C_i^{e^{2s}}$ make LIPAS-2009 signals on the Fizeau and Fabry-Pérot interferometers similar to the E2S, generally within 5%. Next, the statistics of retrieved Mie and Rayleigh winds were determined for a couple of cases. The results for 2 cases are presented here.

case 1

This case is based on a synthetic atmosphere with a constant temperature, a constant HLOS wind of 0 ms⁻¹ and no aerosols. The purpose of this test was to check whether LIPAS-2009 could perfectly retrieve the input wind from the Rayleigh channel (no cross-talk, no interpolation of receiver response lookup table). A total of 100000 simulation were performed for this case, each with a different noise realization in the computation of the ACCD signals. Figure 56 shows the Mie and Rayleigh wind retrieval without and with instrument noise. The Rayleigh wind retrieval for a noise-free instrument in the left panel is about perfect as expected because there is no cross-talk (no aerosols) and no interpolation needed to retrieve the Doppler shift from the receiver response lookup table (constant temperature and zero wind). The ground return yields a zero Mie wind. The Rayleigh wind at the ground is not exactly zero but very close (about 0.012 ms⁻¹. Including instrument noise shows Mie winds scattered all over the place in the right panel as expected because of missing aerosols in the atmosphere. Only the ground return gives a correct Mie wind estimate. The Rayleigh winds is substantially larger because of missing aerosols. The Mie ground return standard deviation is close to zero. The standard deviation of Rayleigh winds is between 1.1 and 2 ms⁻¹.

An important note here is that the zero wind bias for Rayleigh channel winds can be achieved only if LIPAS performs the calculations with floating point numbers. Implementation of the rounding operator in Eq. (25), to yield integer numbers for the number of detected electrons on the ACCD, results in a small deviation of the actually acquired A and B signals and thus in a slightly different value for the receiver response. The left panel of Fig. 58 shows the total of number of accumulated electrons in the topmost bin at 25 km altitude for one observation with (red) and without (black) using the rounding operator. Both curves almost overlap but the difference curve in the middle panel shows a larger deviation in channel A (leftmost 8 bins) than in channel B (rightmost 8 bins). As a result the receiver response value changes from 0.0800233 (no rounding) to 0.0792540 (rounding), i.e. a 0.96% change, corresponding to a 0.36 ms^{-1} HLOS wind bias as seen from the topmost bin in the right panel of Fig. 58. The rounding effect induces a bias in the Rayleigh winds of a couple of tenths ms⁻¹.

case 2

This case is similar to the previous case but now with a non-constant mid-latitude winter temperature profile, see Fig. 43, a constant HLOS wind of -50 ms^{-1} , the RMA aerosol profile, see right panel of Fig. 39

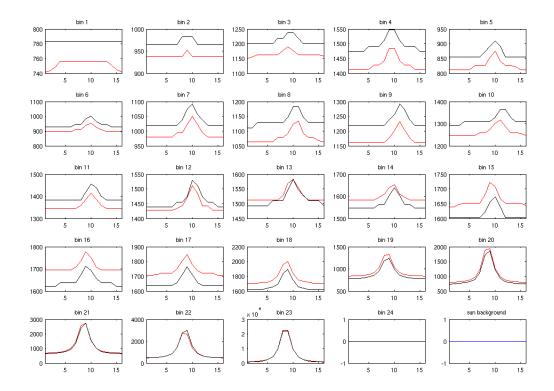


Figure 50: Case 3. Signal on the 16 ACCD bins of the Fizeau interferometer, after digitisation, for 24 range gates. Red/black lines denote the E2S/LIPAS-2009 result. The blue curve in the lower right panel is the E2S earth radiance background signal. See the text for further details.

and an optically thin cloud layer between 12 and 14 km with a constant backscatter of 2.2×10^{-5} (m⁻¹sr⁻¹) and a transmission of 0.997. The purpose of this test was to test the impact of cross-talk on the retrieved Rayleigh winds and the quality of Mie winds in case of aerosols and cloud. A total of 100000 simulation were performed for this case, each with a different noise realization in the computation of the ACCD signals.

Figure 59 shows good quality (standard deviation) Mie winds only in the first kilometer above the surface and inside the cloud layer. Mie winds also occur in the statistics at other altitudes which may seem surprising for an aerosol-free atmosphere and considering the SNR constraint for Mie wind retrieval. It is noted that the statistics in these figures are the result of 100000 noise realisations. When adding noise then occasionally spurious noise peaks may occur on the Fizeau, sometimes even exceeding a SNR of 10. The Mie statistics are based on a smaller number of these noise realisations. The relatively simple retrieval algorithm described in section 5.4.1 shows much larger biases than the Mie core algorithm both throughout the atmosphere including the particle intensive cloud layer and PBL. Also, the ground return bias, caused by aerosols with large wind velocities near the surface, is smaller for the Mie Core algorithm. The Rayleigh winds show generally good quality, although a bias up to 0.5 ms^{-1} is observed in the PBL due to cross-talk. Also a bias of about 5.6 ms⁻¹ is observed inside the cloud layer, but the Mie wind yields a good alternative here.

5.6.6 LIPAS-2009 E2S-L1B-L2B comparison; photon count noise

In this section the quality of Mie and Rayleigh winds as obtained from the E2S-L1B-L2B chain and LIPAS are compared. Hereto HLOS wind profiles along one (nighttime, i.e. half) CALIPSO orbit were determined. The atmospheric input for both the E2S and LIPAS is identical and obtained from the atmospheric database that includes realistic atmosphere optical properties from CALIPSO and dynamics from ECMWF as described

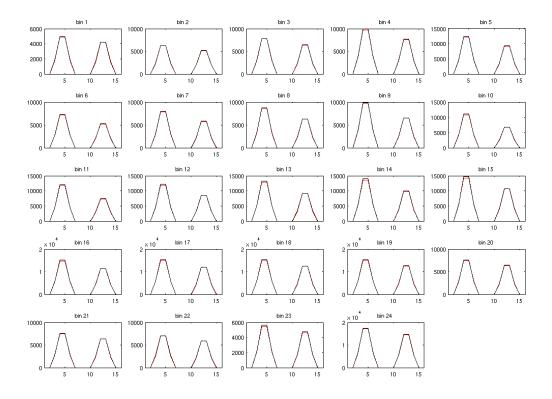


Figure 51: Case 3. Signal on the 16 ACCD bins of the Fabry-Pérot interferometer, after digitisation, for 24 range gates. Red/black lines denote the E2S/LIPAS-2009 result. See the text for further details.

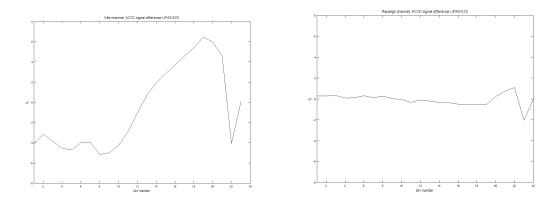


Figure 52: Same as Fig. 42 but now for case 3.

in [RD7]. Atmospheric data from 1 January 2007 along the first CALIPSO orbit was used, covering the the latitude range from 90 degrees to -61 degrees. Vertical sampling scenario WVM1 as defined in [RD6] is used. This results in 94 wind profiles (BRCs) for ADM-Aeolus operated in burst mode. Figure 60 shows a scatterplot of all retrieved Mie and Rayleigh winds, i.e. the plot includes all winds at all height levels. For each symbol the E2S-L1B-L2B HLOS wind solution is found along the x-axis and the LIPAS solution along the y-axis. It is noted that the E2S does not include orbit simulation and thus can not simulate HLOS winds

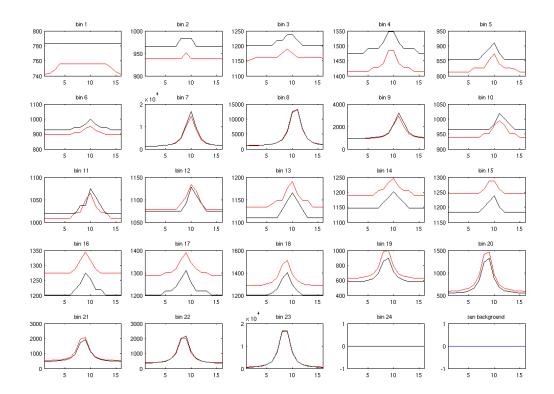


Figure 53: Case 4. Signal on the 16 ACCD bins of the Fizeau interferometer, after digitisation, for 24 range gates. Red/black lines denote the E2S/LIPAS-2009 result. The blue curve in the lower right panel is the E2S earth radiance background signal. Bins 7-9 clearly show an increased signal from cloud particles. See the text for further details.

from the input zonal and meridional wind components. In the plot the zonal wind component is therefore used as a surrogate for the HLOS wind for the L2B winds. LIPAS on the other hand includes conversion to HLOS winds. For a fair comparison of L2B and LIPAS retrieved winds the LIPAS HLOS winds were converted back to zonal winds by adding the HLOS wind error to the true zonal wind component. The cloud of symbols in Fig. 60 is positioned along the diagonal although the spread is quite substantial in particular for Rayleigh winds in the upper troposphere and lower stratosphere (large wind velocities) that is explained by decreasing SNR (reduced molecule density) with altitude. The correlation coefficients equal 0.73, 0.71, 0.24, 0.71 for Rayleigh winds in clear and cloudy air and Mie winds in clear and cloud air respectively. The small correlation value for Mie winds in clear air is explained by a number of outliers in the L2B winds, see Fig. 61. These outliers are explained by imperfections in the version of the L2B processor used for the simulation. These imperfections include ignoring the Mie Core algorithm validity flag parameter and the use of non-optimized calibration tables. When zooming in it is clear from the right panel that the large majority of L2B and LIPAS HLOS wind errors is close to zero but the error cloud is not isotropic; L2B wind errors are generally larger than obtained from LIPAS. This is more clear from the density plots in Fig. 62 that are substantially more broadened in the horizontal direction. The right panel in Fig. 62 also reveals a substantially larger bias in the L2B winds of about -0.8 ms^{-1} against -0.1 ms^{-1} for LIPAS winds. The left panel in Fig. 63 shows that this can be explained by the relatively large L2B wind error biases in the upper troposphere and lower stratosphere.

The statistics of the wind errors are summarized in Table 11. The large bias and standard deviation of L2B Mie winds is explained by a small number of outliers, see the left panel of Fig. 61. Overall the LIPAS statistics are more optimistic than the L2Bp. This may be related to calibration inaccuracies that are part

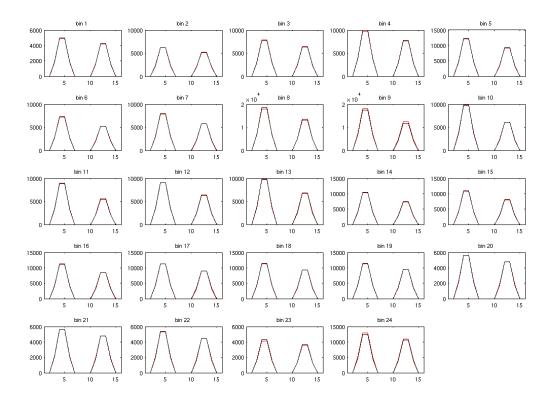


Figure 54: Case 4. Signal on the 16 ACCD bins of the Fabry-Pérot interferometer , after digitisation, for 24 range gates. Red/black lines denote the E2S/LIPAS-2009 result. Bins 8-10 clearly show an increased signal due to cross-talk from cloud particles. See the text for further details.

Table 11: HLOS wind error bias and standard deviation (std) of DWL wind profiles along one CALIPSO orbit as obtained from E2S-L1B-L2B and LIPAS. Clear air denoting no clouds in the retrieved winds, but possibly aerosol and cloudy air denoting clouds in the retrieved winds.

$bias/std \ (ms^{-1})$	E2S-L1B-L2B	LIPAS
Rayleigh clear air	-0.29/1.82	-0.06/1.61
Rayleigh cloudy air	0.23/3.41	-0.14/1.57
Mie clear air	3.20/25.20	0.00/1.17
Mie cloudy air	0.29/2.39	-0.05/1.31

of the E2S-LB-L2B chain but not simulated in LIPAS.

Figure 63 also shows that the bias and standard deviation of L1B Rayleigh winds is substantially larger than for L2B winds as expected due to temperature correction in the latter. Mie wind biases are similar for both processors but the standard deviation is generally larger for the L2Bp. This is unexpected because both processors use the same Mie Core algorithm for peak fitting. At the moment of simulation there were unexplained difficulties with calibration files that could explain the discrepancy for the Mie winds.

In a similar experiment LIPAS was used to simulate the Fizeau and Fabry-Perot signals and to proces the data to obtain wind profles. the burst mode was turned off resulting in about 4 times more wind profiles along the CALIPSO than in the previous experiment. The statistics are displayed in Fig. 64 and shows slightly smaller biases than the E2S-L1B-L2B chain that might be explained by the smaller amount of data

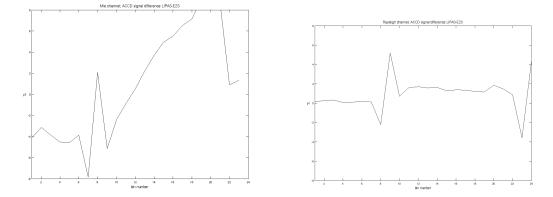


Figure 55: Same as Fig. 52 but now for case 4.

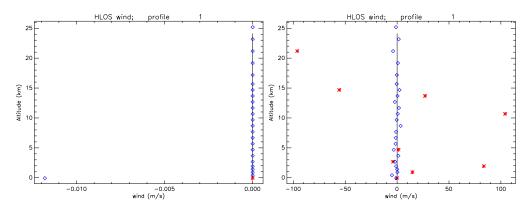


Figure 56: Single case HLOS wind retrieval from Rayleigh (blue diamond) and Mie (red star) channel. The left panel shows the result for a noise-free instrument, the right panel does include instrument noise.

in the latter. The Mie wind standard deviation is around 1 ms^{-1} for LIPAS and slightly better for L1B Mie winds in the free troposphere. L2B Mie wind error standard deviations are substantially larger as explained above. Rayleigh wind error standard deviations are close to 1.5 ms^{-1} for both L2Bp and LIPAS in the free-troposphere and increase to about 2.5 ms^{-1} in the stratosphere at 25 km. In both experiments the discontinuity at 16 km is clearly visible that marks the change of 1 km bin sizes (below 16 km) to 2 km bin sizes (above 16 km). The quality of Rayleigh winds in the PBL, below 2 km, is generally poor because of small 500 m bin sizes.

5.7 Wind observation representativeness error

NWP models expect the wind observation to be representative for the mean wind inside the observation volume. For heterogeneous atmospheres with non-uniformly distributed optical properties inside the observation volume, the measured wind may substantially deviate from the mean wind in case of substantial horizontal and/or vertical wind-shear. The weight of such observations in the analysis should therefore be reduced. This is done by adding a random representativeness error, further denoted the atmosphere induced representativeness error, to the instrument error. The magnitude of this error depends on the atmosphere heterogeneity.

On the other hand, there is a discrepancy between the spatial scales resolved by the observation and those resolved by the model in which the observation is ingested. If the model cannot represent (resolve) the scales measured by the observation then the impact of the observation in the assimilation is reduced by decreasing its weight in the analysis through adding a representativeness error to the instrument error.

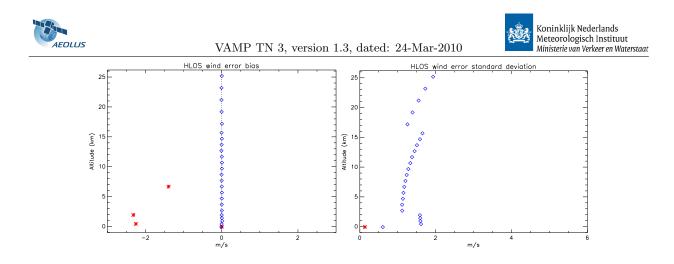


Figure 57: HLOS wind retrieval statistics for Rayleigh (blue diamond) and Mie (red star) channel from 100000 simulations. The left panel shows the bias, the right panel the standard deviation. The standard deviation for Mie winds above the surface is close to 85 ms^{-1} (not shown)

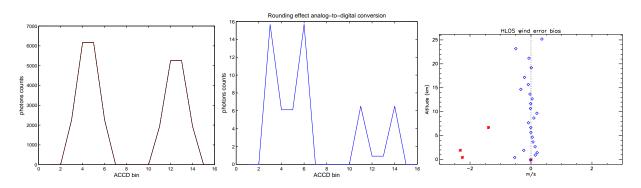


Figure 58: Rounding effect from floating point to integer numbers of electrons. Left, the number of electrons on the ACCD with (red) and without (black) the rounding operator. Middle, the difference of the curves: black minus red. Right, corresponding Rayleigh wind bias (blue diamonds).

This error is in the remainder denoted the model representativeness error. The magnitude of this error is model dependent.

It is assumed that all three error sources are independent. The total wind observation error variance is then obtained from: observation error variance = instrument error variance + atmosphere induced representativeness error variance + model representativeness error variance. The instrument error has been discussed in sections 5.4.1 and 5.5.2. Both representativeness errors are discussed and quantified in the following sections.

5.7.1 Atmosphere induced representativeness error

A single ADM observation corresponds to an atmospheric slice with dimensions 50-km along track (horizontal) and l km in the vertical. Typical values for the vertical bin size l range from 0.25-2 km. The horizontal is oversampled by typically 14-50 measurements, depending on the on-board accumulation length. The L2Bp classification module provides representative weights to the measurements, based on the measured horizontal optical heterogeneity, before integration to an observation. The atmosphere induced horizontal representativeness error will therefore be negligible as compared to the other error sources.

The vertical bins are generally not oversampled. Without additional information, e.g. a priori, from other instruments or models, we lack knowledge on the distribution of particles inside the measurement bin. The measured wind inside the measurement bin, denoted u_M , can in general be written as a weighted

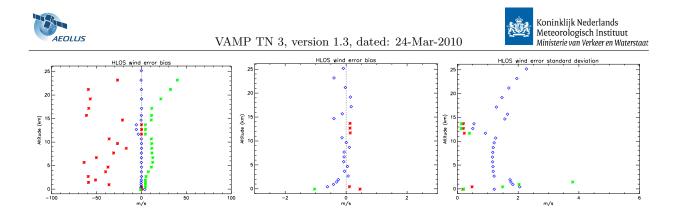


Figure 59: Mie (green/red) and Rayleigh (blue) HLOS wind retrieval statistics from 100000 simulations. The left/middle (zoomed in) panel show the bias (including the rounding effect explained in Fig. 58), the right panel the standard deviation. The green symbols are obtained from the simplified Mie retrieval algorithm described in MMS, the red symbols are obtained with the Mie Core algorithm.

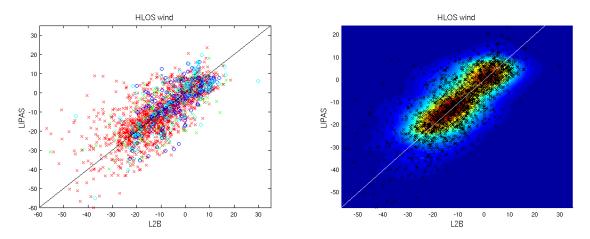


Figure 60: Left, scatterplot of E2S-L1B-L2B versus LIPAS HLOS winds including Rayleigh winds in clear (aerosol but no cloud) air (1527 red crosses), Rayleigh winds in cloudy air (140 green crosses), Mie winds in clear air (141 light blue circle) and Mie winds in cloudy air (191 dark blue circles). The black solid lines shows the diagonal. The right plot is the same as the left plot but with all Mie and Rayleigh winds denoted by black crosses and the contour colours showing the data density. The white solid lines shows the diagonal.

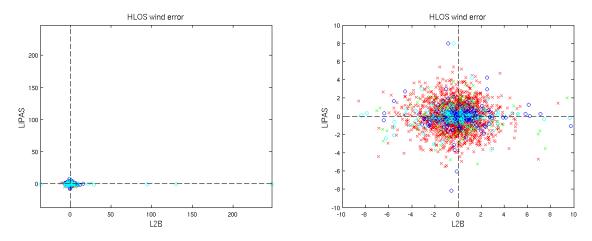


Figure 61: Same as left panel in Fig. 60 but now for the HLOS wind error. The right panel is the same as the left panel but zoomed to zero wind errors.

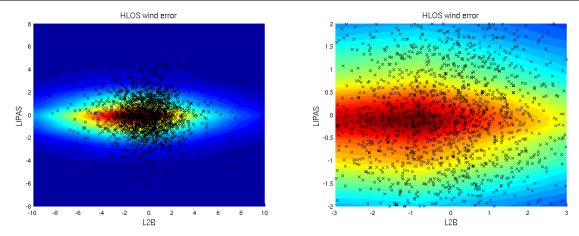


Figure 62: Same as right panel in Fig. 60 but now for the HLOS wind error. The right panel is the same as the left panel but zoomed to zero wind errors.

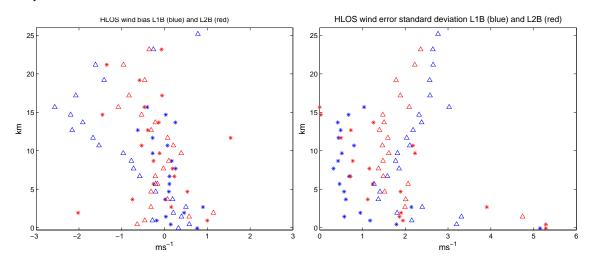


Figure 63: L1Bp and L2Bp HLOS wind error statistics obtained from 94 BRCs (observation profiles) along one CALIPSO orbit; error bias (left) and error standard deviation (right). Blue and red symbols correspond to L1Bp and L2Bp winds respectively with stars corresponding to Mie winds and triangles to Rayleigh winds. The E2S was used to simulate the noisy Mie and Rayleigh channel signals.

average, denoted by w, of the wind u inside the bin of length l as follows

$$u_M = \frac{\int\limits_{z_0}^{z_l} w(z)u(z)\mathrm{d}z}{\int\limits_{z_0}^{z_l} w(z)\mathrm{d}z}$$
(49)

with z_0 and z_l denoting the bottom and top altitude of the vertical bin respectively. The weight function w for the Mie channel is related directly to the attenuated particle backscatter, β'_p , inside the measurement bin and for the Rayleigh channel to the attenuated molecular backscatter, β'_m . These are defined as follows

$$\beta_p'(z) = \beta_p(z)\tau(z)^2 \tag{50}$$

$$\beta'_m(z) = [\beta_m(z) + X\beta_p(z)]\tau(z)^2$$
(51)

with $\tau(z)$ the total one-way atmospheric transmission between the instrument and altitude z and X denoting the contribution of the particle backscatter measured by the Fabry-Pérot interferometer through cross-talk.

79/ 160

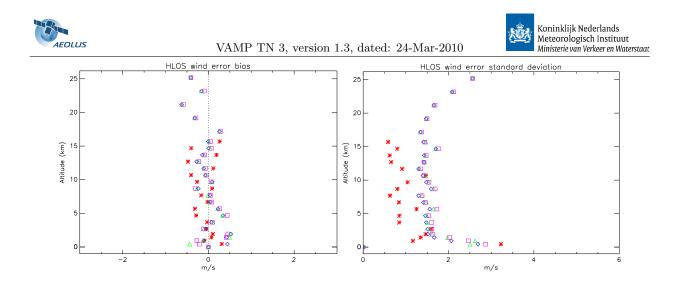


Figure 64: LIPAS HLOS wind error statistics obtained from about 400 BRCs (observation profiles) along one CALIPSO orbit; error bias (left) and error standard deviation (right). Red stars correspond to Mie winds and the blue diamonds, magenta squares and green triangles to Rayleigh winds obtained with various processing options that are further discussed in section 6.3. LIPAS was used to simulate the noisy Mie and Rayleigh channel signals.

It is clear that the weight function very much depends on the local atmosphere optical conditions and no generic expression can be derived for the wind measurement and wind error. In the following subsections some special atmospheric situations are considered.

Very thin cloud layer We consider a constant wind-shear with value α (s⁻¹) over the measurement bin. The wind, u, inside the bin of length l can thus be modelled through $u(z) = u_0 + \alpha z$, with u_0 the wind at the bottom of the bin. The true mean wind inside the bin thus equals $\overline{u} = u_0 + \alpha l/2$. The bin includes a very thin cloud layer whose location is not known a priori. For a very thin cloud layer the backscatter can be modelled as zero throughout the measurement bin and a spike with value β_c at location z_c . The transmission of the cloud is denoted by τ_c .

For the Mie channel $w(z) = \beta_c \delta(z_c)$ with δ the delta-dirac function. Substituting in Eq. (49) yields $u_M = u_0 + \alpha z_c$. The location of the cloud inside the bin is not known a priori and we assume that it can not be determined from the measured ADM signal. The cloud location has equal probability inside the measurement bin and can thus be modelled through a uniform distribution with amplitude l^{-1} . The expectation value, μ , and variance, σ^2 , of z_c then yield

$$u_{z_c} = \mathbf{E}[z_c] = l/2 \tag{52}$$

$$\sigma_{z_c}^2 = \operatorname{Var}[z_c] = l^2/12 \tag{53}$$

The wind error, $\epsilon(z_c)$, of the measured Mie channel wind equals

$$\epsilon(z_c) = u_M - \overline{u} \tag{54}$$

that equals $\alpha(z_c - l/2)$ for the Mie channel wind and a thin cloud layer in the measurement bin. The expectation value and variance of the Mie channel wind error then equal 0 and $\alpha^2 l^2/12$ respectively.

For the Rayleigh channel the weight function is determined by the transmission inside the measurement bin, when ignoring cross-talk. The signal strength at the top of the measurement bin equals the attenuated backscatter denoted w_0 . If we also assume a constant molecular backscatter and transmission inside the measurement bin then the weight function, w(z), equals w_0 for $z_0 \le z < z_c$ and $\tau_c^2 w_0$ for $z_c \le z < z_l$. The Rayleigh channel wind estimate then equals

$$u_M(z) = u_0 + \frac{\int_{z_0}^{z_c} w_0 \alpha z dz + \int_{z_c}^{z_l} \tau_c^2 w_0 \alpha z dz}{\int_{z_0}^{z_c} w_0 dz + \int_{z_c}^{z_l} \tau_c^2 w_0 dz}$$
(55)

80/ 160

Table 12: Bias and variance for Mie and Rayleigh channel wind errors for a 1000 meter vertical bin including a very thin cloud layer with one-way cloud transmission τ_c . A constant wind-shear of 0.004 s⁻¹ over the bin is assumed. The table values correspond to 3 different values for the one-way cloud transmission. X means no wind retrieval

	$\tau_c = 1/0.9/0$	Mie	Rayleigh
bias	(ms^{-1})	X/0/0	0/-0.1/-1
variance	$(m^2 s^{-2})$	X/1.33/1.33	0/0.013/0.33

$$= \frac{\alpha}{2} \frac{(1 - \tau_c^2) z_c^2 + \tau_c^2 l^2}{(1 - \tau_c^2) z_c + \tau_c^2 l}$$
(56)

Substituting in Eq. (54) yields for the Rayleigh channel wind error

$$\epsilon(z_c) = \frac{\alpha}{2} \left[\frac{(1 - \tau_c^2) z_c^2 + \tau_c^2 l^2}{(1 - \tau_c^2) z_c + \tau_c^2 l} - l \right]$$
(57)

A first order Taylor expansion for $\epsilon(z_c)$ yields

$$\epsilon(z_c) \approx \epsilon(\mu_{z_c}) + \frac{\partial \epsilon}{\partial z}(\mu_{z_c}) \left[z_c - \mu_{z_c}\right]$$
(58)

The expectation value of ϵ then equals

$$\mu_{\epsilon_{z_c}} = \mathbf{E}[\epsilon(z_c)] = \epsilon(\mu_{z_c}) \tag{59}$$

$$= \frac{\alpha}{2} \left[\frac{(1 - \tau_c^2)(l/2)^2 + \tau_c^2 l^2}{(1 - \tau_c^2)(l/2) + \tau_c^2 l} - l \right]$$
(60)

$$= \frac{\alpha l}{2} \left[\frac{1+3\tau_c^2}{2(1+\tau_c^2)} - 1 \right]$$
(61)

From Eq. (61) it follows that the Rayleigh channel wind has a bias with a magnitude that is related to the wind-shear over the measurement bin and the transmission of the cloud layer. For cloud transmission 1, the bias equals zero. For an opaque cloud with transmission 0 the bias is maximum with a value of $-\alpha l/4$, i.e. -1 ms^{-1} for a typical wind-shear of 0.004 s⁻¹ and a binsize of 1 km. For a cirrus cloud in the tropics with typical transmission of 0.9 and a bin size of 1 km the bias equals -0.1 ms⁻¹, i.e. within the ADM-Aeolus bias requirement of 0.4 ms⁻¹ for zero HLOS wind and a 0.7% slope error.

The Rayleigh wind error variance follows from Eq. 58

$$\sigma_{\epsilon_{z_c}}^2 = \operatorname{Var}[\epsilon(z_c)] = \left[\frac{\partial \epsilon}{\partial z}(\mu_{z_c})\right]^2 \operatorname{Var}[z_c]$$
(62)

$$= \left[\frac{\alpha}{2}(1-\tau_c^2)\frac{(1-\tau_c^2)\mu_{z_c}^2 + l\tau_c^2(2\mu_{z_c}-1)}{\left[(1-\tau_c^2)\mu_{z_c} + \tau_c^2l\right]^2}\right]^2\frac{l^2}{12}$$
(63)

using Eqs. (53,57). For $\tau_c = 1$ the Rayleigh wind error equals zero, thus also its variance. For an opaque cloud with $\tau_c = 0$ the variance of the Rayleigh wind error equals $\alpha^2 l^2/48$. Some numerical results are presented in Table 12. Note that $\tau_c = 1$ is equivalent to zero cloud extinction and thus zero cloud backscatter assuming a cloud lidar ratio value larger than 0. Then the Mie channel weight function equals 0. In other words, Eq. (49) has no solution which is consistent for a particle-free measurement bin.

Thick cloud layer A cloud layer of thickness δz is assumed. The cloud layer center is located at z_c . The Mie channel weight function then equals 0 for $z_0 \leq z < z_c - \delta z/2$, $\beta'_c(z)$ for $z_c - \delta z/2 \leq z \leq z_c + \delta z/2$ and 0 for $z > z_c + \delta z/2$. We assume $\beta'_c(z)$ constant for simplicity. Substituting in Eq. (49) yields $u_M = u_0 + \alpha z_c$, similar as for the very thin cloud layer in the previous section. Again, the location of the cloud layer can

be modelled as a uniform distribution but is limited to the interval $[z_0 + \delta z/2, l - \delta z/2]$. The amplitude of the uniform distribution is thus $(l - \delta z)^{-1}$. The expectation value, μ and variance, σ^2 of z_c then yield

$$\mu_{z_c} = \mathbf{E}[z_c] = l/2 \tag{64}$$

$$\sigma_{z_c}^2 = \operatorname{Var}[z_c] = (l - \delta z)^2 / 12 \tag{65}$$

From Eq. (54) the wind error of the measured Mie channel wind again equals $\epsilon(z_c) = \alpha(z_c - l/2)$ with expectation value 0 and variance $\alpha^2(l - \delta z)^2/12$, i.e. smaller than for a very thin cloud. For the extreme values of δz equal to zero yields the same result as in the previous section for the very thin cloud layer, for δz equal to l, the Mie wind error variance equals zero which is consistent with a uniform weight function (attenuated scattering) over the complete measurement bin.

For the Rayleigh channel wind we assume a linear weight function (cloud transmission) in the cloud layer. Again, the total one-way cloud transmission is denoted τ_c . The Rayleigh channel weight function then equals w_0 for $z_0 \leq z < z_c - \delta z/2$, az + b for $z_c - \delta z/2 \leq z \leq z_c + \delta z/2$ with $a = -w_0(1 - \tau_c^2)/\delta z$ and $b = w_0 - a(z_c - \delta z/2)$ and $\tau_c^2 w_0$ for $z > z_c + \delta z/2$. Substituting in Eq. (49) yields for the measured Rayleigh wind

$$u_M(z) = \frac{\alpha}{2} \frac{(1 - \tau_c^2) z_c^2 + \tau_c^2 l^2 + \frac{1}{12} (1 - \tau_c^2) \delta z^2}{(1 - \tau_c^2) z_c + \tau_c^2 l}$$
(66)

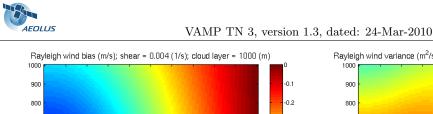
and for the Rayleigh wind error

$$\epsilon(z_c) = \frac{\alpha}{2} \left[\frac{(1 - \tau_c^2) z_c^2 + \tau_c^2 l^2 + \frac{1}{12} (1 - \tau_c^2) \delta z^2}{(1 - \tau_c^2) z_c + \tau_c^2 l} - l \right]$$
(67)

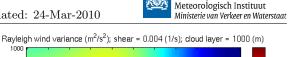
This yields for the expectation value

$$\mu_{\epsilon_{z_c}} = \frac{\alpha l}{2} \left[\frac{1 + 3\tau_c^2}{2(1 + \tau_c^2)} + \frac{(1 - \tau_c^2)\delta z^2}{6l^2(1 + \tau_c^2)} - 1 \right]$$
(68)

i.e. a smaller bias than for a very thin cloud. For the Rayleigh wind error variance we get


$$\sigma_{\epsilon_{z_c}}^2 = \left[\frac{\alpha}{2}(1-\tau_c^2)\frac{(1-\tau_c^2)\mu_{z_c}^2 + l\tau_c^2(2\mu_{z_c}-1) - (1-\tau_c^2)\delta z^2/12)}{\left[(1-\tau_c^2)\mu_{z_c} + \tau_c^2l\right]^2}\right]^2 \frac{l^2}{12}$$
(69)

i.e. smaller than the variance for a very thin cloud. Figure 65 shows that the maximum bias values are obtained for optically thick and geophysically thin clouds. The maximum error of -1 ms^{-1} corresponds to the optically thick and geophysical very thin cloud layer discussed in the previous section. Such a cloud also has a maximum variance of $0.33 \text{ m}^2\text{s}^{-2}$ asfound in the previous section. For a cloud covering half the bin and with transmission 0.5 the bias and variance are about 0.55 ms⁻¹ and 0.25 m²s⁻² respectively.


5.7.2 Model representativeness error

Nowadays NWP models generally do not well represent atmospheric structures as observed by ADM. This is true in particular for global models such as ECMWF that does not well resolve spatial structures below 250 km, see [RD9]. The small scale variability which is sampled by individual observations, but which the model is incapable of representing, is referred to as the representativeness error. For a DWL this error mainly relates to a discrepancy of the spatial scales resolved by the observation and those resolved by the model in which the observation is ingested. If the model cannot represent (resolve) the scales measured by the observation then the impact of the observation in the assimilation is reduced by decreasing its weight in the analysis through adding a representativeness error to the observation error, i.e., the observation error variance = instrument error variance + representativeness error variance.

Following, section 6.2.1 of [RD9], we distinguish the along-track and across-track HLOS wind component variability, where across-track is taken in the direction of the HLOS. We assume that the along- and acrosstrack variabilities are independent, but of equal size in amplitude, i.e., $0.5r^2$ with r^2 the wind variance in the model resolution cell (see [RD9]), i.e. the representativeness error variance for a point measurement such as a radiosonde. The model resolution cell size is also denoted effective model resolution. In the across-track direction we only obtain one measurement location, and as such the wind variability within a resolution

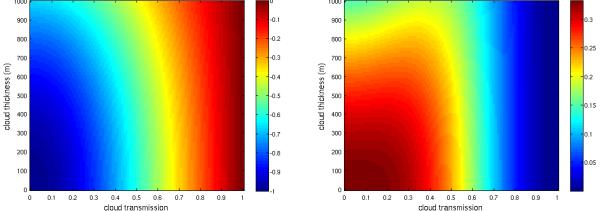


Figure 65: Rayleigh wind error bias (ms^{-1}) (left) and variance (m^2s^{-2}) (right) as a function of one-way cloud transmission and cloud layer thickness (m). The measurement bin is 1000 m, the wind-shear is constant over the bin with a value of 0.004 s^{-1} .

Table 13: ECMWF zonal wind effective model resolution as a function of pressure level (hPa) as obtained from [RD9]. Italic values denote extrapolation by matching Table 4.4 in [RD12] with respective values in [RD9], i.e. equal missing variance at 500 and 150 hPa and linear interpolation of the missing variance from 150 to 50 hPa. The effective model resolution of 200 km at 50 hPa is a guess value.

pressure (hPa)	effective model resolution (km)	unresolved wind variance $(m^2 s^{-2})$
1000	340	3.94
925	232	3.06
850	253	3.24
700	312	3.72
500	263	3.30
400	229	3.03
250	312	3.72
150	263	3.30
50	200	2.52

cell in this direction is not resolved. The HLOS wind component representativeness error thus amounts to $r_{\rm across}^2 = 0.5r^2$. In the along-track direction we may obtain up to N accumulations over the observation sampling length. If the N samples are uniformly distributed over the observation sampling length then the representativeness error variance over this distance is reduced by a factor N. The remaining along-track wind variance in the resolution cell that is not sampled equals $0.5r^2$ minus the sampled variance. The along-track error variance contribution then equals (see [RD9])

$$r_{\rm along}^2 = 0.5 \left[1 - \left(\frac{L_{\rm sample}}{L_{\rm cell}}\right)^{2/3} \right] r^2 + 0.5 \left(\frac{L_{\rm sample}}{L_{\rm cell}}\right)^{2/3} \frac{r^2}{N}$$
(70)

with L_{sample} the sample length and L_{cell} the size of the square effective model resolution cell. Table 13 is a copy of Table 3 from [RD9] showing the effective ECMWF model resolution. For instance, in burst mode the observation sampling length, L_{sample} , is 50 km, N=14 for a 3.5 km on-board accumulation length. At 500 hPa the effective model resolution L_{cell} equals 263 from Table 13 with corresponding wind variance $r^2 = 3.3$. Substituting in Eq. (70) yields $r_{along}^2 = 0.33r^2 + (0.17/14)r^2$, or a reduction of the along-track representativeness error of about 30% as compared to a point measurement. Note that the number of

accumulated measurements may be smaller than N = 14 in heterogeneous atmospheres, e.g. partly cloudy scenes such as convective cumulus clouds. In LIPAS we assume that the valid measurements are clustered. Then the sample length needs to be adjusted accordingly, i.e. in case of M < N valid measurements, N is replaced by M in Eq. (70) and the sample length $L_{\text{sample}} = 50 \times (M/N)$.

Table 13 and Eq. (70) have been implemented in LIPAS-2009 to compute the HLOS wind representativeness error. Linear interpolation with altitude is applied to get the effective model resolution and atmospheric variance in intermediate points. Extrapolation to higher altitudes is done by fixing the 50 hPa values.

5.7.3 HLOS wind error overview

Tables 14 and 15 provide an overview of the estimates of Mie and Rayleigh HLOS wind errors as discussed in the previous sections. These error estimates are needed in data assimilation to give a proper weight to the observations in NWP model analyses.

Table 14: Estimates of Mie channel HLOS wind error contributors; stddev is an abbreviation of standard deviation, repr. is an abbreviation of representativeness

error source	bias/stddev (ms^{-1})	comment	
instrument error	0 / 0.5-1.5 m ⁻¹	obtained from Tables $6/7$ of section 3.11.	
		only winds with $SNR \ge 10$ are used. Other parameters	
		parameters that impact the wind quality are the ResErr	
		and peak FHWM	
repr. error atmosphere	$0 / \frac{\alpha^2 (l - \delta z)^2}{12}$	Error due to unknown location of the	
	, 12	particle layer of thickness δz in range	
		gate of length l. HLOS wind shear α [s ⁻¹]	
		is obtained from climatology and $\delta z [m^{-1}]$ is estimated	
		by the L2B optical properties code	
repr. error NWP model	0 / Eq. (70)	For the total error $r_{\rm across}^2 = 0.5r^2$ must be	
		added, see section 5.7.2. The number of useful measurements is	
		obtained from the L2B classification	

Table 15: Estimates of Rayleigh channel HLOS wind error contributors; stddev is an abbreviation of standard deviation, repr. is an abbreviation of representativeness

error source	bias/stddev (ms^{-1})	comment
instrument error	0 / Eq. (38)	An estimate of channel A/B signals is
		obtained from the L2B auxiliary meteorological data
repr. error atmosphere	Eq. (68) / Eq. (69)	see comment in Table 14
repr. error NWP model	0 / Eq. (70)	see comment in Table 14

5.8 Summary and conclusions

In this section the upgrade of the lidar performance analysis simulator, LIPAS, has been discussed. The main objective was to make the Fizeau and Fabry-Pérot digitised ACCD output signals as simulated by LIPAS compatible with the signals simulated by the End-to-End simulator E2S. These instrument output signals are input to the L1B and L2B processors (L1Bp and L2Bp) for HLOS wind retrieval. The second main objective was to demonstrate compatibility of LIPAS and L2Bp retrieved winds.

The upgraded LIPAS can process data from the atmospheric database that is input for the E2S. LIPAS includes all relevant ADM hardware aspects that are simulated in the E2S, including Fizeau and Fabry-Pérot transfer functions and analog-to-digital ACCD signal conversion. It was shown that the digitised ACCD signal on the Fizeau interferometer in LIPAS is within 5% of the E2S. For the Fabry-Pérot signal the difference is even smaller to within 2%. Cross-talk simulation has been implemented and impact on Rayleigh wind biases validated with earlier results (Météo France ILIAD study).

Wind retrieval algorithms have been implemented in LIPAS similar to those used in the L1B and L2B processors. This includes the Mie core peak fitting algorithm for Doppler shift retrieval from the Mie channel signal and the inverse receiver response method for Doppler shift retrieval from the Rayleigh channel signal. It was found that the rounding effect from floating point to an integer value of the number of detected electrons, as part of the analog-to-digital conversion of the ACCD signal, yields a bias in Rayleigh channel winds in the order of a couple of tenths ms⁻¹.

Both the E2S-L1B-L2B chain and LIPAS were used in an experiment to retrieve simulated winds along a half orbit and using realistic atmospheric scenes composed of CALIPSO atmospheric optical properties and ECMWF atmospheric dynamics and temperature. The experiment included photon count (Poisson) noise simulation, but solar background and tripod obscuration were ignored. Overall, the results compared very well, with slightly smaller wind error biases from LIPAS, slightly smaller Mie wind error standard deviations from the L1Bp and close correspondence of L2Bp and LIPAS Rayleigh wind error standard deviations throughout the atmosphere.

Finally, various types of representativeness errors for HLOS wind observations have been identified, discussed and quantified. These include an atmosphere induced representativeness error and a numerical weather prediction model representativeness error. The former relates to the error made due to incorrect knowledge of an aerosol or cloud layer within the measurement bin. The latter relates to the spatial scales resolved by the wind observations but that are not represented by the model into which the data are assimilated. Quantification of these representativeness errors is done by LIPAS and needed in addition to knowledge of the instrument error to give the observations a proper weight in the NWP analysis. This is further discussed in section 6.

The close correspondence of LIPAS and the E2S-L1B-L2B has been demonstrated in this section. LIPAS will be used in the next section to simulate winds in realistic atmospheric conditions for the vertical sampling scenarios defined in [RD6] and to quantify the information content of the sampling scenarios.

6 Task 4b: Quantification of the L2 HLOS information content for Mie only, Rayleigh only and collocated Mie and Rayleigh sampling

6.1 Introduction

The information content of a HLOS wind can be considered as inversely proportional to its error variance. This is in line with the use of unbiased observations in data assimilation where the weight of observations in the analysis is proportional to the inverse of the observation error covariance matrix. As discussed in the previous section, there are three contributors to the total wind error: instrument noise, atmosphere induced representativeness errors through optical heterogeneity and model horizontal and vertical representativeness errors is related to the vertical sampling scenario. For instance, reducing the bin length reduces the atmosphere induced and vertical representativeness errors on one hand but increases the instrument error because of loss of SNR.

The upgraded LIPAS, discussed in section 5, and the atmospheric database of collocated CALIPSO optical and ECMWF meteorological parameters, that is described in [RD7], are used here to assess the information content of the vertical sampling scenarios as defined in [RD6]. The information content of a vertical sampling scenario is quantified here in two ways. First by its data coverage, i.e. counting the number of good AND bad quality winds at various altitudes and as a function of climate zone. It is important to note that a small number of bad quality winds can be detrimental for NWP analyses. The number of errorenous winds that can not be identified by quality control therefore has a large impact on the information content of the sampling scenario, even if the number of good quality winds is large. A second measure of information content makes use of the wind error variance estimate to relate DWL wind profile information to radiosonde profile information. Because quality control is an important aspect of the sampling scenario information content the next section first discusses Mie and Rayleigh channel quality control indicators.

6.2 Mie and Rayleigh channel quality control

There are a couple of ways to control the quality of observations, e.g. from instrument characteristics such as SNR or the evaluation of output parameters from data processing tools or by comparing with other independent observations or short-term NWP forecasts. This section focuses on quality indicators related to the SNR and processing output parameters.

6.2.1 Mie channel quality control

Quality control of Mie channel winds is based on output parameters of the Mie Core algorithm that has been discussed extensively in section 3. Currently LIPAS only includes the SNR indicator, i.e. only Fizeau signals with SNR values exceeding 10 are processed. In addition winds obtained in bins that contain the ground surface are flagged and may be used at a later stage for ground calibration purposes.

6.2.2 Rayleigh channel quality control

Quality control of Rayleigh channel winds is based on the measured signals in both channels denoted A and B. Errorenous Rayleigh winds may be related to i) ground returns, ii) low SNR, e.g. below clouds or iii) large cross-talk, e.g. inside cloud layers. We further elaborate on the latter two by considering the true (free of noise and cross-talk) and measured (including noise and eventually cross-talk) receiver repsonse signals, R_t and R_o respectively and their difference ΔR :

$$R_{t} = \frac{A_{m} - B_{m}}{A_{m} - B_{m}}$$

$$R_{o} = \frac{A_{m} + dA_{m} - (B_{m} + dB_{m}) + A_{x} + dA_{x} - (B_{x} + dB_{x})}{A_{m} + dA_{m} + B_{m} + dB_{m} + A_{x} + dA_{x} + B_{x} + dB_{x}}$$

$$\Delta R = R_{o} - R_{t}$$

$$= 2\frac{B_{m} (A_{x} + dA_{x} + dA_{m}) - A_{m} (B_{x} + dB_{x} + dB_{m})}{(A_{m} + dA_{m} + B_{m} + dB_{m} + A_{x} + dA_{x} + B_{x} + dB_{x}) (A_{m} + B_{m})}$$
(71)

Meteorologisch Instituut Ministerie van Verkeer en Waterstaa

with subscripts m and x denoting the molecular and cross-talk contribution respectively and terms d \bullet denoting the noise contributions from the respective signals. Assuming noise with zero mean, the bias and variance of the receiver response error equal

$$E[\Delta R] = 2 \frac{B_m A_x - A_m B_x}{(A_m + B_m + A_x + B_x)(A_m + B_m)}$$
(72)

$$Var[\Delta R] = \left(\frac{\partial \Delta R}{\partial dA_m}\right)^2 Var[dA_m] + \left(\frac{\partial \Delta R}{\partial dB_m}\right)^2 Var[dB_m]$$

$$+ \left(\frac{\partial \Delta R}{\partial dA_x}\right)^2 Var[dA_x] + \left(\frac{\partial \Delta R}{\partial dB_x}\right)^2 Var[dB_x]$$

$$= \left[\frac{1}{2(A_m + A_x)}\right]^2 (2A_m + 2A_x)$$

$$= \frac{1}{2(A_m + A_x)}$$
(73)

where we assumed $B_m = A_m$ and $B_x = A_x$ in the variance computation for simplicity. Eq. (73) is the receiver response error variance when no cross-talk correction is applied and is similar to Eq. (35), but now including the cross-talk term. The variance decreases for increasing cross-talk but also the bias generally increases from Eq. (72). In case that cross-talk correction can and has been applied $A_x = B_x = 0$ which simplifies the equations. Note that although cross-talk can potentially be corrected for, the corresponding noise can not be corrected for, i.e. $dA_x dB_x$ do not equal zero after cross-talk correction. The expectation value (bias) of ΔR after cross-talk correction equals zero, from Eq. (72), and for the variance we get

$$\operatorname{Var}[\Delta R] = \frac{1}{2A_m} \left(1 + \frac{A_x}{A_m} \right) \tag{74}$$

This means that the receiver response error variance will generally be large in Rayleigh bins with strong cloud and aerosol layers, even when their cross-talk contribution can be well estimated. The Rayleigh wind quality will therefore generally be poor for these conditions.

Quality control (QC) indicators (flags) have been defined and are tagged to the retrieved winds for later processing. These QC indicators include

- 1. Ground return. If the height bin includes ground returns within the 50 km sampling length then the flag is set to the value 1.
- 2. SNR check. From Eq. (37) it follows that for winds meeting the mission requirement

$$\frac{\partial \text{LOS}}{\partial R} \sqrt{\text{Var}[\text{d}R]} \le \sigma_{\text{LOS}}^{\text{T}}$$
(75)

with $\sigma_{\text{LOS}}^{\tau}$ the wind error standard deviation threshold or mission requirement value. Var[ΔR] is obtained from Eq. 35 with A and B the total signal including cross-talk. The sensitivity term is obtained from the receiver response table, see section 5.5.2. The threshold LOS wind error standard deviation is a function of altitude according to the mission requirement. If the threshold is not met then the flag is raised and set to the value 2.

3. If cross-talk correction is applied then the increased error through cross-talk noise is calculated. The same procedure as in the previous item is followed. From Eq. (75) and Eq. (74) it then follows that $A_x \leq \left[2A_m \left[\sigma_{\text{LOS}}^{\text{T}} / \left(\partial \text{LOS} / \partial R\right)\right]^2 - 1\right] A_m$ to meet the mission requirement. Note that A_x and A_m are not directly available from the measured signal, but can be estimated from the AUX_MET data (A_m) and the scattering ratio estimate (A_x) . If A_x exceeds the threshold value then the flag is raised and set to a value of 3.

6.3HLOS wind retrieval

LIPAS has been used to retrieve Mie and Rayleigh channel winds along CALIPSO nighttime orbits. The atmosphere optics and dynamics are obtained from the atmospheric database. Figure 66 shows an example

Koninklijk Nederlands Meteorologisch Instituut

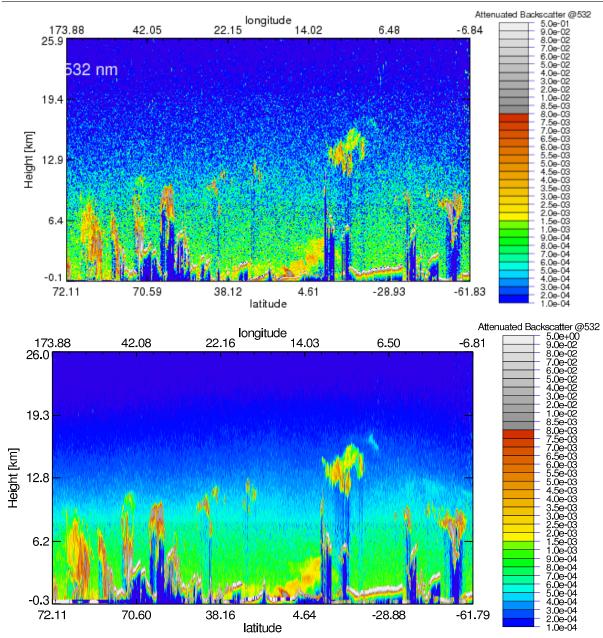


Figure 66: Half (nighttime) orbit CALIPSO level-1B attenuated backscatter at 532 nm measured on 1/1/2007 around 00:30 UTC. Top: Raw data at instrument resolution, see Table 4.2.3-1 of [RD7]. Bottom: processed data to 3300 m horizontal and 125 m vertical resolution. The spurious artefacts near 8 km are due to a change of the on-board averaging from 30 to 60 m.

of raw CALIPSO data along one half orbit. The top panel in Figure 67 shows an example of the scattering ratio along half a CALIPSO orbit as obtained from atmospheric database molecule and aerosol backscatter. The bottom panel in Figure 67 shows the collocated zonal wind along the orbit. Figure 68 zooms in on the tropical part of the orbit showing a cirrus cloud near 15 km with a scattering ratio of about 4 but with locally increased values exceeding 10. Underneath the cirrus cloud optically thick clouds show up. The left hand-side of the figure shows enhanced aerosol loading up to 4 km altitude. Figure 69 shows the HLOS wind rather than the zonal wind as in the bottom panel of Fig. 67. The HLOS wind is obtained from

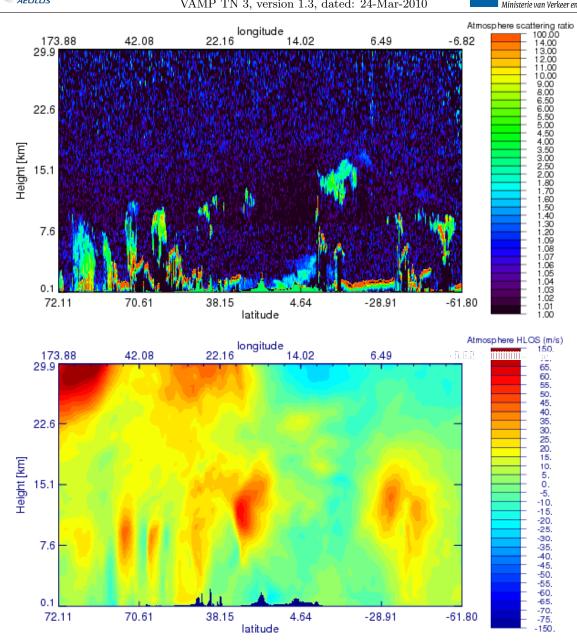


Figure 67: Atmosphere scattering ratio at 355 nm along the nighttime part of one CALIPSO orbit, measured on 1/1/2007 around 00:30 UTC (top) and corresponding zonal wind (bottom) as obtained from the atmospheric database winds and ADM pointing. The horizontal resolution is 3.5 km, the vertical resolution 125 m.

the zonal and meridional wind components taking into account the pointing of ADM through the azimuth angle, see Eqs. (11) and (27) or Eq. (4-7) of [RD7]. The LOS direction is oriented close to the west along most of the half orbit yielding a HLOS wind close to minus the zonal wind. The discontinuity near the Pole is explained by a change of the azimuth angle from 270 to 90 degrees in this area. Figure 70 shows the Mie and Rayleigh channel retrieved winds, that passed the quality control, for 50 km adjacent along track samples corresponding to the ADM observation accumulation length. The ADM burst mode 150 km gaps are not considered, because we focus on observation information content here and not on exact ADM

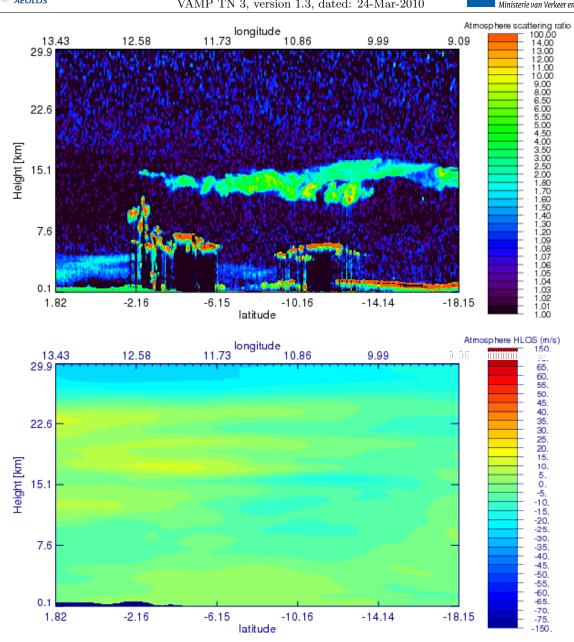


Figure 68: Same as Fig. 67 but zoomed in to the Tropics.

sampling. Vertical sampling scenario WVM1 was used. Appendix A provides an overview of all sampling scenarios used in this document. Mie winds are obtained only in particle-rich areas where the SNR on the Fizeau ACCD bins exceeds the threshold value of 10. This threshold value is also used in the L1B and L2B processors. The SNR computation is part of the Mie Core algorithm. For the Rayleigh wind retrieval currently three options have been implemented in LIPAS-2009:

- 1. Accumulate the signals from all measurements, without signal classification and ignoring cross-talk. This option mimics Rayleigh-only sampling where no Mie information is available for classification or to correct for cross-talk.
- 2. Apply classification, i.e. accumulate only measurements with no or small particle presence. A scattering ratio threshold value of 1.5 is used to discriminate between particle and "particle-free" mea-

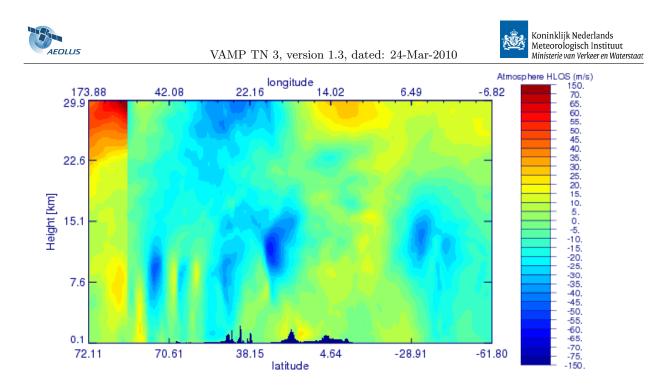


Figure 69: Same as the bottom panel in Fig. 67 but now the HLOS wind.

surements. Currently the scattering ratio is obtained from the input database. At a later stage the collocated Mie channel signal or optical properties code should provide this information. Currently, classification can only be applied to Rayleigh bins with collocated Mie bins. This option thus mimics collocated Rayleigh-Mie sampling.

3. Apply cross-talk correction, i.e. accumulate the signals from all measurements after cross-talk correction. For each measurement the cross-talk contribution is estimated and subtracted from the measured signal before accumulation. Currently the exact cross-talk contribution (as obtained from the atmospheric database aerosol properties) is subtracted. At a later stage the scattering ratio estimate from the Mie channel or the optical properties code is used for cross-talk correction. Currently, cross-talk correction can only be applied to Rayleigh bins with collocated Mie bins. This option thus also mimics collocated Rayleigh-Mie sampling.

It is noted that option 2 is more pessimistic and option 3 more optimistic than the current implementation in the L2B processor. The L2Bp accumulates both the particle-free and particle measurements, but separately, thus potentially yielding two Rayleigh observations at one location. Option 2 ignores the result from the particle measurements, option 3 assumes that both observation can be integrated to a single observation with better quality than the separate ones (superobbing).

LIPAS has been applied to 1 day of data in the database. This covers 15 (half) orbits and yields about 6000 (adjacent) HLOS wind profiles for both Mie and Rayleigh channels. Again note that we ignore the burst mode at this stage and thus simulate 4 wind profiles along a 200 km track. One day of data from the database, ignoring burst mode, thus relates to 4 days of burst mode ADM winds. For the Rayleigh channel 3 wind solutions have been determined based on the processing options described above. The left panel in Fig. 72 shows the error bias of retrieved Mie and Rayleigh winds. Only retrieved winds that pass the quality control are used in the statistics. The bias in the Mie winds is generally below 0.3 ms^{-1} throughout the troposphere. At high altitudes the 3 Rayleigh wind processing options yield about the same bias as expected because of negligible particle presence. The bias at these altitudes is substantial with values up to 0.7 ms^{-1} . This may be explained by a larger molecular density in the lower part of the 2 km vertical bins. In combination with a generally positive wind-shear, this yields a negative bias in the retrieved winds. In addition the rounding to integer-valued electrons as part of the ADC, see section 5.6.5, may contribute to biases, although this effect is expected to be small in the statistics when averaged over many different wind

Figure 70: Retrieved Mie (top) and Rayleigh (bottom) winds for the scene displayed in Fig. 67 and vertical sampling scenario WVM1. Rayleigh wind retrieval option 1 was used, see text for further details. The LIPAS output quality indicator flags are used to select the good quality winds for plotting. Dark blue spots denote missing winds based on the quality indicator flags. Note the different height interval along the y-axis.

scenes.

From the right panel in Fig. 72 it is seen that the number of Rayleigh winds for all three processing options is almost identical above 20 km because of negligible aerosol content. The number of Mie winds is thus also negligible. Near 15 km tropical cirrus scenes reduce the number of Rayleigh winds for options 2 and 3 because some or all of the measurements are classified as "particle" and not used in the accumulation, thus reducing the observation SNR (option 2) or cross-talk correction that reduces the SNR (option 3). The small amount of Rayleigh winds in the lowest 2 km is explained by the small 500 m Rayleigh bins. The

VAMP TN 3, version 1.3, dated: 24-Mar-2010

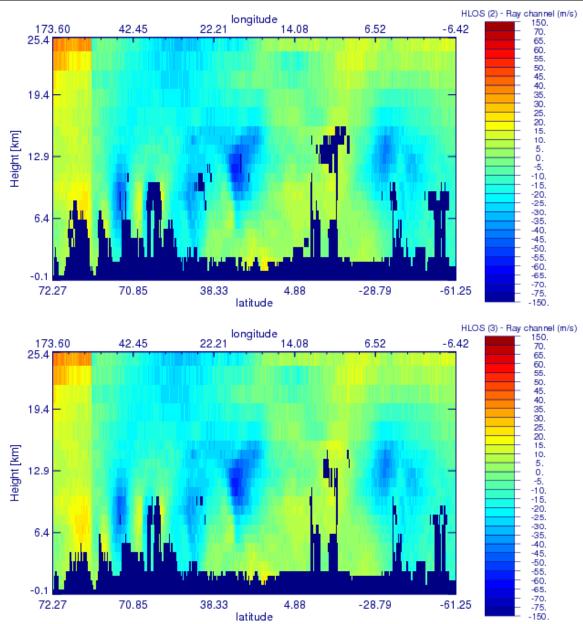


Figure 71: Same as the bottom panel of Fig. 70 but for option 2 (top) and option 3 (bottom) for the Rayleigh wind retrieval, see text for further details.

number of Mie winds on the other hand increases substantially in the PBL due to increased aerosol loading.

Interestingly, also at lower altitudes with particle presence through clouds and aerosols, the biases for all three Rayleigh options are similar. This may be surprising, in particular for option 1 because it is known from section 5.5.3 that cross-talk may induce substantial biases. We further elaborate on this.

One explanation for similar biases in option 1 as compared to the other options is that biases for individual HLOS wind estimates may be both positive and negative and thus cancel in the average statistics. This is true if there is no prevailing wind direction. However, for instance for the prevailing zonal wind in the Northern Hemisphere extra-tropics (and considering only nighttime (half) orbits) the majority of biases have the same sign and cancelation does not take place. Another more plausible explanation is that the bias

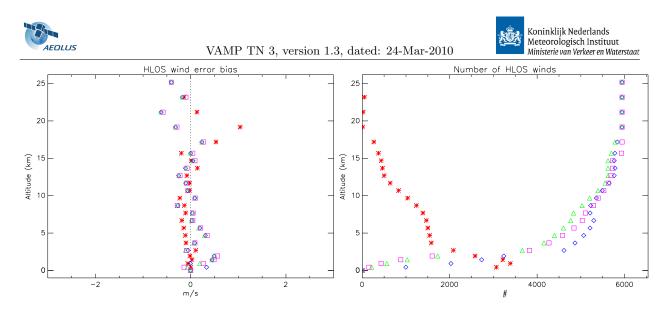


Figure 72: HLOS wind error bias for Mie (red stars) and Rayleigh channel (left) for vertical sampling scenario WVM1. Three processing options for Rayleigh wind retrieval are displayed: option 1, simply accumulating all measurements (blue diamonds), option 2, application of classification (green triangles) and option 3, application of cross-talk correction (magenta squares). Right, the number of data that passed quality control and used in the statistics.

through cross-talk is generally small. As explained in section 5.5.3 the HLOS wind bias through cross-talk is a function of temperature, scattering ratio and the actual wind. Bias through cross-talk is substantial for low temperatures, a large scattering ratio and large winds. All three conditions should apply at the same time. If one of these conditions does not apply, then the bias through cross-talk is small. This is the case, for instance, for temperatures above zero degrees celsius that applies for most parts of the globe in the lower part of the atmosphere.

A potential challenging region is the upper troposphere in the tropics with low temperatures and the presence of tropical cirrus with substantial scattering ratio values. To investigate this region scenes with tropical cirrus were selected from the results. Figure 73 shows the wind statistics for scenes containing tropical cirrus. Note that the tropical HLOS wind component for these simulated ascending orbits points close to zonal and in the opposite direction of the local easterly wind component. From the right panel, the mean zonal wind in the region of tropical cirrus presence between 10 and 20 km is close to -5 ms⁻¹ with most of the winds found between -20 and +5 ms⁻¹, that is between -12 and 3 ms⁻¹ for the LOS wind component. The temperature inside tropical cirrus (right panel) is between -90 and -30 degrees Celsius with a mean value close to -60 degrees Celsius. Statistics for the scattering ratio inside cirrus clouds are found in Figs. 74 and 75 with a mean value of 4 but with a large spread. In section 8.0.11 it is shown that processing option 1 generally has larger biases than the other processing options in cirrus regions between 10 and 20 km.

From the statistics of the tropical cirrus parameters and from the discussion in section 5.5.3 we conclude that temperature and scattering ratio fulfil the conditions for expected substantial bias through cross-talk, but the LOS wind is generally small in this region yielding biases of less than 0.1 ms^{-1} in general.

Figure 76 shows that the Mie wind error standard deviation is generally smaller than the Rayleigh wind error standard deviation with values of $1-1.5 \text{ ms}^{-1}$ for Mie winds and $1.5-2.5 \text{ ms}^{-1}$ for Rayleigh winds throughout most of the troposphere and lower stratosphere. The standard deviation of Mie and Rayleigh winds is within the mission requirement throughout the troposphere and lower stratosphere. The Rayleigh wind error statistics are quite similar for all three processing options with slightly smaller errors for option 1 in the PBL. From these results it appears that processing option 1 is favourable for Rayleigh wind retrieval, although caution is needed in areas where the conditions for substantial cross-talk biases apply. Another interesting aspect shows up in Figs. 72 and 76 near around 17 km altitude. Here the bias and standard deviation of Mie winds increases substantially which is related to large wind-shears at the top of tropical cirrus clouds. As shown in Appendix C, the top of the cirrus cloud is located at the bottom of the 2 km

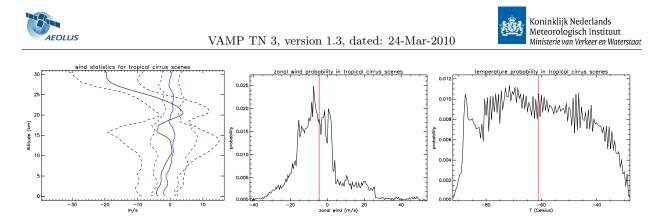


Figure 73: Wind and temperature statistics for scenes with tropical cirrus on 1/1/2007. Left, zonal (black) and meridional (blue) wind distribution in the tropics. solid and dashed lines denote the mean and mean +/- one standard deviation respectively. Zonal wind (middle) and temperature (right) statistics at the location of tropical cirrus. Red lines correspond to the mean value. The tropics is bounded here at 30 degrees latitude.

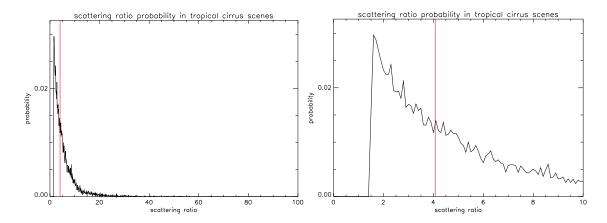


Figure 74: Scattering ratio statistics inside tropical cirrus clouds. The right plot is zoomed in to the lowest scattering ratio values. Red lines correspond to the mean value.

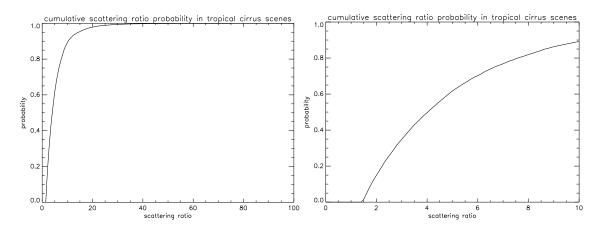


Figure 75: Same as Fig. 74 but now for the cumulative probability.

96/ 160

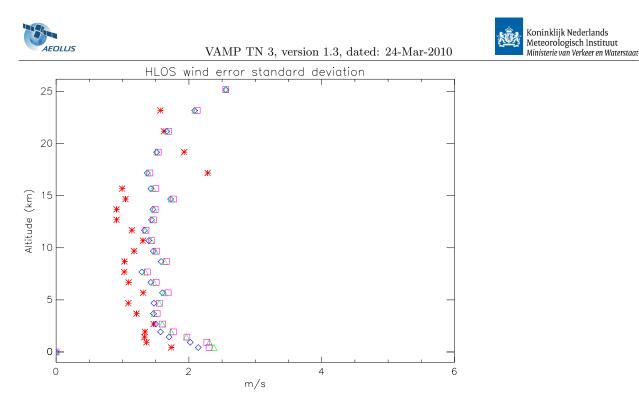


Figure 76: HLOS wind error standard deviation for Mie and Rayleigh channel for vertical sampling scenario WVM1. For an explanation of the symbols see Fig. 72.

height bin thus inducing a large height assignment error of about 1 km.

Figure 77 through Fig. 79 show similar results but now for sampling scenario WVM2 with more Mie bins in the PBL and less in the UTLS.

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

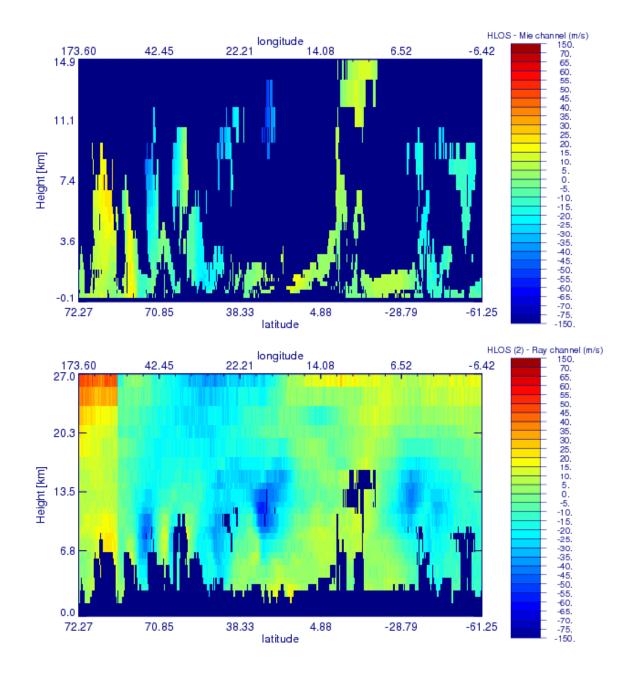


Figure 77: Same as Fig. 70 but now for sampling scenario WVM2 and retrieval option 2 for the Rayleigh winds.

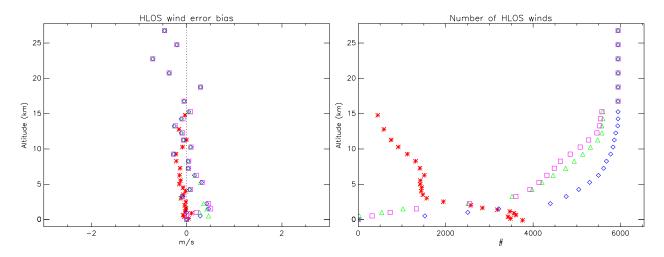


Figure 78: Same as Fig. 72 but now for sampling scenario WVM2

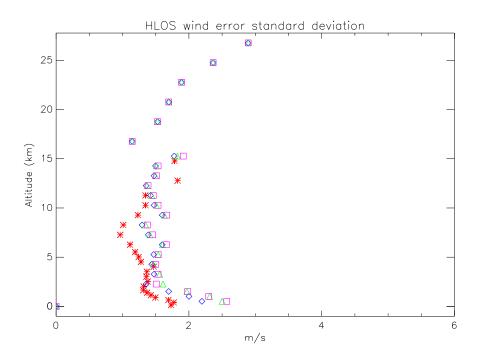


Figure 79: Same as Fig. 76 but now for sampling scenario WVM2

7 Task 4c: Vertical sampling scenarios information content - global statistics - one day from the database

One way to quantify the information content of a vertical sampling scenario is by its data coverage, i.e. counting the number of good AND bad quality winds at various altitudes and as a function of climate zone. It is important to note that a small number of bad quality winds can be detrimental for NWP analyses. The number of errorenous winds that can not be identified by quality control therefore has a large impact on the information content of the sampling scenario, even if the number of good quality winds is large.

The atmosphere is subdivided in four regions: the PBL (0-2 km), lower-troposphere (2-7 km), upper troposphere lower stratosphere (UTLS) (7-15 km) and stratosphere (above 15 km). For each of these regions the number of good, moderate, bad and quality-controlled winds from both Mie and Rayleigh channels are determined as a function of sampling scenario. Qualification of HLOS winds is performed as follows. First, the quality control flag value, see sections 6.2.1 and 6.2.2, is considered. If the flag is set, meaning that the quality of the retrieved HLOS wind is suspicious, then the HLOS wind is quality-controlled and not further processed. Otherwise, the retrieved HLOS wind is valid and verified against the true HLOS wind. Three classes for the HLOS wind error are defined: 1) good quality if the HLOS wind error is less than σ_r , 2) moderate quality if the HLOS wind error is between σ_r and $2\sigma_r$ and 3) bad quality if the HLOS wind error is larger than $2\sigma_r$. Here σ_r is the mission requirement HLOS wind error standard deviation, not including the model representativeness error. The HLOS wind error standard deviation mission requirement for HLOS winds including the representativeness error is obtained from Table 3.3 of the ADM-Aeolus Science Report¹ and equals 2 ms^{-1} for the PBL, 3 ms^{-1} for the lower-troposphere and UTLS and 5 ms^{-1} for the stratosphere as defined above. The model representativeness error standard deviation, discussed in section 5.7.2, is a function of altitude with values obtained from the line error column of Table 3.2 in the ADM-Aeolus Science Report, i.e. $1.5/1.7/2.0/1.5 \text{ ms}^{-1}$ in the PBL/lower troposphere/UTLS/stratosphere respectively. It is noted here that these values are more optimistic, i.e. smaller, then the values found in section 5.7.2. The mission requirement excluding the model representativeness error then equals 1.32/2.47/2.24/4.77 ms⁻¹ respectively.

In this section the information content of the scenarios in sections Appendix A.1 and Appendix A.2 are considered. These scenarios were originally defined in [RD6]. At a later stage an additional maximum height constraint of 31 km was considered. These scenarios are found in section Appendix A.3 and are considered state of the art at the time of writing. Results from these scenarios are presented in section 8. For the sake of completeness and to illustrate their drawbacks the originally defined scenarios are discussed in this section. The information content of scenarios is presented by plots of global wind data coverage and wind information content as a function of height and climate zones. The presented statistics are based on LIPAS applied to 1 day of data in the database, i.e. 1 January 2007. This covers 15 (half) orbits and yields about 6000 (adjacent) HLOS wind profiles for both Mie and Rayleigh channels. Again it is noted that we ignore the burst mode here and thus simulate 4 wind profiles along a 200 km track. One day of data from the database, ignoring burst mode, thus relates to 4 days of burst mode ADM winds.

7.0.1 PBL wind information content

Figure 80 shows the number of Mie winds measured in the PBL by the various vertical sampling scenarios displayed in the first two sections of Appendix A. The colours correspond to the winds quality. The relative large number of bad quality data is explained by a more relaxed quality control in the PBL than at higher altitudes. This is motivated by the fact that the representativeness error in the PBL is close to the mission requirement, meaning that almost all Mie (and Rayleigh) winds would be flagged as suspicious. For this reason HLOS winds in the PBL were flagged as suspicious when the estimated accuracy was less than 2 ms⁻¹ rather than 1.32 ms⁻¹. However, for the quality assignment the more stringent value of $\sigma_r = 1.32$ ms⁻¹ was used. From Fig. 80 it is clear that many Mie winds are flagged which is explained mainly by insufficient SNR in cloudy regions. Figure 81 shows a similar plot but now for PBL Rayleigh channel winds. The data coverage of all three retrieval options is obviously identical with more flagged winds for options 2 and 3. Relaxing the quality control in the PBL implies that Rayleigh winds may pass the quality control for 500 m bins, but yielding a relative small number of good quality winds. Option 1 provides both more good and bad quality winds and this latter property makes this option less favourable. Figure 82 shows the

 $^{^{1}} http://esamultimedia.esa.int/docs/SP-1311_ADM-Aeolus_FINAL_low-res.pdf$

combined Mie and Rayleigh data coverage in the PBL obtained by adding the numbers in Figs. 80 and 81. There may be redundancy in this plot in case of both good quality Mie and Rayleigh winds in the same bin, although this can only be the case for processing option 1.

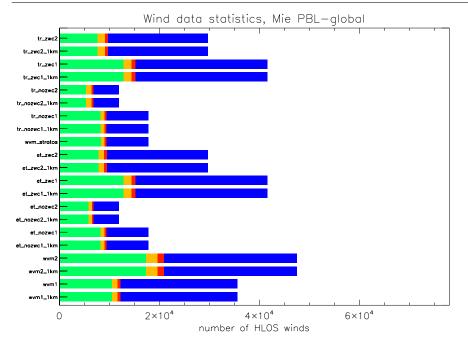


Figure 80: Number of good (green), moderate (orange), bad (red) and quality controlled (blue) Mie channel HLOS winds in the PBL for the sampling scenarios defined along the y-axis. Data are obtained from one day (1/1/2007) covering 15 (half CALIPSO) orbits and about 6000 HLOS wind profiles.

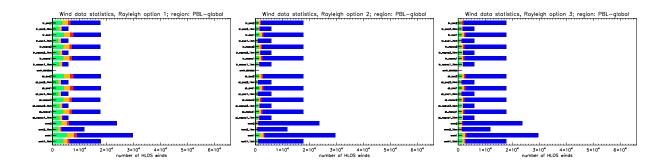


Figure 81: Same as Fig. 80 but now for Rayleigh channel winds retrieved with option 1 (left), option 2 (middle) and option 3 (right).

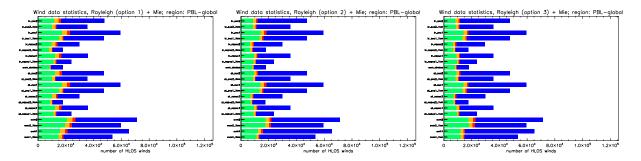


Figure 82: Total number of good, moderate, bad and quality controlled HLOS wind obtained from accumulating the Mie (Fig. 80) and Rayleigh (Fig. 81) winds for processing option 1 (left), option 2 (middle) and option 3 (right).

Lower-troposphere wind information content 7.0.2

Figure 83 shows the number of Mie winds measured in the lower troposphere by the various vertical sampling scenarios displayed in Appendix A. Note the substantially smaller number of bad quality winds as compared to the PBL, because no quality control relaxation was applied in this region. From Fig. 83 it is clear that many Mie winds are flagged which is explained by the generally small aerosol loading above the PBL. Most Mie winds are obtained in cloudy regions. Figure 84 shows a similar plot but now for lower troposphere Rayleigh channel winds. The data coverage is equal for all scenarios because the bin size has a constant value of 1000 m for all scenarios in this region. Again, more winds are flagged for options 2 and 3 than for option 1. Figure 85 shows the combined Mie and Rayleigh data coverage in the lower troposphere obtained by adding the numbers in Figs. 83 and 84.

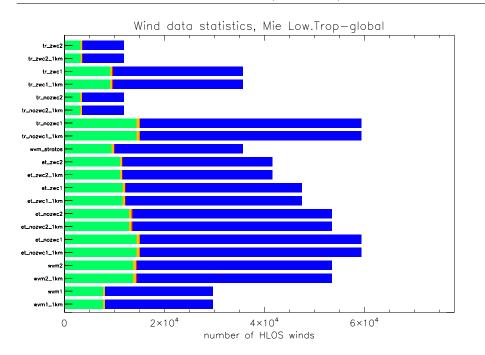


Figure 83: Number of good (green), moderate (orange), bad (red) and quality controlled (blue) Mie channel HLOS winds in the lower troposphere for the sampling scenarios defined along the y-axis. Data are obtained from one day (1/1/2007) covering 15 (half CALIPSO) orbits and about 6000 HLOS wind profiles.

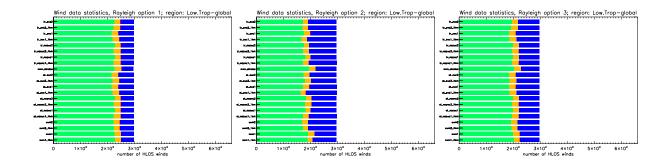


Figure 84: Same as Fig. 83 but now for Rayleigh channel winds retrieved with option 1 (left), option 2 (middle) and option 3 (right).

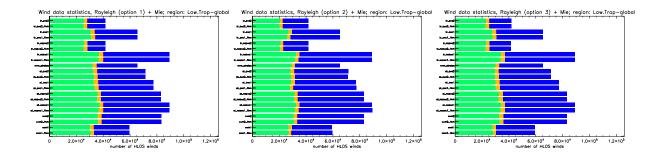


Figure 85: Same as Fig. 82 but now for the lower troposphere.

104/ 160

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

Upper-troposphere lower-stratosphere wind information content 7.0.3

Figure 86 shows the number of Mie winds measured in the UTLS by the various vertical sampling scenarios displayed in Appendix A. From Fig. 86 it is clear that many Mie winds are flagged which is explained by the generally negligible aerosol loading in this region. Virtually all Mie winds are obtained in cloudy regions. Figure 87 shows a similar plot but now for UTLS Rayleigh channel winds. The data coverage is equal for all scenarios because the bin size has a constant value of 1000 m for all scenarios in this region. Again, more winds are flagged for options 2 and 3 than for option 1. Figure 88 shows the combined Mie and Rayleigh data coverage in the UTLS obtained by adding the numbers in Figs. 86 and 87

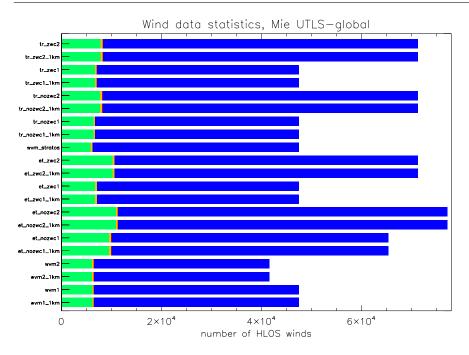


Figure 86: Number of good (green), moderate (orange), bad (red) and quality controlled (blue) Mie channel HLOS winds in the UTLS for the sampling scenarios defined along the y-axis. Data are obtained from one day (1/1/2007) covering 15 (half CALIPSO) orbits and about 6000 HLOS wind profiles.

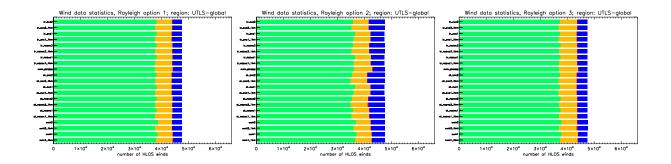


Figure 87: Same as Fig. 86 but now for Rayleigh channel winds retrieved with option 1 (left), option 2 (middle) and option 3 (right).

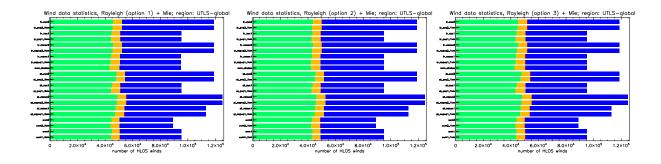


Figure 88: Same as Fig. 82 but now for the UTLS.

106/ 160

Stratosphere wind information content 7.0.4

Figure 89 shows the number of Mie winds measured in the stratosphere above 15 km by the various vertical sampling scenarios displayed in Appendix A. For some scenarios the Mie channel does not reach this altitude. The Mie channel is generally not very efficient in this region, except in the tropics in case of cirrus clouds. From Fig. 89 it is clear that many Mie winds are flagged which is explained by the generally negligible aerosol and cloud loading at these altitudes. Virtually all Mie winds are obtained in cloudy regions in the tropics. Figure 90 shows a similar plot but now for stratosphere Rayleigh channel winds. The statistics for all 3 options are similar and virtually all winds have good quality with only a small number of flagged winds because the atmosphere is free of particles. Figure 91 shows the combined Mie and Rayleigh data coverage in the stratosphere obtained by adding the numbers in Figs. 89 and 90.

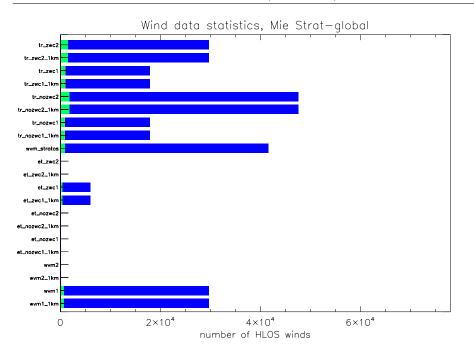


Figure 89: Number of good (green), moderate (orange), bad (red) and quality controlled (blue) Mie channel HLOS winds in the stratosphere for the sampling scenarios defined along the y-axis. Data are obtained from one day (1/1/2007) covering 15 (half CALIPSO) orbits and about 6000 HLOS wind profiles.

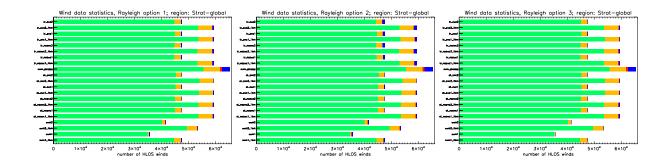


Figure 90: Same as Fig. 89 but now for Rayleigh channel winds retrieved with option 1 (left), option 2 (middle) and option 3 (right).

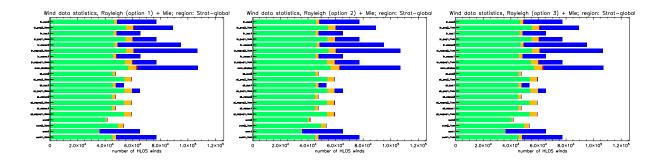


Figure 91: Same as Fig. 82 but now for the stratosphere.

108/ 160

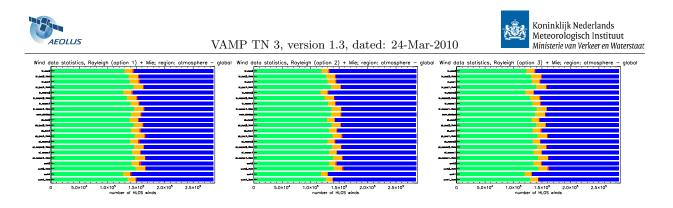


Figure 92: Same as Fig. 92 but now for all atmospheric regions accumulated. These plots show the total data coverage and HLOS wind quality throughout the atmosphere.

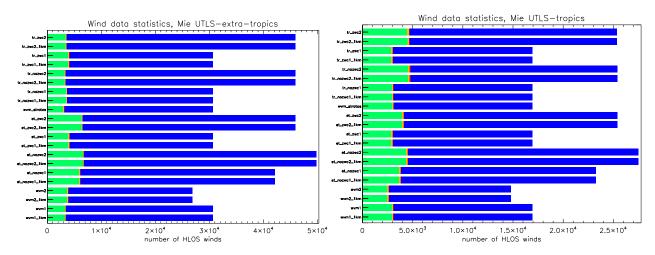


Figure 93: Number of good (green), moderate (orange), bad (red) and quality controlled (blue) Mie channel HLOS winds in the UTLS in the extra-tropics (left) and tropics (right).

7.0.5 Total wind information content

Figure 92 shows the overall result of combined Mie and Rayleigh data coverage from all atmospheric regions obtained by adding the numbers in Figs. 82, 85, 88 and 91. The total number of wind observations equals 6000 (profiles) \times 24 (bins) \times 2 (channels) \approx 2.88 \cdot 10⁵. From this figure it is concluded that about half of the retrieved HLOS winds is flagged as suspicious mainly because of lack of SNR. It is clear that processing option 1 yields most good quality winds and processing option 3 yields slightly more good quality winds than processing option 2. It is also clear that all scenarios with 500 m Rayleigh bins yield less good-quality winds than their 1000 m bins (denoted with _1km) counterparts. Also the increased Mie resolution in the UTLS in the tropical scenarios tr_zwc2 and tr_nozwc2 does not pay off in the global picture and is at the expensive of Mie winds in other height levels. However, when zooming in on the tropical region, tr_zwc2_1km shows more good quality winds than e.g. wvm1_1km (not shown). Also note that these plots do not take into account that wind information at a certain height level may be more informative for a NWP model than winds at other height levels.

The relative merit of some scenarios over others is most pronounced by the location of the Mie channel bins in the UTLS and stratosphere. In Fig. 93 we separate tropical and extra-tropical UTLS winds. It is seen that the extra-tropical scenarios (denoted with et_{-}) are indeed more favourable in the extra-tropics. Similarly the tropical scenarios (denoted with tr_{-}) are more favourable in the tropics. This is even more pronounced for the stratosphere in Fig. 94 where none if the scenarios has valid winds in the extra-tropics but all tropical scenarios still have some good quality winds in the tropics.

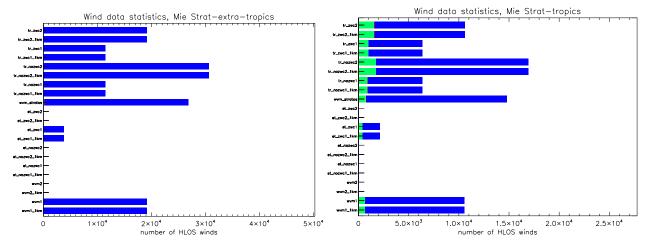


Figure 94: Same as Fig. 93 but now for the stratosphere above 15 km.

7.0.6Wind profile information content

Counting of the number of good/bad/moderate winds is a measure of information content but has some drawbacks. For instance scenarios without zero wind calibration measure more winds. Reduced information content through missing calibration was not taken into account in the previous section thus overestimating the information content of these scenarios. Second, there may be overestimation in case of overlapping Mie and Rayleigh bins where both channels produce a good quality wind. Both are counted but only one is used in data assimilation (DA) in practice. Third, closely spaced wind profile observations may sample the same atmospheric structure yielding correlated representativeness errors and a reduced information content, see [RD13].

Another measure of information content that is more in analogy with DA is discussed here. In DA the weight (or information content) of an observation in the analysis is proportional to the inverse of its error variance estimate. Using this definition the information content for each DWL wind profile can be computed by adding the information content of all individual Mie and Rayleigh winds within the wind profile and assuming no correlation between observations for simplicity. To assign a quality measure to such a DWL profile the information content can be related to the information content of a synthetic radiosonde at the same location. The information content of each vertical sampling scenario is then quantified relative to a corresponding synthetic radiosonde.

Radiosonde winds are assimilated at 16 standard pressure levels: 1000, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20 and 10 hPa. Thus, ADM-Aeolus Mie and Rayleigh DWL profiles potentially have 50% more levels of wind observations than radiosondes, but depending on aerosol density, i.e. in a clean atmosphere with (almost) no aerosols, the Mie channel yields no good quality data. On the other hand ADM measures only a single LOS wind component rather than both wind components as is done by radiosondes. In general, the number of wind components in a single profile will be compatible for radiosondes and ADM-Aeolus.

The total error variance for a radiosonde wind component is the sum of the instrument error variance and point measurement representativeness error variance. The former is assumed constant throughout the profile with a value of $1 \text{ m}^2 \text{s}^{-2}$.

To account for the calibration issue the method described in [RD13] has been adopted. There, a constant bias value was added to all elements of the observation error covariance matrix, i.e. the lack of absolute calibration behaves as a correlated error component with an infinitely large correlation scale. Equivalently this also means that the information on the deepest vertical eigenfunction, reflecting the vertical average in the observation, is lost. In other words, a singular vector decomposition of the observation error covariance matrix only changes the first eigenvalue after adding the constant bias term. In terms of information content this means that the information of one bin is lost, or a loss of about 4% for a 24 bin profile. This correction factor is applied to the information content of sampling scenarios that lack zero wind calibration opportunities for the Mie channel. From L1B studies on calibration the current status is that absolute zero wind calibration is not possible for the Rayleigh channel. Further studies are underway to confirm this. However, cross-calibration with Mie channel winds seems a reasonable alternative to calibrate Rayleigh channel winds. The cross-calibration opportunity has been assumed in the information content computation. Thus for scenarios where the Mie channel reaches the ground, but the Rayleigh channel not, no additional error and no correction factor (i.e. information loss) have been applied.

To account for correlated representativeness errors of closely spaced observations in DWL profiles in the information content measure, the horizontal representativeness error as computed by LIPAS, see section 5.7.2, is inflated with a factor $m = MAX(1, \sqrt{(H/\Delta Z)})$ where H is a vertical background error decorrelation depth, see Fig. 95 and ΔZ is the measurement bin size. More details are found in [RD13]. Typical values for H are 500-1000 m in the PBL, exceeding to 1500 m near the tropopause, decreasing to 1000 m in the lower stratosphere and increasing to values exceeding 2500 m higher up in the stratosphere. As a consequence scenarios with e.g. closely spaced (Mie) bins in the PBL have relative large values for mand thus an increased representativeness error and reduced profile information content. Representativeness error inflation based on the blue curve in Fig. 95 has been applied to both DWL and radiosonde profiles.

Figure 96 shows the mean DWL profile information content relative to that of (synthetic) radiosondes (at the same locations). The information content of all scenarios is around 0.65 in the left panel, i.e. when excluding the representativeness error inflation for closely spaced profile bins (m equal to one). This means that the information content of one DWL profile is on average 65% of the information content of a radiosonde. The, on average, smaller information content of a DWL profile relative to a radiosonde is

VAMP TN 3, version 1.3, dated: 24-Mar-2010

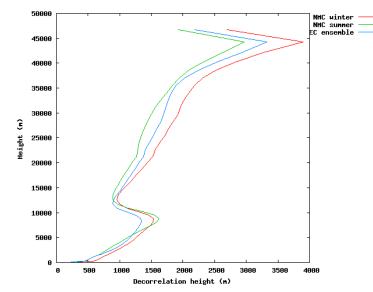


Figure 95: Wind vertical decorrelation height profile for two available error statistics datasets of the HARMONIE model for the winter (red) and summer (green) period and from the ECMWF model (blue).

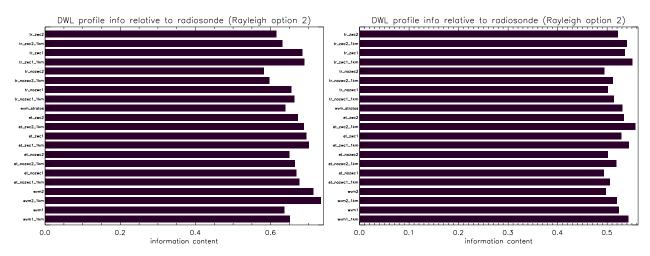


Figure 96: DWL profile information content relative to radiosonde information content excluding (left) and including (right) representativeness error inflation for closely spaced profile bins. Retrieval option 2 (classification) was used here for Rayleigh channel winds. All DWL profiles covering the full Northern Hemisphere and the Southern Hemisphere up to 61°S were used. Note the different axis scaling.

mainly explained by clouds obscuring the lower part of the atmosphere for DWL but not for radiosonde. A limitation of the proposed information content calculation is that DWL measurements above 20 km yield little information relative to a radiosonde because the instrument error increases rapidly for DWL at higher altitudes, but not for radiosondes, while the representativeness error of DWL winds is only slightly smaller than for radiosondes. When including the representativeness error inflation for closely spaced profile bins the picture changes, see the right panel in fig. 96. The information content of DWL relative to radiosonde decreases on average to slightly above 0.5, because the vertical spacing of the former is smaller. Also, the information content of scenario WVM2 with high resolution Mie channels in the PBL has substantially reduced.

Figure 97 is similar to the right panel of Fig. 96 but now segregated for the extra-tropical (left) and

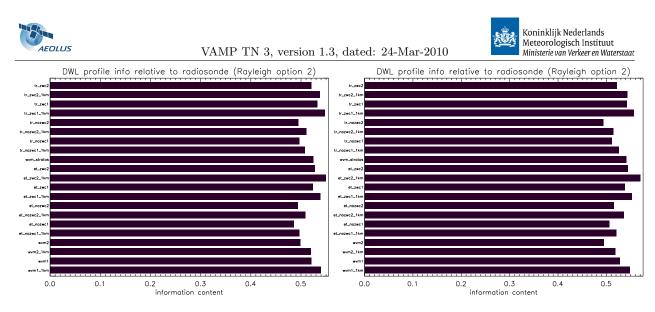
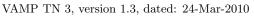



Figure 97: DWL profile information content in Extra-Tropics (left) and Tropics (right) relative to radiosonde information content including representativeness error inflation for closely spaced profile bins. The Tropics is bounded at 30 degrees latitude. Retrieval option 2 (classification) was used here for Rayleigh channel winds. Note the different axis scaling.

tropical regions (right). Apart from small differences the overall result is similar.

Overall, Fig. 96 is in close agreement with Fig. 92. Based on these global results it is hard to make a definite selection of most informative scenarios. Each of the scenarios shows merit in different global regions. An alternative measure for information content is to use the model error as a reference rather than a radiosonde. This is discussed in [RD13].

8 Task 4c: Vertical sampling scenarios information content - new scenarios - global statistics - one day from the database

In this section the information content of the scenarios in section Appendix A.3 are considered similar as in the previous sections. The scenarios presented in section Appendix A.3 and discussed in this section are considered to be state of the art, fulfilling the requirements defined in [RD6]. Before presenting the results the reader is referred to Appendix B for an overview of the overall statistics of Mie and Rayleigh winds for all sampling scenarios.

8.0.7 PBL wind information content

Figure 98 shows the number of Mie winds measured in the PBL by the various vertical sampling scenarios displayed in section Appendix A.3. From Fig. 98 it is clear that many Mie winds are flagged which is explained mainly by insufficient SNR in cloudy regions. Figure 99 shows a similar plot but now for PBL Rayleigh channel winds. The data coverage of all three retrieval options is obviously identical with more flagged winds for options 2 and 3. Processing option 1, and to a lesser extent processing option 3, provides both more good and bad quality winds and this latter property makes this option less favourable. Figure 100 shows the combined Mie and Rayleigh data coverage in the PBL obtained by adding the numbers in Figs. 98 and 99. There may be redundancy in this plot in case of both good quality Mie and Rayleigh winds in the same bin, although this can only be the case for processing option 1.

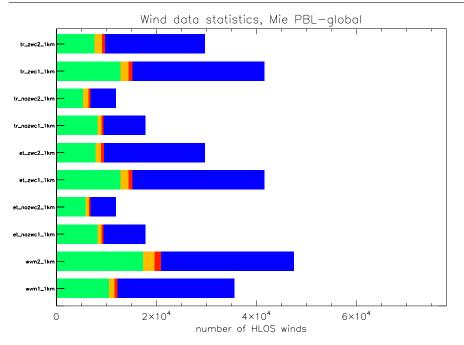


Figure 98: Number of good (green), moderate (orange), bad (red) and quality controlled (blue) Mie channel HLOS winds in the PBL for the sampling scenarios defined along the y-axis. Data are obtained from one day (1/1/2007) covering 15 (half CALIPSO) orbits and about 6000 HLOS wind profiles.

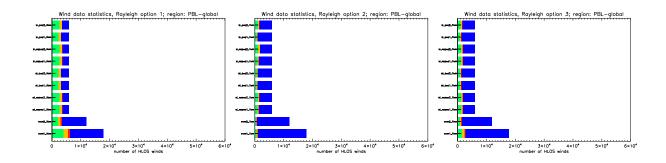


Figure 99: Same as Fig. 98 but now for Rayleigh channel winds retrieved with processing option 1 (left), option 2 (middle) and option 3 (right).

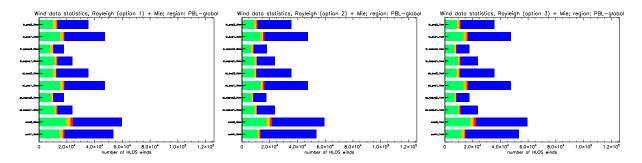


Figure 100: Total number of good, moderate, bad and quality controlled HLOS wind obtained from accumulating the Mie (Fig. 98) and Rayleigh (Fig. 99) winds for processing option 1 (left), option 2 (middle) and option 3 (right).

Lower-troposphere wind information content 8.0.8

Figure 101 shows the number of Mie winds measured in the lower troposphere by the various vertical sampling scenarios displayed in Appendix A. Note the substantially smaller number of bad quality winds as compared to the PBL, because no quality control relaxation was applied in this region. From Fig. 101 it is clear that many Mie winds are flagged which is explained by the generally small aerosol loading above the PBL. Most Mie winds are obtained in cloudy regions. Figure 102 shows a similar plot but now for lower troposphere Rayleigh channel winds. The data coverage is equal for all scenarios because the bin size has a constant value of 1000 m for all scenarios in this region. Again, more winds are flagged for options 2 and 3 than for option 1. Figure 103 shows the combined Mie and Rayleigh data coverage in the lower troposphere obtained by adding the numbers in Figs. 101 and 102.

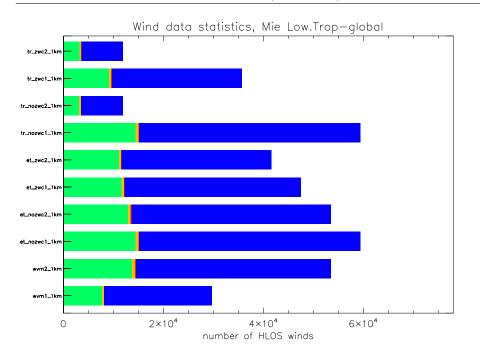


Figure 101: Number of good (green), moderate (orange), bad (red) and quality controlled (blue) Mie channel HLOS winds in the lower troposphere for the sampling scenarios defined along the y-axis. Data are obtained from one day (1/1/2007) covering 15 (half CALIPSO) orbits and about 6000 HLOS wind profiles.



Figure 102: Same as Fig. 101 but now for Rayleigh channel winds retrieved with option 1 (left), option 2 (middle) and option 3 (right).

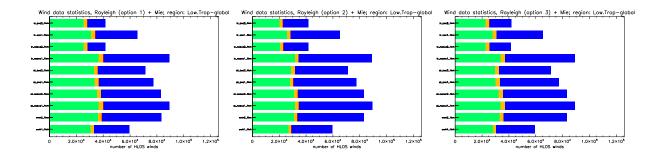


Figure 103: Same as Fig. 100 but now for the lower troposphere.

Upper-troposphere lower-stratosphere wind information content 8.0.9

Figure 104 shows the number of Mie winds measured in the UTLS by the various vertical sampling scenarios displayed in Appendix A. From Fig. 104 it is clear that many Mie winds are flagged which is explained by the generally negligible aerosol loading in this region. Virtually all Mie winds are obtained in cloudy regions. Figure 105 shows a similar plot but now for UTLS Rayleigh channel winds. The data coverage is equal for all scenarios because the bin size has a constant value of 1000 m for all scenarios in this region. Again, more winds are flagged for options 2 and 3 than for option 1. Figure 106 shows the combined Mie and Rayleigh data coverage in the UTLS obtained by adding the numbers in Figs. 104 and 105

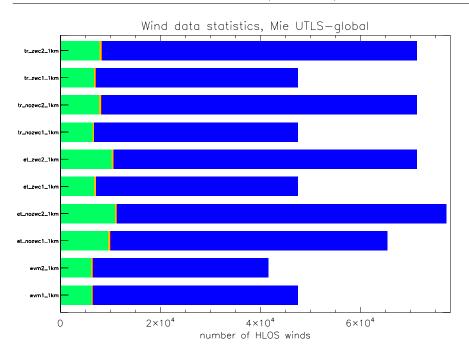


Figure 104: Number of good (green), moderate (orange), bad (red) and quality controlled (blue) Mie channel HLOS winds in the UTLS for the sampling scenarios defined along the y-axis. Data are obtained from one day (1/1/2007) covering 15 (half CALIPSO) orbits and about 6000 HLOS wind profiles.

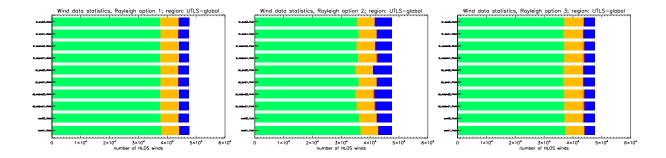


Figure 105: Same as Fig. 104 but now for Rayleigh channel winds retrieved with option 1 (left), option 2 (middle) and option 3 (right).

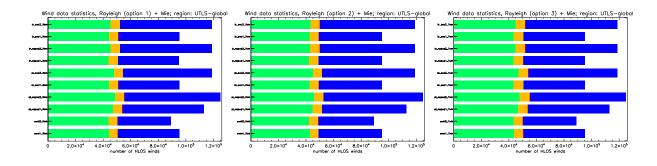


Figure 106: Same as Fig. 100 but now for the UTLS.

119/ 160

Stratosphere wind information content 8.0.10

Figure 107 shows the number of Mie winds measured in the stratosphere above 15 km by the various vertical sampling scenarios displayed in Appendix A. For some scenarios the Mie channel does not reach this altitude. The Mie channel is generally not very efficient in this region, except in the tropics in case of cirrus clouds. From Fig. 107 it is clear that many Mie winds are flagged which is explained by the generally negligible aerosol and cloud loading at these altitudes. Virtually all Mie winds are obtained in cloudy regions in the tropics. Figure 108 shows a similar plot but now for stratosphere Rayleigh channel winds. The statistics for all 3 options are similar and virtually all winds have good quality with only a small number of flagged winds because the atmosphere is free of particles. Figure 109 shows the combined Mie and Rayleigh data coverage in the stratosphere obtained by adding the numbers in Figs. 107 and 108.

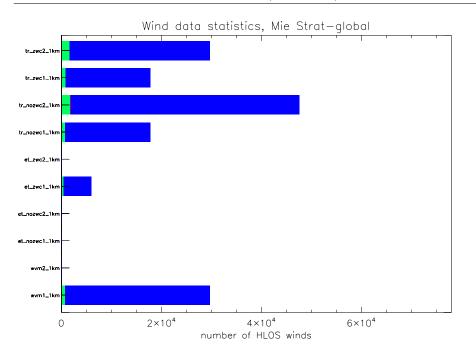


Figure 107: Number of good (green), moderate (orange), bad (red) and quality controlled (blue) Mie channel HLOS winds in the stratosphere for the sampling scenarios defined along the y-axis. Data are obtained from one day (1/1/2007) covering 15 (half CALIPSO) orbits and about 6000 HLOS wind profiles.

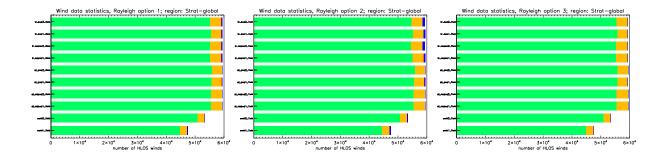


Figure 108: Same as Fig. 107 but now for Rayleigh channel winds retrieved with option 1 (left), option 2 (middle) and option 3 (right).

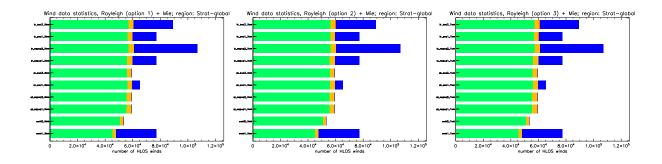


Figure 109: Same as Fig. 100 but now for the stratosphere.

121/ 160

HLOS wind quality in tropical cirrus 8.0.11

In this section we zoom in to scenes of tropical cirrus and determine the quality and coverage of HLOS winds for the vertical sampling scenarios displayed in Appendix A.3. Figure 110 shows the quality of Mie winds in scenes with tropical cirrus between 10 and 20 km altitude. The Mie channel resolution and bin locations is different for all scenarios in this region. The Mie wind bias is small for all scenarios with a maximum of about 0.2 ms^{-1} for scenario tr_zwc1 that has relative low resolution in this region. Also the standard deviation is largest for scenarios with relative resolution: tr_zwc1, tr_nozwc1 and wvm2. Scenarios tr_zwc2 and tr_nozwc2 with maximum resolution in this region perform best with the largest coverage (right panel) and smallest standard deviation. The data coverage of the extra-tropical scenarios is smaller than for the tropical scenarios because of lower maximum Mie channel altitude.

Figures 111, 112 and 113 show the quality and coverage of Rayleigh channel winds for processing options 1, 2 and 3 respectively. The bias is largest for processing option 1 as expected because of cross-talk. Crosstalk correction (processing option 3) reduces the HLOS wind bias substantially by about 50%, but the standard deviation also increases by about 50% from 1.5 ms^{-1} for option 1 to about 2.25 ms⁻¹ for option 3, which is explained by the reduced SNR after cross-talk correction. As a result the quality of Rayleigh winds in cirrus scenes is generally worse than in cloud-free scenes. The data coverage for option 1 is larger than for option 3 as expected because more winds are flagged as suspicious due to reduced SNR for option 3. The data coverage of option 2 is substantially smaller, because no Rayleigh winds are obtained for processing option 2 if all measurements are classified as "particle". For partly cloudy scenes a wind estimate may be obtained from the "particle-free" measurements, but in many cases the SNR will be too low and the wind solution is flagged as suspicious. The bias of the remaining winds is larger than for option 3 but smaller than for option 1. The standard deviation is close to option 3 and smaller than for option 1 because only a reduced number of measurements are accumulated thus reducing the SNR.

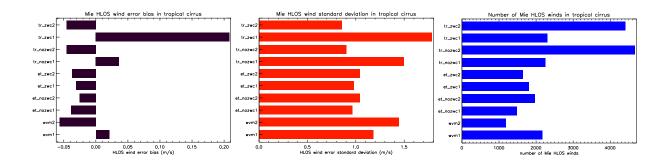


Figure 110: Quality and coverage of Mie HLOS winds in tropical cirrus scenes as a function of vertical sampling scenario: Mie HLOS wind error bias (left), standard deviation (middle) and the number of data (right).

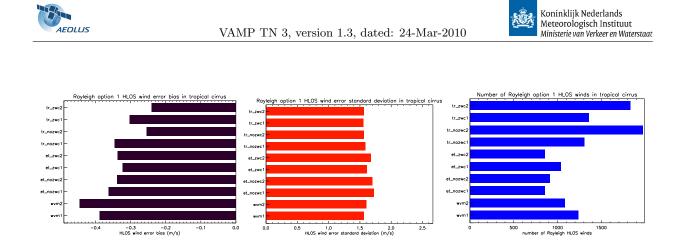


Figure 111: Quality and coverage of Rayleigh HLOS winds (processing option 1) in tropical cirrus scenes as a function of vertical sampling scenario: Rayleigh HLOS wind error bias (left), standard deviation (middle) and the number of data (right).

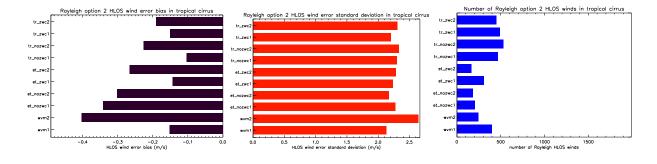


Figure 112: Same as Fig. 111 but now for Rayleigh channel processing option 2.

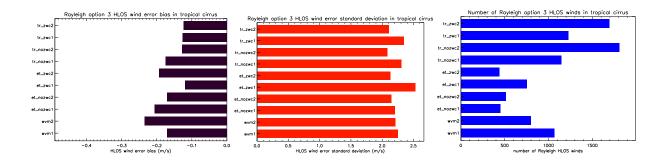


Figure 113: Same as Fig. 111 but now for Rayleigh channel processing option 3.

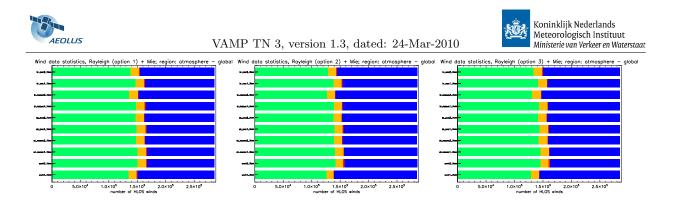


Figure 114: Same as Fig. 100 but now for all atmospheric regions accumulated. These plots show the total data coverage and HLOS wind quality throughout the atmosphere.

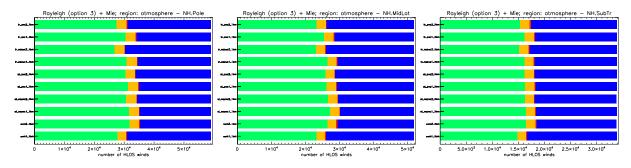


Figure 115: Same as Fig. 114 but now for different climate zones: Northern Hemispere (NH) polar region (left), NH mid-latitude region (middle) and the NH sub-tropical region (right). Rayleigh option 3 is used in all plots. Note the different scaling along the x-axis.

8.0.12 Total wind information content

Figure 114 shows the overall global result of combined Mie and Rayleigh data coverage from all atmospheric regions obtained by adding the numbers in Figs. 100, 103, 106 and 109. The total number of wind observations equals 6000 (profiles) \times 24 (bins) \times 2 (channels) \approx 2.88 \cdot 10⁵. From this figure it is concluded that about half of the retrieved HLOS winds is flagged as suspicious mainly because of lack of SNR. It is clear that processing option 1 yields most good quality winds and processing option 3 yields slightly more good quality winds than processing option 2. Also the increased Mie resolution in the UTLS in the tropical scenarios tr_zwc2 and tr_nozwc2 does not pay off in the global picture and is at the expensive of Mie winds in other height levels. Figures 115 and 116 zoom in on the various climate zones for Rayleigh option 3 and highlight some specific climatological features that are filtered in the global picture from the right panel of Fig. 114. For instance overall scenarios tr_zwc2_1km and tr_nozwc2_1km perform worst, but when zooming in on the tropical region, they are similar to the other scenarios and show more good quality winds than e.g. wvm1_1km, see the left panel in Fig. 116. The other scenarios also show differences for different climate zones but these are more subtle.

Figure 117 shows the mean DWL profile information content relative to that of (synthetic) radiosondes (at the same locations). The information content of all scenarios is around 0.65 in the left panel, i.e. when excluding the representativeness error inflation for closely spaced profile bins. This means that the information content of one DWL profile is on average 65% of the information content of a radiosonde. The, on average, smaller information content of a DWL profile relative to a radiosonde is mainly explained by clouds obscuring the lower part of the atmosphere for DWL but not for radiosonde. A limitation of the proposed information content calculation is that DWL measurements above 20 km yield little information relative to a radiosonde because the instrument error increases rapidly for DWL at higher altitudes, but not for radiosondes, while the representativeness error of DWL winds is only slightly smaller than for radiosondes. When including the representativeness error inflation for closely spaced profile bins the picture changes, see the right panel in fig. 96. The information content of DWL relative to radiosonde decreases on average to slightly above 0.5, because the vertical spacing of the former is smaller. Also, the information

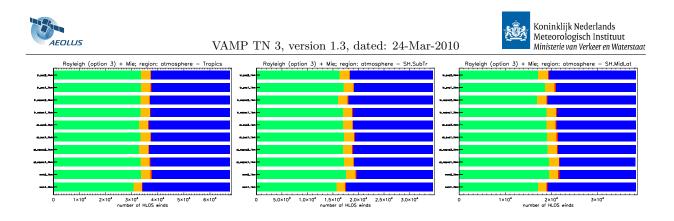


Figure 116: Same as Fig. 115 but now for climate zones: Tropics (left), Southern Hemisphere (SH) sub-tropics (middle) and SH mid-latitudes (right).

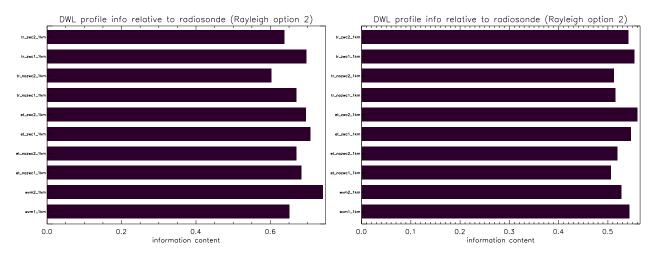


Figure 117: DWL profile information content relative to radiosonde information content excluding (left) and including (right) representativeness error inflation for closely spaced profile bins. Retrieval option 2 (classification) was used here for Rayleigh channel winds. All DWL profiles covering the full Northern Hemisphere and the Southern Hemisphere up to 61°S were used. Note the different axis scaling.

content of scenario WVM2 with high resolution Mie channels in the PBL has substantially reduced. As in section 7.0.6, the differences after segregation in extra-tropical and tropical regions is small (not shown).

Overall, Fig. 117 is in close agreement with Fig. 114. Based on these global results it is hard to make a definite selection of most informative scenarios. Each of the scenarios shows merit in different global regions. An alternative measure for information content is to use the model error as a reference rather than a radiosonde. This is discussed in [RD13].

9 Task 4c: Vertical sampling scenarios information content - new scenarios - climate zone statistics - two months from the database

For four selected vertical sampling scenarios a more extensive information content evaluation has been performed. The scenarios include: wvm1_1km, wvm2_1km, et_zwc2_1km and tr_zwc2_1km. HLOS winds have been simulated for these scenarios for two one-months periods covering a winter (January 2007) and summer (August 2007) period. This included about 900 (half) CALIPSO orbits from the atmospheric database that is compatible to 1800 full ADM orbits or 4 months of ADM data. (The factor of 2 is explained by simulation in continuous rather than burst mode, i.e. 4 observations per 200 km). The total computation time took 5 weeks. LIPAS was run continuously over this period without any user

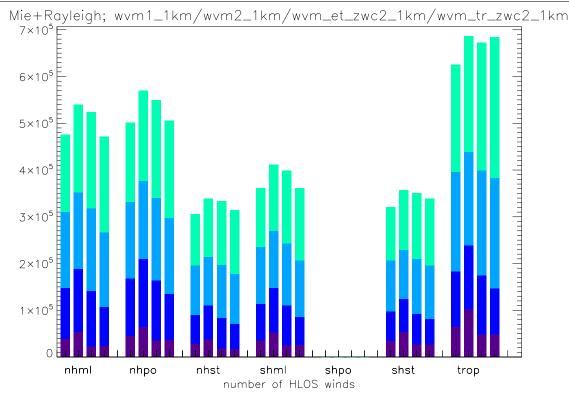


Figure 118: Total number of good and moderate Mie and Rayleigh winds in January 2007 for the NHmidlatitudes (nhml), NH-Pole (nhpo), NH-subtropics (nhst), SH-midlatitudes (shml), SH-Pole (shpo), SH-subtropics (shst) and Tropics (trop). Purple/dark blue/light-blue/green corresponds to PBL/lowertroposphere/UTLS/stratosphere respectively. The 4 columns for each climate zone correspond to scenarios wvm1_1km, wvm2_1km, et-zwc2_1km and tr-zwc2_1km respectively.

interaction, demonstrating the robustness of LIPAS. Data coverage and information content statistics have been determined as a function of 7 climate zones: Polar regions (70-90N/S), Mid-latitude regions (40-70N/S), Subtropics (20-40N/S) and Tropics (20N-20S). Figure 118 shows that the data coverage trend of the scenarios is similar for all climate zones in the winter period with most data obtained with scenario wvm2_1km and least data with wvm1_1km. The tropical scenario, tr_zwc2_1km, performs better in the tropics than the extra-tropical scenario, et_zwc2_1km, and is close to wvm2_1km. Vice versa, the extratropical scenario performs better in the extra-tropics than the tropical scenario. No data are measured over the Southern Hemisphere polar region in January because no data are available from the database for this region (no nighttime CALIPSO orbit). Figure 119 shows the data coverage for the Mie and Rayleigh channels separately. (Adding both plots yields Fig. 118). Scenario wvm2_1km yields most wind from the Mie channel because of the high resolution in the PBL. For all climate zones virtually no data are obtained from the Mie channel in the stratosphere (above 15 km) except in the Tropics. The picture for the Rayleigh channel is consistent for all climate zones with increasing coverage from left to right.

The picture is similar for the summer period in Figs. 120 and 121. No data are now measured over the Northern Hemisphere polar region because of missing nighttime CALIPSO orbits for this region. The PSCs show up over the Southern Hemisphere polar region in the Mie channel statistics in the left panel of Fig. 121 Figure 119 shows the data coverage for the Mie and Rayleigh channels separately. (Adding both plots yields Fig. 118). Scenario wvm2_1km yields most wind from the Mie channel because of the high resolution in the PBL. For all climate zones virtually no data are obtained from the Mie channel in the stratosphere (above 15 km) except in the Tropics. The picture for the Rayleigh channel is consistent for all climate zones with increasing coverage from left to right.

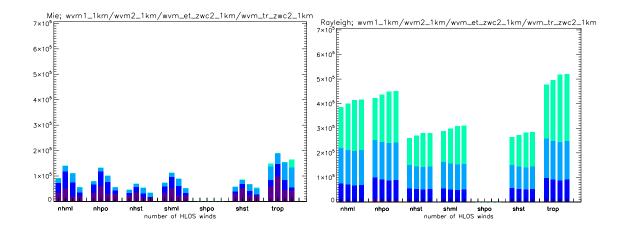
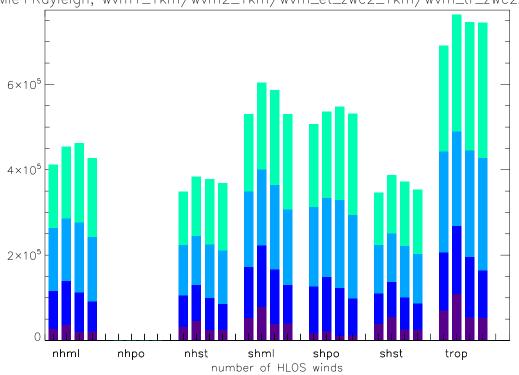



Figure 119: Same as Fig. 118 but now for Mie (left) and Rayleigh (right) winds only.

Mie+Rayleigh; wvm1_1km/wvm2_1km/wvm_et_zwc2_1km/wvm_tr_zwc2_1km

Figure 120: Same as Fig. 118 but now for the summer (August 2007) period.

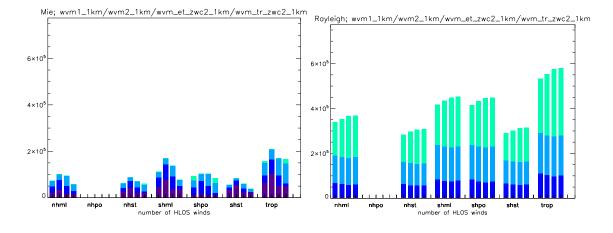


Figure 121: Same as Fig. 118 but now now for the summer (August 2007) period.

Figures 122 to 125 show the statistics of Mie and Rayleigh wind errors for the 4 sampling scenarios for January 2007, as obtained from more than 150000 wind profiles. The symbols are explained in Fig. 72 and are repeated here for convenience. The red stars correspond to the Mie channel winds. For the Rayleigh winds, remind that three processing options for wind retrieval have been implemented in LIPAS. These include: simply accumulating all measurements ignoring particle presence (option 1, blue diamonds), first measurement classication before accumulating particle-free measurements only (option 2, green triangles) and application of cross-talk correction to Rayleigh measurements contaminated with particles before accumulation (option 3, magenta squares). Right, the number of data that passed quality control and used in the statistics.

From these figures it is concluded that the Mie wind bias is generally very close to zero, within a couple tenths of ms^{-1} . The "outlier" of 0.5 ms^{-1} at 17 km in the top left panel of Fig. 122 is explained by events of large wind-shear in combination with tropical cirrus that may cause large errors in retrieved Mie winds for large Mie bin sizes, see for instance Appendix C. The outlier in the top right panel at 17 km is also related to such events. The tropical scenario wvm_tr_zwc2_1km scenario in Fig. 125 is less sensitive for this kind of errors because of its dense Mie sampling near the tropical tropopause.

The Mie wind error standard deviation is generally close to 1 ms^{-1} throughout the free troposphere (mainly cloud related winds) with slightly increasing errors in the boundary layer due to signal loss from aerosol and molecular backscatter and extinction. The relative large errors in the top right panel in Fig. 122 in the stratosphere is explained from a small amount of scenes (see bottom figure) with small particle density, e.g. optically thin PSCs that rarely occur over the NH polar region in winter, or that are dominated by noise in the CALIPSO retrievals.

The bias in the Rayleigh winds is generally within 0.5 ms^{-1} with larger values found in the stratosphere. The negative biases in the stratosphere are explained by on average increasing wind velocities and decreasing molecular density with altitude. The larger weight to the smaller wind velocities in the lower part of the Rayleigh bin explains the underestimate of the mean wind velocity inside the bin. In principle this effect can be easily corrected for known temperature and pressure conditions. The three Rayleigh options produce similar statistics on average with slightly larger biases for option 3 and (surprisingly) smaller biases for option 1 in the PBL. Here, we note that the biases for option 1 can be significant for specific scenes as explained in sections 6.3 and 8.0.11. The smaller standard deviation for option 1 is explained by the larger SNR of the processed signals than for the other options. This also explains the largest number of observations for option 1 because quality control is based on SNR, see section 6.2.2.

The Rayleigh wind error standard deviation is generally around 1.5 ms^{-1} throughout the free-troposhere with slightly increased errors in the PBL (aerosol/molecule extinction) and steadily increasing errors higher up in the stratosphere (decreasing molecule density).

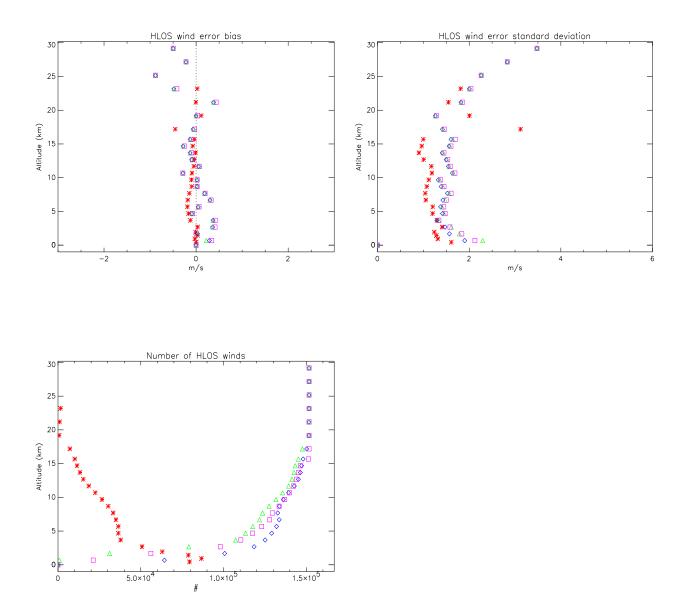


Figure 122: HLOS wind error statistics for sampling scenario wvm1_1km in January 2007: HLOS wind error bias (top left) and HLOS wind error standard deviation (top right). The number of (non-flagged) winds (bottom left). Statistics are based on about 150000 wind profiles i.e. 30 days. The symbols are explained in Fig. **72**

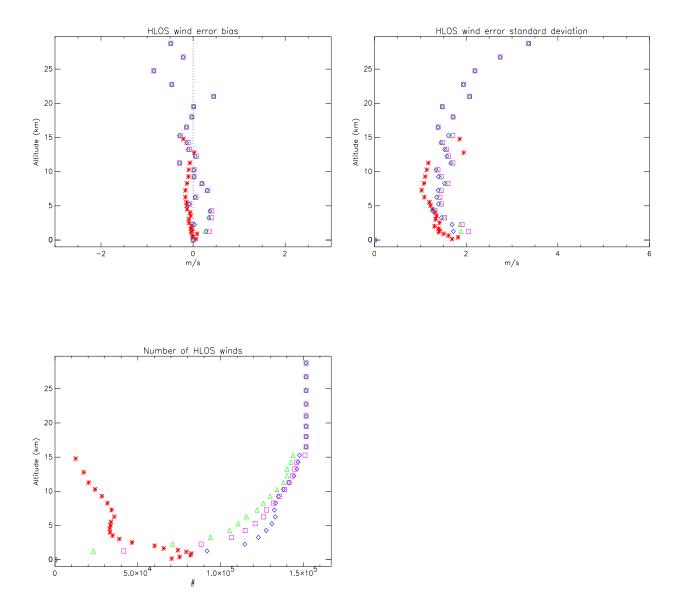


Figure 123: HLOS wind error statistics for sampling scenario wvm2_1km in January 2007: HLOS wind error bias (top left) and HLOS wind error standard deviation (top right). The number of (non-flagged) winds (bottom left). Statistics are based on about 150000 wind profiles i.e. 30 days.

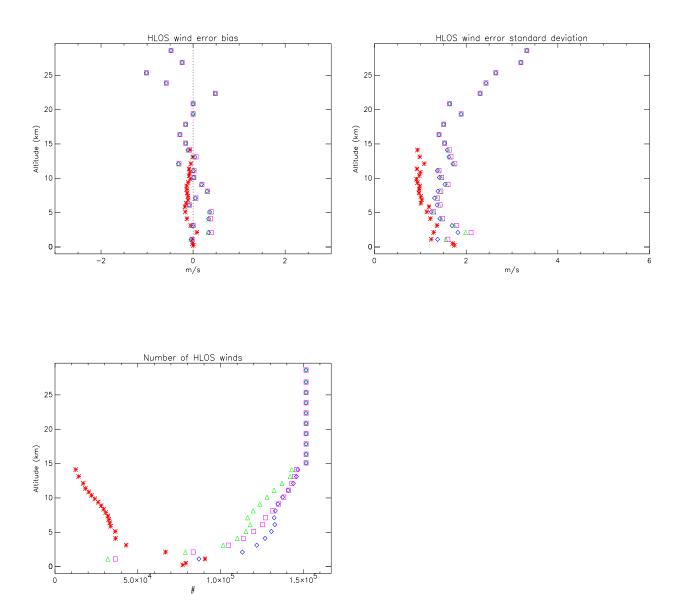


Figure 124: HLOS wind error statistics for the extra-tropical sampling scenario wvm-et-zwc2_1km in January 2007: HLOS wind error bias (top left) and HLOS wind error standard deviation (top right). The number of (non-flagged) winds (bottom left). Statistics are based on about 150000 wind profiles i.e. 30 days.

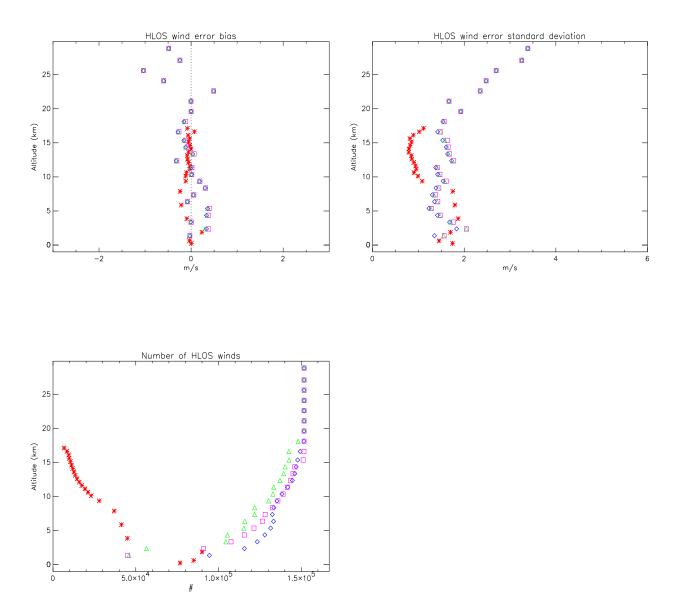


Figure 125: HLOS wind error statistics for the tropical sampling scenario wvm-tr-zwc2_1km in January 2007: HLOS wind error bias (top left) and HLOS wind error standard deviation (top right). The number of (non-flagged) winds (bottom left). Statistics are based on about 150000 wind profiles i.e. 30 days.

VAMP TN 3, version 1.3, dated: 24-Mar-2010

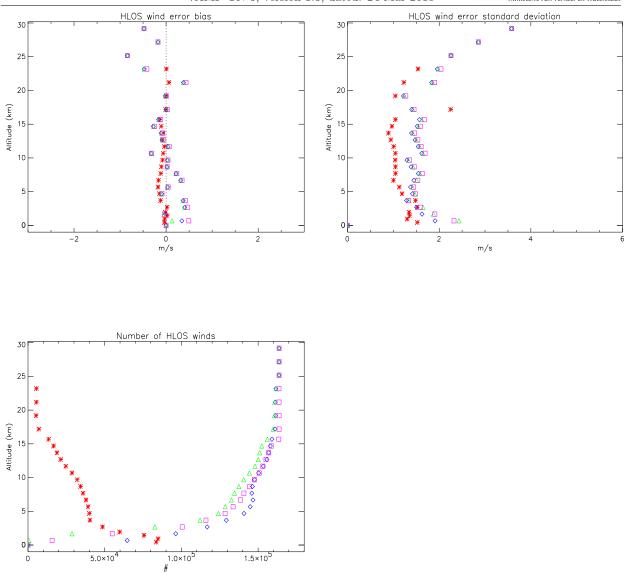


Figure 126: HLOS wind error statistics for sampling scenario wvm1_1km in August 2007: HLOS wind error bias (top left) and HLOS wind error standard deviation (top right). The number of (non-flagged) winds (bottom left). Statistics are based on about 160000 wind profiles i.e. 30 days.

Figures 126 to 129 show the statistics of Mie and Rayleigh wind error for the 4 scenarios for August 2007, covering more than 160000 wind profiles.

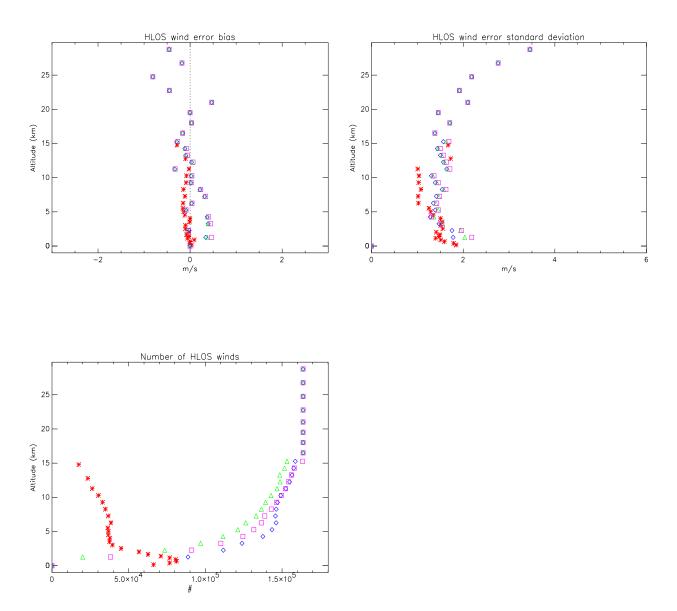


Figure 127: HLOS wind error statistics for sampling scenario wvm2_1km in August 2007: HLOS wind error bias (top left) and HLOS wind error standard deviation (top right). The number of (non-flagged) winds (bottom left). Statistics are based on about 160000 wind profiles i.e. 30 days.

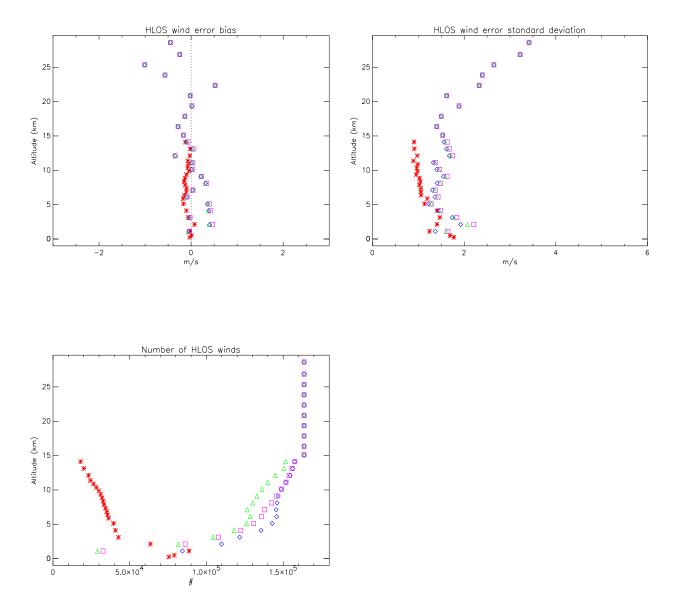


Figure 128: HLOS wind error statistics for the extra-tropical sampling scenario wvm-et-zwc2_1km in August 2007: HLOS wind error bias (top left) and HLOS wind error standard deviation (top right). The number of (non-flagged) winds (bottom left). Statistics are based on about 160000 wind profiles i.e. 30 days.

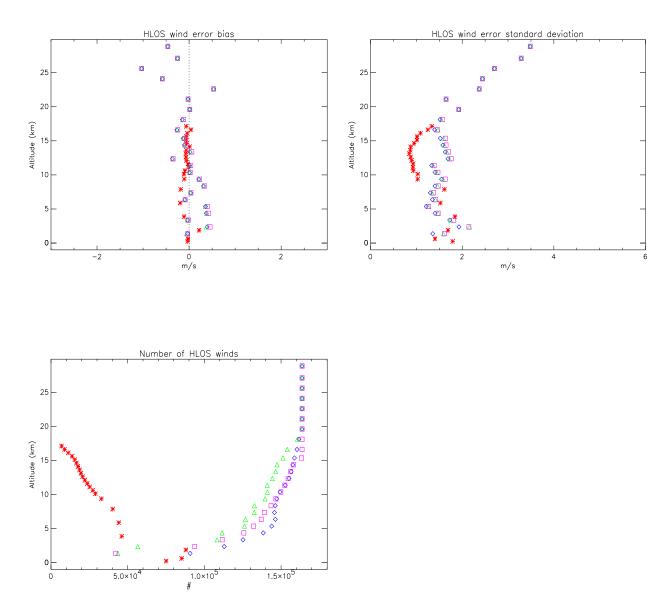


Figure 129: HLOS wind error statistics for the tropical sampling scenario wvm-tr-zwc2_1km in August 2007: HLOS wind error bias (top left) and HLOS wind error standard deviation (top right). The number of (non-flagged) winds (bottom left). Statistics are based on about 160000 wind profiles i.e. 30 days.

10 Summary and conclusions

Conclusions and recommendations for the Mie Core algorithm (Task 4a) were presented in section 3.12. The summary and conclusions below refer to the LIPAS upgrade (Task 4b) and vertical sampling scenario information content assessment (Task 4c).

Quality control parameters have been defined for Mie and Rayleigh winds that are used to flag suspicious wind retrievals, e.g. in case of low SNR or large Rayleigh channel cross-talk. The Rayleigh channel bin size should be at least 1000 m for sufficient SNR.

Three processing options for Rayleigh channel wind retrieval were discussed. All three options have been implemented in LIPAS. The options differ in the strategy of accumulating measurement signals before wind retrieval. The first option ignores particle contamination and simply accumulates all measurements. In the second option classification is done before accumulating particle-free classified measurements. In the third option contaminated measurements are corrected for cross-talk before accumulation.

The bias in Rayleigh channel winds through cross-talk is generally negligible and is only substantial in case that the following three conditions apply at the same time: i) low temperatures (below -20 degrees Celsius), ii) large scattering ratio values (exceeding a value of 4) and iii) large wind speeds along the laser LOS (more than 20 ms^{-1}). As a result bias through cross-talk is generally negligible in the PBL (temperature condition), in cloud-free regions above the PBL because of generally small aerosol loading (scattering ratio condition) and in the tropical region because of generally small zonal winds (wind condition).

Rayleigh channel cross-talk correction is possible in principle if an estimate of the scattering ratio is available, e.g. from a collocated Mie bin. Cross-talk correction is at the expense of SNR that may be too low for wind retrieval in scenes with large aerosol or cloud loading. An investigation for tropical cirrus has been performed that showed that cross-talk correction reduces the biases in HLOS winds by 50%. Yet, also the HLOS wind error standard deviation increased by about 50% but is still within the mission requirement for many cases.

For tropical cirrus scenes it was shown that increasing the Mie channel resolution improves both the data coverage and quality of Mie winds in this region. It was demonstrated in Appendix C that the resolution of the Mie bins should be high in particular at cirrus cloud tops. Also the quality of Rayleigh channel winds after cross-talk correction was slightly improved in this region, yielding a larger data coverage.

Based on these finding we conclude that cross-talk generally does not detriment Rayleigh channel winds and causes substantial biases only in a limited number of atmospheric scenes. Cross-talk correction for these scenes is needed to reduce the wind bias and increasing the resolution of the Mie channel in these regions both improves the Mie and Rayleigh channel winds quality and coverage. The data coverage from processing option 3 (cross-talk correction) is slightly better than for option 2 (classification) in general, but substantially better for cirrus clouds. Here we note that we used prior knowledge on the cross-talk contribution that is generally not available in the real world. It remains to be investigated whether the L2B optical properties code can provide an adequate estimate of the Rayleigh channel cross-talk contribution.

During the study, the definitions of the vertical sampling scenarios have changed. The most important change is the Rayleigh channel bin size in the lower part of the troposphere that needs to be increased from 500 m to 1000 m to meet the mission HLOS wind error standard deviation requirement. The data coverage and information content of these scenarios is substantially larger than for the 500 m bin size scenarios. The most recent sampling scenarios taking into account the maximum bin height requirement of 31 km are found in Appendix A.3.

Two measures were used to rank the various vertical sampling scenarios. The first measure is based on data coverage i.e. the total number of good quality Mie and Rayleigh winds. The second measure estimates the information content of DWL winds in data assimilation (DA) relative to synthetic radiosondes at the same location. Here, information content is modeled as the inverse of the estimated wind error variance, including representiveness error. A DWL wind profile contains 24 bins for both the Mie and Rayleigh channel winds. Each bin contains at maximum one valid wind component. For comparison radiosonde winds (both wind components) are used at the 16 standard pressure levels. The information content of a DWL profile relative to a radiosonde wind profile is between 60% and 75% depending on the sampling scenario, with maximum information content for scenario wvm2_1km and minimum performance for scenario tr_nozwc2_1km. For typical tropical conditions wvm_stratos has largest good quality data and largest DA information content although tr_nozwc2_1km has most Mie winds in the UTLS and stratosphere. For the

extra-tropics there is no clear preference for either of _1km scenarios, but et_zwc2_1km and et_nozwc2_1km have most winds in the UTLS. In general we can state that the information content of scenarios that include the possibility of Mie channel calibration combined with Rayleigh channel cross calibration is larger than for scenarios without calibration possibilities.

Scenario wvm2_1km is most informative on average when focusing on data both coverage and the DA information content measure, because of the high Mie resolution of 250 m in the lower part of the troposphere. However, to complete the information content measure of DWL wind profiles one should also take into account the correlation length of model background error structures. The correlation lengths for the ECMWF global model and limited area HARMONIE model typically ranges from 500 m in the PBL to 2500 m in the stratosphere with a local maximum of 1500 m near the tropopause. As a consequence, the information content of scenarios with closely spaced profile bins is generally smaller because individual bins sample the same background error structure, i.e. their information content is redundant because of correlated representativeness errors. This is true in particular for scenario wvm2_1km with high Mie channel resolution in the lower troposphere. Including the model background error correlation lengthscale into the information content measure reduces the relative information of DWL wind profiles to 50%-60% of that from radiosondes. The smaller numbers as before are explained by an on average smaller spacing of neighbouring winds in the DWL profile than in the radiosonde profile. Now scenario et_zwc2_1km performs best and et_nozwc1_1km worst.

Based on results from 1 day including 6000 DWL wind profiles a first selection of most informative vertical sampling scenarios was made: the default scenarios wvm1_1km and wvm2_1km, the extra-tropical scenario et_zwc2_1km and tropical scenario tr_zwc2_1km. For these four scenarios 2 months (January and August 2007) of DWL winds were simulated covering a total of 310000 profiles. The information content of these scenarios in January 2007 is 0.54/0.52/0.56/0.54 respectively.

Scenario et_zwc2_1km is found most informative on average based on the DA information content measure, although the total number of good quality winds is less than for wvm2_1km, mainly because of the relatively large amount of good quality winds in the lower troposphere of the latter.

It has been confirmed that scenarios defined for dedicated regions such as the tropics and extra-tropics indeed show increased performance in these regions.

Appendix A Vertical sampling scenarios

This appendix provides an overview of the vertical sampling scenarios defined in [RD6] that are further studied in this document. Three sets of scenarios are defined: 1) with 500 m Rayleigh bins near the surface, 2) with 1000 m Rayleigh bins near the surface and 3) with 1000 m Rayleigh bins near the surface and a maximum bin height at or below 31 km.

Vertical sampling scenarios with 500 m Rayleigh bins near the Appendix A.1 surface

Figures 130, 131 and 132 show the scenarios with 500 m bins near the surface for the Rayleigh channel. This bin size is generally too small for the Rayleigh channel for good quality winds. For this reason a new set of scenarios was defined with at least 1000 m Rayleigh bins, see Figs. 137, 138 and 139. Although obsolete it is illustrative to consider to 500 m Rayleigh bin scenarios as well. Finally, one additional scenario with maximum stratospheric coverage is considered in Fig. 136.

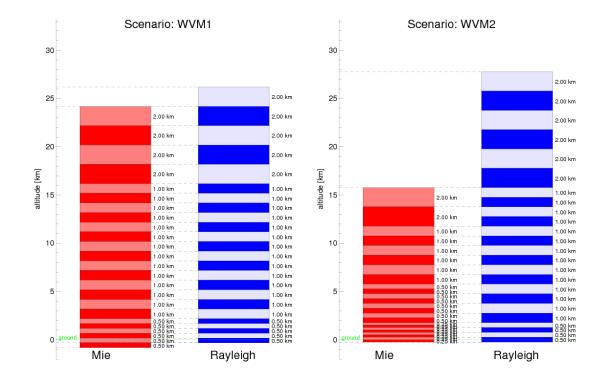


Figure 130: Vertical sampling default scenarios wvm1 (left) and wvm2 (right). The Mie channel reaches the ground for both scenarios thus providing the opportunity for Mie channel zero wind calibration.

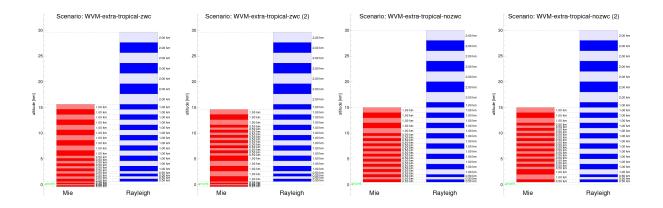


Figure 131: Extra-tropical vertical sampling with (leftmost two) and without (rightmost two) zero wind calibration opportunity. Scenario names from left to right: et_zwc1,et_zwc2,et_nozwc1,et_nozwc2.

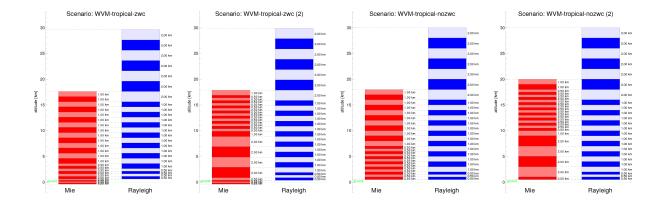


Figure 132: Tropical vertical sampling with (leftmost two) and without (rightmost two) zero wind calibration opportunity. Scenario names from left to right: tr_zwc1, tr_zwc2, tr_nozwc1, tr_nozwc2.

Figure 133: Same as Fig. 130 but now with 1000 m range bins for the Rayleigh channel near the surface. Scenario names are wvm1_1km (left) and wvm2_1km (right).

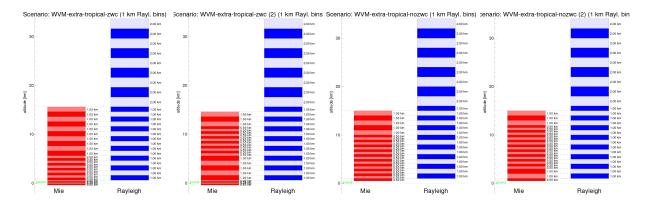


Figure 134: Same as Fig. 131 but now with 1000 m range bins for the Rayleigh channel near the surface. Scenario names from left to right: et_zwc1_1km, et_zwc2_1km, et_nozwc1_1km, et_nozwc2_1km.

Appendix A.2 Vertical sampling scenarios with 1000 m Rayleigh bins near the surface

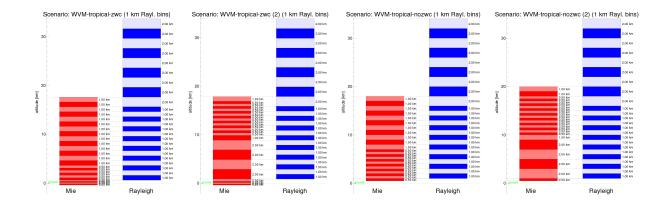


Figure 135: Same as Fig. 132 but now with 1000 m range bins for the Rayleigh channel near the surface. Scenario names from left to right: tr_zwc1_1km, tr_zwc2_1km, tr_nozwc1_1km, tr_nozwc2_1km.

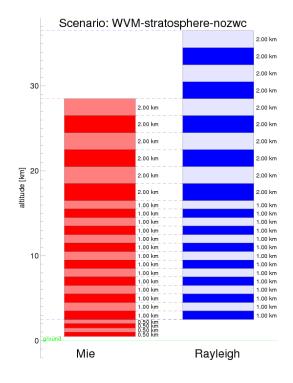


Figure 136: Stratospheric scenario with 1000 m (right) Rayleigh bins near the surface. This scenario has no zero wind calibration opportunity. The scenario is denoted wmv_stratos.

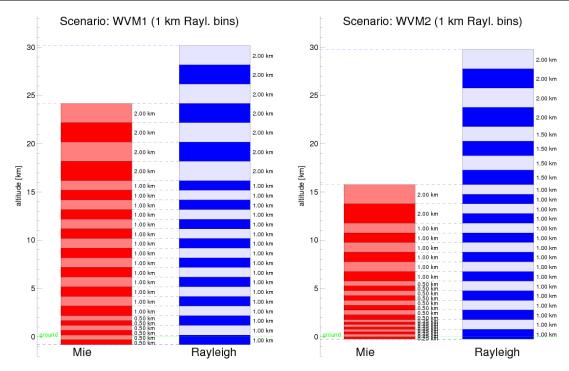


Figure 137: Same as Fig. 130 but now with 1000 m range bins for the Rayleigh channel near the surface. Scenario names are wvm1_1km (left) and wvm2_1km (right).

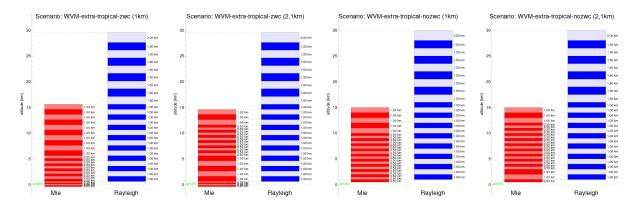


Figure 138: Same as Fig. 131 but now with 1000 m range bins for the Rayleigh channel near the surface. Scenario names from left to right: et_zwc1_1km, et_zwc2_1km, et_nozwc1_1km, et_nozwc2_1km.

Appendix A.3 Vertical sampling scenarios with 1000 m Rayleigh bins near the surface and maximum bin height below 31 km

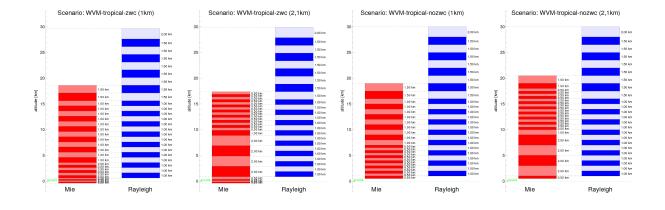


Figure 139: Same as Fig. 132 but now with 1000 m range bins for the Rayleigh channel near the surface. Scenario names from left to right: tr_zwc1_1km, tr_zwc2_1km, tr_nozwc1_1km, tr_nozwc2_1km.

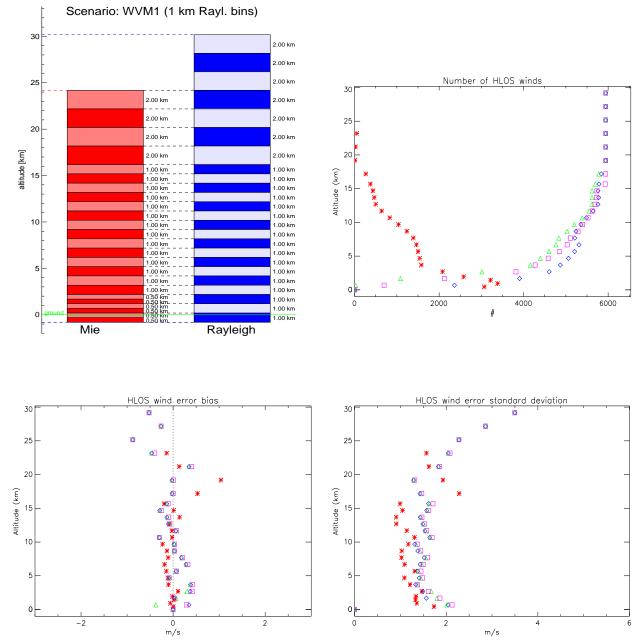


Figure 140: HLOS wind statistics for sampling scenario wvm1_1km (upper left): the number of (non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles.

Appendix B HLOS wind statistics

This section provides an overview of the overall statistics of Mie and and Rayleigh winds for all sampling scenarios defined in Appendix A.3.

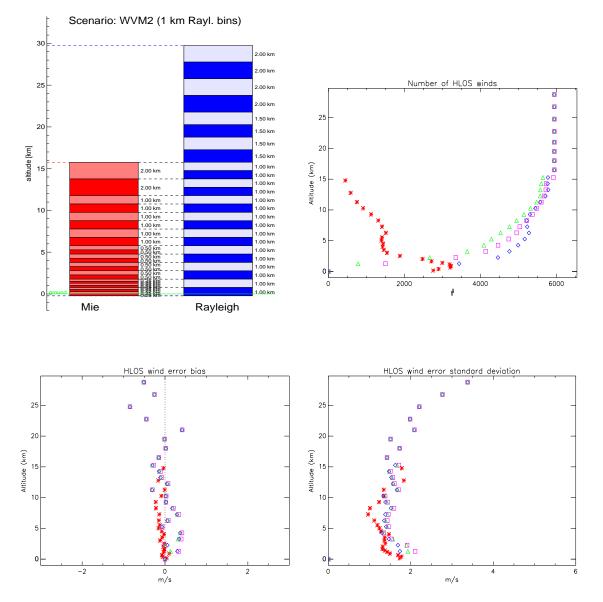
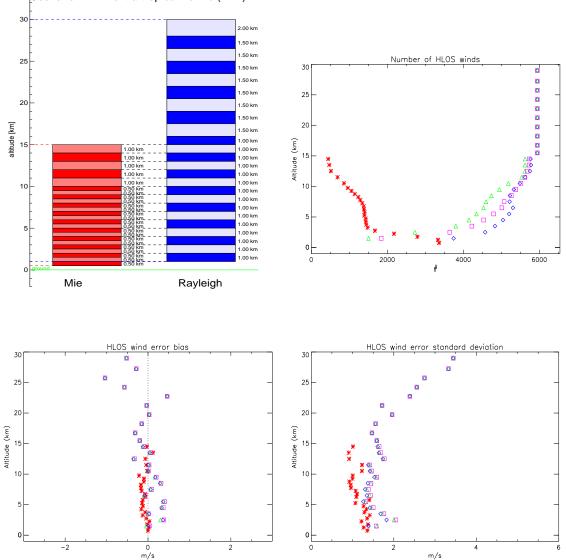
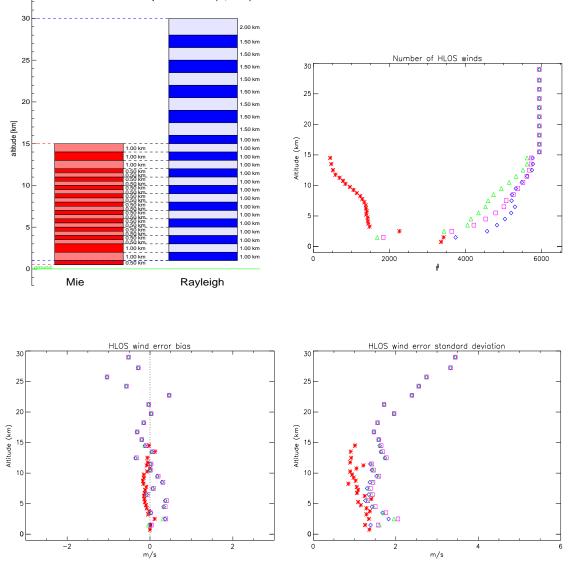



Figure 141: HLOS wind statistics for sampling scenario wvm2_1km (upper left): the number of (non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles.



Scenario: WVM-extra-tropical-nozwc (1km)

Figure 142: HLOS wind statistics for sampling scenario wvm_et_nozwc1_1km (upper left): the number of (non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles.

\$cenario: WVM-extra-tropical-nozwc (2,1km)

Figure 143: HLOS wind statistics for sampling scenario wvm_et_nozwc2_1km (upper left): the number of (non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles.

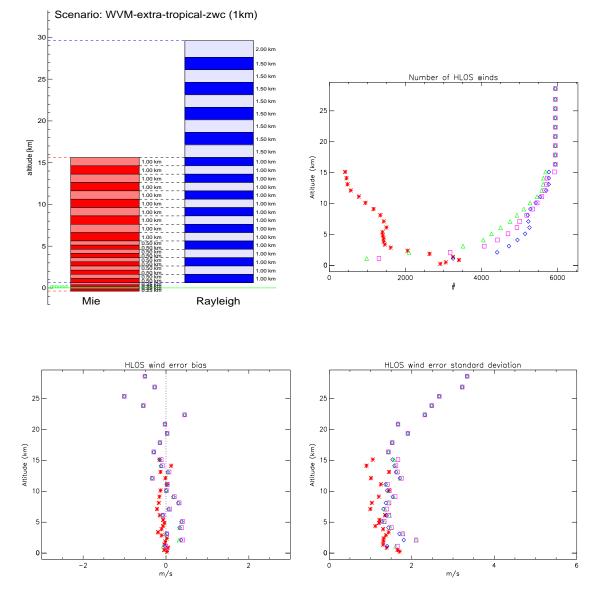


Figure 144: HLOS wind statistics for sampling scenario wvm_et_zwc1_1km (upper left): the number of (non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles.

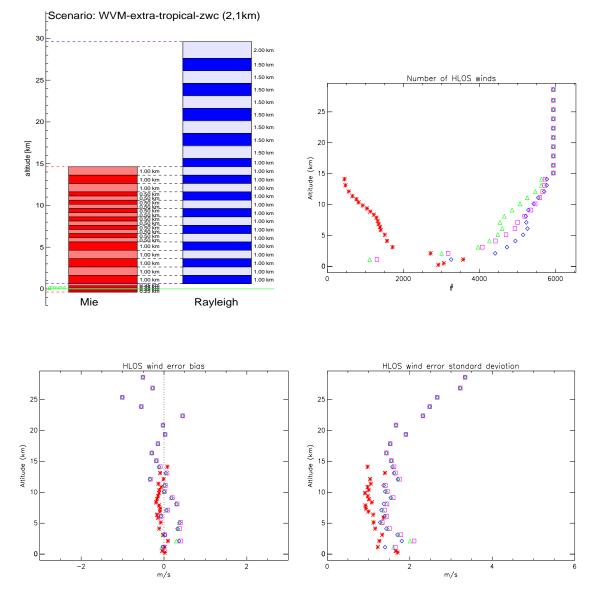


Figure 145: HLOS wind statistics for sampling scenario wvm_et_zwc2_1km (upper left): the number of (non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles.

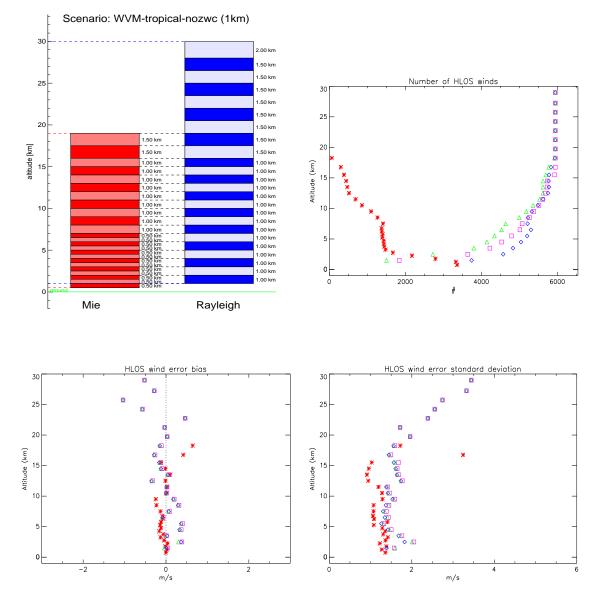


Figure 146: HLOS wind statistics for sampling scenario tr_nozwc1_1km (upper left): the number of (non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles.

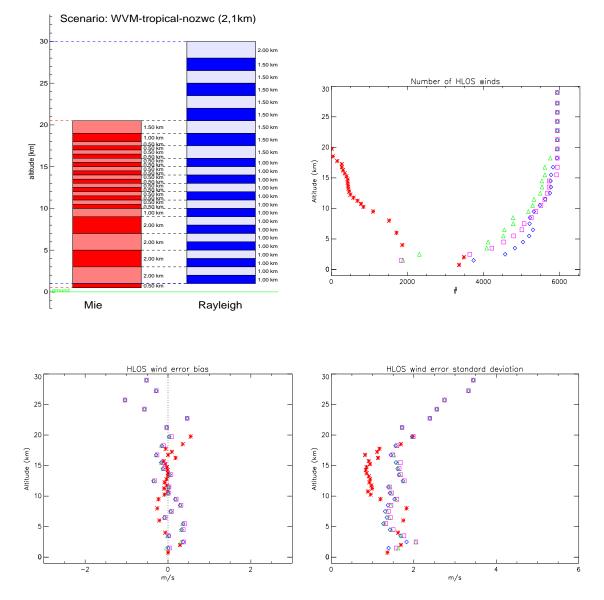


Figure 147: HLOS wind statistics for sampling scenario tr_nozwc2_1km (upper left): the number of (non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles.

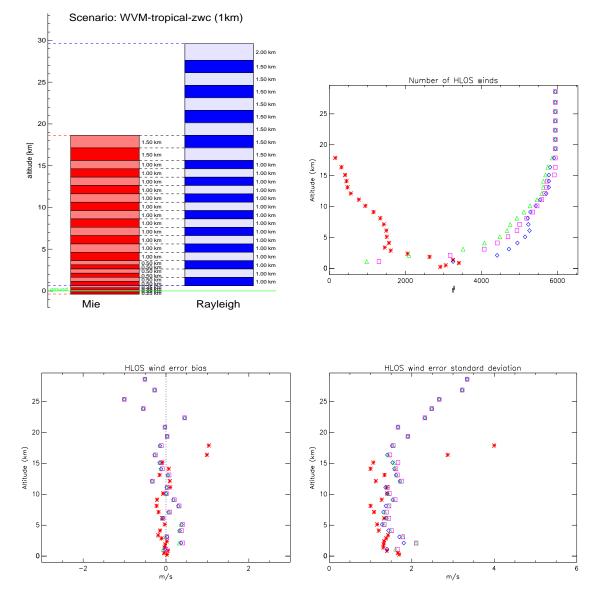


Figure 148: HLOS wind statistics for sampling scenario tr_zwc1_1km (upper left): the number of (non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles.

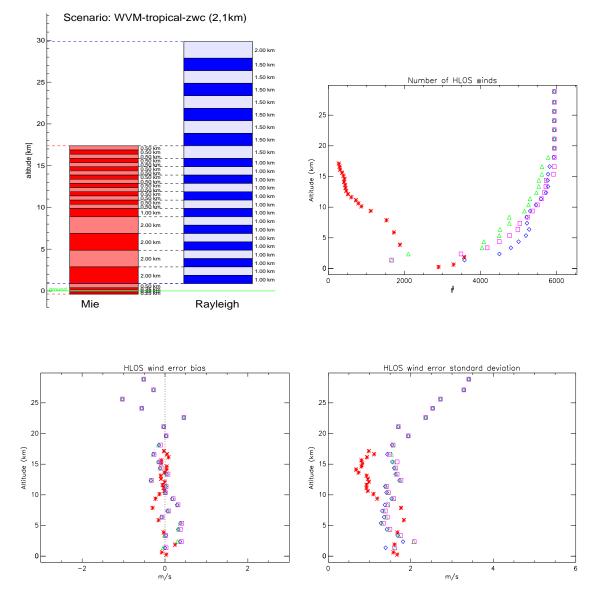


Figure 149: HLOS wind statistics for sampling scenario tr_zwc2_1km (upper left): the number of (non-flagged) winds (upper right), HLOS wind error bias (bottom left) and HLOS wind error standard deviation (bottom right). Statistics are based on 6000 wind profiles.

Appendix C Correlated wind errors in tropical cirrus

This appendix describes a situation of large wind-shears on top of a tropical cirrus cloud that induce large error in Mie winds. The top panel in Fig. 150 shows a large wind shear around 17 km in the tropical region between around 15 and -20 degrees altitude. From the bottom panel in Fig. 150 it is found that the cloud top is also located in this region. Mie bins for sampling scenario wvm1_1km reach these high altitudes. It appears that the cloud top is at the bottom of the Mie bin that ranges from 16180 km to 18180 km. In combination with a large wind-shear this may induce large biases in retrieved Mie winds. For instance at 1.22 degrees latitude, 115.27 degrees longitude the HLOS wind at 16180 km (bin bottom) equals 33.4 ms⁻¹ and -12.0 ms⁻¹ at 18180 km (bin top), i.e. a 0.0227 s^{-1} wind shear in the HLOS wind component, which is quite extreme. The resulting height assignment error is about 1 km, meaning that the HLOS wind error is about 20 ms⁻¹ when assigning the wind to the bin center.

Figure 151 shows the Mie wind and wind error. The latter is correlated and extends over about 4000 km, covering 20 ADM wind profiles. It is known that such errors are detrimental for NWP when they pass the assimilation quality control. Increasing the Mie channel resolution in this region as in scenario tr_nozwc2_1km substantially reduces these errors; compare e.g. the Mie wind error statistics in fig. 140 and 147.

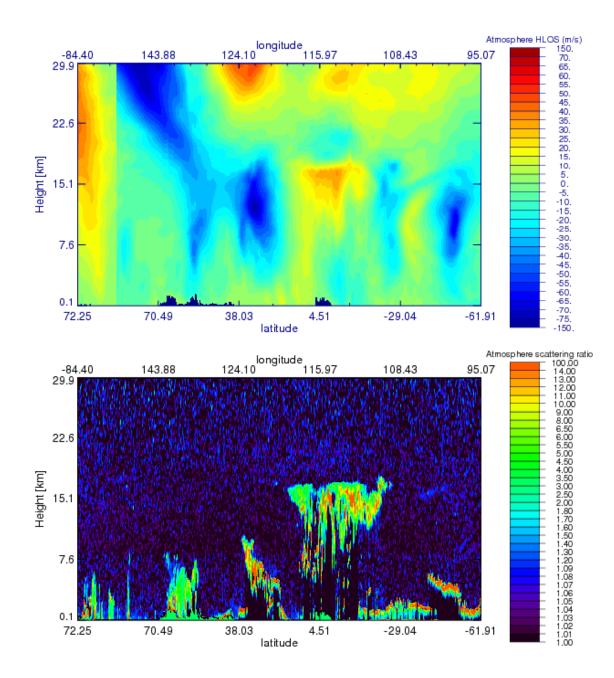


Figure 150: HLOS wind along CALIPSO orbit 11 on 2/1/2007 (top panel) and atmosphere scattering ratio (bottom panel).

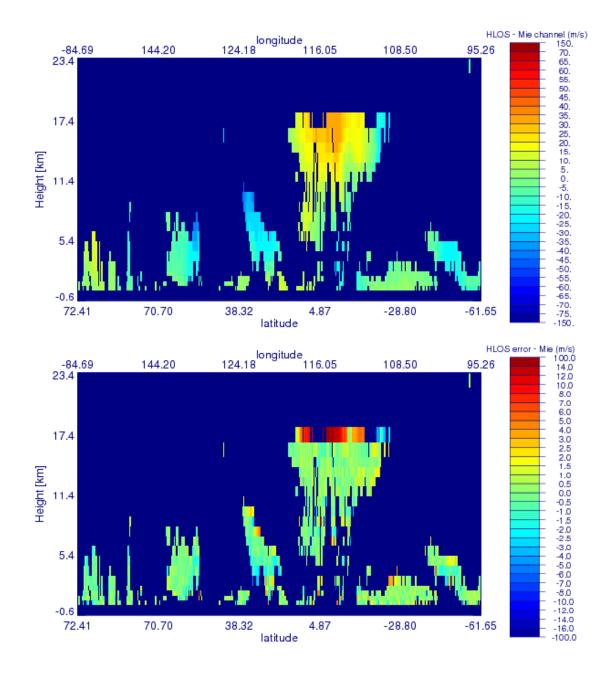


Figure 151: Mie channel HLOS wind (top) and wind error (bottom) for sampling scenario wvm1_1km.

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

- end of document -