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ABSTRACT

A new automated daytime cumulonimbus/towering cumulus (Cb/TCu) cloud detection method for the

months of May–September is presented that combines information on cloud physical properties retrieved from

the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat Second Generation (MSG)

satellites and weather radar reflectivity factors. First, a pixel-based convective cloud mask (CCM) is con-

structed on the basis of cloud physical properties [cloud-top temperature, cloud optical thickness (COT),

effective radius, and cloud phase] derived from SEVIRI. Second, a logistic regression model is applied to

determine the probability of Cb/TCu clouds for the collection of pixels that pass the CCM. In this model,

MSG-SEVIRI cloud physical properties and weather radar reflectivity factors are used as potential predictor

sources. The predictand is derived from aviation routine weather reports (METAR) made by human observers

at Amsterdam Airport Schiphol for 2004–07. Results show that the CCM filters out .70% of the ‘‘no’’ events

(no Cb/TCu cloud) and that .93% of the ‘‘yes’’ events (Cb/TCu cloud) are retained. Most skillful predictors

are derived from radar reflectivity factors and the COT of high resolution. The derived probabilities from the

combined MSG and radar method clearly show skill over sample climatology. Probability thresholds are used

to convert derived probabilities into derived group memberships (i.e., yes/no Cb/TCu clouds). When com-

paring verification scores between the combined MSG and radar method and either the radar-only method or

the MSG-only method, the combined MSG and radar method shows slightly better performance. When

comparing the combined MSG and radar method with the current Royal Netherlands Meteorological Institute

(KNMI) radar-based Cb/TCu cloud detection method, the two methods show comparable probability of

detection, but the former shows a false-alarm ratio that is about 8% lower. Moreover, a big advantage of the

newly developed method is that it provides probabilities, in contrast to the current KNMI method.

1. Introduction

Deep, convective clouds, such as towering cumulus

(TCu) and cumulonimbus (Cb), play an important role

in weather and climate through the transport of heat,

moisture, and momentum from the earth’s surface to the

free troposphere as well as through their impact on the

earth’s radiation budget. Observations of these clouds

can be important source data for assimilation in weather

forecasting and for monitoring climatological trends.

Moreover, rapidly changing weather on different spatial

and temporal scales may occur within and in the vicinity

of these clouds and, therefore, have a serious impact on

social–economic aspects of daily life.

The presence of associated severe weather can be rel-

evant to, for example, the transport industry, tourism,

the energy supply industry, the construction industry,

and farmers. The Cb and TCu clouds may pose a serious

risk to aviation through the hazardous weather, such as
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wind shear, heavy precipitation, and lightning, that is

associated with these clouds. Also, aircraft in-flight icing

may occur. Besides safety issues, hazardous weather

increases annual costs in the aviation industry through

the time and fuel losses that arise from delayed, can-

celed, and rerouted flights (Mecikalski et al. 2002).

Current techniques for detection and monitoring of

convective clouds and convective precipitation and the

nowcasting (i.e., forecasting of the weather within the next

6 h) of associated severe weather are mostly based on near-

real-time information given by radar and satellite. In con-

trast to satellites, developing convective activity cannot

be detected by radar until the precipitation stage has been

reached. Also, radar networks are limited in their coverage,

and spatial coverage can be reduced by ground shielding.

Radars do provide information about vertical profiles

within clouds, however, whereas satellite data mostly con-

tain information about the upper part of the clouds or in-

formation integrated over the entire cloud profile.

In the 1970s and 1980s, much effort was made to es-

timate convective rainfall on the large scale, such as

tropical rainfall, using infrared (IR) and visible (VIS)

data from geostationary meteorological satellites. In-

frared thresholds are identified that yield the best re-

lationship between cloud-top brightness temperatures

(BT) in satellite imagery and ground-based rainfall ob-

servations, mostly made by weather radars (e.g., Arkin

1979; Negri et al. 1984). VIS data are considered to be

especially helpful in filtering out cirrus clouds. These

clouds have cold cloud-top BTs but appear as trans-

parent in the VIS images (King et al. 1995). Besides BTs,

other multispectral techniques that use the difference

between BTs in two spectral channels (BTD) can be

helpful in identifying different cloud types (e.g., Inoue

1985; Kurino 1997; Schmetz et al. 1997; Tjemkes et al.

1997) and in deriving rainfall amounts (e.g., Amorati et al.

2000). Furthermore, BTs and BTDs have been used to

identify cloud-top features and patterns significant to

deep, convective clouds (e.g., Setvák and Doswell 1991;

Levizzani and Setvák 1996).

Feature recognition and cloud classification can be

done in an advanced manner using statistical classifiers

whereby cloud pixels with similar spectral and textural

properties within a satellite image are clustered, such as

in neural networks (e.g., Bankert 1994) or fuzzy logic

(e.g., Baum et al. 1997). Berendes et al. (2008) use an

unsupervised clustering algorithm—standard deviation

limited adaptive clustering—for convective cloud identi-

fication and classification in daytime satellite imagery.

This clustering approach is the first step in the convec-

tive initiation product of the Advanced Satellite Aviation

Weather Products (ASAP) initiative developed by the Na-

tional Aeronautics and Space Administration (Mecikalski

et al. 2007). Tag et al. (2000) use a one-nearest-neighbor

cloud classifier with spectral, textural, and physical fea-

tures from VIS and IR images. In Donovan et al. (2006)

this algorithm, which is developed by the Naval Research

Laboratory, and two other algorithms, one from the Na-

tional Center for Atmospheric Research (Herzegh et al.

2002) and one from the Aviation Weather Center (Mosher

2002), are intercompared. All three algorithms are based

on geostationary satellite images and are used to identify

convective cells that may present a hazard to aviation over

the oceans.

By monitoring temporal trends in spectral bands,

convective cloud development has been observed for

quasi-stationary convection (Roberts and Rutledge 2003).

Furthermore, cloud-tracking algorithms have been used

to track and monitor temporal trends of individual con-

vective cloud systems (e.g., Bolliger et al. 2003; Mecikalski

and Bedka 2006; Zinner et al. 2008).

Multispectral techniques can be used to derive cloud

physical properties for upper parts of the clouds. Cloud

physical properties may include cloud-top temperature

(CTT), cloud optical thickness (COT), particle size, liquid

water path, and cloud phase (CPH). In turn, these cloud

physical properties can be related to precipitation potential

of clouds (e.g., Rosenfeld and Gutman 1994; Lensky and

Rosenfeld 1997; Thies et al. 2008) or to the vigor of con-

vective storms (Rosenfeld et al. 2008). The common prin-

ciple of these multispectral techniques is that the cloud

reflectances in the VIS wavelengths are primarily a function

of COT while the cloud reflectances in the near-infrared

(NIR) wavelengths are primarily a function of particle

size (Nakajima and King 1990; Jolivet and Feijt 2003).

The ability to detect and monitor convective clouds in

satellite images improves with increasing satellite reso-

lution both in space and time. In January of 2004, the

first Meteosat Second Generation (MSG) satellite of the

new series of European geostationary satellites became

operational. The onboard Spinning Enhanced Visible

and Infrared Imager (SEVIRI) has an increased spatial

resolution (3 km at nadir) and time resolution (15 min)

relative to the resolutions of the first generations of

Meteosat satellites. Also, the number of spectral channels

(12) has increased, and a high-resolution (1 km at nadir)

visible (HRV) channel is included. Therefore, it is ex-

pected that combining these relatively high resolution

satellite data with weather radar observations will im-

prove the detection of convective clouds with respect to

current radar-based convective cloud detection methods.

In the Netherlands, Cb and TCu clouds are detected

at regional airports using an adopted Météo-France radar

algorithm (Leroy 2006) and data from a lightning de-

tection network (Wauben et al. 2006). This Cb/TCu cloud

detection method is part of the automated observation
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system of present weather (AUTO METAR) at air-

ports, which is operated by the Royal Netherlands Me-

teorological Institute (KNMI). The algorithm is based on

radar reflectivity factor thresholds and area size of the

precipitation echoes. It produces binary outcomes for

the detection of Cb and TCu clouds.

In this paper we describe the derivation and verifi-

cation of a new automated Cb/TCu cloud detection

method for Amsterdam Airport Schiphol, which is the

main airport of the Netherlands. In contrast to many

other convective cloud detection methods, the focus in

our detection method is not only on large-scale convec-

tive cloud systems but also on the detection of nonpre-

cipitating clouds. The method combines weather radar

observations with MSG-SEVIRI-derived cloud physical

properties. The cloud physical properties are directly

related to the presence of convective clouds in satellite

images. They are related to convective clouds in a physi-

cal sense, by using a convective cloud mask (CCM), and

in a statistical sense, by using logistic regression (Wilks

2006). This means that probabilities, which can be con-

sidered as a measure of uncertainty for the presence of

Cb/TCu clouds, are produced for potential convective

cloud areas indicated by the CCM. As a source for the

predictand, which is the dependent variable to be de-

rived (i.e., the presence or absence of Cb/TCu clouds),

we have used aviation routine weather reports (METAR).

These are weather reports made by human observers at

airports. Potential predictors, which are the independent

variables on which the prediction is based, have been

derived from MSG-SEVIRI cloud physical properties

as well as from weather radar observations. Special at-

tention is given to a COT that has been derived at high

resolution (1 km), which has not been used before in

convective cloud detection methods.

The structure of this paper is as follows. In section 2 the

METAR dataset and the dataset of the MSG-SEVIRI-

derived cloud physical properties are described. Fur-

thermore, the weather radar reflectivity factors are

treated. In section 3 the Cb/TCu cloud detection method

is presented. The predictand and predictor sources are

described, as is the setup of this study, followed by the

two steps involved in the detection method. The veri-

fication results of this method are treated in section 4.

In section 5 a summary and the conclusions are given.

2. Datasets

a. METAR

METAR is a format of a weather report about the

current state of the weather at and in the vicinity of an

airport. It is released on a routine basis and is mainly

used by pilots as part of the preflight preparations at

other national and international airports. At Amsterdam

Airport Schiphol, most meteorological information, such

as wind speed and visibility, is measured automatically by

instruments located at the airport. At all times, however,

a human observer is present to monitor the weather.

METARs are generated 2 times per hour, at 25 and

55 min past the hour. They include information about

the weather over the last 10 min. The vicinity of an air-

port is defined as the area between approximately 8 and

16 km from the aerodrome reference point, which is the

location of the human observer. Note that this area is

estimated by the human observer.

A maximum of five cloud layers can be reported, with

cloud cover and cloud-base height being reported for

each layer. For Cb and TCu clouds only, cloud type is

added to the report. The detection of these clouds is done

visually by the human observer. One layer consisting of

both Cb and TCu is reported as Cb cloud.

b. MSG-SEVIRI cloud physical properties

The main instrument and payload on board MSG

satellites is the optical radiometer SEVIRI, which ob-

serves the earth and its atmosphere in 12 spectral bands

(Schmetz et al. 2002). At nadir view, the sampling dis-

tance for 11 channels is 3 km. For the HRV channel it is

1 km. The viewing area at the surface varies with the

satellite viewing angle. This means that the spatial res-

olution of pixels in a satellite image decreases with in-

creasing off-nadir viewing angle. The time resolution of

the MSG imagery is 15 min.

At KNMI, SEVIRI data are utilized to retrieve cloud

physical properties using the cloud physical properties

(CPP) algorithm (Roebeling et al. 2006). These cloud

physical properties include CTT, COT, effective radius

(REFF), and CPH. The CPP algorithm retrieves these

properties in two steps. First, satellite-observed VIS,

NIR, and IR radiances are fed into a cloud detection

scheme to create a cloud mask. Second, the Doubling–

Adding KNMI (DAK) radiative transfer model (De

Haan et al. 1987; Stammes 2001) is utilized to relate

simulated VIS (0.6 mm) and NIR (1.6 mm) reflectances

to observed 0.6- and 1.6-mm reflectances for cloudy

pixels. The DAK model is used to simulate cloud re-

flectances for predefined cloud physical properties and

satellite viewing angles, which are stored in lookup ta-

bles (LUT). The COT and particle size are retrieved by

comparing the simulated 0.6- and 1.6-mm reflectances in

the LUTs with the corresponding satellite reflectances.

The radiative effects of variations in the size of (water)

cloud droplets are characterized through the REFF (mm),

which is defined as the ratio of the third moment and

second moment of the particle size distribution (Hansen
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and Hovenier 1974). For ice crystals, a volume equiva-

lent REFF is assumed. The retrieval of COT and REFF

is done in an iterative manner. The derived reflectances

at the two wavelengths are repeatedly compared with

the LUTs until both cloud physical properties converge

to stable values.

From the 10.8-mm BT and the emissivity of the cloud,

the CTT can be derived. For optically thick clouds, the

BT can be regarded as the thermodynamic temperature

of the upper part of the cloud, in which the emissivity

approaches a value of 1. For optically thin clouds, the

observed BT also contains a significant contribution

from the surface or underlying clouds. The BT is then

corrected using the cloud (absorbing) optical thickness.

To discriminate between water and ice clouds (cloud

thermodynamic phase), a consistency test of observed

differences in cloud reflectance at 0.6 and 1.6 mm is used,

as well as a threshold test of the 10.8-mm BT (CTT ,

265 K). The differences in cloud reflectance at the two

wavelengths arise from stronger absorption of radiation

by ice particles than by water particles at the 1.6-mm

wavelength (Jolivet and Feijt 2003).

In addition to the cloud properties retrieved from

MSG-SEVIRI at low resolution, an experimental COT

product at HRV resolution is used in this study (HRV–

COT). The increase (by a factor of 3) in spatial resolu-

tion allows for better resolution of the small-scale cloud

variability. This HRV–COT product is based on the

downscaling approach of Deneke and Roebeling (2010)

for estimating the 0.6-mm reflectance at HRV resolu-

tion. Low-frequency components of reflectance resolved

by the 0.6-mm channel are combined with high-frequency

components measured by the HRV image—a procedure

that relies on the substantial overlap of the spectral re-

sponse functions and has been shown to be accurate to

within a standard deviation of 0.01 in absolute reflectance.

The values of CPH and REFF calculated at low resolution

are then adopted for all 3 3 3 enclosed high-resolution

pixels, and the unique relation of 0.6-mm reflectance and

COT prescribed by the LUTs for constant REFF is in-

verted to obtain an estimate of COT for these 3 3 3 pixel

reflectances.

c. Weather radar observations

Precipitation echoes, the intensities of which are mea-

sured in terms of radar reflectivity factors ($7 dBZ), are

used to investigate the added value of using these weather

radar observations, together with the MSG-SEVIRI-

derived cloud physical properties, for the detection of

convective clouds. In the Netherlands, two C-band Dopp-

ler weather radars are operated by KNMI. One weather

radar is located at De Bilt (52.1028N, 5.1788E), and the

second one is located at Den Helder (52.9538N, 4.7908E).

Precipitation and wind observations are made with a

14-elevation scan (between 0.38 and 258), repeated ev-

ery 5 min. From these scans, pseudo–constant altitude

plan position indicator (CAPPI) images, which are hori-

zontal cross sections of the radar reflectivity factor at a

constant altitude, are made. The target height is 1500 m

above antenna level. Until 2008, the horizontal reso-

lution was 2.4 3 2.4 km2.

3. Method for the detection of Cb/TCu clouds

a. Setup, predictand definition, and potential
predictors

An automated Cb/TCu cloud detection method, which

comprises two steps to be described in the following two

sections, has been developed. Predictand and predictors

have been derived from datasets for May–September of

2004–07. Because the cloud physical properties retri-

evals, both at low (3 km at nadir) and high (1 km at nadir)

resolution, rely on VIS and NIR radiances, the Cb/TCu

cloud detection method only considers daylight observa-

tions at solar zenith angles of ,708.

The Cb/TCu cloud reports in the METARs made at

Amsterdam Airport Schiphol serve as a source for the

predictand (i.e., the presence or absence of Cb/TCu

clouds). Figure 1 shows climatological data for the Cb/TCu

cloud reports in the METAR dataset for daytime hours

between 0600 and 1800 UTC. First, we can clearly see the

interannual, as well as the intraseasonal, variability of

the Cb/TCu cloud reports. Second, Fig. 1 shows that

the number of Cb cloud reports is much larger than the

number of TCu cloud reports. This might be explained

by the more pronounced characteristics of Cb clouds as

compared with TCu clouds. The latter are often difficult

to distinguish from Cu clouds, so that they will not be

reported as often. In this study, we combined the Cb and

TCu cloud reports to convert the METAR dataset into

a binary dataset. Cases in which a Cb or TCu cloud has

been reported in METAR are ‘‘yes events’’; otherwise,

they are ‘‘no events.’’ Because the distance at which the

human observer will report Cb/TCu clouds in the

METAR is subject to uncertainty, we trained and vali-

dated the Cb/TCu cloud detection method for circular

observation areas with radii of 10, 20, and 30 km, as

shown in Fig. 2. Amsterdam Airport Schiphol is located

at the center of these circular observation areas.

The MSG-SEVIRI cloud physical properties and the

weather radar observations serve as a pool of potential

predictors.1 The satellite viewing angle of MSG over the

1 A previous version of the Cb/TCu cloud detection method was

also tested with lightning data, but it did not show an improvement

(Carbajal Henken et al. 2009).
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Netherlands is about 608. This results in pixel dimen-

sions of about 4 3 7 km2 for the spatial low-resolution

data and about 1 3 2 km2 for the spatial high-resolution

data. Both the low-resolution cloud physical properties

and the weather radar observations are interpolated to

the high resolution of the HRV observations. By doing

so, all predictors are available at the high resolution of

the VIS channel.

The two METAR time steps each hour are matched to

the four MSG time steps each hour by relating each

METAR time step (25 or 55 min past the hour) to two

MSG time steps (11 and 26 or 41 and 56 min past the

hour). The four MSG time steps do not fall within

the 10-min reporting time of the two METAR reports.

The difference between the METAR time period and

the two corresponding MSG time steps, however, is only

1 and 4 min, respectively. It is assumed that within those

1- and 4-min periods the cloud fields within the circular

observation area will only change slightly.

The MSG-SEVIRI cloud physical properties are cor-

rected for parallax shifts, which are largest for high clouds

at higher latitudes. Hourly temperature profiles from the

European Centre for Medium-Range Weather Forecasts

model for Cabauw, Netherlands (51.9718N, 4.9278E), are

used to relate MSG-SEVIRI CTT to cloud-top height.

The amount of parallax shift toward the north is calcu-

lated for the highest cloud tops, which are assumed to be

represented by the 2.5% of coldest cloud tops with COTs

FIG. 1. Daytime METAR Cb/TCu cloud climatological data for May–September of 2004–07. The gray bars indicate

the number of TCu cloud reports. The black bars indicate the number of Cb cloud reports.
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of .50. In this study, a cloud height of about 10 km at

a latitude of 528 results in a parallax shift of about 16 km

toward the north.

To train and validate the Cb/TCu cloud detection

method, the potential predictors and predictand data-

sets are divided into a training dataset (;70%) and a

validation (;30%) dataset. This is done by randomly

selecting about 70% of all days using a Bernoulli dis-

tributed random variate with a 0.7 probability parameter.

By doing this random selection on days and assuming

that Cb/TCu cloud reports made on different days do

not represent the same event, an independent valida-

tion dataset is obtained.

For several time steps the MSG-SEVIRI data are

missing as a result of problems with the data reception

system. These time steps are not considered in the

training and validation datasets. In addition, the time

steps at which the solar zenith angle is .708 were also

excluded, since the retrieval of cloud physical properties

becomes very uncertain at large solar zenith angles.

b. Convective cloud mask

The first step in the Cb/TCu cloud detection method

is the CCM. The principle of the CCM is to use cloud

physical properties to identify convective clouds in a

satellite image. Well-developed convective clouds, such

as Cb and TCu clouds, show large vertical growth. These

clouds exhibit low CTTs and high COTs. In the usual case,

relatively large water droplets or ice crystals are present

in the upper parts of these clouds. Moreover, convective

clouds often exhibit a lumpy texture, which is caused by

shadow effects of the irregularly shaped cloud tops. A

group of organized convective cells can also contribute to

an increase in the spatial variability in satellite images.

Using a threshold technique, the CCM determines for

each pixel within a satellite image whether it might rep-

resent a convective cloud. This pixel-based mask is made

for the circular observation areas at each time step. Table 1

shows the investigated threshold combinations for the

CCM. A pixel has to meet all of the criteria to pass the

CCM. The collection of pixels passing the CCM at each

time step is considered to represent convective clouds.

Pixels that do not pass the CCM are not considered in

further calculations.

To determine the optimum combination of cloud

physical properties thresholds for a CCM retrieval that

retains at least 95% of the yes events and removes a

large part of the no events, the training dataset was used

to examine the CCM for the threshold combinations

listed in Table 1. This examination was done for circular

observation areas with radii of 10, 20, and 30 km (see

Fig. 2). Although human observers are instructed to re-

port Cb/TCu clouds at and in the vicinity of the airport,

the definition of vicinity is very likely to be stretched (e.g.,

in the case of well-developed Cb clouds, which can be

visible at large distances). The results show that none of

the threshold combinations yielded the specified criterion

for the circular observation areas with radii of 10 and

20 km. The requirement that at least 10 high-resolution

pixels within the observation area should be flagged as

convective clouds prevents more than 95% of the yes

events from passing the CCM. Therefore, we decided

FIG. 2. Moderate Resolution Imaging Spectroradiometer (MODIS)

satellite image of the Netherlands, 6 May 2000. The three circular

observation areas with radii of 10, 20, and 30 km are shown. The

plus sign at the center of the circles indicates the location of Am-

sterdam Airport Schiphol.

TABLE 1. Investigated thresholds of the cloud physical proper-

ties, i.e., HRV-COT and HRV-COT standard deviation, CTT (K),

and REFFwater (mm) for the development of the CCM.

Cloud physical properties Investigated thresholds

HRV–COT .6, 8, 10, 15, 20, 30, 40, 50

CTT ,285, 280, 279, 278, 277, 276,

275, 274, 273, 270, 265, 260

REFFwater .8, 10, 12, 13, 14, 16, 18

HRV–COT std dev

(HRV–COT)

.4, 5, 6, 8, 10, 15, 20, 30, 50

(if ,50, 60, 100, 150, 200)
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to continue the development of an automated Cb/TCu

cloud detection method using a CCM for a circular ob-

servation area with a radius of 30 km only.

The ‘‘best’’ threshold combination yielded with the

training dataset is shown in Table 2. Then, over 95% of

the yes events remain while over 70% of the no events

are removed. The HRV–COT threshold of 8 is well

within the range of transition values from optically thin

to optically thick clouds often used in cloud studies. In

addition, the particle size retrievals are most accurate for

these optically thick clouds, for which the 1.6-mm re-

flectance is mainly a function of particle size (Nakajima

and King 1990; Roebeling et al. 2006). The REFF

threshold of 12 mm for water droplets is close to 14 mm,

which can be considered to be the threshold at which

water droplets in optically thick clouds have grown large

enough to initiate the precipitation process that can

be detected by weather radars (Rosenfeld and Gutman

1994), suggesting that the cloud has reached its mature

stage. Remember that particles assigned to the ice phase

do not need to meet the REFF threshold in the CCM.

The CTT threshold of 275 K is close to the freezing level,

which is located between 2- and 5-km height during the

summer half year. Furthermore, we used the standard

deviation on high-resolution COT (HRV–COT standard

deviation) to find spatial variability within a satellite im-

age. This is similar to Mecikalski et al. (2010), who use

texture in HRV data to discern aspects of cumulus clouds.

The standard deviation is calculated for the center pixel

of a 3 3 3 pixel-size box. This threshold is not set very

strictly and only holds for center pixels with HRV–COT

values of less than 100, but HRV–COT standard de-

viation still shows a contribution to the reduction of the

number of no events.

c. Logistic regression model

The second step in the Cb/TCu cloud detection method

is a logistic regression model (Wilks 2006). Logistic re-

gression models are used in situations in which one

wants to predict the probability of the occurrence of

an event based on values of a set of predictors. The var-

iable of interest, or predictand, is binary. The predictor

variables can be of any type. In meteorological research,

logistic regression has been applied to, for example, short-

term forecasting of thunderstorms (Schmeits et al. 2008),

short-term forecasting of premonsoon convective devel-

opments (Dasgupta and De 2007), and forecasting of

large hail Billet et al. (1997). Furthermore, it has been

used as a tool to investigate the difference between the

present weather reported by a human observer and

present weather reports produced by automated weather

stations (Merenti-Välimäki and Laininen 2002).

Logistic regressions are fit to a binary predictand using

the nonlinear equation (Wilks 2006)

P(y) 5
1

1 1 exp[2(a0 1 a1x1 1 a2x2 1 � � �1 anxn)]
,

(1)

where P(y) is the probability that an event y occurs, xi (i 5

1, 2, . . . , n) is the set of predictors, and ai (i 5 1, 2, . . . , n)

are the regression coefficients. Predictors are selected

using a forward stepwise selection method. At each step,

a predictor is entered or removed from the model based

on a significance threshold. The predictor that results

in the best regression when combined with previously

selected predictors while also meeting the significance

criterion enters the model. The regression coefficients

are determined using a maximum likelihood method

(Wilks 2006). It is an iterative method, which maximizes

the product of all computed probabilities of the (non-)

occurrence of the event in the training dataset.

The MSG-SEVIRI-derived cloud physical properties

and weather radar observations are used as potential

predictor sources. To create a number of potential pre-

dictors from the MSG-SEVIRI cloud physical properties,

we have calculated several statistics for pixels flagged

as convective clouds in the first step of the detection

method (Table 3). To create a number of potential pre-

dictors from the radar reflectivity factors, we have cal-

culated several statistics for all pixels in the circular

observation area, also shown in Table 3. At each time

step one probability is determined for the circular

TABLE 2. Best threshold combination of the cloud physical

properties, i.e., HRV–COT and HRV–COT standard deviation,

CTT (K), and REFFwater (mm) in the CCM for the training dataset.

HRV–COT CTT REFFwater

HRV–COT

std dev (HRV–COT)

.8 ,275 K .12 mm .5 (if ,100)

TABLE 3. Potential predictors derived from the MSG-SEVIRI

cloud physical properties for the collection of pixels flagged as

convective cloud pixels in the CCM and from the weather radar

observations for all pixels in the circular observation area.

Cloud physical properties Radar

Mean Mean

Median Median

Std dev Std dev

Min (2.5th percentile) Min (2.5th percentile)

Max (97.5th percentile) Max (97.5th percentile)

Range (2.5th–97.5th

percentiles)

Range (2.5th–97.5th percentiles)

Percentiles (17th, 25th,

75th, 83rd)

Percentiles (17th, 25th, 75th, 83rd)

No. of pixels .30 dBZ

No. of pixels .40 dBZ
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observation area. This probability provides a measure of

uncertainty about the actual presence of Cb/TCu

clouds within the surroundings of the airport. The col-

lection of pixels passing the CCM indicates the areas of

potential deep, convective clouds. A minimum number

of 10 high-resolution pixels passing the CCM is used to

assure proper statistical calculations.

We decided to include in the model only the most

frequently selected predictor associated with each cloud

physical property used in the CCM, with the exception of

HRV–COT. Despite the fact that more predictors from

the same cloud physical property might have a significant

contribution to the model, they are often correlated, and

limiting the number of predictors also minimizes the

problem of overfitting.

Applying forward stepwise selection to the training

dataset shows that the predictors’ radar reflectivity fac-

tor maximum (RR max), HRV–COT standard devia-

tion maximum, HRV–COT minimum, REFF median,

and CTT maximum form a well-performing set of pre-

dictors. The RR max is identified as the most skillful

predictor, followed by the predictors derived from the

HRV–COT. All but the HRV–COT minimum show a

positive regression coefficient. This means that the prob-

ability of the presence of Cb/TCu clouds increases with

increasing RR max, HRV–COT standard deviation max-

imum, REFF median, and CTT maximum and decreases

with increasing HRV–COT minimum.

The forward stepwise selection method did not show

any significant difference in the set of selected pre-

dictors for different periods during the day (morning,

0600–1000 UTC; midday, 1000–1400 UTC; afternoon,

1400–1800 UTC) or during the year (spring; early sum-

mer; late summer).

Because of the different time resolutions of the MSG-

SEVIRI observations and the METAR observations,

two MSG time steps are related to one METAR time

step, and therefore two probabilities are calculated for

each METAR time step. When using the highest of the

two probabilities for training against METAR, the high-

est Brier skill score (BSS; Wilks 2006) is achieved for the

training dataset when compared with using the lowest

probability or the mean of the two probabilities. There-

fore, for verification of the detection method with the

validation dataset the higher of the two probabilities is

used when comparing with each METAR time step.

4. Verification results

a. Convective cloud mask

For verification of the CCM we applied the optimal

threshold combination that was derived from the training

dataset to the validation dataset. For the validation dataset,

93% of the yes events remain while again over 70% of the

no events are removed. This results in a probability of

detection (POD) and false-alarm ratio (FAR) (Wilks 2006)

of 93% and 69%, respectively, with a frequency of occur-

rence of the yes events of 12%. Figure 3 shows an example

of pixel values for HRV–COT, CTT, HRV–COT standard

deviation, and REFF (top four panels) for pixels within the

circular observation area. The bottom two panels in Fig. 3

show the resulting CCM and a radar image for comparison.

In this example, the pattern of the collection of pixels

passing the CCM is mostly related to the pattern of high

HRV–COT values, which is, however, not always the case.

b. Probabilities

To verify the probabilities derived from the Cb/TCu

cloud detection method for the validation dataset, an

FIG. 3. (bottom left) An example of the CCM at 1426 UTC

30 Aug 2004. This day is part of the validation dataset. From top

to bottom and from left to right the panels show HRV–COT (range

8–50), CTT (range 200–275 K), HRV–COT standard deviation

(range 5–150), REFF (range 12–56 mm), resulting CCM, and radar

(range 0–50 dBZ). Brighter pixels indicate higher values, except for

CTT values, which are inverted.
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attributes diagram (Wilks 2006), shown in Fig. 4, is used.

The derived probabilities have been divided into 10%

bins. For a reliable detection method, the derived prob-

abilities in a 10% bin have to be close to the observed

relative frequency of this 10% bin. In the case of a per-

fectly reliable detection method, the points are located

on the perfect-reliability (1:1) line. The no-resolution line

in the attributes diagram, which is equal to the horizontal

dashed line that also indicates the sample climatology,

relates to the resolution term in the Brier score (BS)

decomposition (Wilks 2006). Above the panels in Fig. 4,

the BS, its three components (reliability, resolution, and

uncertainty), and the BSS are presented. We used the

sample climatology as a reference to compute the BSS.

The attributes diagram clearly indicates skill due to good

resolution and reliability; the latter can be seen because

the points are located close to the perfect-reliability line.

The Cb/TCu cloud detection method shows slight un-

derwarning (negative bias). Furthermore, we see that

all points are located closer to the perfect-reliability line

than to the no-resolution line, which means that they

contribute positively to detection skill.

To investigate the skill of the detection methods for

different Cb/TCu cloud climatologies during the sum-

mer daytime period, we performed bootstrapping on

the derived probabilities in the validation dataset using

10 000 samples. With a confidence interval of 95%, values

of the BSS range between 0.431 and 0.532 for the com-

bined MSG and radar detection method. The BSS value

is clearly positive, indicating skill over the sample clima-

tology.

c. Probability threshold

We used probability thresholds to convert the derived

probabilities into a binary predictand, that is, the pres-

ence or absence of Cb/TCu clouds within the circular

observation area at a given time step. Cases with derived

probabilities that are below the probability threshold

are labeled as no events, and cases with derived proba-

bilities that are equal to or greater than the probability

threshold are labeled as yes events. By producing binary

outcomes, the performance of the logistic regression

models can be compared directly with the current KNMI

radar-based Cb/TCu cloud detection method (Wauben

et al. 2006). Note that information is lost on the un-

certainty of the occurrence of the event when con-

verting derived probabilities into a binary predictand.

Figure 5 presents the POD, FAR, accuracy (ACC),

and critical success index (CSI) (Wilks 2006) for prob-

ability thresholds between 5% and 95% with steps of

5% for the combined MSG and radar detection method.

These verification scores were calculated from contin-

gency tables (Wilks 2006) that were composed for all

thresholds. Figure 5 shows that the POD and FAR

FIG. 4. Attributes diagram for the combined MSG and radar detection method, for the

validation dataset. The observed frequencies of Cb/TCu cloud occurrence are shown (di-

amonds), conditional on each of the 10 possible derived probabilities. For a perfectly reliable

detection method, these points would be located on the perfect-reliability line (diagonal). The

dashed lines indicate the sample climatology. The dash–dotted line indicates the no-skill line.

The histogram on the right shows the relative frequency of the derived probabilities. Here, N is

the total number of events, BS is Brier score, BSS is Brier skill score, UNC is uncertainty, REL

is reliability, and RES is resolution (Wilks 2006).
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decrease for increasing probability thresholds. The

ACC reaches maximum values at probability thresh-

olds around 45%–55% but only shows slight variations.

The CSI has a maximum value of 53% at a probability

threshold of 50% but only shows minor variations for

probability thresholds between 30% and 55%. The

choice of a best probability threshold depends on user

preferences and/or the user’s cost–loss ratio (Katz and

Murphy 2005).

Figure 6 shows the CSI and bias as functions of POD

and FAR for six probability thresholds between 30%

and 55%. The best verification scores are located in the

top-left corner of Fig. 6 near the diagonal (bias 5 1) line.

The label 330 in the figure indicates the verification

scores of the KNMI radar-based Cb/TCu cloud detec-

tion method, which is also for a circular observation area

with a radius of 30 km.

In addition, we compared the combined MSG and

radar detection method with the results of logistic re-

gression models, including predictors derived from ra-

dar reflectivity factors only (radar only), and predictors

derived from MSG-SEVIRI cloud physical properties

only (MSG only). Note that for the radar-only detection

method no CCM is used, whereas it was used for the

MSG-only detection method (also with a radius of

30 km). The number of predictors included in the radar-

only and MSG-only detection methods is equal to the

number of predictors included in the combined MSG

and radar detection method, which is equal to five pre-

dictors. For the radar-only detection method, forward

stepwise selection shows again that RR max is the most

skillful predictor. Apart from RR max, the radar re-

flectivity factor 83rd percentile, the number of pixels

with radar reflectivity factors .30 dBZ, the radar re-

flectivity factor median, and the radar reflectivity factor

minimum are also included in the radar-only detection

method. For the MSG-only detection method, forward

stepwise selection shows that the HRV–COT range is

the most skillful predictor. Furthermore, the HRV–COT

standard deviation maximum, REFF median, CTT range,

and CTT standard deviation are included in the MSG-

only logistic regression model.

In Fig. 6, it is shown that the radar-only detection

method shows slightly better performance than the MSG-

only detection method for probability thresholds that re-

sult in a bias nearest to 1. In turn, the combined MSG

and radar detection method shows a slight improve-

ment in performance when compared with the radar-

only detection method. More details on the comparison

of different logistic regression models can be found in

Carbajal Henken et al. (2009).

5. Summary and conclusions

This paper presents a novel automated Cb/TCu cloud

detection method for daytime hours. The method has

been developed for the months of May–September of

2004–07 using METAR Cb/TCu cloud observations at

Amsterdam Airport Schiphol in the Netherlands. The

Cb/TCu cloud detection method is carried out in two

steps. First, a CCM is created from MSG-SEVIRI cloud

physical properties (HRV–COT, CTT, REFF, and HRV–

COT standard deviation), which provides spatial infor-

mation about the presence of convective clouds. Second,

a logistic regression model is used to determine the

probability that the cloudy pixels in the CCM repre-

sent Cb/TCu clouds. As a predictand source, we used

the Cb/TCu cloud observations from METAR made at

Amsterdam Airport Schiphol, and the set of potential

predictors has been derived from MSG-SEVIRI cloud

physical properties and weather radar reflectivity fac-

tors. The combined use of these predictors has the

advantage that both precipitating and nonprecipitating

Cb/TCu clouds can be detected. Our method is novel in

the sense that satellite-retrieved cloud physical proper-

ties are directly related to the presence of convective

clouds in satellite images. Besides the use of cloud phys-

ical property retrievals from the low-resolution chan-

nels of MSG-SEVIRI, our method also uses the newly

developed COT retrievals from the HRV channel of

MSG-SEVIRI. The advantage of this high-resolution

COT instead of reflectances lies in the fact that reflec-

tances not only depend on the physical properties of the

FIG. 5. Verification scores for the validation dataset as a function

of the probability threshold (in steps of 5%) for the combined

MSG and radar detection method. The score acronyms are defined

in the text.

1596 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 50



clouds but also depend on, for example, viewing geom-

etry, whereas for derived cloud physical properties these

effects are taken into account.

When using a circular observation area of 30 km, the

CCM filters out about 70% of the no events while 93%

of the yes events are retained in the validation dataset.

This results in a POD and FAR of 93% and 69%, re-

spectively, with a frequency of occurrence of the yes

event of 12%. In the combined MSG and radar logistic

regression model, the most important predictor is de-

rived from radar reflectivity factors, followed by two

predictors derived from the high-resolution COT (HRV–

COT and HRV–COTstandard deviation). In addition,

two predictors derived from the REFF and CTT are

added to the set of predictors. Note that similar cloud

physical properties are used in the CCM and in the lo-

gistic regression model. The prominence of the HRV–

COT demonstrates the additional information content

of the improved spatial resolution offered by the HRV

channel for Cb/TCu cloud detection. The highly positive

BSS for the validation dataset clearly shows skill over

the sample climatology. For a probability threshold with

minimal bias and maximal CSI value, the POD and FAR

values of the combined MSG and radar logistic regres-

sion model are 67% and 31%, respectively. The selected

MSG-SEVIRI predictors suggest that the standard res-

olution of the SEVIRI instrument of 3 3 3 km2 at nadir

is insufficient to resolve fully the formation and devel-

opment of convective clouds. Consistent with our find-

ings, Zinner et al. (2008) relied upon the HRV channel

for tracking of convective cells, and Deneke et al. (2009)

reported that reflectances observed at the SEVIRI stan-

dard resolution were not sufficient to resolve fully the

cloud-induced variability in surface measurements.

In logistic regression models, it is very likely that sev-

eral subsets of predictors have near-equal performance

because of correlations among these predictors. There-

fore, we compared the results of the combined MSG and

FIG. 6. CSI (bent contour lines) and bias (straight contour lines) as functions of POD and

FAR. The four verification scores are shown for six probability thresholds (from 30% to 55%,

thresholds increase from top-right points to bottom-left points for a given line) for the com-

bined MSG and radar detection method (plus signs), radar-only detection method (asterisks),

and MSG-only detection method (diamonds). The 330 label shows the scores of the current

KNMI radar-based Cb/TCu cloud detection method for a circular observation area with a ra-

dius of 30 km.

JULY 2011 C A R B A J A L H E N K E N E T A L . 1597



radar logistic regression model with those obtained with

a radar-only and an MSG-only logistic regression model.

In comparing the results of these models, the added

value of combining MSG-SEVIRI cloud physical prop-

erties and weather radar reflectivity factors for the de-

tection of Cb/TCu clouds could be assessed. Although

the most skillful predictors selected by the logistic re-

gression model differ among these three models—that

is, the maximum value of the radar reflectivity factors

(97.5th percentile) for the combined MSG and radar and

radar-only logistic regression models and the HRV–COT

range for the MSG-only logistic regression model—their

verification scores are similar. The combined MSG and

radar detection method performs only slightly better than

the MSG-only and radar-only detection method (Fig. 6).

Because METAR reports, which have been used as the

predictand source for the Cb/TCu cloud observations,

are subjective, the above-summarized results should be

interpreted with care. There are two reasons why the

METAR reports are subjective. First, no exact rules exist

for determining the transition of a cumulus cloud into

a towering cumulus. Second, the maximum viewing/

reporting range of the observer is not determined exactly.

Thus, it is very likely that deep, convective clouds at

large distances are still being reported. This cannot be

verified with METAR, because no information on the

position of the reported clouds is included.

The qualitative advantage of the MSG-only detection

method over the radar-only detection method lies in the

quasi-global coverage of the MSG satellite, which is by

far superior to the coverage of radar networks, and in

the detection of nonprecipitating convective clouds. The

latter is unfortunately difficult to verify because of the

lack of accurate and statistically sufficient observations

of TCu clouds. Our study showed that the use of logistic

regression helps to improve the detection of Cb/TCu

clouds. This is shown by the comparison of the radar-

only detection method with the current KNMI radar-

based detection method. Both methods have similar

POD values, but the FAR of the radar-only detection

method is about 8% lower than the FAR of the KNMI

detection method. Another large advantage of the newly

developed method is that it provides probabilities, in

contrast to the radar-based KNMI detection method

and many other convective cloud detection methods.

Our method differs from other convective cloud detec-

tion methods in the sense that it detects both small- and

large-scale, precipitating and nonprecipitating, con-

vective cloud systems within a limited observing area,

whereas other methods concentrate rather on the de-

tection of large-scale convective cloud systems observed

over much wider areas (e.g., Mosher 2002). Moreover,

most convective cloud detection methods are verified

against collocated radar observations (e.g., Mecikalski

et al. 2008), which implies that their focus is on the de-

tection of precipitating convective cloud systems and/or

lightning (e.g., Zinner et al. 2008). These differences,

and the fact that the verification periods and areas differ,

make a direct quantitative comparison of our detection

method with other detection methods impossible.

At KNMI, similar Cb/TCu cloud detection methods

are presently being developed for the nighttime period

and the wintertime period, and for regional airports as

well. Future improvements may be achieved by using

other cloud physical properties retrieved at high resolu-

tion, taking advantage of the spatial variability as present

in the HRV channel of SEVIRI. Further improvements

may also be expected from potential predictors that are

derived from temporal trends in cloud physical proper-

ties using an advanced cloud-tracking algorithm. The

research done by Mecikalski and Bedka (2006) and

Zinner et al. (2008) forms a baseline for these develop-

ments. Also, a new set of potential predictors can be

derived from numerical weather prediction model data

and from sounding observations.
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