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Abstract. Aerosol optical depth (AOD) product re-
trieved from MODerate Resolution Imaging Spectrora-
diometer (MODIS) measurements has greatly benefited sci-
entific research in climate change and air quality due to
its high quality and large coverage over the globe. How-
ever, the current product (e.g., Collection 6) over land needs
to be further improved. The is because AOD retrieval still
suffers large uncertainty from the surface reflectance (e.g.,
anisotropic reflection) although the impacts of the surface
reflectance have been largely reduced using the Dark Tar-
get (DT) algorithm. It has been shown that the AOD retrieval
over dark surface can be improved by considering surface
bidirectional distribution reflectance function (BRDF) effects
in previous study. However, the relationship of the surface
reflectance between visible and shortwave infrared band that
applied in the previous study can lead to an angular depen-
dence of the AOD retrieval. This has at least two reasons.
The relationship based on the assumption of isotropic reflec-
tion or Lambertian surface is not suitable for the surface bidi-
rectional reflectance factor (BRF). However, although the re-
lationship varies with the surface cover type by considering
the vegetation index NDVISWIR, this index itself has a di-
rectional effect and affects the estimation of the surface re-
flection, and it can lead to some errors in the AOD retrieval.
To improve this situation, we derived a new relationship for
the spectral surface BRF in this study, using 3 years of data
from AERONET-based Surface Reflectance Validation Net-
work (ASRVN). To test the performance of the new algo-
rithm, two case studies were used: 2 years of data from North
America and 4 months of data from the global land. The re-
sults show that the angular effects of the AOD retrieval are

largely reduced in most cases, including fewer occurrences of
negative retrievals. Particularly, for the global land case, the
AOD retrieval was improved by the new algorithm compared
to the previous study and MODIS Collection 6 DT algorithm,
with the increase of 2.0 and 4.5 % AOD retrievals falling
within the expected accuracy envelope ±(0.05+ 15 %), re-
spectively. This implies that the users can get more accurate
data without angular bias, i.e., more meaningful AOD data.

1 Introduction

Aerosols from natural sources (e.g., volcanic ash, sea spray
aerosol and dust) and human activities (e.g., industrial emis-
sion, forest fire smoke and fossil fuel burning aerosol) play
a key role in climate, environment and human health. Near
land surfaces, high concentrations of fine aerosols with var-
ious micro-organisms can be inhaled by humans and cause
human diseases (Laden et al., 2000; Samet et al., 2000;
Pope III et al., 2002; Pope III and Dockery, 2006). In ad-
dition, aerosols have a significant impact on climate due to
their direct and indirect effects (Kaufman et al., 2002; IPCC,
2013). Most of the aerosols affect the climate by cooling
the atmosphere through reflecting solar radiation into outer
space, whereas absorbing aerosols (e.g., black carbon) warm
the atmosphere; this is also called the direct effect of aerosol.
The net effect of aerosols is cooling. As for indirect effects
on climate, aerosols can play a role as cloud condensation
nuclei and influence the formation and albedo of the cloud.

Aerosols present a strong variability in space and time due
to their short lifetime (from a few hours to a week). There-

Published by Copernicus Publications on behalf of the European Geosciences Union.



5576 Y. Wu et al.: Improved MODIS Dark Target aerosol optical depth algorithm over land

fore, monitoring aerosols on a daily basis is necessary. To
describe the magnitude of the attenuation of incident light
by aerosol particles, and also to some degree indicate surface
aerosol amount (Chu et al., 2003; Engel-Cox et al., 2004;
Wu et al., 2012), aerosol optical depth (AOD) has gained
more attention. Many AOD products have been produced or
retrieved by interpreting and inverting the radiative transfer
(RT) process with the input of satellite measurements (Mar-
tonchik et al., 1998; Diner et al., 2005; North et al., 1999;
North, 2002; Dubovik et al., 2011; Hsu et al., 2004; Re-
mer et al., 2005; Levy et al., 2007a, b). The MODIS AOD
product, due to the maturity of its algorithm and nearly daily
coverage over the globe, has been extensively used in scien-
tific research. Currently, the MODIS Collection 6 Dark Tar-
get (C6_DT) AOD product has an accuracy over ocean of
+(0.04+ 10 %), −(0.02+ 10 %) and an accuracy over land
of ±(0.05+ 15 %) (Levy et al., 2013). The accuracy of the
retrievals over land should be improved for global climate
research (e.g., McComiskey et al., 2008).

The AOD retrieval is a more challenging task over land
than over ocean since the land surface is much brighter than
the ocean surface. Specifically, the contribution from the
bright surface to the top-of-atmosphere (TOA) radiance can
be higher than the one from the atmosphere, which makes
it difficult to separate the aerosol and surface contributions
to the TOA radiance. Currently, two versions of the opera-
tional MODIS AOD algorithm Dark Target (DT) and Deep
Blue (DB) were developed over the dark (e.g., vegetated
area) (Remer et al., 2005, 2013; Levy et al., 2007a, b, 2013)
and bright (e.g, desert and urban area) (Hsu et al., 2004,
2006) surfaces, respectively. These two algorithms take ad-
vantage of dark or darker surfaces at different bands to obtain
a relatively accurate estimation of the atmosphere contribu-
tion to the radiance at TOA, although they aim for differ-
ent surface types. MODIS DT land AOD algorithm makes
use of the presence of a dark surface in two visible channels
0.47 and 0.66 µm and the approximate transparency of the at-
mosphere at a relatively long wavelength 2.12 µm to obtain
an accurate estimation of the atmosphere scattering. MODIS
DB AOD algorithm addresses the issue on the surface bright-
ness in a similar way, but utilizing the characteristics of the
darker surface in two blue channels 0.412 and 0.470 µm and
little absorption by dust in a red channel (e.g., 0.670 µm).

However, using the presence of the dark surface in a few
channels leads to the limited MODIS observations (two or
three single-view channels) in the retrieval. The limited ob-
servations do not allow us to directly solve the RT process or
equation since there are more unknowns than observations.
To improve this, the most common way is to determine or
put a constraint on the spectral surface reflectance by using
ancillary data and a priori assumptions (e.g., Remer et al.,
2005; Levy et al., 2007b, 2013; Hsu et al., 2004, 2013).

To obtain the surface reflectance from the satellite-
observed radiation field, one needs to subtract the atmo-
spheric effects (called the atmospheric correction) by as-

suming/knowing aerosol parameters and atmospheric com-
ponents. Utilizing the observed spectral AOD and water va-
por from ground AERONET sites, Levy et al. (2007b) explic-
itly performed the atmospheric correction on MODIS mea-
surements to derive the spectral relationship of the surface
reflectance between visible wavelengths 0.466 and 0.644 µm
vs. shortwave infrared 2.12 µm (VISvsSWIR). Particularly,
the factors of vegetation amount and the scattering angle
were parameterized in the relationship (Levy et al., 2007b,
2013) to account for the variability of the relationship with
surface cover type and illumination and viewing angle.

Following the dark surface selection in the C6_DT al-
gorithm but considering the anisotropic reflection of the
surface, Yang et al. (2014) have developed a new aerosol
retrieval algorithm based on the non-Lambertian forward
model (Li et al., 1996) and shown improvements of the AOD
retrievals over Eastern China than C6_DT. Subsequently, Wu
et al. (2016) further improved the previous work in Yang
et al. (2014) by solving several problems in the aerosol re-
trieval algorithm, including correcting the calculation of di-
rect transmittance and the simplified radiative transfer equa-
tion, as well as updating the relationship of spectral surface
reflectance with the MODIS C6 version. The improved algo-
rithm, called BRF_DT (Wu et al., 2016), shows that the over-
estimation of AOD in C6_DT presented over areas with high
aerosol loading (e.g., Tao et al., 2015) was significantly re-
duced. Nevertheless, in a case of areas with low aerosol load-
ing, the retrievals were less improved. For this case, the con-
tribution of the surface bidirectional reflectance factor (BRF)
to the TOA radiance becomes prominent and should be esti-
mated more precisely. Therefore, the spectral relationship of
surface reflectance inherited from C6_DT needs to be further
refined to achieve better retrievals. Two issues in this rela-
tionship should be addressed. First, this relationship derived
with the assumption of isotropic reflection surface (Lamber-
tian surface) is not quite suitable for the BRF_DT algorithm
which requires a relationship for the spectral surface BRF.
Second, although the relationship in C6_DT takes into ac-
count the angular effect (e.g, regarding the scattering angle
as a variable), the effect brought by the index of vegetation
amount or “greenness” (Normalized Distribution Vegetation
Index, NDVISWIR) in the relationship is not well evaluated
or investigated. As a result, directly applying the parameter-
ization leads to the dependence of AOD retrieval on the ob-
servation and illumination geometry in BRF_DT algorithm,
giving an underestimation and overestimation of the AOD at
a small and large scattering angle, respectively.

This study aims at improving the BRF_DT algorithm by
updating the parameterization of the spectral surface BRF.
The improved BRF_DT algorithm is called BRF_DT2 here.
The paper is organized into several sections. Section 2 intro-
duces the BRDF dataset that is used to constrain or deter-
mine the surface reflectance in the new algorithm, including
MODIS BRDF/albedo product and AERONET-based Sur-
face Reflectance Validation Network (ASRVN) dataset. The
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algorithm background is presented in Sect. 3. Section 4 intro-
duces the derivation of the relationship of the spectral surface
BRF for VISvsSWIR using 3 years (2005–2007) of ASRVN
data. Section 5 presents the AOD retrieval by the new al-
gorithm and its validation with AERONET measurements.
The AOD retrievals of the current and operational MODIS
C6_DT algorithm and the previous BRF_DT algorithm are
also put here to make a cross comparison and get a better
understanding of the difference among the algorithms. Con-
clusions are made in Sect. 6.

2 BRDF dataset

2.1 MODIS BRDF/albedo product

The MODIS BRDF product MCD43A1 (500 m resolution)
(Lucht et al., 2000; Schaaf et al., 2002) is generated by accu-
mulating 8-day (Terra and Aqua) MOD09 surface reflectance
product that has been corrected for atmospheric effects (in-
cluding aerosol, water vapor and ozone) using the internal
aerosol retrieval algorithm (Vermote et al., 1997; Vermote
and Kotchenova, 2008). The BRDF/albedo is reconstructed
with three scattering kernels of Lambertian, geometric-
optical and volume (also called RossThick-LiSparse (LSRT)
model) by a linear combination, where the corresponding
weights of the kernels are given in the product MCD43A1.

The produced BRDF/albedo products are well validated,
with errors of < 5 and < 10 % for the high and low qual-
ity, respectively (for validation results see http://landval.gsfc.
nasa.gov/, accessed in August 2016). The accuracy of the
products is expected to be lower when solar zenith angles
are greater than 70◦ or the land surface has a rapid change
over a short period. Nevertheless, the BRDF/albedo still has
a high accuracy that can be used to determine the surface re-
flectance in the AOD retrieval. The error of AOD retrieval is
small (< 6.5 %) due to the albedo uncertainty (10 %). More
details about the use of MODIS BRDF/albedo product are
given in Sect. 3.

2.2 ASRVN data

The ASRVN algorithm provides high-quality data of spectral
surface bidirectional reflectance and albedo by explicitly per-
forming atmospheric correction, where it uses a 50× 50 km2

dataset of MODIS level 1B data and AERONET aerosol
and water-vapor information (Wang et al., 2009). With a
semi-analytical Green’s function solution (Lyapustin and
Knyazikhin, 2001), LSRT BRDF model (the same kernel
model as in MCD43A1) is integrated into RT calculation
to generate accurate TOA reflectance. The weights of three
LSRT BRDF models and the surface BRF are retrieved in the
ASRVN algorithm by fitting the simulated TOA reflectance
with MODIS measurements over 4- to 16-day period.

Although the ASRVN BRF data are not fully validated
with ground truth at present, it is expected to have a higher

accuracy (e.g., errors < 5 %) than MODIS BRDF/albedo
products. There are two advantages of ASRVN data. Firstly,
by combining the ground measurements AERONET, the in-
formation of aerosol and water vapor is well constrained in
the atmospheric correction. Secondly, more accurate shape of
the surface BRF can be captured by ASRVN dataset since it
does not rely on the assumption of Lambertian surface, which
can flatten the surface BRF on geometrical illumination and
viewing angle (Wang et al., 2010). Since the LSRT BRDF
model is applied in the ASRVN algorithm, the errors would
be large at a large scattering angle (e.g., sun behind the sen-
sor) and a large zenith angle of solar or viewing (Lucht et al.,
2000). These BRF data are used to update the parameteriza-
tion of spectral BRF in the new algorithm. More details are
discussed in Sect. 4.

3 The development of BRF Dark Target 2 algorithm

High quality AOD retrieval requires accurately estimating
the contribution of anisotropic or non-Lambertian surface
from the TOA radiance. The TOA radiance by coupling with
surface BRDF effects is originally proposed by Li et al.
(1996) and further improved and validated by Qin et al.
(2001) (see Eq. 1). It has a high accuracy (0.7 % on average)
over several surface cover types (Qin et al., 2001) and has
been applied to BRF_DT AOD algorithm (Wu et al., 2016).
Here, we briefly introduce the TOA radiance by considering
non-Lambertian surface and the retrieval algorithm.

According to the four-stream theory (Verhoef, 1985), the
radiation field can be divided into directional (d) and hemi-
spheric (h) parts indexed as the subscript symbol d and h.
Since we have an incident and reflected radiation, we get four
combinations of these two symbols: dd, dh, hd and hh. The
symbol i and v indicate the direction of an incident or solar
(solar zenith angle θs and solar azimuth angle φs) radiation
and the direction of reflected radiation into the view of the
sensor (sensor zenith angle θv and sensor azimuth angle φv),
respectively (see Fig. 1).

A sketch diagram is shown for the TOA radiance received
by the satellite sensor (see Fig. 2). In this figure, we have
a parallel solar beam F0 with a zenith angle θs as the in-
cident radiation into the atmosphere. This radiation is scat-
tered and absorbed by the atmosphere when reaching to the
bottom boundary of the atmosphere. Part of the scattered ra-
diation can get into the view of the sensor, called “path re-
flected radiance” ρa . Some other parts of the scattered radi-
ation keep forward propagation, called downward radiance,
including hemispherical and directional transmitted radiance
tdd(i) and tdh(i), and interact with the underlying surface.
Regarding the underlying surface as a non-Lambertian, the
anisotropic reflection of the surface is simply described as
four elements: hemispherical-directional (1) (Rhd), bihemi-
spherical (2) (Rhh), bidirectional (3) (Rdd) and directional-
hemispherical reflection/reflectance (4) (Rdh), respectively;
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Figure 1. Schematic of illumination and viewing geometry on the
surface target. The red solid lines (black dash curves) indicate the
directions of the incident and reflected radiation, which are de-
scribed as solar zenith angle θs and viewing zenith angle θv (mea-
sured from the zenith direction z) and solar azimuth angle φs and
viewing azimuth angle φv (measured from the horizontal direc-
tion x). The dotted red lines represent the extension of the direction
of the incident radiation. The scattering angle 2 is given as the an-
gle between the direction of the incident radiation and the one of
the reflected radiation received by the sensor.

see Fig. 2. The downward radiation undergoes complicated
reflections between the surface and the atmosphere.

The directional flux reflected by the surface could be
from the downward transmitted radiance after (1) or (3),
whereas the corresponding hemispherical component is from
the downward transmitted radiance by (2) or (4). Here we ne-
glect the multiple reflections between the lower atmosphere
and the surface (e.g., strong mirror reflection) for the direc-
tional flux. The atmosphere backscattering ratio is denoted
as s. Finally, there is a directional flux from the lower atmo-
sphere, through the directional transmission tdd(v) into the
view of the sensor. Similarly, the sensor receives another di-
rectional flux which is from the diffuse flux undergoing the
hemispherical-directional transmission thd(v).

Therefore, the TOA reflectance received by the sensor (ra-
diance converted to reflectance by normalization) is com-
posed of two parts: the atmospheric reflectance (path re-
flectance) and the reflectance contributed by the interaction
of the surface and the atmosphere, which is written as fol-
lows:

ρ∗(i,v)= ρa(i,v)

+
T(i)R(i,v)T(v)− tdd(i) |R(i,v)| tdd(v)s

1−Rhhs
, (1)

where

R(i,v)=
[
Rdd Rdh
Rhd Rhh

]
T(i)= [tdd(i)tdh(i)]

T(v)=
[
tdd(v)

thd(v)

]
. (2)

For convenience, the dependence of each term on wave-
length λ is not explicitly shown here and in subsequent equa-
tions. The second term on the right side of Eq. (1) shows
the contribution of the surface to TOA reflectance. R is the
surface reflecting matrix, which is made up of four com-
ponents: Rdd, Rdh, Rhd and Rhh. Its determinant form is
|R| = RddRhh−RdhRhd. When a Lambertian surface is ob-
served, four components in R are equal to each other (i.e.,
Rdd = . . .= Rhh). Thus, Eq. (1) would be identical with the
one in C6_DT (see Eq. (1) in Levy et al., 2007b), shown as

ρ∗(i,v)= ρa(i,v)+
T (i)T (v)Rdd

1− sRdd
, (3)

where T (i) and T (v) are the total downward and up-
ward transmission, respectively, i.e., T (i)= tdd(i)+ tdh(i)

and T (v)= tdd(v)+ thd(v).
The use of Eq. (1) in our study means that there are three

more unknowns (Rdh, Rhd and Rhh) compared to the C6_DT
algorithm. These unknowns require to be solved by ancillary
data. Following the scheme in Yang et al. (2014), we make
use of surface BRDF/albedo product MCD43A1 for the de-
termination of the three unknowns in the surface reflectance
matrix. The surface reflectance Rdh and Rhh can be directly
calculated from MCD43A1. Rhd is obtained from Rdh by as-
suming that reciprocity law is valid for the surface reflectance
when v = i. Because of a few BRDF effects at long wave-
length (Wang et al., 2010), the TOA reflectance at 2.12 µm is
calculated with Eq. (3). The bidirectional reflectance Rdd (or
BRF) is numerically equivalent to the BRDF multiplied by
π , which is retrieved in the algorithm as two other parame-
ters (AOD and fine ratio). To better constrain the surface re-
flectance in the retrieval, the parameterization of the spectral
surface BRF for VISvsSWIR in Wu et al. (2016) is recon-
sidered and updated using ASRVN data, which are described
below.

4 BRF ratios of VIS / SWIR

To constrain the surface BRF at visible and 2.12 µm wave-
lengths in the AOD retrieval, the BRF ratios of visible
wavelengths to 2.12 µm were applied in this study. Three
years (2005–2007) of ASRVN data from Terra satellite were
downloaded (> 28 000 cases). To match the grid resolution
(10 km) of MODIS measurements in the algorithm, data
were averaged over 10× 10 km2 window with the center at
AERONET locations where only the cases that have more
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Figure 2. The TOA flux observed by the satellite considering the surface BRDF effects. The surface BRDF is simply described as four
elements: hemispherical-directional (1), bihemispherical (2), bidirectional (3) and directional-hemispherical reflectance/reflection (4), also
shown in panel (b). More details are explained in the text.

Figure 3. The BRF ratios of visible (0.466 and 0.644 µm) to 2.12 µm
wavelength, filtered by the dark surface under AOD< 0.2. The ra-
tios are obtained by forcing linear regressions through the origin.

than 80 % (ASRVN quality assurance = 0) falling within the
window were used. Additionally, the surface brightness and
atmospheric condition (e.g., aerosol loadings) that may have
effects on the ratios of the spectral BRF are taken into ac-
count in this study.

To ensure pixels over the dark surface, the BRF dataset
were filtered with Rdd,0.466 < 0.06, Rdd,0.644 < 0.15 and
Rdd,2.12 < 0.25. The data after the filtration are expected to
match the dark surface in the DT algorithm in which the mea-
surements were selected after masking the pixels of cloud,
water and snow–ice over the 20× 20 pixels box (500 m reso-
lution), with the measured 2.12 µm reflectance ranging from
0.01 and 0.25, and removing brightest 50 % and darkest 20 %
of the measured 0.66 µm reflectance (Remer et al., 2005;
Levy et al., 2007b, 2013).

The dataset was further filtered with light aerosol loading
(τ at 0.55 µm < 0.2, hereafter we use τ for 0.55 µm) to ac-
count for the high accuracy of the BRF data for this case
(2739 cases). Under light aerosol loading, the measured ra-
diation at TOA is dominated by the directional radiation that
mainly undergoes the bidirectional reflection of the surface.
In contrast, the TOA reflectance is more contributed by the
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diffuse reflection of the surface with heavy aerosol loading.
Therefore, the surface BRF is expected to be more accurate
under light aerosol loading than under heavy aerosol load-
ing. Actually, with τ < 0.2 the scatters of BRF for 0.466 to
2.11 µm (0.466 / 2.12) would differ 10 % in linear correlation
coefficients (R) from that with full aerosol loadings.

Figure 3 presents scatter plots of the surface BRF ra-
tios for VIS /SWIR filtered by the dark surface and low
aerosol loading (τ < 0.2). The BRF ratios are 0.268 and
0.589 for 0.466 / 2.12 and 0.644 / 2.12, respectively. We note
that the 0.466 / 2.12 scatters have a low correlation coeffi-
cient R (0.49), presenting larger varieties than 0.644 / 2.12
(R = 0.89). The low correlation of BRF for VIS /SWIR es-
pecially for 0.466 / 2.12 imply that other factors may have
strong effects on the ratios. These factors could be the ge-
ometrical illumination and viewing angle and surface cover
type. The details of their effects on the ratios are discussed
as below.

4.1 BRF ratios of VIS / SWIR with scattering angle

It was shown that BRF ratios of VIS /SWIR can present an
angular dependence over a vegetated area (e.g., Gatebe et al.,
2001). This is because vegetation (e.g., plant canopies) is not
randomly oriented (Rondeaux and Vanderbilt, 1993), which
could lead to the difference of the ratios with different angles.
Generally, the illumination and viewing angles are character-
ized as solar zenith angle, solar azimuth angle, sensor zenith
angle and sensor azimuth angle. To simplify illumination and
viewing angle, we use one variable – the scattering angle (see
Fig. 1) – instead, which is a function of these four angles, de-
fined as follows (e.g., Levy et al., 2007b; Hsu et al., 2013):

2= cos−1 (−cosθs cosθv+ sinθs sinθv cos(φs−φv)) . (4)

Sorted by the scattering angle, the dataset (2739 cases)
were put into 20 groups of equal size (about 140 points for
each bin of the scattering angle), where the median values of
each bin were used for the linear or nonlinear regression.

Figure 4a–c present the dependence of the surface BRF
on the scattering angle at three wavelengths (0.466, 0.644
and 2.12 µm). With the increase of the scattering angle, the
BRFs of 0.644 and 2.12 µm present a fairly flat trend with
their low correlation coefficients R (< 0.45). While this is
not the case for the 0.466 µm BRF data, which show a sig-
nificant increased trend (R = 0.75) with the scattering angle.
This suggests that the angular shape of the surface BRF tends
to be more significant at a shorter wavelength. This is com-
parable with the finding in Wang et al. (2010).

Figure 4d and e show the dependence of BRF ratios on
the scattering angle for 0.466 / 2.12 and 0.644 / 2.12, respec-
tively. We note that the ratio of 0.644 / 2.12 is nearly non-
sensitive to the scattering angle with a small slope (0.00027)
of the regression. This is mainly due to their similar (nearly
flat) trend with the scattering angle. To account for the non-
linearity of the 0.466 / 2.12 ratio with the scattering angle,

a second-order polynomial fit was applied. In addition, data
with last bin (large scattering angle) were neglected in the
fitting process since large errors of the BRF present in this
case as mentioned above.

4.2 Effects of surface type or NDVISWIR in the BRF
ratios of VIS / SWIR

To check the variability of the BRF ratios with surface cover
type or seasons, the MODIS Land Cover Type/Dynamics
products (MCD12C data during the year of 2006) were
used for this analysis. The BRF data with urban and non-
urban types were regrouped and further separated from
summer and winter (summer: June–July–August; winter:
December–January–February). For urban sites, the ratios of
VIS /SWIR (0.466 / 2.12: ∼ 0.3; 0.644 / 2.12: > 0.6) are
generally higher than non-urban sites (0.466 / 2.12: 0.23–
0.28; 0.644 / 2.12: 0.58–0.59), while presenting less seasonal
variability.

The variability of the BRF ratios due to the change of
surface properties might get refined by vegetation index
NDVISWIR which is defined as (Levy et al., 2007b; Hsu et al.,
2013)

NDVISWIR =
(
ρobs

1.24− ρ
obs
2.12

)
/
(
ρobs

1.24+ ρ
obs
2.12

)
, (5)

where ρobs
1.24 and ρobs

2.12 indicate MODIS observed reflectance
at 1.24 and 2.12 µm, respectively. However, due to the distur-
bance of the directional effect, NDVISWIR is insufficient to
refine the BRF ratio.

Figure 5 shows the dependence of the MODIS observa-
tions ρobs

1.24 and ρobs
2.12 and NDVISWIR on the scattering angle.

These observations were also filtered with the same dark sur-
face dataset. The medians of ρm

1.24 (R = 0.89) are much more
dependent on the scattering angle than ρm

2.12 (R = 0.47). As
result, we can see that the medians of NDVISWIR (R = 0.874)
also give a significant increased trend with the increase of the
scattering angle. This suggests that the NDVISWIR can differ
by 0.2 with different scattering angles. The difference of 0.2
in NDVISWIR would lead to the bias by > 0.012 (≥ 5 %) in
the AOD retrieval when τ ≤ 0.25, e.g., using the C6_DT re-
lationship.

Unfortunately, it is not easy to correct the directional ef-
fects of NDVISWIR. If we simply follow the linearly re-
gressed relationship in Fig. 5b, the effects will be poorly cor-
rected because the value of the nonlinearity and large uncer-
tainty ±(0.05+ 0.15) is comparable to the directional differ-
ence (0.2) in the relationship.
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Figure 4. The dependence of the spectral BRF on the scattering angle. The dataset (2739 cases) with the dark surface are sorted and grouped
into 20 bins by the scattering angle. Each bin has around 140 cases. On all subplots, dot, the height of box and the length of whisker for
each bin indicate the median value, 1σ and 2σ of the reflectance or ratios, respectively. The width of box means 1σ of the scattering angle
for each bin. The first row shows the surface BRF at each wavelength (0.466, 0.644 and 2.12 µm) as a function of the scattering angle. The
second row shows the ratios of the surface BRF 0.466 / 2.12 and 0.644 / 2.12 as a function of the scattering angle.

Figure 5. The dependence of the MODIS observation (obs. in a) and NDVISWIR (b) on the scattering angle. Blue and red indicate the
observation at 1.24 and 2.12 µm, respectively. Except for the color, other symbols are similar to Fig. 4.

4.3 Final BRF ratios of VIS / SWIR

Results of the 3-year ASRVN BRF dataset over around 100
AERONET sites show that the BRF ratio of VIS /SWIR has
a dependence on the scattering angle and surface type. Due
to the disturbance of the directionality, the NDVISWIR cannot
be used to refine the BRF ratio. Thus, NDVISWIR will not be
taken into account in the BRF parameterization. The final
ratios in BRF_DT2 are

R0.644 / 2.12 =
Rdd,0.644

Rdd,2.12

= 0.000272+ 0.5651 (6)

R0.466 / 2.12 =
Rdd,0.466

Rdd,2.12

=−2.663055× 10−522

+ 8.592420× 10−32− 0.3671062. (7)
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Table 1. Information of two case studies. Here, the AOD for the cases is obtained by averaging the corresponding AERONET measurements.

Area Lat Long Aerosol loading Period

North America 25–65◦ N 135–60◦W Light (AOD= 0.1) 2008 and 2010
Global land – – Medium (AOD= 0.15) January and July in 2008 and 2010

4.4 AOD errors caused by BRF ratio uncertainties

To clarify the effect of NDVISWIR omission in the AOD re-
trieval, we compared the uncertainty level of the retrievals
between BRF_DT and BRF_DT2 over the global land area.
Meanwhile, to avoid the angular effects in the results, the re-
trievals were sorted in bins of the scattering angle. It was
found that these algorithms give a similar (< 1 %) uncer-
tainty level in the retrieval (more details see Sect. 5.2.2). This
demonstrates that the removal of NDVISWIR would not cause
too much error in the new algorithm retrieval.

We also note that the BRF ratios still have a large un-
certainty even by accounting for the scattering angle, which
may cause errors of the AOD retrieval. The standard devi-
ation for 0.644 / 2.12 ratio is about ±0.1 and even larger
for 0.466 / 2.12 ratio (about ±0.12). To check the effects
of BRF ratios uncertainty on the AOD retrieval, we per-
formed a sensitivity test by given typical vegetation area,
where Rdd,2.12 is around 0.15, calculated by BRDF kernel
code brdf_forward (the code website given in Acknowledg-
ments). In this test, we added 1 standard deviation on the
BRF ratios (e.g., R0.466 / 2.12± 0.12, R0.644 / 2.12± 0.1). We
found that the ratios uncertainty can cause> 0.054 (> 22 %)
errors in the AOD retrieval under τ ≤ 0.25. Nevertheless, the
errors become small as increasing aerosol loading. For exam-
ple, when τ = 0.5, the error of the retrieval is 0.025 (5 %).

Nevertheless, these errors can be generally well absorbed
by the expected error (EE) envelope ±(0.05+ 15 %). Thus,
the current ratios can be used for the new algorithm.

5 Results and discussion

The BRF_DT2 algorithm was applied to the areas with light
aerosol loading (τ < 0.2) since heavy aerosol loading areas
(e.g, τ = 0.5) would not produce much different results by
updating the new BRF ratios as we discussed. Two cases
were selected, in which 2 years (2008 and 2010) of data are
from North America (25–65◦ N, 135–60◦W) and 4 months
(January and July in 2008 and 2010, respectively) of data are
from the global land areas (see Table 1). We note that the
global land and North America areas give the mean AOD
of 0.15 and 0.1, respectively. The AOD with the best-quality
QA= 3 (labeled as QA3) is presented.

To better understand the difference among the DT algo-
rithms, the MODIS C6_DT and BRF_DT AOD retrievals
were also investigated in this study. The comparisons were
divided into two parts: one is a cross comparison of AOD

retrievals among DT algorithms, and the other is their per-
formance through validation with AERONET AOD.

5.1 Cross comparison among DT AODs

Figure 6 shows an example of Argentina acquired on 16 Jan-
uary 2008, which illustrates the new AOD and the differ-
ence as compared between C6_DT and BRF_DT AOD. The
AODs over this area are normally < 0.25. Several surface
types are shown in this figure, including dense dark vegeta-
tion (farmland and forest), dry grass or bare soil, and green
grass from the western coast to northwestern regions.

In Fig. 6d (areas south of 45◦ S), the difference of the
AOD retrievals of both BRF_DT2–C6_DT and BRF_DT2–
BRF_DT do not vary with NDVISWIR. This demonstrates
again that the omission of NDVISWIR in the parameterization
does not significantly affect the retrieval.

In the yellow ellipse area shown in Fig. 6, we can see that
BRF_DT and BRF_DT2 AOD are spatially smoother than
C6_DT. This to some degree demonstrates that BRF_DT and
BRF_DT2 AOD are much less affected by the anisotropic re-
flection of the underlying surface. For the whole land area
shown in Fig. 6, the difference of BRF_DT2–BRF_DT AOD
presents a significant dependence on the scattering angle,
where a positive difference of 50 % (0.06) was found at a
small scattering angle (2≤ 130◦) and an equal negative dif-
ference (−0.06) at a large scattering angle (2≥ 150◦), while
less dependence was found for the difference of BRF_DT2–
C6_DT AOD.

Figures 7 and 8 present global maps (1◦× 1◦) of mean
AOD retrieved by C6_DT, BRF_DT and BRF_DT2 in Jan-
uary and July 2008, respectively. The new algorithm shows
a mean AOD of around 0.144 (January, July: 0.127, 0.160),
with a reduction by∼ 0.03 as compared to C6_DT. Roughly,
the reductions (∼ 0.1) mainly appear in large aerosol load-
ing areas, such as northern South America, central Africa
(around the Equator) and southern China (around 30◦ E),
whereas light loading areas (e.g., South America and Aus-
tralia) give an increase of AOD (∼ 0.04). The difference of
mean AOD is small (0.002) between the new algorithm and
BRF_DT. This is mainly due to the compensation between
small and large scattering angles in averaging process during
1 month. We will further check the AOD difference between
the algorithms in the validation section.

Figures 9 and 10 show histogram statistics of MODIS
AOD (QA= 3) for North America with 4 months (January,
April, July and October in 2008) of data and the global land
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Figure 6. AOD over Argentina. (a–c) show the AOD retrieved by the C6_DT, BRF_DT and BRF_DT2 algorithms. AOD with QA= 3 was
labeled as QA3. (d) and (e) show the AOD difference between DT algorithms. (f–h) show the MODIS scattering angle, the MODIS RGB
“true color” and NDVISWIR. The MODIS RGB image is obtained through combination of MODIS channels 1, 4 and 3.

Figure 7. January 2008 maps (1◦× 1◦) of mean AOD filtered with the best-quality QA= 3 (labeled as QA3) over global land. (a–c) show
the AOD retrieved from C6_DT, BRF_DT and BRF_DT2, respectively. (d) and (e) show the AOD difference of BRF_DT2–C6_DT and
BRF_DT2–BRF_DT, respectively.
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Figure 8. July 2008 maps (1◦×1 ◦) of mean AOD filtered with the best-quality QA= 3 (labeled as QA3) over global land. Other symbols
are similar to Fig. 7.
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Figure 9. Histograms for North America DT AOD (at 0.55 µm) from Aqua for 4 months. Plotted are data from C6_DT, BRF_DT and
BRF_DT2 with QA= 3, labeled as QA3. Bin labels represent the lower boundary of the bin. For example, a bin labeled as −0.05 means the
AOD between −0.05 and −0.03.

with 2 months (January and July in 2008) of data, respec-
tively. Several AOD bins are presented, ranging from −0.05
to 3.0, where each bin is labeled as one number (e.g., one
bin labeled as −0.05 means the AOD between −0.05 and
−0.03). Due to the mask of cloudy or cloud-contaminated
pixels in ancillary data (8-day MCD43A1), the number of
BRF_DT and BRF_DT2 retrievals was reduced by near one-
seventh than C6_DT. Thus, the normalized frequency is
given for each bin.

A significant difference of the frequency was found from
C6_DT/BRF_DT to the new algorithm. It seems that the dif-
ference is dependent on the months or seasons. We can see
that a small difference presents in April and July for North
America in Fig. 9. The variation of vegetation amount as sea-
son or month changes is a key factor for the retrievals. For the
North American area, the vegetation is abundant in spring
(e.g., April) and summer (July) and less abundant in autumn
(October) and winter (January). NDVISWIR is saturated over
the area with abundant vegetation, thus showing less direc-
tionality than the less vegetated area (e.g., sparse vegetation

and bare soil). As a result, BRF_DT and BRF_DT2 give
similar AOD retrievals for a vegetated area and different re-
trievals for less vegetation land.

In a more general and wide area – the global land area –
the differences in the frequency are not so significant as for
North America. The differences are smaller in January and
larger in July compared to North America. This is because
for the global land the total vegetation amount does not vary
too much over time.

Particularly, the negative retrievals (−0.05< τ < 0.0, the
summary of the first three bins) are significantly reduced in
the new algorithm compared to that in C6_DT and BRF_DT.
The reduction of the negative retrievals is more significant in
North America, with the decrease by 16 % (−0.16= 0.19–
0.35) in January and 7 % in October. The reduction becomes
small with only 4 % for the global land area. To further clar-
ify the reduction of the negative retrievals, we made similar
histograms for light aerosol loading area: Brazil and Aus-
tralia, shown in Fig. 11. The corresponding geoinformation
for these areas is given in Table 2. We found that the reduc-
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Figure 10. Histograms for the global land DT AOD (at 0.55 µm) from Aqua for 2 months. Other symbols are similar to Fig. 9.
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Figure 11. Histograms for the AOD (at 0.55 µm) in Brazil and Australia. The AOD data are from the global land area. Other symbols are
similar to Fig. 9.

Table 2. The geoinformation of Brazil and Australia.

Area Lat Long

Australia 15–35◦ N 105–155◦ E
Brazil 20◦ S–0◦ 55–30◦W

tion can be 6–11 and 11–23 % for Brazil and Australia area
in the new algorithm, respectively.

5.2 Validation with AERONET AOD

Petrenko et al. (2012) introduced a new method to vali-
date satellite AOD with AERONET measurements. Follow-
ing this method, we averaged MODIS AOD retrieval and
AERONET measurement spatially and temporally. For each
AERONET site, a circle of 25 km radius centered at the site
was selected. Then the MODIS pixels in this circle were av-
eraged. The possible pixel number is up to 25 in the cir-
cle. AERONET measurements during the ±30 min interval
centering on the Aqua satellite overpass time were chosen
and averaged. For a valid collocation, at least three MODIS
pixels and two AERONET measurements are required, fol-
lowing the rule in Levy et al. (2013). By this method, we
evaluated the AOD accuracy of the DT algorithms against
AERONET measurements, as well as the angular depen-
dence of retrievals.

5.2.1 Overall performance of the AOD retrieval

Results are compared with the C6_DT EE ±(0.05+ 15 %)
over land.

Figure 12 presents scatter plots of DT AOD retrievals
against AERONET over the global land. We can see that
there are more retrievals falling within EE in BRF_DT2 than
C6_DT and BRF_DT, with the increase of 2 and 4.5 % re-
spectively.

Compared to BRF_DT, 1 % increase of retrievals falling
within EE was found in BRF_DT2 for North America (not
shown). Although the increase is not significant, it does not
really mean small changes between these two algorithms.
Applying a stricter EE envelope ±(0.03+ 10 %) for North
America, the difference of AOD falling within EE was found
to be large (5 %= 64.4–59.5 %) for BRF_DT2–BRF_DT.
Nevertheless, this accuracy level is so strict that the new re-
trievals cannot meet the requirement of 1σ interval (66 %).

5.2.2 Angular performance of the AOD retrieval

In order to test whether the AOD retrieval is dependent
on the scattering angle, the MODIS AOD collocated with
AERONET measurements were sorted and grouped into 20
equal bins by the scattering angle.

Figure 13 presents the AOD errors of DT algorithms as
a function of scattering angle, where the errors are defined
as the absolute difference of MODIS–AERONET AOD at
0.55 µm. Several statistics are reported for each bin, which
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Figure 12. DT AOD validation over the global land. The DT algorithms are C6_DT, BRF_DT and BRF_DT2. The retrieved AOD is filtered
with QA= 3 (labeled as QA3), shown against AERONET AOD. The dash and solid line are expected error (EE)±(0.05+ 15%) and one–one
line, respectively.

Figure 13. AOD at 0.55 µm error as a function of scattering angle with QA= 3 (labeled as QA3). AOD error is defined as MODIS retrieved
AOD−AERONET AOD, broken into equal number bins of scattering angles. The data are plotted for North America and the global land. The
dash line and solid black line are EE and zero error. For each box, width is 1σ of the scattering angles bin, whereas height and middle line are
the 1σ and mean of the AOD error, respectively. Shown in the first and second column is the performance between C6_DT and BRF_DT2
and between BRF_DT and BRF_DT2, respectively. Gray indicates C6_DT and BRF_DT and blue is BRF_DT2, whereas red stars are the
median of AOD error for C6_DT and BRF_DT and red circles ones are for BRF_DT2.

are the 1σ interval and median (star or circle) of AOD er-
rors that are used to indicate the uncertainty level and bias,
respectively.

Generally, the errors of the AOD retrievals in all the al-
gorithms vary with the scattering angle. We can see that the
1σ errors increase with the increase of the scattering angle.
This is mainly due to the estimation accuracy of the surface
contribution varying with the scattering angle. The AOD re-
trieval is expected to be accurate in the DT algorithms when a

dark surface is observed since the TOA reflectance is mainly
contributed by the atmosphere and little by the surface. Nor-
mally, the surface appears darker in the forward scattering
angle (eg., 2< 115◦, many shadows observed) while it ap-
pears brighter in the backscattering angle (few shadows ob-
served).

The new algorithm presents apparent advantages in the
AOD retrieval compared to C6_DT, where 1σ errors are get-
ting smaller especially for North America. This is mainly due
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to the accurate estimation of the surface anisotropic reflection
in the new algorithm.

Compared to BRF_DT, the new algorithm shows similar
in 1σ errors for the two cases. Due to the angular effect of
NDVISWIR in the C6 parameterization, it leads to a less con-
straint on the spectral surface reflectance, resulting in less
accurate retrievals than we expected. Conversely, this proves
again the conclusion that the removal of NDVISWIR in the
new parameterization would not give a large error in the
AOD retrieval.

Significant differences present in the median value of the
errors between BRF_DT and BRF_DT2. Over the global
land area, the angular bias is largely corrected in the new
algorithm compared with BRF_DT, where at small and large
scattering angles (2< 130◦ and 2> 150◦) the median er-
rors of around −0.025 (−17 %) and 0.04 (27 %) are reduced
to ±0.012 (±8 %). The angular correction was also found
over North America, although there is still a little positive
bias in the new algorithm, over all the scattering angles.

6 Conclusions

In the AOD retrieval with satellite measurements, the ac-
curate estimation of the surface contribution is a key pro-
cess. Benefiting from the accurate estimation of the surface
anisotropic reflectance, the BRF_DT algorithm can yield a
better retrieval as compared to C6_DT. However, applied in
BRF_DT, the surface reflectance relationship inherited from
MODIS C6_DT can lead to an angular dependence of the
AOD retrieval. The problem is due to at least two possible
issues. The relationship that is derived by assuming a Lam-
bertian surface is not suitable for the land surface BRF. The
vegetation index NDVISWIR applied in the relationship may
have a directional effect and needs to be reconsidered for the
AOD retrieval.

To investigate and improve this situation, BRF_DT is fur-
ther developed by using new spectral ratios for surface BRF
(called BRF_DT2). Three years of ASRVN BRF data were
collected and filtered with the dark surface to derive the new
relationship. In this relationship, the surface BRFs at visi-
ble bands 0.466 and 0.644 µm are given as a linear func-
tion of that at 2.12 µm and the scattering angle. To test the
performance of the new algorithm, two areas with different
aerosol loading were used: data from North America (light,
AOD= 0.1) and the global land area (medium, AOD= 0.15).
For the case studies, a cross comparison among C6_DT,
BRF_DT and BRF_DT2 AOD was discussed, as well as the
validation with AERONET AOD. The results show that un-
der light aerosol loading (AOD< 0.2) some improvements
for the AOD retrieval can be achieved with the new algorithm
compared to C6_DT and BRF_DT:

– The negative retrievals (−0.05 < τ < 0.0) were signif-
icantly reduced, where the reduction can be up to 16–
23 % for some occurrence of clean region (AOD< 0.1).

The problem of a large number of negative AOD in
C6_DT (Levy et al., 2013), and as well as in BRF_DT,
was alleviated in the new algorithm.

– The percentage of the retrievals falling within the accu-
racy level EE=±(0.05+ 15 %) increases 2 and 4.5 %
for the AOD retrieval over the global land area com-
pared to BRF_DT and C6_DT, respectively. Although
a small increase was found in light aerosol loading area
North America as compared to BRF_DT, it can still give
a significant increase (5 %) with a stricter accuracy level
±(0.03+ 10 %).

– The angular bias of the AOD retrieval is largely cor-
rected. At small and large scattering angles (2< 130◦

and 2> 150◦), the underestimation (−17 %) and over-
estimation (27 %) of the retrieval in BRF_DT are re-
duced to ±8 % in the new algorithm for the global land
area. Similar findings are shown in North America, al-
though a small positive bias of the retrieval remains.

7 Data availability

Data of MOD04 L2, MCD43A1, MCD12C and ASRVN
(Terra) are publicly available from LAADS (2016) (https:
//ladsweb.nascom.nasa.gov/search). AERONET data are also
available from the NASA website (http://aeronet.gsfc.nasa.
gov/cgi-bin/combined_data_access_inv) (NASA, 2016).
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