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Hourly precipitation extremes in the Netherlands in eight transient (1951–2099) and five ERA40 driven
(1961–2000) regional climate model (RCM) simulations were analyzed. Generalized extreme value (GEV)
distributions were fitted to the annual maximum amounts. Large differences were found between the
estimated GEV parameters for the RCM simulations and those for an 11-year (1998–2008) high-quality
radar data set. There were also large differences between the GEV parameters for different RCM simula-
tions. The influence of the boundary conditions (ERA40 or a global climate model simulation for the pres-
ent climate) on the extreme value distributions was in most cases small. A similar analysis for the daily
precipitation extremes revealed much smaller differences between RCM simulations and a much better
agreement with the results for the radar data. The increase in large quantiles of the daily maxima at the
end of the 21st century in the transient RCM simulations was much smaller than that in the quantiles of
the hourly maxima. For the latter, large differences were found between the changes from different RCM
simulations, partly resulting from an increase in the GEV shape parameter in a number of RCM simula-
tions. This increase in the shape parameter also largely explains the differences between the changes in
large quantiles of the hourly and daily precipitation extremes.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Changes in extreme precipitation due to climate change have
received much interest during the last decade, mainly because of
the direct impact on the hydrological regime and the frequency
and severity of flooding. To assess possible future changes at the
local scale, increased use has been made of the simulations of re-
gional climate models (RCMs). Nowadays, there are already quite
a few publications on daily precipitation extremes in RCM data
(e.g., Buonomo et al., 2007; Durman et al., 2001; Fowler et al.,
2007; Fowler and Ekström, 2009; Frei et al., 2006; Goubanova
and Li, 2007). However, modeling of the rainfall–runoff dynamics
in urbanized areas requires time-scales shorter than 1 day (e.g.
Schilling, 1991; Berne et al., 2004). Lack of commonly available
sub-daily RCM data has limited research on changes in short-dura-
tion precipitation extremes. The studies published so far consider
only a very small number of RCM simulations. For instance, Grum
et al. (2006) used changes in the 1-h precipitation statistics ob-
tained from one RCM for a grid box in Denmark to alter observed
point precipitation measurements in order to assess the climate
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change impact on a drainage network. Lenderink and van
Meijgaard (2008) analyzed the changes in hourly precipitation
maxima over Europe in one RCM simulation. Olsson et al. (2009)
investigated 30-min precipitation at a grid box in Sweden in two
RCM simulations. Onof and Arnbjerg-Nielsen (2009) used an
hourly rainfall generator in combination with a random cascade
disaggregator to downscale the information from an hourly RCM
simulation to 5-min point precipitation.

Recently, the daily values of the hourly precipitation maxima
over Europe from a relatively large number of RCM simulations
conducted in the framework of the EU funded ENSEMBLES project
(Hewitt and Griggs, 2004) have been archived. This enables the
assessment of the ability of RCMs to simulate hourly precipitation
maxima and the description of the uncertainty in future projec-
tions. In the present paper we compare the distributions of the
1-h and 1-day annual precipitation maxima in a number of RCM
simulations conducted within the ENSEMBLES project with those
from a unique high-quality radar data set in the Netherlands
(Overeem et al., 2009b). Eight RCM simulations nested within tran-
sient global climate model (GCM) simulations and five RCM simu-
lations driven by the ERA40 reanalysis (Uppala et al., 2005) are
considered. For the GCM driven RCM simulations, the changes in
the distributions of the annual precipitation maxima are also dealt
with. The model developed by Hanel et al. (2009) for regional fre-
quency analysis was used for statistical inference on precipitation
maxima.

http://dx.doi.org/10.1016/j.jhydrol.2010.08.024
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The data and statistical model that have been used are intro-
duced in Sections 2 and 3, respectively. In Section 4, the estimated
GEV parameters from the RCM simulations for the present climate
are compared with those from the radar data, and the changes in
the GEV parameters and quantiles of the annual maximum distri-
butions at the end of the 21st century are discussed. In Section 5,
the main results are summarized and a number of concluding re-
marks are presented.
Fig. 1. The study area. The gray boxes in the inset figure represent the RCM grid
boxes in the Netherlands, the black dots show the location of the two radars used
for validation.
2. Data

Table 1 gives an overview of the 13 RCM simulations analyzed
in this paper. These simulations were conducted with five RCMs.
Eight of the RCM simulations were driven by transient runs of
GCMs forced by the SRES A1B emission scenario and five by the
‘perfect boundary’ of the ERA40 reanalysis. The transient simula-
tions were driven by ECHAM5 (Jungclaus et al., 2006), ARPEGE
(Salas-Mélia et al., 2005), and three versions of HadCM3 (Collins
et al., 2006) resulting from a perturbed physics ensemble experi-
ment, i.e., HadCM3Q0 without parameter perturbations,
HadCM3Q3, and HadCM3Q16 with parameter perturbations giving
the lowest and highest global temperature response to external
forcings, respectively. The precipitation extremes in the four
ECHAM5 driven simulations are strongly correlated because of
the common boundary conditions. Moreover, the differences be-
tween these simulations are caused by RCM biases. In contrast,
the differences between the three transient RCA simulations are
the result of differences between the boundary conditions.

All transient simulations we analyzed cover the period 1951–
2099. The ERA40 driven simulations span the period 1961–2000.
The data and information about the simulations are available in
the archive of the ENSEMBLES project (http://ensemblesrt3.dmi.dk).
The horizontal resolution is in all cases �25 km using the same ro-
tated longitude–latitude grid. There are 65 grid boxes covering the
Netherlands (Fig. 1).

The radar data set used as a reference for the present climate
consists of 11 years (1998–2008) of 5 min data with a horizontal
resolution of 2.4 km. These data were obtained from two C-band
Doppler weather radars, one located in De Bilt in the middle of
the country and one in Den Helder in the northwest of the country
(see Fig. 1). After ground clutter removal, the data from both radars
were combined into one composite, using a weighting factor
depending on the distance to the radar. The raw radar precipitation
amounts were adjusted using rain gauge data from an automatic
network with 1-h precipitation amounts (�1 station per
1000 km2) and a manual network with daily precipitation amounts
(�1 station per 100 km2). An extensive description of the adjust-
Table 1
Overview of the RCM simulations.

RCM Acronym Boundary

RACMO2.1 RACMO_EH5 ECHAM5
(van Meijgaard et al., 2008) RACMO_E40 ERA40

REMO5.7 REMO_EH5 ECHAM5
(Jacob et al., 2001) REMO_E40 ERA40

HadRM3.0 HadRM_Q0 HadCM3
(Jones et al., 2004) HadRM_E40 ERA40

HIRHAM5 HIR_ARP ARPEGE
(Christensen et al., 2007) HIR_EH5 ECHAM5

HIR_E40 ERA40

RCA3.0 RCA_EH5 ECHAM5
(Kjellström et al., 2005) RCA_Q3 HadCM3

RCA_E40 ERA40

RCA_Q16 HadCM3
ment procedure is given by Overeem et al. (2009b). These authors
further showed that the average precipitation amounts and the fre-
quency distribution of the 24-h precipitation amounts from the ad-
justed radar data were in good correspondence with those based
on the manual rain gauge network. For the 1-h precipitation
amounts from the adjusted radar data, however, an underestima-
tion of the exceedance frequencies of extreme levels was found.
This underestimation is caused by errors such as attenuation or
changes in the vertical profile of reflectivity. The density of the
automatic rain gauge network is too low to adjust for these errors.
The systematic error of extreme hourly precipitation is considered
further in Section 3.

3. Methods

We assume that the 1-h and 1-day annual precipitation ex-
tremes follow a generalized extreme value (GEV) distribution. This
distribution has often been used to model annual maximum pre-
cipitation from observed data and from RCM simulations (e.g.,
Fowler et al., 2007; Overeem et al., 2009a). The GEV distribution
is defined by the distribution function:

FðxÞ ¼ exp � 1þ j
x� n

a

� �� ��1
j

( )
; j–0;

FðxÞ ¼ exp � exp � x� n
a

� �� �� �
; j ¼ 0;

ð1Þ

with n, a and j the location, scale and shape parameter, respec-
tively. The location parameter corresponds to the 1/e quantile of
Source

Royal Netherlands Meteorological Institute (KNMI)

Max Planck Institute for Meteorology (MPI), Germany

Q0 Met Office Hadley Centre, UK

Danish Meteorological Institute (DMI)

Swedish Meteorological and Hydrological Institute (SMHI)
Q3

Q16 Community Climate Change Consortium for Ireland (C4I)
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the distribution of the maxima. The return period associated to this
quantile is 1/(1 � 1/e) � 1.58 years. The location parameter strongly
determines the mean, but does not influence the standard deviation
and higher order central moments. The scale parameter is propor-
tional to the standard deviation. The shape parameter controls the
tails of the distribution with positive values implying a heavy upper
tail. The case j = 0 is known as the Gumbel distribution. For short-
duration precipitation extremes the shape parameter is generally
positive (e.g., Koutsoyiannis, 2004; Overeem et al., 2008). In the sta-
tistical model of Hanel et al. (2009), which is used here to assess the
precipitation extremes in the RCM data, the scale parameter a is re-
placed by the dimensionless dispersion coefficient c = a/n. This dis-
persion coefficient is proportional to the coefficient of variation of
the maxima.

Hanel et al. (2009) assume that in a predefined region (here the
Netherlands) the precipitation maxima in a certain year are identi-
cally distributed at all grid boxes after scaling with a grid box-spe-
cific factor. This assumption, often used in regional frequency
analysis, is usually referred to as the index flood assumption
(Hosking and Wallis, 1997). For the GEV distribution it implies that
both c and j are constant over the region of interest. Traditionally,
the extremes have been scaled by their sample mean and median.
However, for nonstationary data, it is convenient to consider the
location parameter n. In the statistical model of Hanel et al.
(2009) this parameter varies both over the grid boxes and over
the years, whereas c and j only depend on time. The T-year quan-
tile at grid box s in year t can then be represented as:

Q Tðs; tÞ ¼ nðs; tÞqTðtÞ; ð2Þ

where n(s, t) is the location parameter at grid box s in year t, and
qT(t) is a common dimensionless quantile function:

qTðtÞ ¼ 1� cðtÞ
jðtÞ 1� � log 1� 1

T

� �� ��jðtÞ
( )

; jðtÞ–0;

qTðtÞ ¼ 1� cðtÞ log � log 1� 1
T

� �� �
; jðtÞ ¼ 0:

ð3Þ

Note that qT(t) is completely determined by the time-dependent
dispersion coefficient c(t) and shape parameter j(t). A comprehen-
sive derivation of the statistical model is given by Hanel et al.
(2009).

Temporal variation in the GEV parameters is introduced by a
time indicator I(t). Simple relationships are used to link each GEV
parameter to I(t):

nðs; tÞ ¼ n0ðsÞ exp½n1IðtÞ�; ð4Þ

cðtÞ ¼ exp c0 þ c1IðtÞ½ �; ð5Þ

jðtÞ ¼ j0 þ j1IðtÞ: ð6Þ

Note, that the trends in the GEV parameters n(s, t), c(t) and j(t)
are assumed to be constant over the region of interest. The expo-
nential function in Eq. (4) ensures that the relative changes in
the quantiles of the distribution are constant over the region as
well. The exponential form of Eq. (5) restricts the dispersion coef-
ficient to non-negative values. As a time indicator, the annual glo-
bal temperature anomaly of the driving GCM is considered in the
case of GCM driven simulations to represent the enhanced green-
house gas forcing. Hanel et al. (2009) discussed the sensitivity of
the changes in the GEV parameters and quantiles of the distribu-
tion to the time indicator I(t) in Eqs. (4)–(6). These changes were
almost the same for various choices of I(t). For the ERA40 driven
simulations, we assume stationarity of the precipitation maxima,
i.e., I(t) = 0 for these simulations.
The parameters n0(s), n1, c0, c1, j0 and j1 are estimated by a
two-step maximum likelihood procedure (Hanel et al., 2009). The
uncertainty of these estimates is assessed by a bootstrap procedure
in which the precipitation maxima for a certain year (after removal
of the temporal trend in the nonstationary case) are resampled
simultaneously for all grid boxes to preserve the spatial depen-
dence. To retain the dependence between RCMs driven by the
same GCM simulation, bootstrap samples are based on the same
sequences of years for all RCM simulations. Details on the uncer-
tainty assessment are given in Appendix A.

As for the ERA40 driven simulations, stationarity of the precip-
itation maxima was also assumed for the radar data. The fact that
these data were available for only 11 years hampers the estima-
tion of the parameters in the index-flood model. In a simulation
experiment, Overeem et al. (2009a) show that the full maximiza-
tion of the likelihood for such short periods leads to seriously
biased estimates of the dispersion coefficient and the shape
parameter. These biases can be reduced by assuming that the
location parameter is constant over a certain region, which also
reduces the standard error of the estimated location parameter.
Since systematic regional differences in the location parameter
are small in the Netherlands, this parameter was taken to be con-
stant over the whole country in a study of Overeem et al. (in
press) on extreme-value modeling of areal precipitation. In that
study, the GEV distribution was fitted to the annual maxima of
area-average precipitation for area sizes A of 6 km2 (1 radar pixel)
to 1700 km2 (289 radar pixels) and for durations D of 15 min to
24 h. The location parameter increases with increasing duration
because the annual maximum for a given duration cannot be
smaller than the annual maximum for a shorter duration. The dis-
persion coefficient decreases with increasing duration reflecting
that the relative variability of the annual maxima is large at short
durations. The dependence of the shape parameter on duration is
not statistically significant. The annual maxima of area-average
precipitation for a given duration tend to decrease if the area be-
comes larger. This leads to a reduction of all three GEV parameters
with increasing area size. Overeem et al. (in press) used regression
models to describe the dependence of each GEV parameter on D
and A. For the comparison with the RCM simulations in this paper,
the values for D = 60 min and 24 h and A = 625 km2 were taken
from these models. The values of the location parameter were re-
duced by a factor of 1.15 to allow for the differences between run-
ning 1-h and 1-day maxima (radar data) and consecutive 1-h and
1-day maxima (RCM data). This kind of correction is well-known
in the literature (Hershfield, 1961; NERC, 1975; van Montfort,
1990). A bootstrap procedure similar to that for the RCM data
was used to determine the uncertainty of the GEV parameters
from the radar data.

Overeem et al. (2009a) showed that the effective length of the
radar dataset was 80 years for the 10-year quantile of the 24-h pre-
cipitation amounts at a radar pixel and 100 years for the 50-year
quantile. This effective length increases for durations shorter than
24 h because of the weaker spatial association of precipitation for
short durations. Overeem et al. (2009a) also compared the 10-year
and 50-year quantiles from the radar dataset with those based on
rain gauge data from 12 stations that were evenly distributed over
the Netherlands and had at least 29 years of data. For D = 24 h, the
quantiles from the radar data were somewhat larger (7–9%),
mainly because the 1998–2008 period is a rather wet period. How-
ever, for D = 1 h the quantiles from the radar data turned out to be
smaller (6–8%). This difference is partly due to the remaining errors
in the radar dataset, which could not be adjusted with a relatively
sparse network of hourly precipitation measurements. The GEV
location parameter for the 1-h maxima from the radar dataset
was 14% lower than the estimate from rain gauge data for the same
11-year period.
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Overeem et al. (in press) compared the reduction of the quan-
tiles of the annual maximum distributions with increasing area
size with the areal reduction factors from dense rain gauge net-
works in the literature. For a return period of two years the areal
reduction factors obtained from the regression models for the
GEV parameters were comparable to those in the UK Flood Studies
Report (NERC, 1975). Further, a larger areal reduction effect was
obtained for longer return periods, which is consistent with the
study of Bell (1976) for precipitation data in the UK.

4. Results

4.1. Precipitation extremes for the present climate

Fig. 2 gives boxplots of the estimates of the GEV parameters n, c,
and j as obtained from 1000 bootstrap samples for the 1-h
(Fig. 2a–c) and 1-day (Fig. 2d–f) annual precipitation maxima for
the present climate. For the GCM driven simulations, the estimated
values were derived from Eqs. (4)–(6) using the average annual
global temperature anomaly in the period 1961–1990 as I(t). The
results are not much different if the temperature anomaly is taken
for the period 1961–2000 (reference for the ERA40 reanalysis) or
1998–2008 (reference for the radar data). The estimates of the
location parameter were averaged over the 65 grid boxes in the
Netherlands.

For the 1-h maxima, the majority of the RCM simulations
underestimate the location parameter (Fig. 2a) by 30–40% with
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Fig. 2. Estimates of the GEV parameters for the (a–c) 1-h and (d–f) 1-day annual precipit
transient RCM simulations and the filled boxes the ERA40 driven simulations. The large
were obtained from 1000 bootstrap samples and the 5th, 25th, 50th, 75th, and 95th pe
respect to the radar data. For the REMO simulations the underesti-
mation is less than 10%. Nearly all box plots are outside the confi-
dence intervals for the radar data. This points to statistically
significant biases even though the radar data refer to a rather short
period. Surprisingly, there are large differences among the RCA
simulations. While RCA_EH5 and RCA_E40 overestimate the loca-
tion parameter by about 30%, this parameter is more than twice
as large as that from the radar data in the RCA_Q3 simulation,
and RCA_Q16 underestimates the location parameter by 40%. In
Section 3, it was noted that the location parameter of the 1-h pre-
cipitation maxima at a radar pixel was underestimated by 14%,
which may also apply to the values from the radar data in
Fig. 2a. This underestimation is, however, small compared to the
differences between the estimated location parameter for most
RCM simulations and that from the radar data. Nevertheless, the
underestimation by the radar implies that the bias in the RCA_EH5
and RCA_E40 simulations is in fact much smaller than Fig. 2a
suggests. A serious overestimation of the dispersion coefficient
(30–60%) is found in the RACMO, REMO, and HadRM simulations,
while this parameter is reasonably reproduced in the HIRHAM
and RCA simulations (Fig. 2b). The same holds for the shape param-
eter (Fig. 2c): a serious overestimation (0.2–0.4) in the case of RAC-
MO, REMO, and HadRM and reasonable values for HIRHAM and
RCA. Note, that values of the shape parameter larger than 1/3 (as
found for RACMO, REMO, and HadRM) imply a very heavy tailed
distribution with infinite skewness. Apart from the two RCA
simulations driven by the two perturbed versions of the HadCM3
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ation extremes for the present climate. The open boxes represent the values for the
gray box in the background shows the estimates from the radar data. The boxplots
rcentiles of these bootstrap samples are indicated.
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Fig. 3. Quantile plots of the (a–c) 1-h and (d–f) 1-day annual precipitation extremes (PMAX) in the HadRM_Q0, HIR_ARP and RCA_EH5 simulations compared with the
quantiles from the fitted GEV model and those from the radar data. The plots for the RCM simulations are average plots for the 65 grid boxes in the Netherlands.

M. Hanel, T.A. Buishand / Journal of Hydrology 393 (2010) 265–273 269
model, there is little difference between the estimated GEV param-
eters for the ERA40 and GCM driven runs, indicating that the biases
are largely due to the precipitation parameterization in the RCM
rather than the driving boundary conditions (GCM, ERA40).

The GEV parameters for the 1-day precipitation maxima are in
general much better reproduced in the RCM simulations. For all
RCM simulations, the bias in the location parameter is less than
10% (Fig. 2d), and the bias in the shape parameter is lower than
0.2 (Fig. 2f). The dispersion coefficient is, however, overestimated
by 10–40% (Fig. 2e).

These biases are comparable to those found by Hanel and
Buishand (2010) for the summer maxima over the Dutch part of
the Rhine basin (almost two-thirds of the Netherlands) in a larger
number of transient RCM simulations from the ENSEMBLES pro-
ject. The summer season is the season in which most heavy precip-
itation occurs (summer showers). For the radar data the 24-h
maxima occurred mostly in the period July–December and the
60-min maxima mostly in the period June–September (Overeem
et al., 2009a). The ERA40 and ECHAM5 driven simulations show
the same behavior. Since the biases in the daily summer maxima
and daily annual maxima are comparable in the ECHAM5 driven
simulations for this region, similar results as for the annual max-
ima would have been obtained if the hourly and daily maxima in
these RCM simulations were compared for the summer season
only. The extremes in the other RCM simulations are more evenly
distributed over the year. This holds both for the 1-day and 1-h
maxima. Although the occurrence of extremes in the HadRM_Q0
simulation is less concentrated in the summer season than in the
HadRM_E40 simulation, the biases in the GEV parameters for these
simulations are comparable. This also applies to the HIR_ARP,
HIR_EH5 and HIR_E40 simulations.

For the radar data, the confidence intervals for n and c in Fig. 2
are relatively wide for the 1-day annual precipitation extremes.
This is partly due to the larger spatial association of 1-day precip-
itation. For the uncertainty of the location parameter, the increase
in the GEV scale parameter with increasing duration is also impor-
tant. The confidence intervals for the shape parameter are the same
for the 1-h and 1-day precipitation maxima from the radar data be-
cause the duration was not included in the regression model for
this parameter (see Overeem et al., in press). For the 1-h precipita-
tion extremes from the radar data, the widths of the confidence
intervals for c and j strongly depend on the value of the shape
parameter (a large value of j implies large uncertainty). The confi-
dence intervals represent the uncertainty due to the availability of
a limited amount of data. Multi-decadal variability is not taken into
account. Further, exceptional years may have a considerable im-
pact on the width of the confidence interval. For the 24-h maxima
at a radar pixel, Overeem et al. (2009a) showed that the estimated
uncertainty was reduced by about 20% if the year 1998 was
omitted.

4.2. Goodness of fit

The Anderson–Darling test for (nonstationary) spatially corre-
lated data on a grid (Hanel et al., 2009) did not reveal any lack of
fit of the statistical model. The adequate fit of the GEV distribution
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is also clear from Fig. 3 which compares quantile plots of the 1-h
(Fig. 3a–c) and 1-day (Fig. 3d–f) precipitation extremes in the Had-
RM_Q0, HIR_ARP, and RCA_EH5 simulations with the quantiles
from the fitted GEV model and the radar data. To produce these
quantile plots, the trends with respect to the period 1961–1990
were first removed from the annual maxima, and then the quan-
tiles of the adjusted annual maxima (PMAX) were averaged over
the 65 grid boxes in the Netherlands. The trend removal and area
averaging are fully described in Appendix A. For the HadRM_Q0
and RCA_EH5 simulations, the largest 1-h precipitation amounts
are plotted far above the line representing the quantiles from the
radar data. These maxima are not much different in the two RCM
simulations. The differences in the shape of the distribution are
mainly determined by the less extreme events. For the HIR_ARP
simulation, all quantiles of the 1-h precipitation maxima are smal-
ler than those from the radar data set. The representation of the
1-day precipitation maxima is much more adequate. Only the
quantiles from the HadRM_Q0 simulation considerably exceed
those from the radar data for return periods longer than 10 years.
4.3. Projected changes in precipitation extremes

The estimated changes in the GEV parameters between the
periods 1961–1990 and 2070–2099 for the transient RCM simula-
tions are given in Fig. 4 together with the ensemble mean changes.
For the 1-h maxima all three GEV parameters increase (Fig. 4a–c).
The relative increase in the location parameter and the dispersion
coefficient is on average 18% and 14%, respectively, the average
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Fig. 4. Changes in the GEV parameters for the (a–c) 1-h and (d–f) 1-day annual precipita
obtained from 1000 bootstrap samples and the 5th, 25th, 50th, 75th, and 95th percenti
absolute increase in the shape parameter is 0.11. There are, how-
ever, large differences among RCMs ranging from almost no change
to an increase about twice as large as the ensemble mean change.
In particular, the HIR_ARP and HIR_EH5 simulations exhibit a rela-
tively large increase in both the dispersion coefficient and the
shape parameter, which is caused by the occurrence of a number
of exceptional precipitation maxima in the second half of these
simulations. Very large events are also found in the second half
of the RCA_Q16 simulation which has the largest increase in the
shape parameter. For the 1-day maxima (Fig. 4d–f), there is on
average a 14% increase in the location parameter and a 7% increase
in the dispersion coefficient, while the shape parameter decreases
slightly (�0.01).

Fig. 5a shows the ensemble mean relative changes in the quan-
tiles of the distribution of the 1-h maxima between the periods
1961–1990 and 2070–2099. The changes in the lower quantiles
are determined by the changes in the location parameter, thus
up to the 2-year quantile there is an increase of about 15%. How-
ever, as the return period gets longer, the increase in the location
parameter is enforced by the increase in the dispersion coefficient
and the shape parameter leading to very large increases (45–60%)
at return periods longer than 50 years. The uncertainty in this
ensemble mean change is, however, considerable. In addition,
there are large differences between the relative changes in large
quantiles in the eight transient RCM simulations. The smallest in-
crease (10%) is projected by HadRM_Q0, and the largest (110%)
by HIR_EH5. The differences can partly be attributed to the
increase in the shape parameter found in a number of RCM
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les of these bootstrap samples are indicated.
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Fig. 5. Ensemble mean relative changes in the quantiles of the annual maximum distribution between the periods 1961–1990 and 2070–2099 for the 1-h and 1-day
precipitation amounts for (a and b) the 1-h precipitation amounts, assuming a time-varying shape parameter (a) and a constant shape parameter (b), respectively, and (c and
d) the same for the 1-day precipitation amounts. The uncertainty bands were obtained from 1000 bootstrap samples and the 5th, 25th, 50th, 75th, and 95th percentiles of
these bootstrap samples are indicated.
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simulations (Fig. 4c). To explore the impact of this increase on the
changes in the quantiles, we refitted the statistical model assuming
that the shape parameter is constant in time, i.e. with j1 = 0 in Eq.
(6). Fig. 5b shows that this leads to a strong reduction of the in-
crease in large quantiles and the uncertainty of this increase. The
uncertainty band is outside the uncertainty band in Fig. 5a at long
return periods due to the significant increase in the shape param-
eter in a number of RCM simulations.

Considering the average temperature increase over the Nether-
lands between the periods 1961–1990 and 2070–2099 from the
RCM simulations (2.8 �C), the increase in 1-h extreme precipitation
for long return periods becomes �18% per degree of warming. This
is far beyond the value expected from the Clausius–Clapeyron rela-
tion (�7%) and also above the value (14%) that was reported by
Lenderink and van Meijgaard (2008) for the RACMO_EH5 simula-
tion in large parts of Europe and observations in De Bilt in the
Netherlands. The increase is, however, reduced to �9% per degree
of warming if the shape parameter is kept constant.

The quantiles of the distribution of the 1-day maxima (Fig. 5c)
increase with increasing return period for return periods shorter
than 20 years owing to the increase in the location parameter
and the dispersion coefficient. For larger quantiles, there is a more
or less constant increase of about 19%. This corresponds to a 6.8%
increase per degree of warming, which is close the value expected
from the Clausius–Clapeyron relation. The average changes are
similar if no change in the shape parameter is assumed (Fig. 5d),
although the uncertainty of the changes in large quantiles is con-
siderably reduced in that case.

5. Conclusions

The present study revealed that the distribution of the RCM
simulated 1-h precipitation extremes in many cases strongly devi-
ates from that of the radar data. The negative bias in the location
parameter which is inherent in the majority of the considered
RCM simulations implies that the simulated maxima tend to be
too low. However, for the RACMO, REMO, and HadRM simulations
the effect of the underestimation of the location parameter is out-
balanced by a serious overestimation of the dispersion coefficient
and shape parameter leading to a positive bias at long return peri-
ods. The positive bias in the location parameter in the case of the
RCA_EH5 and RCA_Q3 simulations leads to an overestimation of
all quantiles. In general, the skill of each simulation in modeling
1-h precipitation maxima is largely determined by the RCM. How-
ever, the value of the location parameter can be affected by the
boundary conditions as well (see the RCA simulations in Fig. 2a).
In contrast to the 1-h precipitation extremes, the distribution of
the 1-day precipitation extremes is simulated quite well by the
RCMs. This suggests that the underestimation of the location
parameter for the hourly precipitation extremes is compensated
by a stronger persistence of moderately large hourly values in
the RCM simulations. Persistence at more extreme levels can, how-
ever, be limited by available moisture. This restricts the amount of
precipitation on the daily time scale. The better reproduction of the
distribution of the 1-day precipitation extremes applies to RCM
simulations that preserve the observed seasonal cycles of the 1-h
and 1-day precipitation extremes as well as to the RCM simula-
tions that do not preserve this seasonal cycle.

The relative change in the quantiles of the 1-h precipitation ex-
tremes is influenced by the increase in all GEV parameters leading
to very large increases in large quantiles, i.e., a 45–60% increase at
return periods from 50 to 200 years. The quantiles of the 1-day
precipitation extremes increase as well, however, this increase is
only �20% for long return periods. The different behavior of the
changes in large quantiles between the 1-h and 1-day precipitation
extremes is caused by a significant increase in the shape parameter
of the 1-h maxima in several RCM simulations, which is not found
for the 1-day maxima.
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Although the projections of hourly precipitation extremes are
often needed for climate change impact assessment, the large devi-
ations of the distribution of the simulated 1-h maxima from that
obtained from the radar data questions the ability of a number of
RCMs to represent (convective) precipitation properly at the hourly
scale. Direct use of the projections from these models should there-
fore always be made with care. Alternative methods should be con-
sidered as well. Given the very large uncertainty in the projected
changes in hourly precipitation extremes between different RCM
simulations, multi-model assessment is necessary.
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Appendix A. Uncertainty assessment and removal of trends

Since the standard errors of the parameters cannot be obtained
from the derivatives of the log-likelihood because of the depen-
dence between the precipitation maxima at different grid boxes
in the region, a bootstrap procedure described by Hanel et al.
(2009) is used to construct confidence intervals for the GEV param-
eters and the quantiles of the annual maximum distributions. Let
X(s, t) be the annual precipitation maximum at grid box s in year
t. The resampling procedure can be summarized as follows:

1. Calculate the standard Gumbel residuals ~Xðs; tÞ using:

~Xðs; tÞ ¼ 1
ĵðtÞ log 1þ ĵðtÞ

ĉðtÞ
Xðs; tÞ
n̂ðs; tÞ

� 1

 !" #
; ðA:1Þ

where n̂ðs; tÞ, ĉðtÞ, and ĵðtÞ are obtained by replacing the param-
eters n0(s), n1, c0, c1, j0, and j1 in Eqs. (4)–(6) by their maximum
likelihood estimates n̂0ðsÞ; n̂1; ĉ0; ĉ1; ĵ0, and ĵ1. This transforma-
tion removes the trend in the annual maxima. The ~Xðs; tÞ follow
a standard Gumbel distribution, i.e. a Gumbel distribution with
n = 0 and a = 1.

2. Draw a sample t1, . . ., tu, . . ., tN with replacement from the years
1, . . ., N, where N is the number of years (e.g., N = 149 in the case
of the transient RCM simulations covering the period 1951–
2099).

3. Form a bootstrap sample of standard Gumbel residuals by taking
the vector ~Xð1; tuÞ; . . . ; ~Xðs; tuÞ; . . . ; ~XðS; tuÞ

� 	
for each resampled

year tu , with S the number of the grid boxes in the region.
4. Transform this bootstrap sample back to the original scale

using:

Xðs;uÞ ¼ n̂ðs;uÞ 1þ ĉðuÞ
exp ĵðuÞ~Xðs; tuÞ

h i
� 1

ĵðuÞ

8<
:

9=
;: ðA:2Þ

5. Re-estimate the parameters and quantiles.
Steps 2–5 are repeated until the required number of bootstrap
samples is obtained.

In the present paper, the transformations (A.1) and (A.2) are
also used to remove the trend from the series of the annual precip-
itation maxima in the transient RCM simulations in order to obtain
the area-average quantile plots for the period 1961–1990 shown in
Fig. 3. First, the standard Gumbel residuals are calculated as
described above. The average time indicator I(t) for the period
1961–1990 is substituted into Eqs. (4)–(6) to obtain estimates of
the parameters n, c, and j for that period. These estimates are used
in Eq. (A.2) to transform the standard Gumbel residuals to annual
precipitation maxima that are representative of the period 1961–
1990. These adjusted annual precipitation maxima are then or-
dered for each grid box, and subsequently the values for each rank
are averaged over the 65 grid boxes (pluses in Fig. 3). Likewise, for
the fitted GEV model the estimated location parameters are aver-
aged over the 65 grid boxes to obtain one curve for the whole
region.
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