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A two-stage time-series resampling algorithm is presented that is capable of generating daily values of
weather variables outside their historical ranges. In this algorithm the simulated daily values are com-
posed of an expected value and a sampled historical residual. The residuals broaden the range of the sim-
ulated daily values. Both the estimation of the expected value and the sampling of the residuals are based
on the nearest-neighbours concept. In particular the influence of the neighbourhood sizes in both near-
est-neighbour searches was studied. The algorithm was tested with data generated by two theoretical
time-series models.

Using observed precipitation and temperature data, a 12,000-year series of precipitation and temper-
ature for the Ourthe catchment (Belgium) was simulated and used as input for a rainfall-runoff model to
produce a long synthetic sequence of daily discharge. The two-stage algorithm correctly reproduces the
mean, standard deviation and lag 1 autocorrelation of daily precipitation. The simulated distributions of
4-day and 10-day precipitation maxima in winter also show good correspondence with those observed,
while the largest daily amounts substantially exceed those in the original data. However, the widened
range of daily precipitation amounts has no discernible effect on the simulated discharge maxima in

winter.

© 2009 Elsevier B.V. All rights reserved.

Introduction

The stochastic generation of weather variables relevant to
hydrologic simulation has long been of interest. This is reflected
by the variety of papers on this topic, in particular on the genera-
tion of daily precipitation sequences (the oldest dating from the
1970s). Initially parametric models were used. Quite often the
occurrence of precipitation was described by a two-state Markov
chain or an alternating renewal process and the amount of precip-
itation on a wet-day by a positively skewed distribution (gamma or
mixed exponential), see Woolhiser (1992) for a review. Transfor-
mations of the multivariate normal distribution have been consid-
ered for multi-site simulation (e.g., Richardson, 1977; Bardossy and
Plate, 1992; Wilks, 1998). Nonhomogeneous hidden Markov chains
have been developed for the conditional simulation of daily precip-
itation on large-scale weather variables (e.g., Hughes and Guttorp,
1994; Charles et al., 1999). Parametric models require rather
restrictive assumptions regarding the probability distributions
and the correlation structure. Nonparametric models avoid this dif-
ficulty and are therefore gaining in popularity. Examples of this ap-
proach are nearest-neighbour resampling (e.g., Young, 1994; Lall
and Sharma, 1996; Rajagopalan and Lall, 1999) and methods
involving Kkernel-density estimation techniques (e.g., Harrold
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et al., 2003a,b). An advantage of nearest-neighbour resampling is
that it can easily be extended to multi-site simulation (Buishand
and Brandsma, 2001). A significant disadvantage of the nearest-
neighbour algorithm, however, is the fact that it cannot produce
amounts beyond those present in the sequences used as base
material. This limitation may not hamper applications relying
mainly on extreme multi-day precipitation. However, in some
applications it might be desirable to allow for daily amounts be-
yond the maximum found in the historical record.

In this study an extension of the nearest-neighbour resampling
algorithm is explored that is capable of generating larger daily pre-
cipitation amounts than those observed. This is achieved by a two-
stage resampling scheme. In the first stage the expected amount is
determined, using a nearest-neighbour regression. In the second
stage the expected amount is multiplied by a randomly selected
residual factor, which is also based on a nearest-neighbour search.
The general concept is first tested for two univariate cases using
simulated data from theoretical time-series models. Subsequently,
this idea is used to generate sequences of daily precipitation and
temperature of a river catchment in the Ardennes, Belgium. The
properties of the resampled precipitation are studied in detail. A
12,000-year synthetic series of daily precipitation and temperature
serves as input for simulations with the semi-distributed rainfall-
runoff model HBV (Lindstrém et al., 1997). The results for extreme
floods are compared to the results of a traditional nearest-neigh-
bour resampling algorithm. Additionally, a series resampled with
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this algorithm is considered in which the largest amounts are re-
placed by random values from the tail of an exponential
distribution.

Method

The simulation procedure is based on the decomposition of the
variable X into an expected value M conditional on prior values of X
and a non-negative residual factor e with unit mean, i.e.

X = Me. (1)

The procedure of simulating a value X; for a certain day j consists of
two stages, the estimation of its expected value M; from the simu-
lated values for previous days and the generation of a residual e;
(throughout this paper the superscript “*’ is used to signify simu-
lated values). This requires information on the distribution of e to
be extracted from the historical record.

Prior to the simulation, the expected value M; of X; for each day i
in the historical sequence is estimated by a nearest-neighbour
regression. ‘Nearest-neighbour’ (Lall and Sharma, 1996) here refers
to a day l#i-1 that is similar to day i—-1 in terms of
di_1 = |Xi—Xi_1] (or a weighted Euclidean distance in the case of
multiple variables characterizing day i—1). The estimate M; of M;
can be expressed as a linear combination of the successors of the
sorted ky, nearest-neighbours of day i—1 with coefficients /,:

~ Ky
M; = Z 2 Xnnb(k,i=1)+1 (2)
k=1

where nnb(k,i—1) refers to the kth closest neighbour of X; ;. The
residual e; of day i then equals the historical value X; divided by Mf.

Simulating daily values proceeds in an analoguous way. For
each new day j in the simulation, an estimate 1\~4j of the expected
value is calculated from the historical successors of the nearest-
neighbours of the last simulated value X; ; as:

~ K
M; = Z 2 X nnb(kj—1)+1- (3)

k=1

From the k. historical days of which M,v is closest to Mj, one of the
residuals ¢€; is randomly selected as the simulated residual e;, using
the decreasing 1/k-kernel introduced by Lall and Sharma (1996):
ak:kli 1<k<ke (4)
i 1/k

with oy the probability of selecting the residual of the kth closest
neighbour. From the expected value and the residual factor the sim-
ulated value for day j then becomes:

X =M;e. ()

Based on a suggestion of Lall and Sharma (1996), Prairie et al.
(2006) followed an analoguous approach to simulate values beyond
the observed range. They used an additive algorithm instead of a
multiplicative algorithm. In particular with a view to simulating
precipitation, the latter has the advantage that the generation of
negative values is avoided. Another difference with the algorithm
discussed here is that in their algorithm the residual was sampled
from the successor of one of the nearest-neighbours used for esti-
mating M.

The decomposition of the historical value X; into an expected
value M; and a residual &; can be summarized as follows:

1. Find and sort the kj; nearest-neighbours of the historical day
i—-1.

2. Determine the expected value If/li from the historical successors
of these nearest-neighbours (Eq. (2)).

3. Obtain the residual as &; = Xi/IWi.

The simulation is then initialized by selecting a historical day at
random and values at subsequent days j are simulated:

1. Find and sort the ky, nearest-neighbours of the last simulated
day j—1.

2. Determine the expected value M ; of the new day j as a weighted
average of the historical successors of these nearest-neighbours
(Eq. (3)). ) )

3. Find and sort the k. historical days of which M is nearest to M;.

4. Sample the residual € of one of these days as e; using the 1/k-
kernel (Eq. (4)).

5. Multiply 1\71,- and e; to simulate the value X; for day j.

For the hydrological application in this study this algorithm has
been extended in order to generate daily precipitation and temper-
ature simultaneously, thereby preserving the dependence between
both variables.

Theoretical models

The algorithm described above was first tested with data from
theoretical time-series models which both generate only positive
values. The advantage of considering a theoretical model lies in
the fact that its statistical properties can usually be derived exactly
from the model formulation. Two first-order autoregressive (AR1)
models were considered, a lognormal AR1 model and an exponen-
tial AR1 model. The lognormal model was chosen because it is mul-
tiplicative, similar to the algorithm. The exponential model is
useful to detect possible effects of non-multiplicativity on the per-
formance of the algorithm. Both models have commonly been used
within a hydrologic context, usually for the stochastic simulation
of streamflows.

Lognormal AR1 model

A sequence {X;} of correlated standard lognormal variables can
be generated by transforming the values {Y;} of a normal AR1
process:

Y= pYi,1 +&v1— pz. (6)

X; =exp(Y;) = exp [p log(Xi_1) + &1 — pz]
=X/, exp (8,-\/1 - p2>, (7)

where the {¢;} are independent standard-normal variables. The {X;}
have mean /e ~ 1.65 and standard deviation /e(e — 1) ~ 2.16. The
lag 1 autocorrelation coefficient g, of the lognormal process {X;} can
be derived from the lag 1 autocorrelation coefficient p of the under-
lying AR1 process {Y;} using (Mejia and Rodriguez-Iturbe, 1974):

ex -1
R ®
The expectation M; follows from Eq. (7):

1
M; = E(Xi|Xi.1) = X! | exp [ﬁ(] - pz)}

1
= exp [p logXi1 +5 (1~ pz)} : 9)
Note that M; is nonlinear in X;_;. For this AR1 process the residuals

_exp (&m)

e = 10
exp (1~ 307 10
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have a lognormal distribution with
E(e)) =1, (11)

Since the distribution of logX;_; in Eq. (9) is standard normal, the
distribution of M; is lognormal with mean and variance

Var(e;) = exp(1 — p?) — 1.

E(M;) = exp G) ~1.65, Var(M;) = e[exp(pz) -1]. (12)
Here p =0.5 was chosen, for which Var(M;) ~ 0.77, Var(e;) ~ 1.12
and @1 ~ 0.378. Furthermore, M; and e; are independent, because
X;_1 and ¢; are independent.

Exponential AR1 model

An exponential AR1 model (EAR1) was presented by Gaver and
Lewis (1980). Here this model is used to generate a sequence {X;} of
correlated standard exponential variables. The EAR1 process has
the same additive form as a normal AR1 process:

Xi= pX,-,l + &i. (13)

The innovation ¢; equals zero with probability p and is positive with
probability 1—p, in which case it is sampled from the standard
exponential distribution, i.e. Pr(g;> x)=(1—p)exp(—x). A general-
ization of this process to gamma-distributed random variables (Ga-
ver and Lewis, 1980; Lawrance, 1980) is related to the shot-noise
models of Weiss (1977) for the generation of daily streamflow data.
If the innovations ¢; are zero, the X; decay exponentially, resembling
streamflow recessions during dry periods. The autocorrelation stuc-
ture is the same as that of a normal AR1 process, i.e. the lag j auto-
correlation coefficient ¢; equals p’. A value of p =0.5 was chosen.
Though a nonlinear multiplicative first-order exponential autore-
gressive process is known in the literature (McKenzie, 1982; Fer-
nandez and Salas, 1986), the EAR1 process is considered here to
detect possible limitations of non-multiplicativity to the resampling
procedure.

The conditional means {M;} and the corresponding residuals {e;}
for this model are given by

and ei:&:l-l- i

M; = pXi1 + (1 - p) M M (14)

Table 1

Sensitivity of the mean, standard deviation s, and lag 1 autocorrelation coefficient to
the neighbourhood sizes ky and k. for resampling from lognormal data (left) and
exponential data (right). The theoretical values, those extracted from the data (size
2000) and those of several resampling simulations (size 20,000) are listed.

Ky ke Lognormal Exponential
Mean Sd T Mean Sd T

Theory 1.65 2.16 0.378 1.00 1.00 0.500
Data 1.69 222 0.376 1.02 1.01 0.500

50 100 1.69 2.24 0.281 1.04 1.02 0.406
100 100 1.66 223 0.288 1.03 1.01 0.422
200 100 1.71 2.29 0.298 1.03 1.01 0.440
400 100 1.68 2.23 0.329 1.02 1.02 0.458
800 100 1.69 2.25 0.308 1.02 1.00 0.454
400 50 1.67 2.16 0.321 1.04 1.01 0.440
400 200 1.70 2.26 0.309 1.05 1.02 0.441
400 400 1.70 225 0.315 1.03 1.02 0.439
400 800 1.72 2.33 0.323 1.02 1.03 0.439
400 1600 1.67 2.28 0.315 1.01 1.08 0.412

The means of M and e are both equal to one and the variance of M
equals p?. Contrary to the lognormal model, the variance of e; de-
pends on M;:
1 1-p?

Var(e;|M;) = — Var(g) = ———. 15

(€IM) = 3 Var(e) =~ (15)
This dependence may put a restriction on k. in the second step of
the resampling algorithm. The {M;} follow a shifted exponential dis-
tribution with location parameter 1—p and scale parameter p, i.e.
Pr(ng):l—exp{—#} x=1-p (16)

Simulation results

With each AR1 model a sequence of 2000 values was generated
(from here on referred to as ‘data’). From these sequences, simula-
tions with a length of 20,000 values were obtained by applying the
two-stage resampling algorithm. For the coefficients 4 in Eqgs. (2)

T‘heoretical‘

4 5 6 7 8

Fig. 1. Expected values M; versus the ‘historical’ predecessor X;_; for the 2000 values from the exponential model, estimated as a weighted average with 1/k-weights and by
the zeroth- and first-order LOESS smoother (Lo and L;) with ky; = 400. The solid line represents the theoretical value from Eq. (14).
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and (3) the 1/k-kernel in Eq. (4) was used, but with ky, instead of k.
The neighbourhood sizes ky and k. were expected to influence the
statistical properties of the simulated series. Table 1 lists the mean,
the standard deviation s, and the lag 1 autocorrelation r; of resam-
pled sequences from the data of the lognormal model (left) and the
exponential model (right) with various settings of ky; and k.. For
each model the theoretical values and the empirical estimates de-
rived from the data are given in the first two rows.

The theoretical mean and standard deviation of both models are
reasonably well reproduced by most simulations and seem insensi-
tive to the choice of ky; and k.. Both parameters are slightly overes-
timated in most simulations. In both cases (lognormal as well as
exponential) r; is underestimated for all combinations of ky; and
k.. Since persistence is introduced into the simulation through M,
its estimation from the nearest-neighbours has been investigated
in some detail. Fig. 1 compares the values of M; from the exponen-
tial data, using ky; = 400 (grey dots) with the theoretical value from
Eq. (14) (solid straight line). The values of M; are considerably scat-
tered. This scatter was suspected to be the source of the negative
bias in r;. To reduce the scatter, the LOESS smoother (Cleveland,
1979) was studied as an alternative for the estimation of M;. In this
method a polynomial is fitted to the successors of the nearest-
neighbours of X;_; by means of weighted least-squares with weights

3 3
Wi = |:] — <ﬁ> :| , (17)
éI<M
where Jy is the distance between X;_; and its kth nearest neighbour
and Jy, the largest distance within the neighbourhood. The esti-
mate of M; is calculated as the value of the fitted polynomial at
X;_1. The LOESS smoothers of degree zero Ly (local constant) and de-
gree one Ly (local linear relation) are considered. In both cases the
estimate of M; can be written as a linear combination of the succes-
sors of the nearest-neighbours, as in Eq. (2). For Ly the weights 4
reduce to wi/ > wy. For L; the expression of /, is more complex.

Table 2

Same as in Table 1, but now for two modifications of the original algorithm with
respect to the estimation of M, respectively, based on the zeroth-order (Lo) and first-
order (L;) LOESS smoother.

kn ke Lognormal Exponential
Mean Sd T Mean Sd T

Theory 1.65 2.16 0.378 1.00 1.00 0.500
Data 1.69 2.23 0.377 1.02 1.01 0.500
Lo

50 100 1.68 2.23 0.335 1.00 0.98 0.460
100 100 1.69 2.20 0.345 1.01 0.97 0.481
200 100 1.65 1.99 0.359 0.98 0.98 0.497
400 100 1.70 2.17 0.387 0.95 0.95 0.508
800 100 1.69 2.22 0.359 1.00 0.99 0.489
400 50 1.70 2.25 0.340 0.97 0.97 0.503
400 200 1.70 217 0.373 0.95 0.96 0.510
400 400 1.66 2.11 0.356 0.97 0.99 0.497
400 800 1.68 2.19 0.339 0.98 0.98 0.482
400 1600 1.71 2.23 0.359 0.97 1.00 0.462
L

50 100 1.68 2.19 0.332 1.04 0.98 0.462
100 100 1.73 2.27 0.368 1.01 0.97 0.478
200 100 1.75 224 0.338 1.03 0.97 0.481
400 100 1.67 2.15 0.348 0.97 0.99 0.510
800 100 1.73 2.33 0.350 1.00 0.99 0.494
400 50 1.67 2.14 0.366 0.98 0.97 0.494
400 200 1.68 217 0.373 1.00 1.00 0.503
400 400 1.73 2.35 0.356 0.97 0.98 0.509
400 800 1.70 2.26 0.359 0.99 1.00 0.508
400 1600 1.64 2.12 0.357 0.98 1.05 0.505

As is seen in Fig. 1, the use of Ly considerably reduces the scatter
of Mi. However, it is also seen that I\A/I,» based on the 1/k-kernel or
Lo falls below the theoretical line for X;_; > 3. Method L4, on the con-
trary, does not underestimate M; at large X;_;. The mean, s; and rq
for methods Ly and L, are listed in Table 2. Especially the reproduc-
tion of r; improves substantially, compared to the values in Table 1
for the 1/k-kernel. The best results are found for ky; > 100. This
could be related to the scatter of M;, which decreases with ky. In
the case of the lognormal data a negative bias in r; still remains
in most simulations, probably induced by the long tail of the distri-
bution. Furthermore, the standard error of the estimated lag 1 auto-
correlation is much larger in the lognormal case than in the
exponential case, due to the influence of fourth order moments
(Bartlett, 1946).

The upper panels of Fig. 2 show probability plots of X}, resulting
from resampling the lognormal data (left) and the exponential data
(right) with method L, using different values of kj; and k. = 100.
The lower panels show the corresponding distributions of the sim-
ulated means M;. In the simulations with the lognormal data, the
values hardly exceed the highest value in the data, irrespective of
the choice of ky. These simulations are also unable to reproduce
the upper 0.5% of the distribution of M. For the exponential data
in the upper right panel, the tail of the distribution of X" shows a
better agreement with the theoretical distribution when ky; in-
creases. This can solely be ascribed to the fact that in this case
the reproduction of the distribution of M is improved by increasing
ky. The difference between the results for both models may be due
to the long tail of the lognormal distribution.

For the simulations in Fig. 2, a relatively small value of k. was
used. The (M;, e;)-pairs will then generally be close to those in
the data. Increasing the value of k. enhances the simulation of
new combinations of M and e and therefore leads to higher simu-
lated values, which is demonstrated in Fig. 3. In the case of the log-
normal data the upper tail of the simulated distribution
approaches that of the underlying distribution for large k.. How-
ever, in the case of the exponential data the distribution for
k. = 1600 clearly overshoots the theoretical distribution. This effect
should be ascribed to variance heterogeneity: if k. is too large, the
residuals associated with the set of k. nearest-neighbours can no
longer be considered as identically distributed random variables,
due to the dependence of the variance of e on M (Eq. (15)). The ef-
fect of variance heterogeneity becomes more pronounced if a uni-
form kernel is used instead of the 1/k-kernel.

From the foregoing results it is concluded that ky; should be
chosen sufficiently large in order to avoid an underestimation of
r; in the simulations. The value of k. has a direct influence on the
range of simulated values, in particular the highest value. To sim-
ulate values that are substantially larger than those in the data, k.
should be chosen sufficiently large. However, too large values of k.
should be avoided, because of possible dependence of the distribu-
tion of e on M, which deteriorates the reproduction of the distribu-
tion of x. The optimum choice of these parameters depends on the
characteristics of the underlying data.

Simulation of precipitation and temperature for the Ourthe
catchment

This section compares the performance of different resampling
algorithms for the simulation of precipitation and temperature in
the catchment of the river Ourthe upstream of Tabreux
(1588 km?), located in eastern Belgium (Ardennes) with altitudes
varying between 200 and 650 m above mean sea level. The Ourthe
is an important tributary of the river Meuse. Like most of the
Belgian Ardennes, the catchment largely consists of steep terrain
and a soil of hard, impermeable rock. The storage capacity of this
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Fig. 2. Probability plots of resampled data X and simulated means M for different values of ky and k. = 100. The upper panels show the probability plots of the data (2000
values, dots) from the lognormal model (left) and the exponential model (right) and the series resampled from these data with method L; (20,000 values, curves). The lower
panels display the corresponding probability plots of M and those of the empirical distributions (2000 values, dots) calculated from the data through Egs. (9) and (14) with
p = 0.5. The straight lines represent the theoretical distributions of X in the upper panels and M in the lower panels.

area is therefore low and the response to precipitation relatively
fast. Through its position close to the Netherlands border, the Our-
the catchment contributes significantly to the discharge of the riv-
er Meuse in the Netherlands during flood waves.

Daily areal average precipitation for this area (derived from sta-
tion records by the Royal Meteorological Institute of Belgium by
means of Thiessen interpolation) and daily temperature from the
enclosed station St. Hubert for the 32-year period 1967-1998 were
used. The average annual precipitation for this period amounts to
970 mm.

Leander et al. (2005) used nearest-neighbour resampling for the
multi-site simulation of precipitation and temperature of the Meuse
basin to assess the probability of flood extremes. In that study a
three-dimensional feature vector was used to characterize historical
and simulated days. The vector of any particular day consisted of the

precipitation, the temperature and the precipitation total of the four
preceding days. The latter served as a memory element. The similar-
ity of two days t and u is quantified by a weighted Euclidean distance

3 1/2
O = {ZW;(UU - %‘)2} ) (18)
=1

where 7; and ,; denote the jth components of the feature vectors for
these days and w; is a weight, inversely proportional to the variance
of the jth component. Mehrotra and Sharma (2006¢) compared dif-
ferent methods to determine w;, which were tested with a variety
of data sets. They recommend an optimization of the weights in or-
der to take the relative importance of the components into account.
However, the choice and weighting of the feature vector compo-
nents used here gave satisfactory results in earlier simulations of
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Fig. 3. Probability plots of the data (2000 values, dots) from the lognormal model (left) and the exponential model (right) and the values X resampled from these data with
method L; ( 20,000 values, curves), using different values of k. and ky; = 400. The straight lines represent the theoretical distributions of X.

precipitation and temperature (Leander et al., 2005), in particular
when it comes to simulating multi-day precipitation extremes.

Prior to the simulation, the daily precipitation was deseasonal-
ized with the mean wet-day amount and the daily temperature
with the mean and standard deviation. In each step of the simula-
tion, the 10 historical days most similar to the previously simu-
lated day in terms of the weighted Euclidean distance between
feature vectors (Eq. (18)) were sought within a moving window
of 121 calendar days and one of these historical days was selected
at random, using the decreasing kernel in Eq. (4). Its historical suc-
cessor then provided the precipitation and temperature for the
new day in the simulation. Finally, the seasonal cycle of the gener-
ated precipitation and temperature sequences was restored. The
same resampling algorithm was also used in this study, from here
on referred to as ‘RG1’, with the modification that a 5-day, instead
of a 4-day, memory was included in the feature vector.

A method of simulating larger daily precipitation amounts than
those observed was introduced by Buishand (2007). In that study,
the two largest historical daily amounts in a 60-day season were
replaced by a value sampled from a Generalized Pareto Distribu-
tion (GPD), whenever they occurred in the resampled sequence.
The replacement values were conditioned to exceed the third larg-
est historical value x3 in the season. The same approach was fol-
lowed here to perturb a sequence generated with RG1, except
that the replacement values were sampled from an exponential
distribution fitted to the 10 largest historical amounts in the sea-
son of interest. Seasons were defined as bimonthly periods (Janu-
ary-February, March-April, etc.). The wused exponential
distribution is equivalent to Buishand’s GPD with shape parameter
0 = 0. The choice of zero shape parameter was justified by a regio-
nal analysis of the daily precipitation from different catchments in
the Meuse area (Appendix A). From here on, this way of perturbing
resampled precipitation from RG1 is referred to as ‘RG1p’.

The nearest-neighbour regression algorithm discussed in ‘Meth-
od’ was implemented for the simulation of standardized precipita-
tion and temperature (from here on referred to as ‘RG2’). For
precipitation the multiplicative model, Xp = Mpep, was used. The
selection of nearest-neighbours of the preceding day, used for esti-
mating both the expected mean standardized precipitation Mp and
temperature My, was similar to that in RG1. The estimation of Mp;

for day i was based on the zeroth-order LOESS smoother Ly for
Xpi_1 < 2 and on the first-order LOESS smoother L; otherwise. In
the latter only the daily precipitation amounts for the nearest-
neighbours of day i—1 and their successors were considered. L;
was used here in combination with Ly because precipitation con-
tains zeroes, in contrast with the data of the theoretical examples.
Applying L; in cases where Xp;_; is small could then lead to a neg-
ative value of Mp;. Besides, the linear regression in Ly is primarily
intended to achieve a better estimate of Mp; for large Xp;_;. The
standardized temperature was simulated additively, i.e.
Xt = Mg + er, where Mr was estimated with the zeroth-order LOESS
smoother Lo. The residuals ej; and ej; for day j in the simulation are
both linked to the same historical day. In analogy to the algorithm
described in ‘Method’, the selection of this day should be condi-
tioned on ij and MTJ However, this resulted in an underestima-
tion of the lag 1 autocorrelation r; of daily precipitation. In order to
enhance the persistence of the simulated daily precipitation
amounts, the last simulated residual ey ; and its 5-day memory
were also taken into account. At the end of each step, X;; was eval-
uated as Mp]epj and Xj; as My + ey- An important contrast between
RG1 and RG2 is that m the latter there is no longer a one-to-one
correspondence between the simulated values and historical dates.

To assess the sensitivity of RG2 to the neighbourhood sizes, sev-
eral 320-year sequences of daily precipitation and temperature
were simulated with different settings of ky and k.. For compari-
son, also a 320-year simulation was performed with RG1 and
RG1p. Only the winter half-year (October-March) was considered,
because most floods take place in that season. From all these sim-
ulations the mean, standard deviation sy lag 1 autocorrelation
coefficient r; and maximum of the daily precipitation in the winter
half-year were compared with those of the 32-year observed re-
cord. The results are listed in Table 3. For RG1 and RG1p the mean
and s4 show an underestimation, whereas r; is close to that ob-
served. There is little difference between both simulations, con-
firming that the mean, s; and r; are not sensitive to the
replacement of the largest values. In the simulations with RG2
the mean is better reproduced than in those with RG1 and RG1p,
but most simulations slightly overestimate s; and underestimate
r1. The latter is comparable to the underestimation of r for the log-
normal data in Table 2. In none of the simulations does the bias of
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Table 3

Properties of the daily precipitation in the winter half-year (October-March) from 320-year simulations with RG1, RG1p and RG2 with different values of ky, and k., compared
with those observed (+2 x se). The standard deviation s, the lag 1 autocorrelation coefficient ry and their standard errors se were estimated by means of the jackknife method of
Buishand and Beersma (1993, 1996). Estimates for the simulations deviating more than 2 x se from the historical value are printed in bold. In the last column the largest daily

winter amount (Max) is listed.

Kkt ke Mean (mm) Sq (mm) i Max (mm)

Obs. - - 2.79+0.206 4.59 +0.144 0.375+0.033 54.7
RG1 - - 2.61 4.47 0.375 54.6
RG1p - - 2.61 4.48 0.373 66.8
RG2 50 200 2.78 4.79 0.324 136.5
100 200 2.70 4.62 0.330 64.0

200 200 2.68 4.62 0.346 62.3

400 200 2.76 4.71 0.354 67.9

800 200 2.73 4.69 0.364 62.4

1600 200 2.76 4.70 0372 60.1

200 50 2.67 4.60 0.369 72.5

200 100 2.72 4,71 0.354 61.5

200 400 2.69 4.66 0.351 67.3

200 800 2.77 4.74 0.339 60.7

200 1600 2.93 4.95 0.314 64.3

400 50 2.73 4.65 0.364 56.5

400 100 2.71 4.56 0.363 68.5

400 400 2.74 4.64 0.361 719

400 800 2.76 4.70 0.362 65.3

400 1600 2.79 4.85 0.341 76.7

800 50 2.71 4.63 0.360 55.7

800 100 2.79 4.74 0.365 55.4

800 400 2.74 4.60 0371 60.5

800 800 2.76 4.76 0.354 54.8

800 1600 2.72 4.78 0.346 69.4

the simulated mean exceed twice the standard error of the esti-
mate from the historical record. However, in a few simulations
the values of s; and r; fall outside their 2 x se-intervals. In most
of these cases either ky; < 100 or k. > 800. The value of r; generally
tends to increase with ky,, in line with the results for the theoretical
models. In most RG2-simulations, the largest winter amount is
notably larger than that observed.

The distributions of daily precipitation and temperature

With the algorithms RG1, RG1p and RG2 described above, sta-
tionary simulations of 12,000 years were performed. These simula-
tions are representative of the historic base period and are not
intended to account for climate variability on, for instance, centen-
nial and millennial timescales. For RG2 a value of 400 was selected
for ky, and k., based on the performance in Table 3 and the exper-
iments with the theoretical models. Setting ky; = 400 leads to a sat-
isfactory reproduction of the mean, s; and r; of daily precipitation.
Furthermore, it is assumed that k. = 400 is sufficiently large to rea-
sonably approximate the tail of the distribution, while avoiding ef-
fects of variance heterogeneity. Fig. 4 compares the simulated
distributions of the daily precipitation amounts in the winter
half-year with the observed distribution. The simulations show a
good agreement with the observations. The figure clearly shows
the exponential tail of the distribution in the RG1p-simulation,
extending beyond the historically largest amount which limits
the values in the RG1-simulation. The plot of RG2 is found roughly
in between the plots of RG1 and RG1p, which means that the two-
stage resampling algorithm produces a distribution of daily precip-
itation with a shorter tail than the exponential distribution.

Fig. 5 shows that the RG1- and RG2-simulations reproduce the
distribution of the daily temperature in winter quite well. There is
only a slight underestimation of the probability of very low tem-
peratures. The highest simulated daily temperatures exceed the
highest observed temperature. For the RG1-simulation this can
be ascribed to two causes (Buishand and Brandsma, 2001). The val-
ues resampled for days in the winter half-year can originate from a

historical date outside this season, due to the moving window. Fur-
thermore, differences between the historical and simulated values
can arise from the standardization and destandardization.

The distribution of 4-day and 10-day precipitation maxima in winter

From the perspective of flood risks, the extremes of aggregated
amounts of simulated precipitation in the winter half-year are of
particular interest. The top panel of Fig. 6 compares the Gumbel
plots of the 4-day precipitation maxima in the winter half-year
for the different resampling algorithms. Up to a return period of
20 years the differences between the simulation methods are min-
or. The plots for RG1p and RG1 even coincide. For longer return peri-
ods, the plots diverge. The highest 4-day maxima are generated by
RG2, followed by RG1p. For the Gumbel plots of the 10-day maxima,
displayed in the bottom panel of Fig. 6, the differences between the
three algorithms are negligible over the entire range of return peri-
ods. This is directly related to the exponential tail of the distribution
of daily precipitation in the winter half-year. For such a distribution
extreme 10-day totals are mainly due to a cluster of moderately
large daily amounts, rather than an isolated very large daily amount
(Buishand, 2007). There is a good agreement between the Gumbel
plots for the three resampling algorithms and the plot for the ob-
served maxima. The main difference is that the three highest ob-
served maxima are somewhat above the plots for the simulated
data. In order to investigate the significance of the deviations of
these maxima, the RG2-simulation was partitioned into segments
with the same length as the observed record, as was done by Lean-
der et al. (2005). A pointwise 95%-envelope of the Gumbel plots of
the individual segments was constructed. It was found that the
Gumbel plot of observed maxima lies within this envelope.

Extreme river discharges
To assess the effect of the different resampling algorithms on

floods, the generated 12,000-year sequences of daily precipitation
and temperature were used to drive the rainfall-runoff model HBV
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Fig. 4. Exponential probability plots of daily precipitation amounts in the winter half-year for the 12,000-year RG1-, RG1p- and RG2-simulations, compared with the plot of
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Fig. 5. Normal probability plots of the daily temperature in the winter half-year for the 12,000-year RG1- and RG2-simulations, compared with the plot of the observed daily

temperature.

for the river Ourthe at Tabreux. HBV is a conceptual model devel-
oped at the Swedish Meteorological and Hydrological Institute
(Lindstrom et al., 1997). The model configuration and the model
parameters used here are identical to those for the Ourthe catch-
ment in Leander et al. (2005).

Besides daily precipitation and temperature, the HBV model re-
quires daily potential evapotranspiration (PET) values. These were
derived from the daily temperature in the same fashion as in Lean-
der and Buishand (2007). From the simulated daily discharges the
maxima of the winter half-years were extracted. Fig. 7 compares
the Gumbel plots of these maxima with the plot obtained by driv-
ing HBV with observed daily precipitation and temperature (and
PET derived from these temperatures). The plots for the generated
12,000-year sequences show a good correspondence with the ob-

served data. Up to a return period of about 200 years there is no
distinction between the three simulations. For longer return peri-
ods the plots of RG1p and RG2 remain close together and are some-
what above that of RG1. This result points out that being able to
simulate daily precipitation amounts beyond the observed range
hardly influences the simulation of winter extremes of daily dis-
charge for a tributary of the river Meuse, such as the river Ourthe.

Conclusion and discussion

A two-stage nearest-neighbour algorithm (RG2) is explored that
allows for the simulation of daily precipitation amounts and tem-
peratures beyond the range of observed values. The simulation of a
new daily value in this algorithm proceeds by the subsequent
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Fig. 6. Gumbel plots of the 4-day (top) and 10-day (bottom) precipitation maxima in the winter half-year for the 12,000-year RG1-, RG1p- and RG2-simulations, compared

with those observed.

estimation of the value that is expected to follow the preceding sim-
ulated values, and resampling a residual associated with one of the
historical observations. Different implementations of this algorithm
were tested on data from two AR1 processes. The best results were
achieved with an algorithm which estimates the expected value by
means of a local linear regression (first-order LOESS smoother). The
influence of the neighbourhood size for the determination of the ex-
pected values, ky;, and that for the sampling of the residuals, k., was
studied in detail. It was found that ky,; should be chosen sufficiently
large in order to achieve a satisfactory reproduction of the lag 1
autocorrelation. Furthermore, a small value of k. limits the potential
to simulate larger values than observed. On the other hand, a very
large value of k. may worsen the distribution of the simulated val-
ues due to variance heterogeneity.

The two-stage algorithm was further used to generate se-
quences of daily precipitation and temperature for the Ourthe
catchment. Though an underestimation of the lag 1 autocorrelation

and a slight overestimation of the standard deviation are found for
most settings of the neighbourhood sizes, the bias was only signif-
icant in a few cases associated with a high value of k. or a small va-
lue of ky. With a suitable choice of ky and k., a 12,000-year
simulation was conducted with RG2. For comparison an additional
simulation of the same length was conducted with the conven-
tional algorithm RG1. A modified version RG1p of this simulation
was created by perturbing the highest resampled values in each bi-
monthly season, in such a way that the distribution of the daily
precipitation amounts was extended with an exponential tail. For
all three simulations the distributions of the 4-day and 10-day
winter maxima were in agreement with the observed data. At re-
turn periods longer than 20 years, differences were seen between
the Gumbel plots of the 4-day maxima, showing the influence of
the larger daily amounts. The plots of the 10-day maxima, how-
ever, barely differ. The simulated data were used to drive the
HBV rainfall-runoff model for the Ourthe catchment. It was found
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Fig. 7. Gumbel plots of the winter maxima of daily discharge for the river Ourthe at Tabreux from the 12,000-year RG1-, RG1p- and RG2-simulations compared with the plot

based on observed daily precipitation and temperature.

that the larger daily precipitation amounts produced by RG1p and
RG2 had no discernible effect on the distribution of the winter
maxima of daily discharge.

A disadvantage of RG2 is that it is very time-consuming, be-
cause a large number of nearest-neighbours has to be sorted twice.
A great saving in computer time can be achieved by using the same
nearest-neighbours for the estimation of the expected value and
the resampling of residuals as in Prairie et al. (2006). However,
for the Ourthe data this leads to a substantial positive bias in the
standard deviation and a negative bias in the autocorrelation. A
possible explanation is that conditioning on the expected precipi-
tation and temperature of the new day yields a more homogeneous
set of residuals than conditioning on the characteristics of the pre-
viously simulated day.

The RG1 algorithm has been extended to perform multi-site
simulations (Buishand and Brandsma, 2001). A similar extension
is possible for the RG2 algorithm. There is no need to generate from
a multivariate normal distribution as in multi-site versions of the
nonparametric weather generator based on kernel-density estima-
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Fig. A1. Regional estimates of the GEV shape parameter 0 of bimonthly maxima of

daily precipitation for 15 subcatchments of the river Meuse.

tion techniques (Mehrotra and Sharma, 2006a,b, 2007), which in-
volves quite strong assumptions on the spatial dependence
structure. A multi-site extension of the RG1p algorithm also needs
assumptions on spatial dependence and is not straightforward. The
extension of RG2 to multi-site generation is less complicated and
requires less assumptions about the data.

There are also possibilities to use the RG2 algorithm in climate-
change studies. One is to condition the resampling of daily precip-
itation and temperature on the large-scale atmospheric circulation.
For instance, Beersma and Buishand (2003) performed resampling
simulations conditional on three circulation indices. Their algo-
rithm was essentially identical to RG1. The simulated daily values
in the case of an altered circulation are then still restricted to the
range of the observed values. Due to the additional sampling of
residuals, RG2 does not suffer from this restriction. In contrast with
the unconditional RG1 simulations in this study, the conditional
simulations of Beersma and Buishand (2003) show a significant
bias in the lag 1 autocorrelation coefficient of the simulated daily
precipitation amounts. This bias might vanish in the RG2 simula-
tions due to the use of the LOESS smoother. By resampling residu-
als the variance of the predictant in a downscaling relation can be
maintained, something which is often necessary in climate-change
impact studies (von Storch, 1999). The method used for resampling
the residuals in the RG2 algorithm is of particular interest if nega-
tive values are to be avoided. Aside from conditioning on large-
scale atmospheric variables, resampling can also be applied di-
rectly to daily precipitation and temperature from regional climate
model runs under future climate conditions, as was demonstrated
by Leander et al. (2008). The direct use of climate model data takes
all characteristics of future climate change into account. However,
bias corrections are needed because of systematic differences be-
tween the regional climate model output and the observed data.
Anticipating the steady improvement of climate models, the direct
use of model data will be of growing interest.
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Appendix A. Determination of the shape parameter 0

The perturbation of the RG1-simulation (RG1p) requires that
the shape of the upper tail of the distribution of daily precipitation
is known. To find a suitable representation for the tail, the bi-
monthly maxima of the daily precipitation amounts for 15 sub-
catchments of the river Meuse (upstream of the Netherlands)
were analysed. It is assumed that the largest amount X in a bi-
monthly period follows a Generalized Extreme Value (GEV)
distribution:

1/0
Pr(ng):exp{ (1—0X ,u>/} (A1)
The location parameter u and the scale parameter ¢ vary over the
year and over the subcatchments. A common shape parameter 6
is assumed for all subcatchments, which varies over the year. The
regional L-moments approach (Hosking and Wallis, 1997) was fol-
lowed to estimate the common 6.

First, the probability weighted moments bg, b; and b, were
determined from the ordered maxima x; < x» < ... <X, as (Land-
wehr et al,, 1979)

Z L n(n— 1 b2
(A.2)

The sample L-moments ¢, and ¢3 were derived using (Hosking and
Wallis, 1997, p. 26)

by = 2b1 — b()7 l3 = 6b2 — Gb] + bo. (A3)

For each subcatchment, the sample L-skewness ts = ¢3/¢; was deter-
mined and then averaged over the catchment. The estimated shape
parameter 0 of the GEV distribution then follows from the average
sample skewness t¥ as (Hosking and Wallis, 1997, p. 196):

2 log 2
3+t8 log3”
Fig. A1 shows the bimonthly values of 0 calculated from the data for
the 15 subcatchments. In November-December a positive 0 is
found, whereas in January-February the value is negative. In
March-April, again, a positive value of 0.21 is seen. Averaging § over
the winter half-year results in a value of about 0.02. Given the fact
that this is close to zero, the distribution of the bimonthly maxima
of daily precipitation is close to the Gumbel distribution:

Pr(X < x) = exp [— exp (—%ﬂ

in this season, which implies that the exceedances of a high thresh-
old are approximately exponentially distributed. For the summer
half-year there is a tendency towards a negative shape parameter.
Thence, for this season the exponential distribution underestimates
the tail of the distributions. This is, however, not relevant for the
simulation of extreme discharges in winter.

6 =2.9554c? +7.8590c with c =

(A4)

(A5)
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