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1 Introduction 

 

Within the Dutch program Climate for Space (KvR) there is a need for monitoring the 

structure and transport properties of the atmospheric boundary layer (ABL). Boundary 

layer processes have a direct impact on the human environment. The program specifically 

asks for improved interpretations of observed trace gas concentrations (KvR-ME2 

project). More generally, there is a call for monitoring the full atmospheric column over 

the Netherland of which the atmospheric boundary layer forms the lowest part (KvR-CS2 

project). 

At the Cabauw Experimental Site for Atmospheric Research (CESAR) a 

comprehensive program of atmospheric boundary layer observations is operational. The 

current project, “Assimilation of Cabauw boundary layer observations in an atmospheric 

single column model” (ASCAB), aims to give a best estimate of the state of the 

atmospheric boundary layer at Cabauw by combining these observations with a state of 

the art atmospheric model. At KNMI, a Regional Atmospheric Climate Model (RACMO) 

is run in forecast mode on a continuous basis. A Single Column Model (SCM) is directly 

derived from RACMO. As a method for assimilation of the observations the ensemble 

Kalman filter (enKF) was selected. 

This report describes the operational implementation of the assimilation system. 

First, a short introduction in data-assimilation techniques is presented, culminating in the 

presentation of the enKF method. Second, the observations and the SCM will be 

discussed. Next, the technical implementation of the enKF system in the framework of 

the SCM is described. Fourth, results of the enKF method will be compared with model 

runs in which no data assimilation has been applied. Finally some perspectives are 

sketched. 

The enKF system is archived as SCM_enKF.tar.gz and is stored in the Massa 

Opslag Systeem (MOS). All files that are referred to in this report are included (see 

Section 7).  
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2 Theory 
 

This Chapter makes extensively use of the following references: Bouttier and Courtier 

(2002), Evensen (2006), Fischer (2001) and Holm (2003). 

 

2.1 Best linear unbiased estimator (BLUE) 

Data-assimilation is the process of adapting a model state to observations in a statistical 

optimal way by taking into account the errors in the model and the observations. The 

result of this process is called an analysis, which is an optimal estimate of the state of the 

system given all available information. The state of the model is represented by a large 

number of variables, called the state variables. These numbers are contained in a column 

matrix called the state vector, x. The best possible estimate of values of the state vector is 

called the “true” state vector, xt. Another important value of the state vector is the prior or 

background estimate of the true state vector, xb, which represents the model state before 

the analysis is carried out. The analysis is denoted as xa. 

 Observations yield either a direct estimate of state variables or quantities which 

can be functionally related to state variables. Assimilated observations are stored in a 

vector y. The observations are related to the true state vector by the observation operator, 

H. Applying this operator the model state yields the vector H(x), which contains the 

model equivalents of the observations as a function of the state variables. Note that for 

observations which are direct estimates of state variables the observation operation 

defines a unit operation. 

 The simplest model to obtain an analysis is the optimal least-squares estimation 

method or best linear unbiased estimator (BLUE). Within this method, the following 

assumptions are made: 

1. the observation operator is linear 

2. the observations are unbiased 

3. the background values are unbiased 

4. the observation errors and model errors are uncorrelated 
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The analysis is assumed to be a linear combination of the background and the 

observations: 

( )( )bba xyKxx H−+= .       (1) 

The operator K is called the Kalman gain. It determines the weight of the observations 

and the background and is given by 

( ) 1−
+= RHBHBHK TT ,       (2) 

where B denotes the covariance matrix of the background errors (xb-xt) and R denotes the 

covariance matrix of the observation errors (y-H(xt)). The operator H is the tangent linear 

observation operator: for any x close to xb, H(x)-H(xb) = H(x-xb). The covariance matrix 

of the analysis errors, xa-xt, is given by A: 

( )BKHIA −= .        (3) 

The analysis xa is optimal in a root-mean-square sense (that is, the variance of the 

analysis is minimized). 

The BLUE analysis is equivalent to a solution of the variational optimization 

problem. In case of Gaussian pdfs, the observations, the background and the analysis can 

be modeled as (b and o are normalization factors): 

( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −−−= −

b
1T

b xxBxxx
2
1expbfb ,     (4) 

( ) ( )( ) ( )( )⎥⎦
⎤

⎢⎣
⎡ −−−= − xyRxyx 1T HHofo 2

1exp , and    (5) 

( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡−∝= Jfff oba 2

1expxxx ,      (6) 

where J denotes the cost-function, 

 ( ) ( ) ( )( ) ( )( )xyRxyxxBxx 1T
b

1T
b HHJ −−+−−= −−

2
1

2
1 .   (7) 

The model state with the maximum likelihood is the one that minimizes the cost function. 

For Gaussian pdfs the minimum variance method and the maximum likelihood lead to the 

same analysis. 

 Different techniques are employed to solve the assimilation problem. Optimal 

interpolation (OI) solves a simplified version of the analysis equations (1) and (2). Its 

basic assumption is that for each model variable only a few (nearby) observations are 



 4

important in determining the analysis increment for that particular state variable. Another 

technique is 3D-VAR (or 1D-VAR when only one dimension, usually the vertical, is 

considered). In 3D-VAR the calculation of the Kalman gain is avoided. Instead, the 

quadratic cost function (Eq. 7) is minimized in an iterative way. In 4D-VAR the dynamic 

evolution of the model is included. The essential difference between 4D-VAR on the one 

side and OI and 3D-VAR on the other side is that 4D-VAR analyzes all observations 

within a larger assimilation window simultaneously, while the other techniques perform 

an analysis at fixed moments in time. As a result, a 4D-VAR analysis provides a smooth 

analysis in time, while other assimilation methods show jumps at the analysis moments.  

 

2.2 The (extended) Kalman filter 

Contrary to other assimilation methods, the Kalman filter includes a prognostic evolution 

of the background error covariance matrix, B. This allows the filter to adapt to different 

regimes. For example, Rémy and Bergot (2010) demonstrate that the error statistics of 

their model follow a clear diurnal cycle. The extended Kalman filter (EKF) is defined by 

the following equations that analyze and propagate the state and the covariances (k 

denotes the time step): 

( ) 1k
a

k
b xx −

− →= kk ttM 1  

( ) ( ) kT1kk QMAMB +→→= −
−

− kkkk tttt 11  

( ) 1−
+= kTkkkTkkk RHBHHBK  

( )( )k
b

kkk
b

k
a xyKxx kH−+=  

( ) ( ) TkkkTkkkkkk KRKHKIBHKIA +−−= . 

The matrix Q denotes the covariances of model errors, M denotes the model operator 

with M its linearized version. The term ‘extended’ indicates that the observation operator 

is allowed to be nonlinear and that the model state is propagated using a non-linear 

model. The standard Kalman filter is a purely linear analysis system with linear 

observation operator and model. 

 Although the EKF provides the best (minimum variance) estimate of the true 

state, it has two major drawbacks for high-dimensional and nonlinear systems. First, the 

method is computationally expensive. If the model state vector has n unknowns, the 
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background error covariance matrix has nxn unknowns. Furthermore, the propagation of 

the error covariance matrix requires 2n model integrations. When, for example, in case of 

the ECMWF model, n~108, this is not feasible with state-of-the-art computers. (In our 

current implementation the state vector has 369 elements, so the dimensionality should be 

not much of a problem.) Second, the EKF requires linearization of the model in the 

propagation step of the covariance matrix evolution. In nonlinear models this 

linearization may lead to poor evolution of the covariance matrix.  

 

2.3 The ensemble Kalman Filter 

To circumvent the difficulties related to the EKF, ensemble Kalman Filters (enKF) were 

developed, which can be considered as a stochastic or Monte-Carlo type of alternative to 

the EKF. Instead of using only one model realization, a collection of model realizations is 

used. The spread between the ensemble members is assumed to represent the pdf of the 

background errors. Thus, the background covariance matrix is estimated from the 

ensemble of model states: 

 ( )( )Tbbbb
e xxxxB −−= ,       (13) 

where the overbars denote the average over the ensemble. A major advantage of the 

enKF is that there is no need to implement tangent linear operators or adjoint equations. 

The starting point of an enKF is an ensemble of model state vectors that are sampled 

from a prescribed, mostly Gaussian, distribution. 

 As demonstrated by Burgers et al. (1998), in the enKF method random 

perturbations should be added to the observations in order to prevent the variation in the 

updated ensemble from becoming too low. However, Whitaker and Hamill (2002) 

showed that this perturbation of the observations introduces additional sampling errors to 

the ensemble data assimilation system. They developed the ensemble square root filter. In 

this method the Kalman gain is calculated in such a way that the variance of the updated 

ensemble is preserved without the need of perturbing the observations. 
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3. Observations and model 
 

3.1 Observations 

The Cabauw site is situated in the western part of the Netherlands in topographically flat 

terrain (51.971°N, 4.927°E). The area around the site consists of meadows, tree lines, and 

scattered villages (van Ulden and Wieringa, 1996; Beljaars and Bosveld, 1997). At a 200-

m tower, amongst others, profiles of wind, temperature, humidity and turbulent fluxes are 

measured. Close to the tower, the surface energy and radiation budgets are monitored. 

Several remote-sensing instruments like a wind profiler, a lidar and a ceilometer, provide 

information on the state of the atmospheric column above the site. 

The goal of the current project is to arrive at an optimal estimate of the state of the 

ABL through the assimilation of local Cabauw observations. However, in principle the 

data-assimilation system should be applicable at other sites, which monitor a less 

comprehensive set of observations. Therefore, we selected only relatively simple 

observations for assimilation into the model: wind (both the u and the v component), 

temperature, T, and humidity, q, all at 10 m above the surface. An advantage of using 

only observations from the 10 m level is that this corresponds, in our case, directly to the 

height of the lowest model level, which means that the model equivalents of the 

observations can easily be obtained. Observation error standard deviations are specified 

as 1 m s-1 for u and v, 1 K for T and 0.5 g kg-1 for q. These uncertainties contain both 

measuring errors and representation errors. The cross-correlations between the different 

measurements are assumed to be 0. Observations are available every 10 minutes. 

 

3.2 Model 

The observations are assimilated in integrations of a single column model (SCM). A 

SCM can be considered as one grid point column of a numerical weather prediction 

model in which all physical processes are represented. The large scale forcings, like the 

geostrophic wind and the dynamical (“advective”) tendencies, must be prescribed. They 

represent the interactions with the neighbouring columns. 
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We use the SCM of the Regional Atmospheric Climate Model (RACMO), which 

basically equals the SCM of the European Centre for Medium-Range Weather Forecasts 

(ECMWF). A complete description of the model can be found at 

http://www.ecmwf.int/research/ifsdocs/CY31r1/index.html. Specific background 

information on the SCM, including a simplified call-tree can be found in the file 

scm.docu.23r4v1.0.1.pdf. The model results shown in this report use CY31r1 of the 

ECMWF Integrated Forecasting System (ISF). We use a configuration of 91 layers in the 

vertical with 9 layers below 500 m. The top layer is situated at 0.02 hPa. The model time-

step is specified to 10 minutes. The SCM integrations are initialized at 12 UTC and the 

simulation time is 48 hours. Initial conditions and large-scale forcings for the various 

ensemble members are derived from daily 72h-RACMO forecasts (see section 4.3 and 

4.4). The output from these 3D model runs is stored in driver files, which are directly 

suited to drive the SCM. From 1-1-2007 onwards these files are continuously available.
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4 Implementation of the enKF 

Implementation of the software is under LINUX. The following environmentals are used: 

Abbreviations: 

.../SCM/experiments/Kalman/Kalman_Empty : $EXP 

.../SCM/experiments/Kalman/enKF : $ENKF 

.../SCM/experiments/Kalman/tools : $TOOLS 

 

This Chapter describes how the enKF is implemented in the SCM. In the implementation 

process many choices have been made, which in some cases are rather arbitrary. If 

desired, the user can easily modify elements of, for example, the assimilation cycle, the 

disturbance of initial conditions or the covariance inflation algorithm. Even adding a new 

observation to the assimilation process is relatively straightforward. 

 

4.1 Cycling the analysis 

 
Figure 1. Cartoon of the assimilation procedure. 

 

Observations are assimilated every hour. Although the observations are available with a 

time-resolution of 10 minutes, we decided to use hourly averaged values centered on 

analysis time as input for the analysis. This is done to prevent fluctuations with a short 

timescale from influencing the results. Thus, each hour an analysis is produced from the 

model state at that particular moment in time and the observations averaged over the 

period 30 minutes before to 30 minutes after the analysis time. Then, starting from the 
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analysis, the model is integrated 6 time steps, after which the next analyses takes place 

(Figure 1). 

 Currently, the observations are read from the file 

$TOOLS/Cabauwtowerprofs.lot. It contains 30-minutes observations of u, v, T, and q for 

the period of 2004-2009. 

The enKF system is steered from a shell script called bats_exp. In calling this 

script, the forecast date must be given as an argument, e.g. bats_exp 20080508. In this 

file the number of Kalman cycles and the number of ensemble members is specified. The 

following steps are performed: 

• Date is read from argument. 

• Copy appropriate 3D output file from archive 

• Create perturbed initial profiles 

• Create perturbed large scale forcings 

• Run the model for each ensemble member 

• Perform Kalman analysis  

• Run the model again for each ensemble member and perform the Kalman analysis 

until the specified number of Kalman cycles is reached 

• Perform additional runs without data assimilation for comparison 

• Diagnostics 

 

4.2 Running the model in Kalman mode 

The directory .../SCM/experiments/Kalman contains various directories, which control 

different Kalman experiments. In this report we describe the Kalman filter from the 

subdirectory Kalman_Empty, in the following denoted as $EXP. Executing the run-script 

run-scm (run-scm experiments/Kalman/Kalman_Empty/experiment_settings) in the 

directory .../SCM yields the executable a.out, which is put into the experiment directory, 

$EXP. The model integrations itself are performed in the ensemble-member directories, 

$EXP/ensnrxx, where xx denotes the number of the ensemble member. For each ensemble 

member, the standard output file progvar.nc is copied to the file 

$EXP/ensnrxx/invarprog.nc. When the model has run for each ensemble member, the 

enKF analysis routine is called, which introduces modifications (i.e. Kalman updates) in 
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the invarprog.nc-files. Next, the ensemble runs are restarted for the next assimilation 

cycle by using data from $EXP/ensnrxx/invarprog.nc as initial conditions. The file 

restart, located in $EXP, provides the correct moment in time at which the restart starts 

through the variable RESSTEP. Before every Kalman analysis the value of RESSTEP in 

restart is increased by 6.  

 

4.3 Initial conditions 

 
Figure 2. Cross-correlations between temperature and temperature (left) and 

temperature and specific humidity (right). 

 

Before the Kalman filter can be run, initial conditions must be sampled for each ensemble 

member. Initial profiles are taken from the 3D RACMO forecasts. The routine 

$ENKF/initcond.F90 adds perturbations to the profiles of wind (u and v component), 

temperature, humidity, soil temperature, soil water content and to the skin layer 

temperature and humidity. The perturbations added to the various variables at the 

different levels should not be independent. For example, when the uppermost soil layer 

temperature is given a positive perturbation, it is to be expected that the temperature at 

the lowest model level above the surface will be warmer than average as well. After all, it 

is likely that the correlation between these particular variables is rather high. 

To establish the correct cross-correlations between all variables, the three-year 

archive of 3D RACMO forecasts is used. In $TOOLS/initcorr.pro cross-correlation are 

derived for each month of the year, which are stored in $TOOLS/initcorr.txt. For 
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example, Figure 2 shows the correlations below 4000 m between T and T and between T 

and q. The subroutine $ENKF/initcond.F90 constructs initial profiles for each ensemble 

member using correlations from the appropriate month. First a random perturbation 

matrix (N~(0,1) (nrens x ndim) with the correct correlations is composed using an 

eigenvalue decomposition. Then, correlated initial profiles are generated by multiplying 

this matrix with the standard deviations for each variable, which are specified as follows: 

σu= σv=1m/s, σT =σTskin=σTsoil=1K, σq=0.5g/kg, σqskin=σqsoil=0.02m3/m3. The numbers 

reflect the uncertainty in the model variables. Finally, as illustrated in Figure 3, the 

perturbation is multiplied by a function which decreases its amplitude with height: f(z) = 

max(0 ; 1-z/4000) (Figure 3). This is to limit the model spread to the lowest part of the 

model, since we do not want to perturb the upper part of the model domain. For each 

ensemble member a separate netCDF file is created and stored as 

$EXP/ensnrxx/ens_init_profs.nc. 

   

 
Figure 3. Illustration of how the magnitude of the perturbations of the initial profiles 

decreases with height. R denotes the reference state, e1 and e2 denote two ensemble 

members. 
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4.4 Forcings 

A SCM is driven by large-scale forcings that represent the interaction with neighboring 

columns. The forcings are an important source of uncertainty in SCM runs (e.g. Baas et 

al., 2010). Therefore, in the enKF the forcings are perturbed. In the enKF system the 

forcings are provided by 3D RACMO forecasts. It is hypothesized that the uncertainty in 

the forcings is well represented by the variations in forecasts valid at the same time (cf. 

Roquelaure and Bergot, 2007). Since the (daily) RACMO runs have a simulation time of 

72 h, for every moment in time always three forecasts are available with a lead time 

difference of 24 h (Figure 4). For the 48 h period of the SCM run the forcings are 

composed by averaging the three RACMO forecasts. The standard deviation between the 

forecasts is taken as the uncertainty. Using the resulting average and standard deviation, 

for each ensemble member different forcings are composed by sampling random values 

from a normal distribution. This procedure is applied to both components of the 

geostrophic wind and the dynamical momentum tendency, to the dynamical temperature 

and humidly tendencies, and to the subsidence. For each ensemble member a netCDF file 

with perturbed forcings, $EXP/ensmnrxx/ens_lsforcings.nc, is created by the subroutine 

$ENKF/dynforcings.F90. 

 

 
Figure 4. Illustration of which forcing files (horizontal lines) are used to compose 

forcings for an 48-h SCM run. 
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4.5 The Kalman analysis 

The Kalman analysis is performed by $ENKF/ensemblekalman_total.F90. First, it reads 

the observations to be used in the analysis step and the forecasts from the ensemble 

members. Then various matrices are composed, which are needed in the enKF analysis. 

The matrix of state vectors consists of the profiles of u, v, T, and q completed with Tskin 

and the profile of Tsoil for each ensemble member. 

As argued by many authors, e.g. Houtekamer and Mitchell (1998), Anderson 

(2007), ensemble filters are susceptible to various errors, most of which tend to reduce 

the ensemble spread to unrealistically low values. As a result, the observations are 

erroneously neglected in the analysis step. To prevent this so-called filter divergence 

from occurring, the ensemble spread is increased artificially by covariance inflation. The 

inflation factor is determined by the subroutine $ENKF/inflation.F90. A modified version 

of the adaptive covariance inflation method proposed by Anderson (2007) is applied. The 

error in the observation and in the model can be used to estimate the expected separation 

between the model and the observations. When the actual separation between the model 

and the observations is (much) larger than the expected separation, the spread of the 

ensemble is artificially increased. This increases the expected separation between model 

and observations and, consequently, also the apparent consistency between the two. 

Model spread (which in the end enables Kalman updates) is restricted to the 

lowest part of the model domain by multiplying the matrix of state vectors by a simple 

localization function (Gaspari and Cohn, 1999, Eq. 4.10). Then the analysis itself is 

performed by calling $ENKF/analysis.F90, which provides the updated state vector. This 

basic code of the square root enKF analysis is obtained from http://enkf.nersc.no/. The 

software package downloaded from this website consists of a number of Fortran routines, 

which perform the enKF analysis and is described in Evensen (2003 and 2004). When the 

updated state vector is provided, for each ensemble member the prior values of its state 

vector, stored in $EXP/ensnrxx/invarprog.nc, are overwritten by the updates. In the next 

forecast cycle they serve as initial conditions. Finally, the output from the current 

ensemble forecasts (so 50 times 1 h of SCM integrations) is averaged and added to the 

diagnostics files.  
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5 Verification 
 

5.1 Set-up 

To demonstrate the working of the enKF system, this Chapter presents some preliminary 

results. For the month of May 2008 daily enKF-runs have been made. The outcomes are 

compared with corresponding simulations without data-assimilation, called Empty and 

with observations from the Cabauw tower and from De Bilt radiosoundings.  

 

5.2 Examples for two individual days 

Figure 5 shows time series of (ordinary) temperature and relative humidity for the 

simulation starting at 12 UTC at 3 May (upper panel). While the Empty run evolves 

smoothly in time, the irregular Kalman updates in the enKF simulation are clearly visible. 

Since 10 m observations are assimilated, it is not surprising that at this level the enKF 

simulation shows a better correspondence with the observations than the Empty run. Note 

that it takes some time for the system to ‘pick-up’ the observations after the evening 

transition in this case.  The assimilation of 10 m-observations also has a positive effect at 

the 200 m level. This is nicely demonstrated in the mixed layer, which develops after 20 

h of simulation. 

 The influence of assimilating near-surface observations is further investigated in 

the lower panels of Figure 5, which presents a comparison with the radiosounding 

launched at 12 UTC at 4 May. Over a deep layer of more than 1000 m the potential 

temperature and the relative humidity from the enKF run are closer to the observed 

values than the results from the Empty run. Although in this case the implementation of 

the enKF seems to be generally positive, still discrepancies between the model and the 

observations can be found. For example, it appears that in the current case the height of 

the boundary layer is underestimated in the enKF run. 
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Figure 5. The upper panels show time series of temperature (left) and relative humidity 

(right) of the simulations starting at 12 UTC at 3 May. The bold lines indicate the enKF 

simulation; the thin line indicates the Empty simulation. Symbols indicate observations 

from the Cabauw tower. The lower panels present vertical profiles valid at 12 UTC on 4 

May, which corresponds to t=24 in the upper panels. For the potential temperature and 

the relative humidity profiles of the enKF and Empty runs are compared with tower 

observations and the radiosounding launched at 12 UTC in De Bilt.  

 

A second example is presented in Figure 6, which shows time series of 

temperature and the radiation budget for the simulation starting at 12 UTC at 25 May 

(upper panel). The Empty run misses cloud formation in the morning hours. This leads to 

a large overestimation of the incoming short wave radiation. As a result the near-surface 

temperature rises much faster than in the observations. The assimilation of near-surface 

observations has a clear beneficial on the cloud cover. Consequently, the time series of 
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radiation and temperature behave much more realistic than in the Empty run. The vertical 

profiles of potential temperature and relative humidity, shown in the lower panel of 

Figure 6, demonstrate that the influence of the assimilation is not only present in the 

lowest layers, but extends to the whole boundary layer and cloud layer. Over a deep 

layer, the enKF simulation is clearly cooler and more humid than the Empty simulation. 

 
 

Figure 6. The upper panel shows time series of temperature (left) and the radiation 

budget (right) of the simulations starting at 12 UTC at 25 May. The bold lines indicate 

the enKF simulation; the thin lines indicate the Empty simulation. Symbols indicate 

observations from the Cabauw tower. The lower panels present vertical profiles valid at 

12 UTC on 4 May, which corresponds to t=24 in the upper panels. For the potential 

temperature and the relative humidity profiles of the enKF and Empty runs are compared 

with tower observations. (Unfortunately, the corresponding radiosounding from De Bilt 

is missing.) 
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5.3 Monthly averaged results 

For each of the 31 forecasts the bias and the rms error are calculated for both the enKF 

and the Empty run. Table 1 shows the results for a number of variables at 10 and 200 m 

above the surface. At the 10 m level the bias and rms values decrease considerably for all 

variables. This may be not surprising, since these are the observations that are 

assimilated. The effect on the surface turbulent fluxes is small. At 200 m the enKF scores 

for temperature (T) and specific humidity (q) are significantly better than for the Empty 

case. For wind speed (sp) the opposite is true. This appears to be mainly due to problems 

with the representation of the nocturnal wind maximum. For the enKF system it seems 

not straightforward to deal with a vector quantity like wind. Differences in the surface 

fluxes are small. 

 

Table 1. Bias and rms scores for 31 enKF and Empty runs over the month of May 2008. 

Model results are compared with observations from the Cabauw tower at 10 and 200 m. 

Also a comparison for surface fluxes is presented. ‘Best’ scores are indicated by bold 

font. 

  bias 10m rms 

  T q sp t q sp 

enKF -0.059 0.06 0.13 0.36 0.33 0.43 

Empty -0.005 0.30 0.47 

  

1.46 0.81 1.14 

 

  bias 200m rms 

  t q sp t q sp 

enKF -0.12 -0.04 -1.11 0.93 0.44 2.11 

Empty -0.43 0.31 -0.43 

  

1.46 0.82 2.14 

 

  bias surface rms 

  H LvE H LvE 

enKF 8.6 4.5 27.0 27.4 

Empty 5.3 4.9 

  

28.2 30.9 
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Figure 7. RMS profiles of potential temperature, specific humidity, relative humidity and 

wind speed at 0 (left panels) and 12 UTC (right panels). Average values over 31 forecasts 

of the month of May 2008. The rms calculations are based on a comparison with 

soundings from De Bilt, launched at 0 and 12 UTC. The black line presents the enKF 

results, the red line the Empty results. 

  

A comparison of the 31 forecasts from the month of May 2008 with 

radiosoundings from De Bilt is presented in Figure 7. Focusing at 12 UTC, the merits of 

the enKF method are obvious: for all variables the enKF runs give a significantly reduced 

rms in the lowest 1000 to 1500 m. This demonstrates that the assimilation of only near-

surface observations has a beneficial effect on the whole boundary layer. 

The situation at midnight is completely different. In this case there appears to be 

no positive effect of the assimilation system, except for a shallow layer adjacent to the 

surface. In nocturnal conditions the boundary layer is mostly stably stratified. As a result, 

the coupling with near-surface layers and the air aloft is often very weak. This makes that 

the (cross)-correlations and (co)variances in the ensemble system are much lower than 

during daytime hours. Consequently, the influence of assimilating 10-m observations has 

hardly any influence above the surface inversion. 
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6 Applications 
 

6.1 Monitoring 

The enKF technique may be used to generate an optimal estimate of the state of the 

atmosphere for a longer period of time. In fact, this is just the aim of the current study. 

Here, we assimilate only near-surface observations, but in principle also other 

measurements can be assimilated like, for example, vertical profiles obtained from a wind 

profiler, atmospheric soundings or liquid water path retrievals. The resulting archive can 

be used for monitoring of trends in the climate, for evaluation purposes or for driving 

(SCM) models. A slightly different application is aerosol assimilation. Schutgens et al. 

(2010) demonstrate that assimilation of aerosol optical thickness leads to an improved 

global modeling of this quantity.  

 

6.2 Model evaluation 

Using an enKF may facilitate the evaluation of model performance. Without assimilation, 

the models may drift away from the observations. Because the forcing file will not be 

error-free, this drifting will even be present in a ‘perfect’ SCM. This complicates a 

comparison of the models results with the observations. The enKF technique can be used 

to keep the state of the models close to the observed state in such a way that a direct 

comparison of models and observations is possible. It is an intelligent way to draw the 

model to the observations. Through the ensemble correlations the influence of the 

observations is spread over the whole model domain. 

 For a valid comparison of different model branches the constraint imposed by the 

assimilation algorithm should not be too tight: different model branches should have 

enough freedom to preserve their own characteristics. If this is not the case, a comparison 

of model branches is useless. 

Another way judge the quality of different models is to consider the magnitude of 

the Kalman updates. A model that persistently shows larger updates than another model 

is likely to be less realistic than a model which shows only small updates.  
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6.3 Nowcasting 

For short-term weather forecasts accurate initial conditions are very important. 

Assimilation of observations will improve the initial conditions, thus leading to a more 

accurate forecast. By assimilating near-surface observations, Hacker and Rostkier-

Edelstein (2007) achieve a significant reduction in error of boundary layer profiles. Rémy 

and Bergot (2010) use the enKF to improve the fog forecasting at Charles de Gaulle 

airport. Every hour they perform an 8-hour forecast, which is initialized with an enKF 

analysis of the previous forecast (at 1h lead time) and near-surface observations. Their 

method leads to a marked improvement of the quality of the fog forecasts. Using an 

enKF, Zhang et al. (2004) assimilate radar data in a three-dimensional atmospheric model 

to improve the forecast of convective storms. In this way they obtain a more accurate 

estimate of the storm location and intensity. 

 In fact, only the assimilation of near-surface observations may improve the short-

range forecasts of convection and precipitation. It has been demonstrated (e.g. Crook, 

1996) that these phenomena are sensitive to the analyzed state of the atmospheric 

boundary layer. Air quality and plume dispersion studies can also benefit from a better 

analysis of the boundary layer (Hacker and Rostkier-Edelstein, 2007). 

 

6.4 Parameter estimation 

In atmospheric models many parameters are used from which the values may be quite 

uncertain. Examples are the coupling between the soil and the surface, and parameters in 

the turbulence scheme and in the cloud scheme. As shown by Hacker and Snyder (2005) 

the enKF technique can be used to arrive at a more accurate parameter estimation. The 

principle here is that the uncertain parameter is considered to be part of the model just as 

the conventional model variables (e.g. Annan et al., 2005). Thus, the parameter is 

included in the state vector in such a way that each ensemble member uses a slightly 

different value of it. Next, the correlations between the parameter and the other variables 

are used to update its distribution, exactly as is done for the other state variables. Hacker 

and Snyder (2005) conclude that parameter estimation via the enKF may be a viable 

approach to mitigate systematic model error introduced by incorrect parameter 

specification.  
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7 Code 

 

Abbreviations: 

.../SCM/experiments/Kalman/Kalman_Empty : $EXP 

.../SCM/modified/Kalman_Empty : $MOD 

.../SCM/experiments/Kalman/enKF : $ENKF 

.../SCM/experiments/Kalman/tools : $TOOLS 

 

7.1 Directory structure 

Below, the directory structure of the SCM in enKF mode is presented. The code is 

archived as SCM_enKF.tar.gz and can be found in the Massa Opslag Systeem (MOS) at 

/fa/ks/BSIK/baasp. 

 

../SCM       (1) 

 /source      (1.1) 

/modified     (1.2) 

  /Empty     (1.2.1) 

/Kalman_Empty   (1.2.2) 

 /experiments/Kalman    (1.3) 

  /Kalman_Empty   (1.3.1) 

   /ensnrxx   (1.3.1.1) 

   /runs    (1.3.1.2) 

  /enKF     (1.3.2) 

  /tools     (1.3.3) 

 

/net/bhw276/nobackup/users/neggers/Testbed/archive/drivers/Cabauw/RACMO (2) 

 

(1)  root directory of the SCM 

(1.1) contains SCM source code 

(1.2) contains experimental model branches with modified source code 
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(1.2.1) contains code to run the SCM in Empty mode (pure ECMWF CY31r1) 

(1.2.2) contains code to run the SCM in enKF mode (Empty version) 

(1.3) contains Kalman experiments, directories for enKF analysis  

(1.3.1) experiment directory 

(1.3.1.1) place where the actual model runs are performed 

(1.3.1.1)  location where model results are stored  

(1.3.2) contains routines for the Kalman analysis, the construction of initial 

conditions, and large-scale forcings 

(1.3.3) postprocessing 

(2) Contains three years of 3D RACMO output files, which are directly 

suitable to drive the SCM 

 

7.2 Description of routines 

Below, the major subroutines which make up the enKF system are described. 

 

Model routines which are adapted to run in Kalman mode located in $MOD 

• yomextra1c.F90 : subroutine to declare variables RES and RESSTEP 

• su1c.F90, surip1c.F90, suinif1c_nc.F90, suinif21c_nc.F90: set model time to 

RESSTEP 

• suinif1c_nc.F90: adapted to read initial conditions from ens_init_profs.nc and 

forcings at t=0 from ens_lsforcings.nc instead of from 3D RACMO file 

• suinif21c_nc.F90: adapted to read forcings from ens_lsforcings.nc instead of from 

3D RACMO file 

 

Main routines located in $ENKF 

• dynforcings.F90: composes perturbed forcings for ensemble members from 3D 

RACMO forecasts. 

o Output: ens_lsforcings.nc for each ensemble member 

o Compilation: f90 -r8 dynforcings.F90 f2kcli.f90 calender.f90 gauss.f90 

handle_err_nc.F90 /usr/local/free/lib/libnetcdf.a –o dynforcings.x 
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• initcond.F90: composes perturbed initial profiles of state vector with correct cross 

correlations 

o Uses $TOOLS/initcorr.txt, which is produced by $TOOLS/initcorr.pro 

o Output: ens_init_profs.nc for each ensemble member 

o Compilation: f90 -r8 initcond.F90 m_randrot.F90 mod_anafunc.F90 

m_mean_preserving_rotation.F90  gauss.f90 handle_err_nc.F90 

lapack_LINUX.a BLAS_LINUX.a /usr/local/free/lib/libnetcdf.a –o 

initcond.x 

• ensemblekalman.F90 : prepares and controls enKF analysis 

o Output: updated model fields, diagnostics 

o Compilation: f90 -r8 ensemblekalman_total.F90 analysis.F90 

m_randrot.F90 m_multa.F90 mod_anafunc.F90 

m_mean_preserving_rotation.F90 enkf_ncoutput.F90 calender.f90 

handle_err_nc.F90 inflation.F90 lapack_LINUX.a BLAS_LINUX.a 

tmglib_LINUX.a  /usr/local/free/lib/libnetcdf.a –o enKF.x 

• analysis.F90 : performs enKF analysis, called by ensemblekalman.F90 

• inflation.F90 : generates inflation factors, called by ensemblekalman.F90 

• enkf_ncoutput.F90 : generates diagnostics, called by ensemblekalman.F90 
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