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NWP Model Error Structure Functions
Obtained From Scatterometer Winds

Jur Vogelzang and Ad Stoffelen

Abstract—Wind vectors derived from scatterometer measure-
ments are spatially detailed as compared to global numerical
weather prediction (NWP) model fields. Since the Advanced Scat-
terometer (ASCAT)’s wind vector ambiguities are, in general, well
defined, ambiguity removal results in accurate wind fields. The
dense and regular spatial sampling of ASCAT winds represents
a unique resource to study the NWP model field spatial error
structure. The current level 2 ASCAT data processor employs 2-D
variational ambiguity removal (2DVAR), in which an analysis is
made from the ambiguous wind solutions and a prior NWP wind
field using a variational technique, and, subsequently, the ambigu-
ity closest to the analysis is selected as best wind. 2DVAR will yield
an optimal analysis when the structure functions (background
error correlations in the potential domain) are well specified.
In this paper, a new method is presented to calculate structure
functions from autocorrelations of observed scatterometer wind
components minus NWP model predictions (O–B). It is based on
direct integration of the differential equations relating structure
functions and observed autocorrelations. Reprocessing ASCAT
data at 12.5-km grid size with structure functions obtained this
way shows a considerable increase in the spectral density of the
analysis for scales from about 800 to about 100 km, with the largest
effect at scales of around 250 km. In line with this finding, it is
shown in a case study that a more detailed analysis leads to fewer
ambiguity removal errors for ASCAT data recorded over a frontal
zone with rapidly varying wind direction.

Index Terms—Advanced Scatterometer (ASCAT), ocean vector
winds, radar remote sensing, scatterometry.

I. INTRODUCTION

S CATTEROMETER measurements give valuable informa-
tion on the ocean surface vector wind. Scatterometer

backscatter measurements are accumulated over a wind vector
cell (WVC), and different antennas provide generally three
or four different geometrical views and/or microwave polar-
izations over a given WVC. WVCs are organized in a swath
and, depending on the accumulation process, are typically
independent over distances of more than two WVCs. There-
fore, scatterometers are known to provide useful mesoscale
information on the atmospheric flow. In this paper, we
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characterize and analyze the spatial structures as observed by
scatterometers in order to represent these in numerical analysis
fields.

Inversion of the observed radar cross section multiplets using
an appropriate geophysical model function yields more than
one solution for the wind vector in the majority of cases. These
solutions are commonly referred to as ambiguous winds or
ambiguities. If scatterometer winds are to be assimilated into
numerical weather prediction (NWP) models, all ambiguities,
together with their a priori probabilities, may be fed into the
data assimilation system which will choose the ambiguity that
gives the best match to the model state [1]. Similarly, when
the scatterometer wind field is to be used as a stand-alone
product for nowcasting applications, for instance to issue high-
wind warnings [2], the “best” ambiguity must be selected. This
procedure is known as ambiguity removal.

Various schemes for ambiguity removal have been proposed,
and the reader is referred to [3] for an overview of them. One
of the more sophisticated schemes is 2-D variational ambiguity
removal (2DVAR), following procedures common in meteo-
rological analysis, such as that used in 3D-Var and 4D-Var
data assimilation. 2DVAR has been implemented within the
Satellite Application Facility for Numerical Weather Prediction
for use in processing data from the European Remote Sens-
ing satellite (ERS), the Advanced Scatterometer (ASCAT) on
board MetOp-A, and the American SeaWinds scatterometer
carried by QuikSCAT. It is also experimentally used at the
Royal Netherlands Meteorological Institute (KNMI) in pro-
cessing data from the Indian OSCAT scatterometer on board
OceanSat-2.

2DVAR consists of two steps [3]. In the first step, an analysis
of the ocean surface vector wind is made from a prior back-
ground field [usually a prediction by the European Centre for
Medium-Range Weather Forecasting (ECMWF)] and the am-
biguous winds, taking their a priori probabilities into account.
In the second step, the ambiguity closest to the analysis is se-
lected as best solution. 2DVAR can therefore also be referred to
as “closest-to-analysis.” The analysis is made using the method
of variational data assimilation, which evolved from statistical
interpolation as described by Daley [4]. Since 2DVAR is similar
to the 3DVAR and 4DVAR schemes commonly used in data
assimilation, it can be seen as a simplified, though nontrivial,
data assimilation system.

A variational data assimilation scheme based on statistical
interpolation acts as a low-pass filter (e.g., [4] and [5]). Optimal
performance of such a system is obtained when the error
correlations of background and observations are well described.
Fig. 1 shows wind spectra for the scatterometer winds (blue
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Fig. 1. Wind component spectra obtained from all ASCAT-12.5 data of January 2009.

curves), for the ECMWF background winds (red curves), and
for the 2DVAR analyses (green curves). The spectra are shown
as functions of wavenumber k (lower axes) and wavelength
k−1 (upper axes). They were calculated using the methods
described in [6] and [7]. The left-hand panel shows spectra
for the zonal wind component u, while the right-hand panel
displays that for the meridional wind component v. The black
lines show theoretical spectra at arbitrary scale as predicted by
Kolmogorov’s turbulence theory: a k−5/3 spectrum for the 3-D
case (dashed lines) and a k−3 spectrum for the 2-D case (dotted
lines). The spectra in Fig. 1 were obtained using all ASCAT data
on 12.5-km swath grid size and collocated ECMWF predictions
from January 2009. The figure shows indeed that the 2DVAR
analysis contains much less wind information on scales below
about 800 km than that measured by the scatterometer, for
which the spectrum is not as steep. The ECMWF background
contains even less small-scale information than the 2DVAR
analysis. This is presumably because of the numerical cutoff
within the weather model, preventing small (unknown) dis-
turbances to grow and degrade the model prediction skill at
medium forecast range. This cutoff starts already at scales of
about 800 km.

In this paper, we analyze the spatial coherence in the struc-
tures measured by scatterometers and absent in the ECMWF
background. In 2DVAR, this coherence may be exploited to
produce analyses that more closely follow the scatterometer
observations. Moreover, since 2DVAR, 3DVAR, and 4DVAR
are very similar, this paper is of relevance for mesoscale data
assimilation.

Despite the spectral limitation in the 2DVAR analyses, the
ASCAT spectra appear very reasonable, and ASCAT winds
provide excellent buoy verification. This is because the ASCAT
and ERS fan beam scatterometers basically have a dual wind
direction ambiguity which is relatively easy to solve by select-
ing the closest to the 2DVAR analysis of two antiparallel wind
vector solutions. Therefore, it is not expected that improved
analyses improve the ASCAT winds a lot but rather provide
a good description of the error structure in the background
winds. This information is expected to be useful for the 2DVAR
processing of more ambiguous scatterometer winds, such as
from SeaWinds or OSCAT [1].

In this paper, the error correlations in the spatial domain are
expressed in terms of the velocity potential (χ) and the stream
function (ψ) and are further referenced to as structure functions.
The current version of 2DVAR assumes homogeneous and
isotropic error correlations described by Gaussian structure
functions with adjustable range and rotation/divergence ratio
(see Section II).

The observation error correlations are easily and reasonably
described by assuming no correlation at all. This leaves the
error variances as the only unknowns. These can be obtained
from statistical methods like triple collocation [6], [8]. The
assumption of uncorrelated observation errors is justified in
most cases, but for scatterometer measurements, some caution
must be exercised (see Section II-D).

For obtaining the background error correlations, two meth-
ods exist at the moment. The first one is synthetic and employs
model predictions at different prediction times to estimate the
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background error correlations using a procedure similar to
Kalman filtering. This method is implemented in a number of
NWP models, including that of ECMWF. The second method
exploits the fact that the background error correlation equals
the correlated differences between observations and back-
ground (O–B) when the observation errors are uncorrelated.
Hollingsworth and Lönnberg [5] binned the spatial correlations
of radiosonde measurements, extrapolated it to r = 0 to remove
the contribution of the observation error variance, and fitted a
Bessel series expansion through the binned values.

In this paper, an alternative for the second method is given
using the fact that scatterometer winds are available on a dense
and regular grid. This allows direct solution of the differential
equations that relate the autocorrelation of the background
errors to the structure functions. This paper is organized as
follows. In Section II, the differential equations relating auto-
correlations and structure functions are solved. The numerical
implementation is presented, and the need for an additional
cutoff is discussed. The resulting structure functions for the
ECMWF model are presented in Section III. The improved
spectral characteristics of the 2DVAR analysis and subsequent
ambiguity removal are discussed. It is shown for a case with
rapidly varying wind direction over a front that numerical struc-
ture functions yield more detailed analyses, resulting in fewer
ambiguity removal errors compared to the default Gaussian
structure functions. Some limitations of the method as well
as possible solutions are discussed in Section IV. Here, it is
also argued that larger effects on ambiguity removal skill may
be expected for pencil beam scatterometers like SeaWinds on
QuikSCAT and OSCAT on Oceansat-2. This paper ends with
the conclusions in Section V.

II. STRUCTURE FUNCTIONS

A. Derivation

The current version of 2DVAR uses Gaussian structure func-
tions defined in the spatial domain as

ραα(r) = exp

(
− r2

R2
α

)
(1)

with α = χ, ψ. The autocorrelations of the longitudinal and
transversal wind components (ρll and ρtt) are related to the
structure functions as given by Daley [5, eqs. (5.2.28) and
(5.2.29)] as

ρll(r) = − L2
ψ(1−ν2)

1

r

dρψψ(r)

dr
−L2

χν
2 d

2ρχχ(r)

dr2
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r

dρχχ(r)
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with ν2 being the divergence-to-rotation ratio and Lψ and Lχ

being the length scales given by

L2
ψ =

ρψψ(r)

∇2ρψψ(r)

∣∣∣∣
r=0

L2
χ =

ρχχ(r)

∇2ρχχ(r)
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. (3)

For Gaussian structure functions (1), it readily follows from (3)
that L2

ψ = (1/2)R2
ψ and L2

χ = (1/2)R2
χ. This leaves Rψ , Rχ,

TABLE I
DEFAULT 2DVAR STRUCTURE FUNCTION PARAMETERS

AS FUNCTION OF THE GEOGRAPHICAL LATITUDE φ

and ν2 as parameters determining the background error corre-
lation. The default values in 2DVAR, originally determined for
ERS, are given in Table I.

Equations (2a) and (2b) can be considered as a pair of
coupled differential equations relating the observable autocor-
relations ρll and ρtt to the desired structure functions ρψψ and
ρχχ. To solve these equations for ρψψ and ρχχ, they must be
decoupled first. Dropping the argument r and using primes to
denote the spatial derivatives, (2a) and (2b) can be rewritten as

ρ′ψψ =
1

aψ
rρll −

aχ
aψ

rρ′′χχ (4a)

ρ′χχ =
1

aχ
rρtt −

aψ
aχ

rρ′′ψψ (4b)

where aψ = −L2
ψ(1− ν2) and aχ = −L2

χν
2. Substituting ρψψ

from (4a) into (4b) and substituting ρχχ from (4b) into (4a)
yields, after rearranging terms

ρ′′′ψψ +
1

r
ρ′′ψψ − 1

r2
ρ′ψψ =

1

aψ

[
ρtt − ρll

r
+ ρ′tt

]
(5a)

ρ′′′χχ +
1

r
ρ′′χχ − 1

r2
ρ′χχ =

1

aχ

[
ρll − ρtt

r
+ ρ′ll

]
. (5b)

Equations (5a) and (5b) form a pair of inhomogeneous ordinary
differential equations of third order. Since only derivatives in
ρψψ and ρχχ appear, the substitutions Xψψ = ρ′ψψ and Xχχ =
ρ′χχ lead to

X ′′
ψψ +

1

r
X ′

ψψ − 1

r2
Xψψ = gψ (6a)

X ′′
χχ +

1

r
X ′

χχ − 1

r2
Xχχ = gχ (6b)

with gψ and gχ being given by the right-hand side of (5a)
and (5b), respectively. Equations (6a) and (6b) can be solved
with standard methods. The homogeneous equations are both
of the Euler type, with solutions r and r−1. The particular
solutions are found from variation of parameters, and the inte-
gration constants are determined from the boundary conditions
limr→∞ Xψψ = 0 and limr→∞ Xχχ = 0, i.e., the derivatives of
the structure functions go to zero for large distances. Straight-
forward integration of Xψψ and Xχχ with the boundary condi-
tions ρψψ(0) = 1 and ρχχ(0) = 1 yields the final solutions

ρψψ(r) = 1 +
S(r)−R(r)

2aψ
(7a)

ρχχ(r) = 1 +
S(r) +R(r)

2aχ
(7b)
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with

R(r) =

r∫
0

dssI(s)

S(r) =

r∫
0

ds
J(s)

s
(8)

I(r) =

∞∫
r

ds

[
ρtt(s)− ρll(s)

s

]

J(r) =

r∫
0

dss [ρtt(s) + ρll(s)] . (9)

The parameters aψ and aχ are determined by the require-
ment that the structure functions approach zero as r goes to
infinity as

aψ=−1
2
(S(∞)−R(∞)) aχ=−1

2
(S(∞)+R(∞)) . (10)

The length scales Lψ and Lχ are found by substituting the
solutions into (3). Since isotropy is assumed and it is also
required that the autocorrelations are even functions of their
argument, the Laplacian operator in (3) reduces to the second
derivative, resulting in

L2
ψ = − 2aψ

1− I(0)
L2
χ = − 2aχ

1 + I(0)
. (11)

Since aψ = −L2
ψ(1− ν2) and aχ = −L2

χν
2, it follows from

(11) that

ν2 =
1

2
[1 + I(0)] . (12)

B. Implementation and Test

The integrals in (8) and (9) are calculated with the trapezium
rule using observed autocorrelations as inputs. The structure
functions and their parameters are readily calculated from (7)
and (10)–(12), respectively.

For Gaussian structure functions, the corresponding auto-
correlations are easily calculated analytically. These analytical
autocorrelations were evaluated on a 12.5-km grid to test the
algorithms. With Rψ = 300 km, Rχ = 600 km, and ν2 = 0.2,
the resulting numerical structure functions vary between zero
and one with an absolute error of 0.0024 at most. This is
sufficient for our purposes.

C. Cutoff

Numerical structure functions cannot be calculated directly
from (7)–(12) when using observed autocorrelations. The rea-
son for this is that the observed autocorrelations do not go
properly to zero for large distances, as shown in Fig. 2. This is a
consequence of the existence of climate zones and the finite size
of the Earth. In order to let the structure functions properly go to

Fig. 2. Observed O–B autocorrelations for all ASCAT-12.5 data from
January 2009.

TABLE II
PARAMETERS FOR THE CUTOFF FUNCTIONS AND THE STRUCTURE

FUNCTIONS RETRIEVED FROM THEM

zero with vanishing derivative for large distances, it is necessary
to apply a cutoff function such that J(r) = 0 for large r.

In this paper, the following two forms will be considered: a
cosine cutoff

Cc(r) =

{ 1, r < a
1
2 + 1

2 cos
(
π r−a

b−a

)
, a ≤ r ≤ b

0, r > b
(13)

and a brick-wall cutoff

Cb(r) =

{
1, r < a
0, r ≥ a

(14)

where a and b are adjustable parameters. For the brick-wall
cutoff, there is only one value for a that has the desired effect,
whereas for the cosine cutoff, there is a range of (a, b) values.

Table II lists the choices made for the cutoff functions and
some parameters of the resulting structure functions. Note the
high values of the cutoff parameters compared to that of the
range parameters for the default Gaussian structure functions
in Table I. As a consequence, autocorrelations over a very long
range are needed. This poses some practical problems, because
the structure functions can no longer be given for the various
geographical zones, as is done for the Gaussian structure func-
tions: The tropical belt defined in Table I has a spatial extent
of about 4400 km, thus limiting the maximum possible range.
On the other hand, even a maximum range of 6400 km is not
sufficient for successfully cutting off the autocorrelations in the
extratropics. Therefore, only global results will be shown in
this paper, but this point will be returned to in the discussion.
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Fig. 3. O–B covariances for (left-hand panel) the transversal wind component t and (right-hand panel) the longitudinal wind component l for various choices of
the averaging radius.

Application of the cutoff does not affect the autocorrelations
for r ≤ a.

D. Removal of the Observation Error Contribution

As demonstrated by Hollingsworth and Lönnberg [5], the
observation error contribution to the O–B autocorrelation can
be removed under the assumption that the observation errors
are uncorrelated. In that case, the observation error correlation
is a delta function with a contribution at r = 0. This shows up
as a discontinuity at the origin in plots of autocorrelation versus
distance.

The observed O–B autocorrelations in Fig. 2 show no dis-
continuity near the origin. This means that either the error
in the ASCAT wind is negligible compared to that in the
background (which contradicts the triple collocation results in
[6]) or that the observation errors are correlated for ASCAT.
Such a correlation originates from the fact that the radar cross
section at a wind vector cell (WVC) used as input for inversion
is an average over all radar measurements accumulated in an
area that slightly extends beyond the WVC. For the ASCAT-
12.5-km product, this area measures 50 km by 50 km and
is centered with the WVC. Hamming window averaging is
applied to give most weight to the central 25 km by 25 km and
to minimize aliasing effects [9]. To study the effect of the size
of the averaging area, the radar cross sections per WVC were
recalculated from the full-resolution ASCAT level 1 product
provided by the European Organisation for the Exploitation
of Meteorological Satellites (EUMETSAT), averaging over a
cylindrical box with adjustable size. Fig. 3 shows the O–B
covariances at small distances for box radii of 6.25, 12.5, and
25 km. The autocorrelations are obtained by normalizing the
covariances with their values at r = 0.

For a radius of 6.25 km, the averaging areas do not overlap,
so the observation errors can be considered as weakly corre-

Fig. 4. Numerical structure functions calculated from autocorrelations over
all Earth with (red and blue curves) various cutoff types and (green curves)
analytical structure functions currently used in 2DVAR.

lated, because there may still be correlation caused by partly
overlapping radar footprints that contribute to different WVCs.
Since the averaging area is small, only a limited number of
radar measurements contribute to the radar cross section of
the corresponding WVC, resulting in considerable observation
errors. As the radius increases, the observation error decreases,
but the observation error correlation increases. For a radius of
25 km, the observation error seems to have vanished, but in
reality, it is smeared out over a small region. Nevertheless, the
difference between the various curves is small for r ≥ 12.5 km.
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Fig. 5. Spectra of (blue curves) ASCAT-12.5 and (green curves) 2DVAR analysis for the period January 1–3, 2010, obtained with (solid curves) Gaussian
structure functions and (dashed curves) numerical structure functions with brick-wall cutoff.

This suggests that the contribution of the observation error to
the O–B autocorrelation is small and may be neglected.

III. RESULTS

A. Shape of the Structure Functions

Fig. 4 shows the structure functions ρψψ (blue curves) and
ρχχ (red curves) for the three cutoff functions defined in
Table II. As a reference, the default Gaussian structure func-
tions for range 300 km (solid green curve) and range 600 km
(dashed green curve) are also shown. Note that the numerical
structure functions are much broader than the analytical ones.
In addition, the numerical ρψψ is broader than the numerical
ρχχ, as indicated by the higher values of Lψ in Table II. The
choice of cutoff has little effect on ρχχ and a small effect on
ρψψ . This is reflected in the larger spreading of Lψ in Table II.

B. Effect on the Spectrum

Fig. 5 shows the spectra obtained for ASCAT-12.5 (blue
curves) and the 2DVAR analysis (green curves) with the default
Gaussian structure functions (solid curves) and the numerical
structure function obtained with the brick-wall cutoff (dashed
curves). The error variances of observations and background in
2DVAR were kept to their default values. Due to the long range
of the numerical structure function, 2DVAR needs much more
computing time, so the spectra in Fig. 5 were calculated for all
ASCAT-12.5 data of January 1–3, 2009. Despite the relatively
short data collection period, the spectra are an average over
more than 30 000 samples. Fig. 5 shows that the numerical
structure functions have a considerable impact on the analysis

TABLE III
O–A STATISTICS OBTAINED WITH DEFAULT GAUSSIAN

AND NUMERICAL STRUCTURE FUNCTIONS

spectral density at intermediate scales. The largest effects are
found for scales between 100 and 200 km. In this range, the use
of numerical structure functions increases the spectral density
with a factor of more than six for v and a factor of almost
four for u. There is also a small impact on the ASCAT-12.5
spectrum, because a more detailed analysis may lead to better
ambiguity removal. The biggest impact is a 15% increment in
spectral density for spatial scales between 200 and 300 km.
Note that the spectral density decreases by 10% at most for the
smallest scales (40 km or less). Closer inspection of Fig. 5 re-
veals that both the ASCAT-12.5 spectra and the analysis spectra
obtained with the default Gaussian structure functions tend to
flatten at these scales, indicating the presence of noise. When
using the brick-wall structure functions, 2DVAR produces an
analysis with less noise at the smallest scales, causing a steeper
spectral falloff. As a consequence, the ASCAT-12.5 spectra
have a steeper falloff, indicating less noise at scales of 40 km
and below.

A more detailed analysis of the wind fields obtained with
default Gaussian structure functions and analytical ones reveals
that for most WVCs, the wind vectors are the same. Therefore,
the statistics of differences between ASCAT-12.5 and analysis
winds are mainly due to the analysis. Table III shows the results.
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Fig. 6. ASCAT-12.5 wind field on January 2, 2009, around 5:06 UT off
the west coast of Canada. Purple arrows indicate a large difference between
observation and analysis. The area shown measures 5◦ × 5◦ centered around
43◦ N, 129◦ W.

The bias (average difference) remains small, while the standard
deviation reduces by more than a factor of two when applying
numerical structure functions instead of Gaussian ones. More-
over, the extreme differences become smaller. This shows that,
indeed, the analysis improves.

C. Effect on the Wind Field

A more detailed analysis also shows that differences in the
ASCAT-12.5 wind fields occur in cases that are “difficult” for
ambiguity removal: limited data close to the coast, presence of
rain, large differences between observations and background,
rapid changes in wind direction, or a combination of these.
These findings are easy to understand, because, in most cases,
the ASCAT measurements give rise to two ambiguities 180◦

apart and a more detailed analysis will have little effect on
the selection. Only in cases with more than two ambiguities
and particularly in the “difficult” situations mentioned before
that the degree of detail in the analysis becomes critical for the
selection between the ambiguities.

As an example, Fig. 6 shows the ASCAT-12.5 wind field
recorded on January 2, 2009, around 5:06 UT off the west
coast of Canada obtained with standard 2DVAR settings. The
figure covers an area of 4◦ by 4◦ centered at 43◦ N, 129◦ W,
and shows a frontal zone with a change in wind direction. The
purple arrows are set by the variational quality control (VQC)
and indicate a large difference between selected ambiguity and
analysis. Fig. 6 shows that a large area with VQC-flagged cells
is associated with the front. There are also some ambiguity
removal errors, visible as ↑

↓
↑ flow patterns. Fig. 7 shows the

same area as Fig. 6, but now using the numerical structure
function with brick-wall cutoff. The ambiguity removal errors

Fig. 7. Same area as Fig. 6. ASCAT-12.5 wind field obtained but obtained
using numerical structure functions with brick-wall cutoff. The two orange
arrows are flagged by quality control and most probably indicate rain.

Fig. 8. ECMWF background wind on January 2, 2009, around 5:06 UT for
the same area as Figs. 6 and 7.

have disappeared, and VQC flagging is restricted to a much
narrower zone. Fig. 7 contains also two orange arrows. These
are set by quality control and most probably indicate a confused
sea state in the WVC due to the presence of variable winds.
They were shown as VQC-flagged cells in Fig. 6.

The ECMWF background wind field is shown in Fig. 8. As
expected, the frontal zone is represented as a wide area with
gradually changing wind direction. The ECMWF background
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Fig. 9. Analysis obtained with default Gaussian structure functions corre-
sponding to Fig. 6. No quality flags are shown.

Fig. 10. Analysis obtained with numerical structure functions corresponding
to Fig. 7. No quality flags are shown.

resembles the ASCAT wind field obtained with the standard
Gaussian structure functions in Fig. 6. This is because the
analysis, which is shown in Fig. 9, does not contain much small-
scale information, while the analysis obtained with numerical
structure functions, which is shown in Fig. 10, exhibits much
sharper detail. Without additional wind information, it is very
hard to definitely decide which wind field is correct. Nev-
ertheless, this example demonstrates the potential of numeri-

cal structure functions for ambiguity removal in complicated
situations.

IV. DISCUSSION

In the preceding section, it has been shown from spectral
analysis and O–A statistics that numerical structure functions
lead to a more detailed 2DVAR analysis from ASCAT-12.5
wind ambiguities and ECMWF predictions. This leads to mod-
est changes in ambiguity removal, because ASCAT’s ambi-
guities are well defined and limited in number (usually two).
However, for rotating pencil beam scatterometers like Sea-
Winds carried by QuikSCAT or OSCAT carried by Oceansat-2,
the impact may be much larger, especially in the outer swath
and the nadir swath because of the unfavorable measurement
geometry there. As shown by Portabella and Stoffelen [1], this
leads to broad minima in the maximum-likelihood-estimator
cost function. As a consequence, the ambiguities are not well
defined in wind direction. A better description is offered by
retaining the full wind vector probability density function rather
than a limited number of minima. This procedure is called
the multisolution scheme (MSS), and it has been shown by
Vogelzang et al. [3] that 2DVAR in combination with MSS
leads to more realistic wind fields by effectively removing the
measurement noise for QuikSCAT data in the nadir part of the
swath.

As has been mentioned before, the results for numerical
structure functions presented in this paper pertain to global
structure functions. Due to the oscillatory nature of the au-
tocorrelations, long ranges are needed to extract the structure
functions from them, thus hindering inclusion of zonal effects.
An alternative solution is to Fourier transform the relevant
equations and to calculate the Fourier transforms of the struc-
ture functions directly from the wind spectra. Although mathe-
matically more complicated, this seems feasible. This approach
has the advantage that the wind spectrum follows a power law
for large spatial frequencies that can easily be extrapolated
when necessary. This will be the subject of subsequent research.

V. CONCLUSION

In this paper, a new method for calculating structure func-
tions (background error correlations in terms of the wind poten-
tial and the stream function) from spatial O–B autocorrelations
has been presented. The method is based on direct solution of
the governing differential equations. The method is specially
well suited for high-resolution satellite observations on a reg-
ular grid and is applied to ASCAT-12.5-km winds augmented
with collocated ECMWF background winds. The resulting
structure functions are much broader than that currently used
in 2DVAR. Reprocessing ASCAT data with these structure
functions leads to a considerable increase in the spectral density
of the 2DVAR analysis at scales of around 100 km: by a factor
of more than six for the meridional wind component v and
by almost a factor of four for the zonal wind u. The analysis
thus appears closer to the accurate ASCAT scatterometer ob-
servations. This is confirmed by O–A statistics: The standard
deviation reduces by more than a factor of two, and the extreme
differences become smaller.
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As expected, the effect of the refined analysis on the 2DVAR
selection is less dramatic: an increase in spectral density for
scales between 200 and 300 km by 15%, indicating larger
information content, and a decrease up to 10% for scales
below 40 km, indicating noise reduction at the smallest scales.
Changes in ambiguity removal are restricted to cases with a
limited number of scatterometer data due to the coast line
geometry or occasional rejection by quality control, mismatch
between observations and background, or in the presence of
rapid changes in wind direction. A case study over a frontal
zone shows that numerical structure functions yield a much
sharper frontal zone compared to the default Gaussian func-
tions. However, more research involving additional data sources
is needed to definitely verify whether numerical structure func-
tions lead to improved ambiguity removal. Subsequent research
will also address the effect on ambiguity removal performance
for data from rotating pencil beam scatterometers (SeaWinds on
QuikSCAT and OSCAT on Oceansat-2) and on the possibility
of extracting context-dependent Fourier-transformed structure
functions from wind spectra in order to examine structure
functions in different meteorological conditions.
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