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ABSTRACT 

A sea ice model for the Advanced Scatterometer 
(ASCAT) onboard Metop-A satellite has been 
developed. The conditional probabilities for sea ice and 
wind are combined with a priori information in a 
Bayesian algorithm resulting in a posterior ice/wind 
probability. The Bayesian sea ice extent from ASCAT is 
compared against other sea ice detection algorithms for 
active and passive microwave instruments, most notably 
Quikscat and the Advanced Microwave Scanning 
Radiometer (AMSR).  
 
The algorithm constitutes a useful tool for sea ice 
discrimination and helps in the quality control of the 
wind retrieval procedure. Moreover, the resulting sea 
ice maps provide relevant information on the state of the 
ice pack and its seasonal dynamics. 
 
 
1. INTRODUCTION 

Every Wind Vector Cell (WVC) of ASCAT is 
illuminated by three antenna beams at different azimuth 
and incidence angles, forming a triplet {σ0

fore, σ0
mid, σ0

aft 
}. Fig.1 shows the observation geometry for ASCAT.  
  

 
Figure 1 – ASCAT observation geometry ( courtesy 

EUMETSAT) 
 
The triplets may be visualized in a 3-dimensional 
measurement space, where the axes represent the 
backscatter values of the fore, aft and mid antenna [1]. 
For a given WVC number, i.e., position across the 
swath, it is shown that ocean backscatter triplets are 

distributed around a well-defined “conical” surface. The 
signal largely depends on just two geophysical 
parameters, i.e., wind speed and direction.  
 
A sea ice model for the Advanced Scatterometer 
(ASCAT) onboard Metop-A satellite has been 
developed following an approach elaborated earlier for 
the ERS scatterometers. The newly developed sea ice 
model for ASCAT describes the statistical distribution 
of sea ice (triplet) points in the 3D-measurement space 
at each WVC, which conforms to a straight line in this 
3D space. This line constitutes an empirical 
Geophysical Model Function (GMF) for sea ice in the 
same sense that the wind cone is an empirical GMF for 
ocean winds [1]. Like the projection of a measurement 
triplet on the wind cone gives information on the wind 
speed and wind direction, the projection of a triplet on 
the ice line gives information on the ice type (e.g. first-
year or multi-year ice). The distance of a measurement 
triplet to the ice line is translated into a conditional 
probability for sea ice, in the same way that the distance 
of this triplet to the wind cone becomes a conditional 
wind probability.  
 
The conditional probabilities for sea ice and wind are 
combined with a priori information in a Bayesian 
algorithm resulting in a posterior ice/wind probability. 
Different space- and time-averaging schemes can be 
applied to reduce the number of wrongly classified 
triplets. Background ECMWF wind information is also 
used in the Bayesian algorithm. The use of Sea Surface 
Temperature (SST) can help for a quick initialisation of 
the ice algorithm but is not used in the results presented 
here. 
 
The sea ice extent from the ASCAT sea ice model is 
compared against existing sea ice detection algorithms 
for the active respectively passive microwave 
instruments QUIKSCAT and AMSR.  
 
 
2. SEA ICE MODEL FOR ASCAT 

The empirical method used to derive a wind GMF in 3D 
measurement space can be applied to  define a sea ice 
GMF. It has the advantage that no a-priori assumptions 
on the ice model need to be made and that the full 
information content of the measurements is used. We 
applied this method to the ERS [2] and to the ASCAT 
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scatterometers [3]. Plots of measured triplets in 
measurement-space show that for each WVC all ice 
points lie on a straight line in the plane σ0

fore= σ0
aft, 

implying azimuthal isotropy of sea ice backscatter.  
 
This means that for a particular WVC (fixed incidence 
angles θ) the sea ice backscatter is only dependent on a 
scalar a, defining the triplet position along a tilted ice 
line. For convenience, for each WVC a sea ice 
coordinate system is defined (ea, eb, ec). The ice 
coordinates are denoted (a, b, c), where a represents the 
position along the ice line, and b and c the distances to 
the ice line across and along the symmetry plane  
σ0

fore= σ0
aft . The ice line is represented by: 

 
                                                   (1) 

 
The abscissa along the ice line a represents the strength 
of backscatter, which can be used as a proxy for ice type 
or sea ice age. The distance to the ice line dice is defined 
as: 

                                             (2) 

 
The origin O of the ice line is chosen to coincide with 
the mean backscatter for a large collection of triplets 
using a conservative ice mask, so that all measurements 
are certainly representing sea ice. As a result of this 
procedure the mean values of a, b, and c will be zero. 
Then the direction of the ice line ea is determined using 
the collection of measurement triplets. Scaling factors 
are applied for coordinates b and c, so that the distance 
to the ice line is always measured in units of the 
standard deviation of b and c. To the a-coordinate in 
every WVC a scaling factor is applied that matches the 
standard deviation of the WVC in the middle of the 
swath. In this way the value of the a-coordinate will 
have the same physical meaning independent of the 
WVC. 
 
In Fig.2a the wind cone and sea ice line are depicted in 
measurement space together with some measurement 
triplets. 

 
Figure 2a - Wind cone (blue) and ice line (red) in 

measurement-space. Backscatter triplets are shown as 
black dots. 

 
Fig.2b shows 2D-views on the wind cone and ice line 
for several WVCs together with probability contours for 
ice measurements. Note that for the outer swath the ice 
line is lying inside the wind cone, and for the inner 
swath outside the cone. For some mid swath WVCs the 
ice line is close to the part of the wind cone that 
corresponds to cross winds, which may hinder an 
effective discrimination.  

 

 
Figure 2b – Side views across the σ0

fore= σ0
aft symmetry 

plane and top views of the wind cone and ice line. 
Probability contour intervals for ice measurements are 

also shown. 
 
 
3. BAYESIAN PROBABILITY PROPAGATION 

Bayesian statistics are used in decision theory, where 
you have a set of measurements and a number of 
"classes" into which the measurements can be 
categorized. When the a priori probability of each class 
is given, as well as an expected probability distribution 
of measurements error model for each class, the a 

WVC 1 
(outer 
swath) 

WVC 14 
(mid 
swath) 

WVC 21 
(inner 
swath) 



 

posteriori probability that a measurement belongs to a 
certain class can be calculated using Bayes’ theorem. In 
our model we assume there are only two classes, ice and 
water, with a priori probabilities P(ice) and P(water) 
and a posteriori probabilities p(ice|σ 0) and p(water|σ 0) 
(σ 0 stands for a scatterometer triplet).  
 
The expected probability distribution of backscatter 
triplets for the water class, p(σ 0|water) is modeled as a 
function of the Maximum Likelihood Estimate (MLE) 
or distance to wind cone. The MLE follows a normal 
distribution function.  
 
Optionally an extra error model can be used where the 
vector distance between the scatterometer retrieved 
wind and the collocated ECMWF background wind is 
assumed to have a Gaussian distribution in both 
components. This option is used for the results 
presented here but it turned out that the effect on the ice 
classification is only small. 
 
The expected probability distribution of backscatter 
triplets for the ice class, p(σ 0|ice) is modeled as a 
function of the distance to the ice line dice in Eq.2. The b 
and c ice coordinates follow a normal distribution 
function thus dice follows a Rayleigh distribution 
function. 
 
Because there are only these two classes, the following 
holds true: 
 

                     (3) 

 
The posterior probability of ice p(ice|σ 0) is now given 
by Bayes' theorem 
 

                   (4) 
 
Which can be rewritten using eq. 3 and the function  
Logit(p): = log(p/(1-p)) into: 
 

 

                                                                                   (5) 
 
Eq.5 is used to propagate the posterior ice probability. 

 
3.1.  Time relaxation of the prior ice probability 

The prior probability Pn(ice) at time tn is calculated 
using the posterior probability p(ice|σ 0

n-1) at time tn-1 of 

the previous measurement, and a climatology value 
Pcl(ice): 
 

 
 
where wn(ti) is an exponentially decaying weight 
function with decay time A: 
 

                                      (6) 

                                    
It can be shown that Pn(ice) is always lying in between 
Pcl(ice) and p(ice|σ 0

n-1). 
 
If the time between two measurements tn and tn-1  is very 
large then wn(tn-1)  0 and the prior probability Pn (ice) 
 Pcl (ice). The information of the previous 
measurement is lost and the climatology value is used as 
the a priori probability. 
 
If the time between two measurements tn and tn-1  is very 
short then wn(tn-1)  1 and the a priori probability Pn 
(ice)  p(ice|σ 0

n-1). The information of the previous 
measurement is still valid and it is used as prior 
probability. 
 
 

3.2.  Space-time relaxation of the posterior ice 
probability 

The ice probability is stored for the North pole and 
South pole region using a polar stereographic grid with 
pixel dimension of 12.5x12.5 km2. This grid has a finer 
granularity than the ASCAT swath data that has a WVC 
dimension of 25x25 km2 in nominal mode. The 
posterior ice probability p(ice|σ 0) is spatially averaged 
using a 7x7 subgrid. The spatial averaging ensures that 
the available information is spread across the grid 
according to the measurement resolution.  
 
A Gaussian distribution is used as a spatial weighting 
function, and the exponential decay function from Eq.6 
is used as a time weighting function: 
 

   (7) 
 
Here r is the distance from the neighboring pixel to the 
central pixel, L is a decay length. Δt is the time 
difference between the measurement time at the 
neighboring pixel and the measurement time at the 
central pixel. After normalization this weighting 
function is used to calculate an averaged posterior ice 
probability. 
 
 



 

4. COMPARISON OF SEA ICE EXTENT WITH 
QUIKSCAT AND AMSR 

 
The sea ice extent from ASCAT has been compared 
with sea ice extents from the Quikscat scatterometer and 
the AMSR passive radiometer over 2008. The ASCAT 
algorithm was run starting from 2007-12-16 so that the 
ice map had two weeks to form and initialisation effects 
could be ruled out. AMSR-E ice maps were taken from 
Aqua from the EOS data gateway. This 12.5 km sea ice 
concentration product is generated using the Enhanced 
NASA Team (NT2) algorithm [4]. The Quikscat 
algorithm has been developed and used operationally at 
KNMI [5, 6]. It also uses an empirical ice GMF in 
combination with a Bayesian probability propagation. 
 
As an example in Fig.3 the Antarctic sea ice extent for 
ASCAT and Quikscat is shown for 2008-06-07, and in 
Fig.4 the Arctic sea ice extent for ASCAT and AMSR. 
The sea ice parameter a-coordinate is shown in 
grayscale. For ASCAT the green pixels represent a low 
number of measurements, and orange pixels represent 
ice, but with the standard deviation of the a-coordinate 
above a certain value. The orange value can indicate 
rapid changes in ice properties, e.g. melt. As can be seen 
in Fig.3 the Quikscat ice map shows more detail 
because no spatial averaging is used, only a temporal 
relaxation is applied. The swath of Quikscat is wider 
than the ASCAT swath which results in a higher 
sampling rate. Another difference is in the wavelength 
of the radar, Quikscat uses Ku-band compared to C-
band for ASCAT. The Ku-band gives a high absolute 
backscatter for sea ice and the distinction in absolute 
backscatter value between ice and water is always large. 
This fact can be used for an effective ice-water 
discrimination. The ASCAT C-band backscatter for sea 
ice and water are comparable in some cases which may 
hinder an effective discrimination. 
 
In Fig.3c the difference between ASCAT and Quikscat 
is shown, based on a 50% ice probability threshold for 
both scatterometers. The red area represents 
(ASCAT=ice and Quikscat=not ice) and blue area 
represents (Quikscat=ice and ASCAT=not ice). For this 
date the agreement is very good. 
 
 

 
Figure 3a - ASCAT sea ice for the Antarctic region. The 

ice a-coordinate is shown in greyscale. 
 

 
Figure 3b - Quikscat sea-ice for the Antarctic region. 

The ice a-coordinate is shown in greyscale. 
 



 

 
Figure 3c - Difference between ASCAT and Quikscat 

sea-ice extent based on the 50% probability threshold. 
Red: (ASCAT=ice and Quikscat=not ice)  
Blue: (Quikscat=ice and ASCAT=not ice) 

 

 

Figure 4a - ASCAT sea-ice for the Arctic region. The 
ice a-coordinate is shown in greyscale. 

 

In Fig.4 the Arctic sea-ice extent is shown for ASCAT 
and AMSR on 2008-06-07. 

 

AMSR is a passive radiometer and has a higher spatial 
resolution than a typical scatterometer. Shown is the ice 
concentration in greyscale. Following [5, 6] a AMSR 
15% ice concentration matches best with Quikscat 50% 
ice probability so the 15% threshold is used for the sea-
ice extent comparison between ASCAT and AMSR in 
Fig.4c. Note that some green areas near the European 
and Canadian coast are falsely classified as ice. This 
will give a overestimation of the total sea-ice area for 
ASCAT. 

 

 
Figure 4b - AMSR sea-ice for the Antarctic region. The 
ice concentration is shown in greyscale 



 

 
Figure 4c - Difference between ASCAT and AMSR sea-
ice extent based on the 50% probability threshold for 
ASCAT and a 15% ice concentration for AMSR. Red: 

(ASCAT=ice and AMSR=not ice)  
Blue: (AMSR=ice and ASCAT=not ice) 

 
In Fig.5 the total sea ice is plotted for the whole year of 
2008 for the three sensors. The land masks and missing 
data points are mutually applied in order to get a fair 
comparison between the three. Fig.5a shows the Arctic 
region and Fig.5b the Antarctic region respectively. 
 

 
Figure 5a – Total sea ice area for the Arctic region in 
2008 for the three sensors ASCAT, Quikscat and AMSR. 
 

 
Figure 5b – Total sea ice area for the Antarctic region 
in 2008 for the three sensors ASCAT, Quikscat and 
AMSR. 
 
As can be seen the agreement in the periods of ice 
growth is remarkably good. During ice melt periods the 
agreement is less good in general because mixed states 
where areas are partly water and partly ice occur. These 
mixed states are not modelled by the ASCAT and 
Quikscat GMFs and the Bayesian approach does not 
take them into account either. Therefore the mixed 
states are harder to grasp. 
 
For the Arctic melt season the agreement between 
ASCAT and Quikscat is excellent pointing at 
deficiencies in the summer sea ice extents as observed 
by AMSR. For the Antarctic melt season ASCAT is 
somewhere between the values of AMSR and Quikscat. 
 
 
5. CONCLUSIONS 

The ASCAT sea ice model in combination with 
Bayesian probability propagation provides good 
preliminary results. A comparison with Quikscat and 
AMSR shows good agreement especially during the ice 
growth periods. During ice melting periods the 
agreement with Quikscat is still good with some larger 
deviations from AMSR. Some spurious ice 
classification by ASCAT near coastal regions in the 
Arctic region has to be worked on. The ASCAT ice 
model is running in experimental mode at KNMI. When 
using a conservative ice mask, e.g., a 30% ice 
probability, the ASCAT ice model can be used as an 
alternative to the presently used SST-based sea ice 
screening for the level 2 wind product.  
 
6. OUTLOOK 

Spatial coverage of ASCAT is poorer than that of 
Quikscat which has a broader swath. METOP-B, to be 



 

launched in 2012 with a second ASCAT instrument, 
would help to achieve a better spatial coverage. The 
combined data from both instruments can be used to 
build a common ice map.  

We expect ASCAT and QuikSCAT algorithms can be 
brought to a better agreement both during the growth 
and melt seasons. Given their high sensitivity to diffuse 
sea ice conditions, scatterometers have high potential 
for sea ice detection. 
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