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Abstract Clear precipitation trends have been observed
in Europe over the past century. In winter, precipita-

tion has increased in north-western Europe. In sum-
mer, there has been an increase along many coasts in
the same area. Over the second half of the past cen-

tury precipitation also decreased in southern Europe in

winter.

An investigation of precipitation trends in two multi-
model ensembles including both global and regional cli-

mate models shows that these models fail to reproduce
the observed trends. In many regions the model spread
does not cover the trend in the observations.

In contrast, regional climate model (RCM) exper-

iments with observed boundary conditions reproduce
the observed precipitation trends much better. The ob-
served trends are largely compatible with the range
of uncertainties spanned by the ensemble, indicating

that the boundary conditions of RCMs are responsi-

ble for large parts of the trend biases. We find that

the main factor in setting the trend in winter is at-

mospheric circulation, for summer sea surface temper-

ature (SST) is important in setting precipitation trends

along the North Sea and Atlantic coasts. The causes of

the large trends in atmospheric circulation and sum-

mer SST are not known. For SST there may be a con-

nection with the well-known ocean circulation biases
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in low-resolution ocean models. A quantitative under-

standing of the causes of these trends is needed so that

climate model based projections of future climate can

be corrected for these precipitation trend biases.
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1 Introduction

A wide range of studies have shown that increases in

atmospheric CO2 concentrations and other greenhouse
gasses influence the climate, affecting many variables

(Hegerl and Zwiers, 2011). Projections of future cli-
mate based on these studies are uncertain (e.g. Déqué
et al., 2007; Räisänen, 2007; Hawkins and Sutton, 2009;

Knutti et al., 2009). To have confidence in future cli-

mate projections, a correct representation of trends in

the past is necessary (but not sufficient). In this pa-

per we consider the uncertainty in one variable and one

region: European precipitation trends.

Simulations of present and future climate are typ-
ically done using climate models. Climate models are

a mathematical representation of the climate system

and should in principle give a physics-based response

to increased CO2 concentrations and changes in other

forcings. However, projections also depend on uncertain

parameterizations of unresolved processes that are used
in climate models, uncertainty about land use and the
magnitude of forcings due to aerosol and black carbon

emissions. Part of this uncertainty is described by the

spread of multi-model and perturbed physics ensem-

bles. In this paper we investigate whether the ensemble

spread indeed covers the observed precipitation trends

in Europe.
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Previous studies have shown a tendency for climate

model ensembles to underestimate precipitation trends
(Wentz et al., 2007; Zhang et al., 2007; Bhend and von
Storch, 2008). Over Europe, local weather variations

are to a large extent determined by changes in circula-

tion (Osborn et al., 1999; Turnpenny et al., 2002; van

Oldenborgh and van Ulden, 2003; van Ulden and van

Oldenborgh, 2006), but also changes in sea surface tem-
perature (SST) are known to be responsible for pre-
cipitation variations on different spatial scales (Rowell,

2003; van Ulden and van Oldenborgh, 2006; Kjellström

and Ruosteenoja, 2007; Lenderink et al., 2009). Mod-

eled trends in atmospheric circulation (Osborn, 2004;

van Oldenborgh et al., 2009a) and SST (van Olden-

borgh et al., 2009a; Ashfaq et al., 2010) contain large

biases and could be responsible for the underestimation

of precipitation trends.

We evaluate modeled precipitation trends in a few

different climate model ensembles. First we compare ob-

served precipitation trends with trends from the CMIP3

ensemble of climate model experiments (Meehl et al.,

2007), an ensemble composed of Global Circulation Mod-

els (GCMs). Searching for causes of the difference in

trends, we discuss trend differences between the CMIP3

ensemble and an ensemble of regional climate models

(RCMs). RCMs are a dynamical downscaling tool and

provide more details on local conditions such as sur-

face conditions, topography, coastlines and soil mois-
ture that could affect modeled precipitation. RCMs are
constrained by the lateral boundaries, and it is therefore
relatively straightforward to prescribe circulation. For

GCMs this is much more difficult (van der Schrier and

Barkmeijer, 2007). Also SST is commonly prescribed

in RCM simulations. We use this property to compare

the RCM results with the results of a similar set of
RCMs forced by prescribed quasi-observed circulation
and SST. This allows for a separation between errors
in lateral boundary conditions and internal model er-

rors (Hudson and Jones, 2002). Trend biases that exist

in both RCM ensembles are ascribed to model errors,

whereas trend biases only found in the GCM driven

RCM ensemble are ascribed to errors in the bound-
ary conditions, large scale atmospheric circulation and
SST. Finally, we try to separate these two factors using

a statistical analysis.

2 Data and preprocessing

2.1 Trend definition

We use the common definition of a trend in this paper,
regression against time. Previous studies have shown

that the magnitude of regional climate changes increases

quasi-linearly with changes in the global mean tempera-

ture (Räisänen, 2007; Alexander and Arblaster, 2009), a
definition adopted in e.g. van Oldenborgh et al. (2009a).
Although the latter definition may physically be better

justified, it did not significantly increase the signal-to-

noise ratio, nor did it affect any of the conclusions. We

therefore adopted the former, more common, approach

in this paper. As a result the trend is highly dependent

on the chosen time interval: because global warming

has not been linear with time, the trends over the last

century are smaller than over the last 50 years.

We consider precipitation trends separately for the

summer (April – September) and winter (October –

March) half year. This increases the signal to noise ratio

compared to a three monthly definition of the summer

and winter period. In order to compare wet and dry

regions in a single figure, we use relative precipitation

trends in this paper. The relative precipitation trend is

related to the absolute precipitation trend by

P ′(x, y) =
P ′

abs
(x, y)

P (x, y)
(1)

where P′

abs(x, y) is the absolute precipitation trend and
P(x, y) is the mean seasonal (summer/winter) precipi-

tation over the period that the trend is computed. Rel-

ative precipitation trends are further referred to as pre-

cipitation trends, or just trends.

2.2 Observations

We use four observational datasets in this study to eval-

uate the model results. First the low (2.5o) resolution

gridded precipitation dataset of the Global Precipita-

tion Climatology Centre (Schneider et al., 2010, GPCC

v5 (1901 - 2009)) is used for comparison with the results

derived from a large multi-model GCM ensemble. Later

the state-of-the-art gridded high (0.5o) resolution pre-

cipitation fields of the European ENSEMBLES project

(Haylock et al., 2008, E-OBS v5.0 (1951 - 2011)) is used

to verify the results derived from RCM ensembles. We

also used the precipitation dataset from the Climate

Research Unit (Mitchell and Jones, 2005, CRU TS3.10

(1901 - 2009)), as well as the high resolution GPCC v5

dataset (0.5o), to verify the quality of the observational

datasets.

It is well known that observations are affected by

many sources of error. Errors stem from sources of un-

certainty in the observational data and their analysis,

from measurement, recording and representativity er-

rors to data quality, homogeneity and interpolation er-

rors (Haylock et al., 2008). Haylock et al. (2008) claim

that the typical interpolation error is much larger than
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the expected magnitude of other sources of uncertainty.

To investigate the uncertainty we compare the three ob-

servational sets as well as the ERA-40 re-analysis. This

is done for the common time period where all datasets

and model results have data (1961 – 2000, figure 1). We

also show the absolute summer and winter precipitation

trends in figure 2.

The summer precipitation trend found for the ERA-

40 dataset differs largely from the trends found for the

observational datasets. Largest deviations are mainly

found for central Europe, but also for other European

regions in the summer half year. The relatively small

amount of wind-induced undercatch (difference between

the actual amount of precipitation and the amount mea-

sured by a precipitation gauge) during the summer and

the high number of measurement stations in this area

make it likely that the observational datasets give a bet-

ter representation of the actual trend. We will therefore

not consider the ERA-40 precipitation trends any fur-
ther in this paper.

As a measure of uncertainty we compute for each

grid point the standard deviation between the trend

fields of the different observational datasets (panels (e,j)

of figure 1) according to

σ =

√

√

√

√

1

N

N
∑

i=1

(

P ′ (x, y)
i
− µ

)2

,

with µ =
1

N

N
∑

i=1

P ′(x, y)i

(2)

in which P′ (x, y)i are the relative precipitation trends

as given by panels (b–d) and (g–i) of figure 1 and N

is the number of observational datasets. Note that this

samples only part of the uncertainty as the datasets

are based on a subset of the same station data. Inho-

mogeneities in the underlying station data propagate
into all observational datasets. Inhomogeneities could
be caused by e.g. a drop in ratio of snow to liquid rain-
fall (Hundecha and Bárdossy, 2005) or changes in mea-

suring arrangements.

We find considerable differences between the obser-
vational datasets over Greece, Finland, the former So-

viet Union and the Iberian peninsula (both seasons)

and France and the Scandinavian peninsula (winter half

year). Differences on smaller spatial scales are found in

many other areas. We will only consider model ensem-

ble trend biases larger than the difference between the

different observational datasets.

2.3 Model ensembles

We use three multi-model ensembles in this study: one

composed of GCMs and two composed of RCMs. The

GCM composed ensemble used is the Coupled Model

Intercomparison Project phase 3 (Meehl et al., 2007,

CMIP3) multi-model ensemble from the World Climate

Research Programme (WCRP). The CMIP3 dataset
consists of 23 models (left column of figure 3) at vary-
ing spatial resolution, typically in the order of 200 km.

For the period before 2000 we use the climate of the

20th century runs (20c3m). For the period after 2000

we use the SRES A1b scenario runs, but it should be

noted that the other SRES emission scenarios are al-
most identical for the short period after 2000 that is
used in this study.

For the ensembles composed of RCMs we use those

provided by Research Theme 2b (RT2b) and Research
Theme 3 (RT3) from the European ENSEMBLES project

(van der Linden and Mitchell, 2009), interpolated on a

regular 0.5o longitude-latitude grid. The main differ-
ence between the two RCM ensembles is the forcing

at the boundaries; the regional models are fed at their
boundaries with fields containing temperature, humid-
ity, horizontal winds and surface pressure. The fields

are commonly provided each 6 hours from the GCMs

(RT2b) or ERA-40 (RT3), and are linearly interpolated

in time. The boundary relaxation zone in the regional

models is typically 8-16 grid points wide, and relaxation

is done with a short time scale (in the order of the typi-
cal time step of the model) at the outer relaxation zone
and a longer time scale at the inner relaxation zone.

The exact way this is done varies between the models.

SSTs are prescribed from the GCMs or ERA-40.

An overview of the models used in this analysis from

the RT2b ensemble is given in the right column of fig-

ure 3. Most model data used in the two ensembles is

available at a 25 km spatial resolution. Exceptions are

the MIROC3.2hires forced RACMO (KNMI) model in

the RT2b ensemble and the CLM (GKSS) model in the

RT3 ensemble that are only available at a 50 km reso-

lution. Models that were excluded in this analysis were

either not available for the complete 1951-2009 time pe-

riod or for the complete European domain. The models

used from the RT3 ensemble are mostly the same as

those used from the RT2b ensemble. However, we re-

added the CLM (GKSS) model that we removed from

the RT2b ensemble because it was not available for the
complete time period. We also excluded the PROMES
(UCLM) model from the RT3 ensemble because the
spatial noise in the computed trend was found to be

unrealistic.
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Fig. 1 Comparison of ERA-40 and ob-
served precipitation trends over 1961-
2000, defined as the regression against
time. (a) Relative trends in ERA-40 sum-
mer precipitation [%/Century] (b) Rel-
ative trends in GPCC summer precip-
itation [%/Century] (c) Relative trends
in E-OBS summer precipitation [%/Cen-
tury] (d) Relative trends in CRU sum-
mer precipitation [%/Century] (e) Stan-
dard deviation between GPCC, CRU and
E-OBS trends summer (f–j) Same but for
winter precipitation.
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Fig. 2 E-OBS absolute precipitation
trend [mm/day/Century] over 1961–2000
for the summer (a) and winter half years
(b).

3 GCM/RCM trends vs observations

3.1 GCM simulations

Precipitation trends for the GCM and GCM forced

RCM multi-model ensembles are computed as regres-

sion against time. In order to be least affected by nat-

ural variability we used the largest common period for

the model ensembles and the observations, yielding 1901

- 2009 for the GCM ensemble and the GPCC precipi-

tation data, and 1951 - 2009 for the GCM forced RCM

ensemble and the E-OBS precipitation data. The re-

sults for the GCM forced RCM ensemble are also shown

for the shorter 1961 - 2000 period, the common period

shared with the ERA-40 forced RCM ensemble.

The comparison between each multi-model ensem-

ble and the observational data is two-fold. First the

trend of the ensemble mean is compared to the trend

in the observational data. Next we verify if the observa-

tional trends fall within the bandwidth of natural vari-

ability combined with model uncertainty as parameter-

ized by the spread of the multi-model ensemble. This is

indicated by the fraction of the model ensemble mem-

bers with a trend larger than the observed one.

Figure 4 shows the results for the GCM ensemble

and the GPCC observational dataset. Whereas the ob-

servations show clear positive trends in northern Eu-

rope (both seasons) and part of western Europe (both

seasons), these are much smaller in the GCM ensem-

ble. Panels (d,i) of figure 4 show that the model spread

in these areas does not cover the observations. Similar

results are obtained when using the CRU observational

dataset at a resolution of 2.5o.

As an aggregated statistic we computed the Tala-
grand diagram or rank histogram over the land area of

Europe and show them in panels (e,j) of figure 4. At

every grid point the N ensemble members are ranked

from lowest to highest, representing N+1 possible bins

in which the observations could fall (including the ex-

tremes). For every grid point the bin in which the ob-

served trend falls is identified and recorded and the his-

togram is built up over all area-weighted grid points.
For a reliable ensemble the histogram would be flat. If

the model ensemble has a trend bias, a larger part of the

area lies at one end of the ensemble spread, i.e., that

end of the histogram will curve up. Because of large

uncertainties in the observations in especially Greece

and Finland (panels (e,j) of figure 1) we only consid-

ered the area west of these two countries (west of 20o

longitude). Different observational estimates are used

to compute the histograms to give some indication of

uncertainties in the observations. In figure 4 the blue

and red lines curve up at the low fractions indicating

a bias towards less wetting and more drying trends in

the models compared to the observations.

The next question is whether the bias is significant,

i.e., whether it is unlikely to be a fluctuation in the

distribution of model spread and natural variability.

The strong correlation between neighboring grid points

is a major issue when conducting significance tests.

We therefore take the correlation as represented in the

RCMs into account when constructing the significance

intervals for each bin in the Talagrand diagrams. All

bins have a common scale by design; between 0 and 1.

To compute significance intervals around the flat line we

compute the same histogram considering each model in

turn to be the ‘truth’ (Annan and Hargreaves, 2010).

The confidence interval, depicted as the gray bars in

panels (e,j) of figure 4, is constructed as the distance be-
tween 0 (the minimum) and the second highest ranked
member for each bin. This gives, under the assumption
that the members are equally distributed over the N+1

inter-point intervals of the empirical distribution func-

tion (including the two beyond the minimum and max-

imum sample values), a confidence interval of around

90% (1-sided test).

We find that the bias in reproducing wetting trends

is significant at the 90% confidence level, both in the

summer and winter half years. The bias in reproducing

drying trends in the winter is not significant. From this
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Fig. 3 Overview of GCMs and GCM
forced RCMs used in the analysis.

we conclude that the problem appears to be a bias in
the trends and not in the width of the ensemble: the

low and high ranks are not symmetric but the trend in

the observations is systematically larger than the trend

in the models. This shows that the trend in the obser-

vations does not fall within the bandwidth of natural

variability combined with model uncertainty as param-

eterized by the spread of the multi-model ensemble.

3.2 RCM simulations

To investigate whether the observed trend biases are

due to the coarse resolution of GCMs, we considered a

large multi-model RCM ensemble forced by boundary

conditions derived from GCM simulations (RCM/GCM).

Figure 5 shows the results for the RCM/GCM ensemble

for the period 1951-2009. Figure 6 shows the same but

for the period 1961-2000. The available time periods

for the RCM/GCM ensemble are considerably shorter

compared to the GCM ensemble. As a result the ob-

served trends and trend mismatches are harder to de-
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Fig. 4 Comparison of observed and
GCM precipitation trends over 1901-
2009, defined as the regression against
time. (a) Relative trends in observed
(GPCC) summer precipitation [%/Cen-
tury]. (b) Mean relative trends of sum-
mer precipitation of the GCM ensemble
[%/Century] (c) Bias of the GCM ensem-
ble trend compared to the observed trend
[%/Century] (d) Fraction of the GCM
ensemble with trend larger than the ob-
served one [-]. (e) Talagrand diagram (f–
j) Same for winter precipitation.
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Fig. 5 Comparison of observed and
GCM forced RCM precipitation trends
over 1951-2009, defined as the regres-
sion against time. (a) Relative trends in
observed (E-OBS) summer precipitation
[%/Century]. (b) Mean relative trends of
summer precipitation of the GCM forced
RCM ensemble [%/Century] (c) Bias of
the GCM forced RCM ensemble trend
compared to the observed trend [%/Cen-
tury] (d) Fraction of the GCM forced
RCM ensemble with trend larger than
the observed one [-]. (e) Talagrand dia-
gram (f–j) Same for winter precipitation.
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Fig. 6 Comparison of observed and
GCM forced RCM precipitation trends
over 1961-2000, defined as the regres-
sion against time. (a) Relative trends in
observed (E-OBS) summer precipitation
[%/Century]. (b) Mean relative trends of
summer precipitation of the GCM forced
RCM ensemble [%/Century] (c) Bias of
the GCM forced RCM ensemble trend
compared to the observed trend [%/Cen-
tury] (d) Fraction of the GCM forced
RCM ensemble with trend larger than
the observed one [-]. (e) Talagrand dia-
gram (f–j) Same for winter precipitation.
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Fig. 7 Inter-annual standard deviation
over 1901-2009 (detrended). (a) Ob-
servations (GPCC) summer half year
[mm/day] (b) GCM ensemble summer
half year [mm/day] (c-d) Same for winter
half year.

tect against the background of natural variability. Nev-

ertheless, the modeled trends again show large biases.

For the considered time periods the observations

show in the winter half year wetting trends in northern

Europe and drying trends in southern Europe. Wet-

ting trends are also observed in part of western Europe

(winter half year) and northern Europe (summer half

year). With the exception of slightly positive trends in

parts of northern Europe (both seasons) and a small

negative trend in southern Europe for the 1961-2000

period only, the GCM forced RCM ensemble fails to

reproduce any of these. In fact, when considered over

the same time period, the GCM ensemble shows, with

the exception of details, mainly in coastal and moun-

tainous regions, similar seasonal average trends as the
GCM forced RCM ensemble (not shown).

The difference between the observed trends and mod-

eled trends is significant in most of these areas. This is
visualized in panels (d,h) of figures 5 and 6, where we
show the fraction of the GCM forced RCM ensemble

with a trend larger than the observed one. Note that for

the GPCC observational dataset a similar spatial trend

pattern is found, but often with a somewhat smaller

magnitude. This is even more so for the CRU observa-

tional dataset. Especially the amount of low fractions in

and around Finland differs greatly between the different

observational datasets. The high fractions in southern

Europe are more robust and are largely shared among

the different observational datasets. Panels (e,j) show

Talagrand diagrams for the different seasons for the

area west of 20o longitude, where the approximately

90% confidence interval is indicated by the gray bars.

The rank histogram curls up at the low fractions in the

winter half year for all observational datasets. In the

summer half year they show that the models severely
underestimate the observed increase in summer precip-
itation. This is despite the increased natural variability
due to the shorter timespan considered for the GCM

forced RCM ensemble.

One possible reason for the low reliability of the

models would be that they underestimate the natu-
ral variability of precipitation and therefore the uncer-
tainty in the trend. We estimated the natural variability

from the same simulations as the fluctuations around

the linear trend. As the autocorrelation from year to

year is very small in Europe (except in southeastern

Spain in winter and northern Iceland all year), and

AMO teleconnections to precipitation in Europe neg-

ligible (van Oldenborgh et al., 2009b, Fig. 3d), these 60

years should give a good estimate of the fluctuations.

We find that the GCMs indeed underestimate the nat-

ural variability in the precipitation trends (figure 7),

but the RCMs rather overestimate the natural variabil-

ity (figure 8). Note that the mean precipitation in the
RCMs is, for most regions, larger than observed (not
shown), slightly affecting the modeled relative precipi-
tation trends. As a result the relative standard devia-

tion with respect to the trend in the RCMs is smaller
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Fig. 8 Inter-annual standard deviation
over 1951-2009 (detrended). (a) Ob-
servations (E-OBS) summer half year
[mm/day] (b) GCM forced RCM ensem-
ble summer half year [mm/day] (c-d)
Same for winter half year.

than in the observations. Nevertheless, we find that for

absolute trends the modeled trends still fall outside the

model spread for most regions and the overall conclu-

sions are not affected by this.

It is unlikely that the trend biases are largely caused
by either the coarse resolution of GCMs or natural vari-

ability. Because high resolution RCMs in itself are no

solution for the trend biases, the remaining possibilities

are that they are caused by RCM boundary conditions,

large scale circulation and SST, or by local model errors

present in both the RCMs and GCMs.

4 RCM simulations forced by re-analysis data

To investigate the cause of the observed trend biases in

large multi-model GCM and RCM ensembles we com-
pare the results of regional climate models with bound-
ary conditions derived from GCMs (RT2b) with the re-

sults of a similar set of RCMs forced by quasi-observed

boundary conditions (RT3). This separates the errors

caused by incorrect boundary conditions from internal

model errors in the RCMs (Hudson and Jones, 2002).

Figure 9 shows the results for the ERA-40 forced
RCM ensemble and the E-OBS observational dataset.

In general terms, the ERA-40 forced RCM ensemble re-

produces much better the observed precipitation trends

in both seasons than the GCM forced RCM ensemble.

Wetting trends in much of northern Europe (both sea-

sons) and in western and southwestern Europe (sum-

mer half year), as well as drying trends in southeastern

(summer half year) and southern (winter half year) Eu-

rope are mostly reproduced. The Talagrand diagrams

in panels (e,j) of figure 9, calculated for the area west

of 20o longitude, indicate that in the summer half year

the ERA-40 forced ensemble often overestimates the ob-

served trend. In the winter half year the relative large

amount of low ranks is observed for some observational

datasets is largely from the Alpine region and other

mountainous regions, where also the observations are

uncertain.

The boundary conditions are prescribed in the ERA-

40 forced RCM ensemble and are the same among the

different models. Therefore, the model uncertainty in

this ensemble is smaller compared to the GCM forced

RCM ensemble, often resulting in a smaller spread be-

tween the different models in the ensemble. However,

the Talagrand diagram in the winter half year is flat-

ter than in figure 6 despite the smaller spread of the

ensemble.

5 Simulated trends of regional climate change

Observational errors may be an important factor deter-

mining the magnitude of the observed trend on small
spatial scales. Here, we will therefore look at the re-
gional trends when aggregated over intermediate large
areas. The discrepancies between modeled and observed

precipitation trends are illustrated by the histograms of
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Fig. 9 Comparison of observed and
ERA-40 forced RCM precipitation trends
over 1961-2000, defined as the regres-
sion against time. (a) Relative trends in
observed (E-OBS) summer precipitation
[%/Century]. (b) Mean relative trends
of summer precipitation of the ERA-40
forced RCM ensemble [%/Century] (c)
Bias of the ERA-40 forced RCM ensem-
ble trend compared to the observed trend
[%/Century] (d) Fraction of the ERA-40
forced RCM ensemble with trend larger
than the observed one [-]. (e) Talagrand
diagram (f–j) Same for winter precipita-
tion.
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figure 11 and 12 for respectively the summer and win-

ter half year. These show the position of the observa-

tions within the model spread for the PRUDENCE re-

gions (see figure 10, after Christensen and Christensen

(2007)). The mean trend is calculated as the trend of

the average precipitation within the selected region. For

illustration purposes we only consider a few specific re-

gions and periods in the remainder of this section.

Fig. 10: PRUDENCE regions, after Christensen and Chris-
tensen (2007). (1) British Isles; (2) Iberia Peninsula; (3)
France; (4) Mid-Europe; (5) Scandinavia; (6) Alps; (7)
Mediterranean; (8) Eastern Europe.

To illustrate that trend biases in the RCM boundary

conditions do not affect modeled precipitation trends

in all regions equally, we show in panels (g,o) of figure

12 the mean relative precipitation trend for the Mid-

European region for the winter half year. The means of

the precipitation trends of the GCM forced and ERA-
40 forced RCM ensembles are similar but the spread
of the model ensemble is reduced due to the prescribed
boundary conditions. Therefore, the influence of SST

and atmospheric circulation trend errors on the mean

precipitation trend of the ensemble in the winter half

year for this region is small. Common model errors in

climate models could be an explanation for the trend

bias in this region, but the large spread between the dif-

ferent observational datasets make it difficult to deter-

mine if there indeed is a discrepancy between modeled

and observed trends.

Next we show two regions where the ERA-40 forced

RCM ensemble performs better compared to the GCM

forced RCM ensemble. In panels (d,l) of figure 11 the

mean relative precipitation trend for the France region

is shown for the summer half year. Whereas the mean

of the GCM forced RCM ensemble shows a large neg-
ative trend bias, the mean of the ERA-40 forced RCM
ensemble shows a (smaller) positive trend bias. In Pan-

els (e,m) of figure 12 the mean relative precipitation

trend for the Iberian Peninsula in the winter half year

is shown. Whereas the ensemble spread does not cover

the observations for the GCM forced RCM ensemble, it
does for the ERA-40 forced RCM ensemble.

Finally we show with the British Isles for the sum-

mer half year (panels (b,j) of figure 11) a region where
the trend in the observations falls within the GCM
forced RCM ensemble, but is smaller than the trend
in the ERA-40 forced RCM ensemble. The trend bias

in local processes is hidden in the larger spread of the

GCM forced RCM ensemble and can have in an oppo-

site trend bias in the GCMs. By effectively reducing the

spread of the ensemble by prescribing SST and large-

scale circulation, this trend bias has become visible in

panel (j) of figure 11, where the observed trend is not

compatible with the ensemble spread. The better per-
formance of the GCM forced RCM ensemble (in panel
(b) of figure 11 the observed trend falls within the much
wider ensemble of trends) is therefore caused by the

larger spread and compensating errors in the RCMs.

It appears that prescribing realistic atmospheric flow

conditions and realistic SST improves our ability to

model observed trends in precipitation. Therefore, we

hypothesize that the mismatch between the observa-

tions and the GCM simulations and the GCM driven

RCM simulations is to a large extent due to a misrep-

resentation of SST and atmospheric circulation. In the

next section we will investigate this further.

6 Influence of atmospheric circulation and sea

surface temperature

Changes in SST and atmospheric circulation influence

regional and local precipitation through convergence,

evaporation and transport of moisture. Hence, in this

section we investigate the influence of both large-scale

circulation and SST trend biases on the precipitation

trend biases in the GCM forced RCM ensemble. Changes

in trend biases between the GCM forced RCM ensem-

ble and the ERA-40 forced RCM ensemble are found in
many regions. Dry trend biases in coastal regions of the
North Atlantic and the North Sea are often replaced by

smaller wet trend biases when realistic boundary condi-

tions are applied. In north and south Europe the large

underestimation of the trend in winter precipitation is

much reduced. In Central Europe the lack of changes

between the two ensembles indicate that the trends do
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Fig. 11 Distribution of
mean relative precipitation
trend per region over 1961-
2000 for the summer half
year [%/Century].
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Fig. 12 Distribution of
mean relative precipitation
trend per region over 1961-
2000 for the winter half year
[%/Century].
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Fig. 13 Precipitation trends ERA-40
forced RCM ensemble (1961-2000). (a)
Circulation dependent in the summer
half year [%/Century] (b) Circulation
independent in the summer half year
[%/Century] (c) Total in the summer half
year [%/Century] (d–f) Same but for win-
ter precipitation.

not strongly depend on SST and circulation trend bi-

ases.

In the winter half year (most noticeably in January

– March) there has been a shift towards a more west-

erly circulation over Europe north of the Alps (figure

14). This change is underrepresented in climate models

(Osborn, 2004; van Oldenborgh et al., 2009a). West-
erlies carry moist air from the Atlantic Ocean to the
continent (van Ulden and van Oldenborgh, 2006), and

thereby influence the amount of precipitation. To in-

vestigate the effects of trends in the atmospheric circu-

lation, monthly mean precipitation anomalies are ap-

proximated by a simple model that isolates the linear

effect of circulation anomalies (van Ulden and van Old-

enborgh, 2006; van Oldenborgh et al., 2009a). These

effects include the influence of mean geostrophic wind

anomalies G′

west(x, y, t), G′

south(x, y, t) and vorticity anoma-

lies G′

vorticity(x, y, t). The other terms are the time t,

and the remaining noise η(x, y, t):

P ′(x, y, t) = P ′

circ(x, y, t) + P ′

noncirc(x, y, t) (3)

P ′

circ(x, y, t) = BW G′

west(x, y, t) + BSG′

south(x, y, t)

+BV G′

vorticity(x, y, t)

(4)

P ′

noncirc(x, y, t) = At + η(x, y, t) (5)

The geostrophic wind anomalies G′

west(x, y, t),

G′

south(x, y, t) and vorticity anomalies G′

vorticity(x, y, t)

are computed from the monthly ERA-40 reanalysis sea-
level pressure data and the coefficients BW , BS , BV and

A are fitted over 1961-2000 for each calendar month.

Atmospheric circulation induced precipitation

changes show up as trends in P ′

circ. Panels (a,d) of fig-

ure 13 show the circulation induced precipitation trend

estimated by the regression model for respectively the
summer and winter half year. Panels (b,e) show the
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Fig. 14 Sea-level pressure trend
(p < 10%) [hPa/Century]. (a) ERA-40
for 1961-2000 in the summer half year
(b) Trenberth for 1901-2009 in the
summer half year (c–d) Same but for
winter.

circulation independent trend and panels (c,f) the total

precipitation trend.

Most of the trend in summer precipitation is, within
the linear approximation of a statistical decomposition,

independent of circulation (figure 13b). Trends are mostly

observed along the coast of the North Atlantic Ocean,

the North Sea and the Baltic Sea. Because most of the

trends are observed in coastal areas and are not in the

GCM forced RCM ensemble, this points to a large in-

fluence of SST trend biases in the summer half year in
these regions.

The oceans and seas around Europe are major sources

of precipitation above Europe. Differences in SST changes
affect the precipitation over Europe (Rowell, 2003; van

Ulden and van Oldenborgh, 2006; Kjellström and Ru-

osteenoja, 2007; Lenderink et al., 2009). The modeled

SST trends contain indeed biases: the GCM forced RCM

ensemble underestimates the SST trends (figure 15)
along the Atlantic coast and other coastal areas (if rep-
resented at all). This leads to a lower evaporation trend

(not shown) and a reduced trend in coastal precipita-

tion, even in the high-resolution RCMs. Possible expla-

nations for the wrong SST trends in the models are a

lack of resolution in the ocean component of the cli-

mate models, which causes a misrepresentation of the
North Atlantic Current in the models (van Oldenborgh
et al., 2009a; Ashfaq et al., 2010) and problems resolv-

ing smaller, shallow seas like the North Sea (Lenderink

et al., 2009).

For most regions, a large part of the precipitation

trend in the winter half year is explained by the cir-

culation dependent part of the model (figure 13d). An

increase in westerly circulation (figure 14) has resulted

in an increase in precipitation in the northern part of

Europe, and a decrease in the southern part of Eu-

rope (Rummukainen et al., 2004). Between 1960 - 2000

this may be partly related to a non-significant positive

trend in the NAO (Bhend and von Storch, 2008), but
for the other considered time periods no positive NAO
trend is observed. The trend is due to a different pat-
tern, a pressure difference between the Mediterranean

and Scandinavia rather than Iceland and the Azores

(van Oldenborgh et al., 2009a). The continental pres-

sure dipole has a significant trend over all considered

time periods and explains more of the variance of pre-

cipitation over most of Europe (the Ukraine is the only

clear exception). In central and northern Europe and

in Italy, the Mediterranean-Scandinavia pressure dif-

ference explains more variance of precipitation than the
NAO, making it more suitable for analysis of precipi-
tation trends as well (figure 16). Therefore, circulation

trend biases are, under the same assumption of linear-

ity, responsible for a large part of the underestimation

of precipitation trends in northern and southern Europe

in the winter half year.

Note that this analysis assumes that the effects of

SST and large-scale circulation trends on the precipita-

tion trends add linearly to the total trends. Non-linear
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Fig. 15 Observed and modeled trends in
SST over 1961-2000 [K/Century]. (a) Observed
HadISST summer half year (b) RCM/GCM
ensemble summer half year (c) Bias of the
RCM/GCM ensemble compared to the ob-
served trend (d-f) same but for winter half year.

Fig. 16: Correlations of the NAO (a) and Mediterranean-Scandinavia pressure dipole (b) with local winter precipitation in
Europe over 1951-2009 (p < 10%). (c) Difference in absolute correlation.
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effects are not represented and may affect the conclu-

sions.

7 Conclusions

A combination of GCMs and RCMs is often used to
construct scenarios of future climate conditions. Here,

the modeled precipitation trends and uncertainties over
(parts of) the last century are compared to observations
for a large multi-model ensemble composed of GCMs,
an ensemble of RCMs forced at its boundaries by re-

sults derived from GCMs and a RCM ensemble forced
by realistic, quasi-observed, boundary conditions. Such
trends are relevant in, for instance, hydrological appli-

cations. A correct representation of the trend in the

past is a necessary (but not sufficient) condition for

confidence in future projections.
We find that modeled precipitation in GCM and

GCM forced RCM ensembles contain large trend biases

that fall often outside the spread of the ensemble mem-

bers. A multi-model RCM ensemble forced by realis-

tic, quasi-observed boundary conditions reproduces the

observed trend much better and is largely compatible

with the range of uncertainties spanned by the mem-

bers of the ERA-40 forced RCM ensemble. We conclude

that the boundary conditions of RCMs are responsible

for large parts of the trend biases found in GCM and

RCM ensembles, but are not able to explain all trend

biases. The underestimation of precipitation trends in

GCM forced RCM ensembles in the summer half year

is mainly limited to the coastal regions and is, within

the linear approximation of a statistical decomposition,

largely caused by SST trend biases in the boundary con-

ditions. The underestimation of precipitation trends in

the winter half year that are observed in both northern

and southern Europe are, under the same assumption

of linearity, for a large part caused by circulation trend

biases as present in the GCMs (van Oldenborgh et al.,

2009a). This is not due to a positive trend in the NAO

(Bhend and von Storch, 2008), but due to a pressure

difference between the Mediterranean and Scandinavia

(van Oldenborgh et al., 2009a). Remaining trend biases

are likely caused by a combination of model errors in

the RCMs, including land cover schemes, and errors in

the observations.

To conclude, modeled atmospheric circulation and
SST trends over the past century are significantly dif-

ferent from the observed ones. These mismatches are

responsible for a large part of the misrepresentation of

precipitation trends in climate models. The causes of

the large trends in atmospheric circulation and sum-

mer SST are not known. For SST there may be a con-

nection with the well-known ocean circulation biases

in low-resolution ocean models. Because it is not clear

(yet) whether the trend biases in SST and large scale
circulation are due to greenhouse warming, their impor-
tance for future climate projections need to be deter-

mined. Therefore, a quantitative understanding of the

causes of these trends is needed so that climate model

based projections of future climate can be corrected for

these trend biases.

Acknowledgements

The research was supported by the Dutch research pro-

gram Knowledge for Climate. MC was partially sup-

ported by the NERC Changing Water Cycle PAGODA

Project.

References

Alexander, L. V. and J. M. Arblaster, 2009: Assess-
ing trends in observed and modelled climate ex-

tremes over Australia in relation to future projec-

tions. International Journal of Climatology , 29, 417–

435, doi:10.1002/joc.1730.

Annan, J. and J. Hargreaves, 2010: Reliability

of the CMIP3 ensemble. Geophys. Res. Lett.,

doi:10.1029/2009GL041994.
Ashfaq, M., C. Skinner, and N. Diffenbaugh, 2010: In-

fluence of SST biases on future climate change pro-

jections. Climate Dynamics, 1–17, 10.1007/s00382-

010-0875-2.

Bhend, J. and H. von Storch, 2008: Consistency of ob-

served winter precipitation trends in northern Europe

with regional climate change projections. Clim. Dy-

nam., 31, 17–28, doi:10.1007/s00382-007-0335-9.

Christensen, J. H. and O. B. Christensen, 2007: A

summary of the PRUDENCE model projectionsof

changes in European climate by the end of the cen-

tury. Climatic Change, 81, 7–30, doi:10.1007/s10584-

006-9210-7.
Déqué, M., D. Rowell, D. Lthi, F. Giorgi, J. Chris-

tensen, B. Rockel, D. Jacob, E. Kjellström,

M. de Castro, and B. van den Hurk, 2007: An in-

tercomparison of regional climate simulations for eu-

rope: assessing uncertainties in model projections.

Climatic Change, 81, 53–70.

Hawkins, E. and R. T. Sutton, 2009: The potential to
narrow uncertainty in regional climate predictions.

Bulletin of the American Meteorological Society , 90,

1095–1107, doi:10.1175/2009BAMS2607.1.

Haylock, M. R., N. Hofstra, A. M. G. K. Tank, E. J.

Klok, P. D. Jones, and M. New, 2008: A Euro-

pean daily high-resolution gridded data set of sur-



20 Ronald van Haren et al.

face temperature and precipitation for 1950-2006.

Journal of Geophysical Research, 113, D20119+,
doi:10.1029/2008JD010201.

Hegerl, G. and F. Zwiers, 2011: Use of models

in detection and attribution of climate change.

Wiley Interdisciplinary Reviews: Climate Change,
doi:10.1002/wcc.121.

Hudson, D. and R. Jones, 2002: Regional climate model
simulations of present-day and future climates of

Southern Africa. Technical note 39, Hadley Centre

for Climate Prediction and Research.
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