Ι	Over a decade of GLASS has accelerated land surface model development
2	
3	Bart van den Hurk
4	KNMI, PO Box 201, 3730 AE De Bilt, The Netherlands – hurkvd@knmi.nl
5	
6	Martin Best
7	UK MetOffice, FitzRoy Road Exeter Devon, EX1 3PB United Kingdom
8	
9	Paul Dirmeyer
IO	Center for Ocean-Land-Atmosphere Studies, 4041 Powder Mill Road, Calverton, MD
II	20705-3106 USA
Ι2	
13	Andy Pitman
14	Climate Change Research Centre, The University of New South Wales, Australia
15	
16	Jan Polcher
17	Laboratoire de Météorologie Dynamique du CNRS, Tour 25, 4 pl. Jussieu, 75252 PARIS
18	cedex 05, France
19	
20	and Joe Santanello
2 I	Hydrospheric and Biospheric Sciences Laboratory, NASA-GSFC Code 614.3, Greenbelt,
22	Maryland 20771, USA
23	
24	(Current and past chairs of the GLASS panel)
25	
26	Second submission 28 April 2011

27 Capsule Summary

~ 1	Verwijderd: M
28	Land surface models used in Numerical Weather Prediction and climate projections have
29	seen considerable development. Here we present an overview of initiatives that are a part of
	the Clabel Lond Atmosphere System Study (CLASS) including the outpool ant community
30	the Global Land Atmosphere System Study (GLASS), including the antecedent community
а.т.	modelling offerts that led up to the formation of CLASS. We also address the baritage of
31	modeling errors that led up to the formation of GLASS. We also address the heritage of

32 GLASS in operational weather/climate centers.

33	Land surface Models (LSMs) used in Numerical Weather Prediction and climate projections
34	have seen considerable development since the early simple "bucket scheme" of Manabe
35	(1969). From the pioneering work by Deardorff (1978), the development of globally
36	applicable LSMs by Dickinson et al. (1986) and Sellers et al. (1986) and the building of the
37	first models that represent vegetation dynamics (e.g. Foley et al., 1996), LSMs now represent
38	heterogeneity, complex vegetation responses to environmental conditions, detailed surface
39	and subsurface hydrology, dynamic evolution of snow packs, and even representations of
40	urban, lakes and biogeochemical processes. A thorough review of the present state of the art
41	in land surface modeling probably require tens if not hundreds of pages, to address all
42	relevant developments (see Levis, 2010 for a recent review). Here we present an overview of
43	initiatives that are a part of the Global Land Atmosphere System Study (GLASS) ¹ , including
44	the antecedent community modelling efforts that led up to the formation of GLASS.
45	Reference will be made to a number of projects in which GLASS is involved. An overview of
46	these can be found in Table 1.
47	
48	[<u>Table 1 here]</u>
49	
50	There has long been recognition of the need to confront LSMs with observational data.
51	However, in the early 1990's, Ann Henderson-Sellers appreciated the need to evaluate and
52	inter-compare LSMs within a common framework. She launched the Project for the

- 53 Intercomparison of Landsurface Parameterization Schemes (PILPS; the first model inter-
- 54 comparison or "MIP"), with the aim of *improving the understanding of current and future*
- 55 parameterization schemes used to represent regional to continental scales. PILPS was sponsored by
- 56 the World Meteorological Organization's Working Group on Numerical Experimentation

¹ The Global Land Atmosphere System Study (GLASS) is one of the scientific panels under the umbrella of the Global Water and Energy Cycle Experiment (GEWEX), a core project of the World Climate Research Programme (WCRP) (see www.gewex.org/glass).

(WGNE) and the Global Energy and Water Cycle Experiment (GEWEX) science panels. The 57 first meeting was held in June 1992 at Columbia, Maryland. PILPS was singularly 58 successful. Through the 1990's and 2000's it coordinated multiple off-line (uncoupled from 59 atmospheric models) experiments, first with synthetic atmospheric forcing (Pitman et al., 60 1993), and later with observed forcing. The first of these (Chen et al., 1997; see Fig. 1) used 61 62 data from the atmospheric boundary layer research station at Cabauw in the Netherlands to 63 produce one of the most highly cited papers in land surface modeling and to establish the 64 weaknesses inherent in the Manabe (1969) scheme, as well as the failure of many LSMs at 65 that time to conserve energy and water. Increasingly well-constrained experiments followed 66 focused mainly on mid- and high-latitudes regions. For example, Wood et al. (1998) and 67 Liang et al. (1998) focused on the Red-Arkansas River basin in the central United States, 68 Schlosser et al. (2001) and Slater et al. (2001) concentrated on the boreal grasslands at Valdai, Russia, and Nijssen et al. (2003) and Bowling et al. (2003) examined the Torne-Kalix 69 basin in Sweden. 70 7 I

PILPS' significant and on-going contribution has been to facilitate the testing and inter-72 comparison of LSMs against point-based observational data. Many of the technical challenges 73 that PILPS helped resolve are now commonly implemented in LSMs - issues like the need to 74 run LSMs decoupled from the host atmospheric model, and the recognition of the need to 75 76 formally conserve energy and water. PILPS was also originally conceived to compare LSMs in the coupled environment. While efforts to examine the coupled behavior of LSMs were 77 78 explored, and some critical facilitating technologies introduced (e.g. a NetCDF protocol for defining output variables and metadata (ALMA - see Table 1) and a common land surface 79 80 coupler (Polcher et al., 1986)) PILPS could not resolve the full spectrum of land surface 81 challenges alone.

83 [Fig 1 here]

84

Growing in part from the International Satellite Land-Surface Climatology Project (ISLSCP), 85 86 an effort was launched to derive two years of near-surface atmospheric forcing globally over 87 all land surfaces except Antarctica (Meeson et al, 1995). The data were produced at a 1° 88 spatial resolution, and combined observational data sets and global analyses from a global 89 weather model to resolve the diurnal cycle. The Global Soil Wetness Project (GSWP; Dirmeyer et al, 1999) Phase 1 used the ISLSCP global data to drive LSMs in a framework 90 similar to how they are used in weather and climate models. GSWP-1 was, in one sense, a 91 global implementation of the point-based PILPS evaluations. However, it also had the aim of 92 generating specific products of value. The gridded global atmospheric forcing data sets were 93 technically challenging to develop and many individual modeling groups found handling the 94 quantity of data and performing the global simulations demanding. However, GSWP-I was 95 96 revolutionary in allowing a truly global evaluation of LSMs, encompassing all climate zones and capturing some degree of interannual variability. Comparison of basin-averaged 97 98 hydrology highlighted the importance of high quality rainfall forcing in order to simulate correctly the net discharge of water from land to the oceans (Oki et al, 1999). Soil wetness 99 data sets produced in GSWP-1 were used in retrospective forecasts of seasonal climate to 100 show that interannual variations of the land surface state have a significant impact on climate 101 prediction (e.g. Dirmeyer 2000, Douville 2002). 102 103 Both PILPS and GSWP-1 were critical in bringing the LSM community together, one 104

primarily at the point or catchment scale, the other at the global scale. However, neither hadthe capacity in isolation to put their respective contribution into the larger perspective or

107 spectrum of terrestrial processes spanning the point scale with uncoupled simulations to the

108 global fully coupled simulations.

ΙΙΟ	To address this challenge of a more holistic program around land surface processes, GLASS	
III	was launched in 1999 led by a panel tasked to accelerate the progress made by PILPS and	
I I 2	GSWP-1. <u>This panel</u> continued <u>these projects</u> . <u>GSWP was led</u> into a second phase (GSWP-	Verwijderd: GLASS Verwijderd: PILPS and also continued GSWP
113	2), a dramatically extended research program <u>covering</u> a 10 year period (Dirmeyer et al,	Verwijderd: centred on
114	2006). GSWP-2 used a range of LSMs, numerous gridded forcing datasets, and a set of	
115	evaluation criteria as part of the protocol.	
116		
117	The results of GSWP-2 <u>revealed</u> that the variability in estimated global and annual mean	Verwijderd: A pessimistic view on t
118	evaporation over land from the participating LSMs is <u>still considerable, and in fact</u> not a great	Verwijderd: is
119	deal smaller than the range in estimates one can find in the literature back to the start of the	
I 20	20 th century (Schlosser and Houser, 2007). <u>The spread between LSMs can be understood</u>	
I 2 I	from the fact that over time a wide range of LSMs have been developed for different host	Verwijderd: 0
I 2 2	models: integrating these models outside of their native environments reveals different	
123	sensitivities to the common forcings. However, the projects have provided improved	
124	estimates of the typical interannual variability in land surface states and fluxes, uncertainties	
125	in observational data sets and reanalyses, climate-dependent model sensitivities, and regional	
126	energy and water balances. GSWP-2 also generated a global archive of "realistic" land surface	
127	states and fluxes that are used to evaluate the contribution of land processes to atmospheric	
128	and hydrologic variability. A thorough review of GSWP is given by Dirmeyer (2011).	
129		
130	To date, this discussion has reflected on LSMs uncoupled from a host model. A critical goal	
131	of GLASS was to expand from the uncoupled (or 'offline') point-based (PILPS) and globally-	
132	based (GSWP) evaluations to include simulations fully coupled with the atmosphere.	
133	Coupled simulations can include LSMs that are fully integrated into a weather forecast or	
134	climate model, or coupled into a common mesoscale atmospheric model (Santanello, 2009).	

136	The essential contribution to date from the global coupled analysis relates to the Global Land
I 37	Atmosphere Coupling Experiments (GLACE) – a program of research led jointly with the
138	Climate Variability (CLIVAR) panel of WCRP. GLASS helped formulate GLACE, which led to
139	the fundamental discovery by Koster et al. (2004) that LSMs interact with their overlying
140	atmospheric models with remarkably different coupling strengths. In some areas and under
141	some conditions, the state of the land surface systematically affects the atmospheric
142	variability, particularly temperature and rainfall. In the first GLACE experiment, highly-
143	controlled seasonal simulations with a dozen different weather and climate forecast models
144	were conducted. The experiment was designed to isolate and quantify the impact of the land
145	surface state, namely soil wetness, on boreal summer climate variability. For the first time a
146	multi-model map was produced showing areas where land-atmosphere interaction has the
147	strongest effect on precipitation variability (Fig. 2). The considerable spread in this so-called
148	"coupling strength" between the models is often used to illustrate the lack of understanding
149	of this complex coupling process. But the overall picture that strong sensitivities appear in
150	transitional climate regimes (between arid and humid regions) <u>can be understood from basic</u>
151	physical arguments: near strong gradients of surface evaporation and precipitation, changing
152	the link between soil moisture, evaporation and precipitation is likely to change the
153	precipitation variability. In a recent follow-up experiment GLACE-2 (Koster et al, 2010), the
154	practical implication of this finding was examined by assessing the contribution of realistic
155	land initial conditions to the prediction of precipitation and temperature. This new multi-
156	model experiment demonstrated that increased skill can be expected on time scales beyond
157	deterministic atmospheric predictability (about two weeks) out to time scales where ocean-
158	atmosphere interactions become the dominant forcing of climate variations (about two
159	months). Forecast skill increases particularly in areas where precipitation observations used
160	to generate the initial soil moisture states (obtained from GSWP-2) are of high quality and

Verwijderd: makes sense

161 gauge density. Also it was found that stronger initial soil moisture anomalies lead to larger

162 skill improvements.

163

164 [Fig 2 here]

165

166 To compliment the global and seasonal climate focus of GLACE, the issue of land-167 atmosphere coupling at the process-level (i.e. local to regional) is systematically being 168 addressed in the Local Coupling ("LoCo") theme (Van den Hurk and Blyth, 2008). Land-169 atmosphere interactions are present at all scales. For instance, the atmospheric properties within a plant canopy directly change in response to fluxes to and from individual leaves. The 170 atmospheric boundary layer feedback reduces evaporation from the surface after being 171 moistened by earlier evaporation. Convection can be triggered by soil moisture anomalies, 172 thereby reinforcing or reducing these very same anomalies (see Seneviratne et al, 2010). Due 173 to this complex hierarchy of processes, and the strong interaction with ambient atmospheric 174 175 conditions, a straightforward experimental design to systematically evaluate the degree to 176 which land surface processes affect the atmosphere locally is not easily realized. However, a continuous scientific discussion engaged by a series of GLASS workshops led to an 177 178 experimental protocol using a numerical land-atmosphere model "laboratory" where a wide range of land-, boundary layer- and cloud-models can be interchanged and subjected to 179 180 meaningful diagnostics under controlled conditions (LIS-WRF). Newly developed diagnostics 181 address the scale-dependence and various natures of land-atmosphere feedback, and include 182 a combination of land and atmospheric variables (Santanello et al, 2009). LoCo is an 183 example of a GLASS project where a fairly long incubation time was needed before a practical 184 experimental design could be formulated (the first LoCo workshop was held in 2003), but it 185 will transform the ability of LSMs to realistically represent not only the fluxes and states, but 186 also the complex interactions and feedbacks with the atmosphere. Inputs to these workshops

187	were provided by colleagues from the GEWEX panels on boundary layers (GABLS ²) at	nd
188	clouds (GCSS ³).	

190	An important aspect of land modeling is the specification of the land surface characteristics
191	and their temporal and spatial variability. The importance of this implementation is
192	convincingly demonstrated by a recent study addressing the impact of land use change, the
193	Land-Use and Climate, IDentification of robust impacts study (LUCID; Pitman et al, 2009).
194	LUCID was a GLASS – iLEAPS ⁴ project in which seven GCMs were given a similar land use
195	change scenario. A large part of the variability of the regional climate impact of land use
196	change could be attributed to different assumptions on the change of LSM parameters
197	associated with the imposed land use change. A systematic protocol to objectively assess the
198	sensitivity of surface fluxes to the specification of canopy conductance, leaf area index,
199	surface roughness and rooting depth is not easily defined, owing to the fact that these
200	quantities are strongly intertwined with the core LSM structure. However, the current
201	development of GCMs into sophisticated Earth System Models (incorporating the
202	biogeochemical cycles associated with the biotic components of our climate system) warrants
203	a careful analysis of the role of these land surface characteristics.
204	
205	Since the inception of GLASS, the scientific LSM arena has seen rapid evolution. PILPS-type
206	experiments have become integrated into land surface model development and diagnostics
207	and are now commonly performed for an expanding number of climate regimes and land
208	related process areas. Model-based global estimates are now being considered as a valuable
200	related process areas. model based grobal estimates are now being considered as a valuable
209	component of climatologies of the land surface states and fluxes, demonstrated by activities

^a GABLS = Global Atmospheric Boundary Layer Study; http://www.gewex.org/gabls.htm
 ³ GCSS = Global Cloud System Study; http://www.gewex.org/gcss.html
 ⁴ iLEAPS = Integrated Land – Ecosystem – Atmosphere Process study; http://www.ileaps.org/

210	around the LandFlux ⁵ initiative <u>, co-organized by the GEWEX Hydroclimate panel (GHP⁶)</u> .
2 I I	Land data assimilation systems (LDASs <u>: Rodell et al, 2004</u>) have been modeled after the
2 I 2	GSWP framework, and all operational LDASs as well as most land surface intercomparison
213	projects use the ALMA protocols. GLACE-like procedures and metrics are adopted in quite a
214	few studies addressing land-atmosphere interaction, including changes in the patterns under
215	future climate conditions (Seneviratne et al, 2006). <u>Recognizing the importance of</u>
216	uncertainties in prescribed model parameters for model results and data assimilation
217	products, parameter estimation tools and associated forecast evaluation diagnostics have
218	been implemented in Land Information System (LIS7). But the overarching questions "How
219	good should our land models be?", "How accurately can we estimate land variables on a
220	global scale?", or "How large is the inherent climate predictability related to land?" still
22I	require new scientific approaches.
222	
223	In this changing landscape, GLASS has recently restructured its scientific agenda, and is
224	currently in the process of launching new concepts and experimental designs aimed at
225	progressing land surface science. The original structure of GLASS was a two-by-two matrix,
226	where one axis represented spatial scale (point/plot/catchment versus continental/global) and
227	the other differentiated between uncoupled and coupled modeling. In the new structure,
228	three core activities have been defined: benchmarking, model data fusion, and coupling (Fig.
229	3).
230	
231	[Fig 3 here]

I

 ⁵ See http://wgdma.giss.nasa.gov/landflux.html
 ⁶ see http://www.gewex.org/projects-ghp.html
 ⁷ See http://lis.gsfc.nasa.gov

233	Benchmarking of LSMs (and data sets) urgently needs attention in the wider scientific
234	community. Do we actually know what we can expect from the quality of models and data
235	sets? In an inspiring experiment, Abramowitz et al (2008) evaluated the skill of an LSM
236	driven by and evaluated with data from a number of FluxNet ^{&} sites. Apart from the land
237	models, an unrelated statistical model was calibrated on a subset of the observed forcings,
238	and evaluated with an independent subset. In many ways, this statistical model considerably
239	outperformed the state of the art LSM simulations, This result leads to the conclusion that
240	the complex physical equations embedded in the LSMs did not <u>well</u> utilize the information
241	content inherent in the forcing data well. These equations typically have many parameters,
242	few of which can be practically optimized for most locations. For an LSM to be useful for
243	predictions, it must be demonstrated that the model physics actually adds information to the
244	prediction system. So, in our model evaluation experiments we should reduce model errors
245	to a minimum, but also specify what the minimum acceptable error actually is. Obviously
246	this depends on the application of the model. For example, a flood forecasting center only
247	using modeled runoff to predict the occurrence of floods in a river basin has a different
248	definition of the minimum acceptable error than scientists trying to attribute trends in
249	evaporation to soil moisture processes (Jung et al, 2010). A general benchmark for models
250	could be that they are able to capture a useful mode of variability (for instance, interannual
251	variability, or match the error level of the validation observations), but more specific
252	benchmarks need to be developed. GLASS seeks ways to engage and formalize this process.
253	A good showcase for this is the <u>proposed</u> third phase of GSWP ⁹ , in which the earlier GSWP-
254	2 data sets will be extended forward to the present, enabling scientific progress toward
255	attribution of recent changes to various components of the climate system, including the
256	terrestrial component. The development of the web-based Protocol for Analysis of Land

⁸ See http://daac.ornl.gov/FLUXNET/fluxnet.shtml 9 See http://hydro.iis.u-tokyo.ac.jp/HESSS2/

Verwijderd: !

/erwijderd:

/erwijderd: planned

257 Surface Schemes (PALS¹⁰) will help for an objective definition of useful benchmarking258 standards.

259

260 The activities clustered around Model Data Fusion address the need to gain experience in the 261 areas of data assimilation and parameter estimation. In various scientific arenas surrounding 262 the land modeling domain (Numerical Weather Prediction, catchment hydrology, ocean 263 science) data assimilation is a common tool to estimate optimal states of the climate system 264 by blending observations with models constrained by physical equations. Also, the notion that model parameters should show larger variability leads to a rethinking of the concept of 265 266 fixed land models that are driven by fixed atmospheric forcings. However, data assimilation 267 techniques are conceptually simple but mathematically quite complex, and small changes in 268 the underlying error assumptions can lead to large differences in the results. A newly 269 formulated Project for Intercomparison of Land Data Assimilation Systems (PILDAS) is a first attempt to learn how configuration differences among a number of current operational 270 land data assimilation systems affect the resulting estimates. Like the early PILPS projects, 27 I PILDAS contains a hierarchy of levels with subsequently increasing numbers of degrees of 272 freedom. In the first pilot phase, a synthetic (model-produced) data set will be assimilated in 273 a range of configurations. Ultimately PILDAS will address consequences of choices of data 274 275 types, ways of preprocessing data, and technical settings such as length of assimilation windows, spatial correlations and error structure. Results from the first PILDAS phase will 276 appear in 2011. 277 278

The coupling theme will continue the earlier work related to GLACE and LoCo, concentratingon the development of adequate diagnostics for land-atmosphere coupling that can be

¹⁰ See http://www.pals.unsw.edu.au/

281	verified with observations, and the use of standard modeling software (LIS) where model	Verwijderd: the Land Information System,
201		Verwijderd: 11
282	settings can be easily controlled and evaluated. Pilot experiments are currently ongoing, and a	
283	call for participation from the broader community can be expected over the next few years. It	Verwijderd: s
284	should be noted that the GLASS themes are certainly not independent, and activities in	
285	Benchmarking and Model Data Fusion will need to be considered in both uncoupled and	
286	coupled frameworks.	
287		
288	During its existence, GLASS activities have strengthened and created many scientific	
289	networks, leading to scientific progress. <u>Reflecting WCRP's emphasis to contribute to</u>	(
290	operational modeling centers, NCEP ¹² , JMA ¹³ , UKMO ¹⁴ , Meteo-France and ECMWF ¹⁵ ,	Verwijderd: O Verwijderd: like
291	among others, have used GLASS activities to improve their forecast models. For example,	Verwijderd: these
292	results from PILPS-2E by Van den Hurk and Viterbo (2003) have been formally included in	
293	the ECMWF model by Balsamo et al (2009), <u>D</u> e Rosnay et al (2009) explore LSM generated	Verwijderd: ; d
294	soil moisture fields in West Africa to prepare for routine assimilation of SMOS ¹⁶ data,	Verwijderd:)
295	Routine application of LDAS products is used in operational forecasts of NCEP and other	
296	centers worldwide. Building on earlier successes, GLASS will continue to support projects	
297	that extend the earlier frameworks, like GSWP-3 or ongoing or new PILPS-like experiments,	
298	and renew its focus on emerging topics like Model Data Fusion and Benchmarking. Like	
299	before, GLASS will coordinate workshops, model studies and analyses in order to strengthen	
300	or create the scientific networks that are needed to bring the representation of value-adding	
301	land surface modules in Earth System Models to a higher level.	
302		

- ¹² NCEP = National Centers for Environmental Prediction (USA)
 ¹³ JMA = Japan Meteorological Agency
 ¹⁴ UKMO = United Kingdom Met Office
 ¹⁵ ECMWF = European Centre for Medium-Range Weather Forecasts
 ¹⁶ SMOS = Soil Moisture Ocean Salinity mission

303 References

304	Abramowitz G., R. Leuning, M. Clark, and A. J. Pitman (2008), Evaluating the performance of land surface models, Journal of
305	Climate, 21, 5468-5481.
306	Balsamo, G., P. Viterbo, A. Beljaars, B.J.J.M. van den Hurk, A. Betts and K. Scipal, 2009: A revised hydrology for the ECMWF
307	model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System; J.
308	Hydrometeor. 10, 623-643, doi:10.1175/2008JHM1068.1.
309	Bowling, L.C., Lettenmaier, D.P., Nijssen, B., Graham, L.P., Clark, D.B., El Maayar, M., Essery, R., Goers, S., Gusev, Y.M.,
310	Habets, F., van den Hurk, B., Jin, J., Kahan, D., Lohmann, D., Ma, X., Mahanama, S., Mocko, D., Nasonova, O., Niu, GY.,
311	Samuelsson, P., Shmakin, A.B., Takata, K., Verseghy, D., Viterbo, P., Xia, Y., Xue, Y. and Yang, Z-L., 2003, Simulation of
312	high latitude hydrological processes in the Torne-Kalix basin: PILPS Phase 2(e) 1: Experiment description and summary
313	intercomparisons, Global and Planetary Change, 38 , 1-30.
314	Chen T.H. Henderson-Sellers A., Milly P.C.D., Pitman A.J., Beljaars A.C.M., Polcher J., Abramopoulos F., Boone A., Chang S.
315	Chen F. Dai Y. Desborough CE. Dickinson R.E., Dumenil L., Ek M., Garratt J.R., Gedney N., Gusev Y.M., Kim J., Koster R.,
316	Kowalczyk E.A., Laval K., Lean J., Lettenmaier D., Liang X., Mahfouf JF., Megelkamp HT., Mitchell K., Nasonova O.N.,
317	Noilhan J., Robock A., Rozensweig C., Schaake J., Schlosser A., Schulz J.P., Shao Y., Shmakin A.B., Verseghy D.L., Wetzel
318	P., Wood E.F., Xue Y., Yang ZL. and Zeng Q., 1997, Cabauw Experimental results from the project for Intercomparison
319	of Land-surface Parameterization Schemes, J. Climate, 10, 1194-1215.
320	Dickinson, R.E., Henderson-Sellers, A., Kennedy, P.J. and Wilson, M.F., 1986, Biosphere-Atmosphere Transfer Scheme
321	(BATS) for the NCAR Community Climate Model., NCAR Technical Note TN- 275 + STR, 69pp
322	Deardorff, J.W. (1978): Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation;
323	J. Geophys.Res. 83, 1889-1903.
324	De Rosnay, P., M. Drusch, A. Boone, G. Balsamo, B. Decharme, P. Harris, Y. Kerr, T. Pellarin, J. Polcher, and JP. Wigneron
325	(2009), AMMA Land Surface Model Intercomparison Experiment coupled to the Community Microwave Emission Model:
326	ALMIP-MEM, J. Geophys. Res., 114, D05108, doi:10.1029/2008JD010724.
327	Dirmeyer, P. A., 2000: Using a global soil wetness data set to improve seasonal climate simulation. J. Climate, 13, 2900-2922.
328	Dirmeyer, P. A., 2011: A history of the Global Soil Wetness Project (GSWP). J. Hydrometeor., (submitted).
329	Dirmeyer, P., A. Dolman, and N.Sato, 1999; The Pilot Phase of the Global Soil Wetness Project. Bull. Amer. Meteor. Soc., 80,
330	851 - 878.
33 I	Dirmeyer, Paul A., Xiang Gao, Mei Zhao, Zhichang Guo, Taikan Oki, Naota Hanasaki, 2006: GSWP-2: Multimodel Analysis
332	and Implications for Our Perception of the Land Surface. Bull. Amer. Meteor. Soc., 87, 1381–1397.
333	Douville, H., 2002: Influence of soil moisture on the Asian and African monsoons. Part II: Interannual variability. J. Climate,
334	15,701-720.
335	Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine. 1996. An integrated biosphere model
336	of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles 10(4), 603-
337	628.

338	Henderson-Sellers, A., Pitman, A.J., Love, P.K., Irannejad, P. and Chen, T., 1995, The project for Intercomparison of land
339	surface parameterisaton schemes PILPS) Phases 2 and 3, Bull. Amer. Meteorol. Soc., 76, 489-503.
340	Henderson-Sellers A., Yang Z.L. and Dickinson R.E., 1993, The Project for Intercomparison of Land-surface Schemes (PILPS).
341	Bull. Amer.Meteor.Soc., 74 , 1,335-1,349.
342	Jung, M. et al (2010): Recent decline in the global land evapotranspiration trend due to limited moisture supply; Nature 467,
343	951–954; doi:10.1038/nature09396
344	Koster, R.D., P.A. Dirmeyer, Zh. Guo, G. Bonan, E. Chan, P. Cox, C. T. Gordon, S. Kanae, E. Kowalczyk, D. Lawrence, P. Liu, C-H.
345	Lu, S. Malyshev, B. McAvaney, K. Mitchell, D. Mocko, T. Oki, K. Oleson, A. Pitman, Y. C. Sud, C. M. Taylor, D. Verseghy,
346	R. Vasic, Y. Xue, and T. Yamada (2004): Regions of Strong Coupling Between Soil Moisture and Precipitation; Science,
347	305, 1138-1140.
348	Koster, R. D., et al. (2010), Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-
349	model experiment, Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.
350	Liang, X., Wood, E.F., Lettenmaier, D.P., Lohmann, D., Boone, A., Chang, S., Chen, F., Dai, Y., Desborough, C.E., Dickinson,
35 I	R.E., Duan, Q., Ek, M., Gusev, Y.M., Habets, F., Irranejad, P., Koster, R., Mitchell, K.E., Nasonova, O.N., Noilhan, J.,
352	Schaake, J., Schlosser, C.A., Shao, Y., Schmakin, A.B., Verseghy, D., Warrach, K., Wetzel, P., Xue, Y., Yang, ZL. and
353	Zeng, QC., 1998, The project for intercomparison of land-surface parameterisation schemes (PILPS) Phase 2(c) Red-
354	Arkansas River basin experiment: 2. Spatial and temporal analysis of energy fluxes, Global Planet. Change, 19, 137-159.
355	Levis, S. (2010), Modeling vegetation and land use in models of the Earth System; Wiley Interdisciplinary Reviews: Climate
356	<i>Change</i> , 1, doi 10.1002/wcc.83
357	Manabe, S. (1969): The atmospheric circulation and hydrology of the Earth's surface; Mon.Weather Rev. 97, 739-774.
358	Meeson, B. W., F. E. Corprew, J. M. P. McManus, D. M. Myers, J. W. Closs, K. J. Sun, D. J. Sunday, and P. J. Sellers, 1995:
359	ISLSCP Initiative I - Global data sets for land-atmosphere models, 1987-1988. Volumes 1-5, Published on CD-ROM by
360	NASA (USA_NASA_GDAAC_ISLSCP_001 - USA_NASA_GDAAC_ISLSCP_005), .
361	Nijssen, B., Bowling, L.C., Lettenmaier, D.P., Clark, D.B., El Maayar, M., Essery, R., Goers, S., Gusev, Y., Habets, F., van den
362	Hurk, B., Jin, J., Kahan, D., Lohmann, D., Ma, X., Mahanama, S., Mocko, D., Nasonova, O., Niu, G-Y., Samuelsson, P.,
363	Shmakin, A.B., Takata, K., Verseghy, D., Viterbo, P., Xia, Y., Xue, Y. and Yang, Z-L., 2003, Simulation of high latitude
364	hydrological processes in the Torne-Kalix basin: PILPS Phase 2(e) 2: Comparison of model results with observations,
365	Global and Planetary Change, 38 , 31-53.
366	Oki T, Nishimura T, Dirmeyer P (1999) Assessment of annual runoff from land surface models using total runoff integrating
367	pathways (TRIP). J Meteor Soc Jpn 77:235-255
368	Pitman A.J., Henderson-Sellers A., Desborough, C.E., Yang, ZL., Abramopoulos, F., Boone, A., Dickinson, R.E., Gedney, N.,
369	Koster, R., Kowalczyk, E., Lettenmaier, D., Liang, X., Mahfouf, JF., Noilhan, J., Polcher, J., Qu, W., Robock, A.,
370	Rosenzweig, C., Schlosser, C.A., Shmakin, A.B., Smith, J., Suarez, M., Verseghy, D., Wetzel, P., Wood, E. and Xue, Y.,
37 I	1999, Key results and implications from Phase 1(c) of the Project for the Intercomparison of Land-surface
372	Parameterization Schemes, Climate Dyn., 15, 673—684.

Met opmaak: Nederlands (standaard)

373	Pitman, A. L. et al. (2000). Uncertainties in climate responses to past land cover change: First results from the LUCID
374	intercomparison study, Geophys. Res. Lett., 36, L14814, doi:10.1029/2009GL039076.
375	Polcher, J., McAvaney, B., Viterbo, P., Gaertner, MA., Hahmann, A., Mahfouf, JF., Noilhan, J., Phillips, T., Pitman, A.J.,
376	Schlosser, C.A., Schulz, JP., Timbal, B., Verseghy, D. and Xue, Y., A proposal for a general interface between land-surface
377	schemes and general circulation models, 1998, Global and Planetary Change, 19, 261-276.
378	Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, CJ. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M.
379	Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll, The Global Land Data Assimilation System, Bull. Amer.
380	<u>Meteor. Soc., 85(3), 381-394, 2004.</u>
381	Santanello JA, Friedl MA, Ek MB. 2007. Convective planetary boundary-layer interactions with the land surface at diurnal time
382	scales: Diagnostics and feedbacks. J. Hydrometeorol. 8: 1082–1097.
383	Santanello, Joseph A., Christa D. Peters-Lidard, Sujay V. Kumar, Charles Alonge, Wei-Kuo Tao, 2009: A Modeling and
384	Observational Framework for Diagnosing Local Land–Atmosphere Coupling on Diurnal Time Scales. J. Hydrometeor, 10,
385	577-599.
386	Schlosser, C.A., Slater, A.G., Robock, A., Pitman, A.J., Vinnikov, K. Ya., Henderson-Sellers, A., Speranskaya, N.A., Mitchell, K.,
387	Boone, A., Braden, H., Chen, F., Cox, P., de Rosnay, P., Desborough, C.E., Dickinson, R.E., Dai, Y-J., Duan, Q., Entin, J.,
388	Etchevers, P., Gedney, N., Gusev, Y.M., Habets, F., Kim, J., Koren, V., Kowalczyk, E., Nasonova, O.N., Noilhan, J.,
389	Schaake, J., Shmakin, A.B., Smirnova, T.G., Verseghy, D., Wetzel, P., Xue, Y. and Yang, Z-L., 2000, Simulations of a
390	boreal grassland hydrology at Valdai, Russia: PILPS Phase 2(d), Monthly Weather Review, 128, 301-321.
391	Schlosser, C. Adam, Paul R. Houser, 2007: Assessing a Satellite-Era Perspective of the Global Water Cycle. J. Climate, 20,
392	1316–1338. doi: 10.1175/JCLI4057.1
393	Sellers, P.J., Y. Mintz, Y.C. Sud and A. Dalcher (1986): A simple biosphere model (SiB) for use within general circulation
394	models; J.Atmos.Sci. 43, 505-531.
395	Seneviratne S.I., T. Corti, E.L. Davin, M. Hirschi, E.B. Jaeger, I. Lehner, B. Orlowsky, A.J. Teuling (2010) Investigating soil
396	moisture-climate interactions in a changing climate: A review, Earth-Science Reviews, 99,125-161.
397	Seneviratne, S.I., D. Luthi, M. Litschi and C. Schar (2006): Land-atmosphere coupling and climate change in Europe; Nature
398	443, 205-209.
399	Slater, A.G., Schlosser, C.A., Desborough, C.E., Pitman, A.J., Henderson-Sellers, A., Robock, A., Vinnikov, K. Ya., Mitchell, K.,
400	Boone, A., Braden, H., Chen, F., Cox, P., de Rosnay, P., Dickinson, R.E., Dai, Y-J., Duan, Q., Entin, J., Etchevers, P.,
401	Gedney, N., Gusev, Y.M., Habets, F., Kim, J., Koren, V., Kowalczyk, E., Nasonova, O.N., Noilhan, J., Schaake, J., Shmakin,
402	A.B., Smirnova, T.G., Verseghy, D., Wetzel, P., Xue, Y., Yang, Z-L. and Zeng, Q., The representation of snow in land-
403	surface schemes: results from PILPS 2(d), 2001, J. Hydrometeorology, 2, 7-25.
404	Van den Hurk, B.J.J.M. and E.M. Blyth (2008), WATCH/LoCo workshop report Gewex newsletter, 12-14.
405	Van den Hurk, B.J.J.M. and P. Viterbo, 2003, The Torne-Kalix PILPS2E experiment as testbed for modifications to the ECMWF
406	land surface scheme; Global and Planetary Change 38 , 165-173.
407	Wood E.F., Lettenmaier D.P., Liang X., Lohmann D., Boone A., Chang S., Chen F., Dai Y., Dickinson R.E., Duan Q., Ek M.,
408	Gusev Y.M., Habets F., Irannejad P., Koster R., Mitchell K.E., Nasonova O.N., Noilhan J., Schaake J., Schlosser A., Shao Y.,

409 Shmakin A.B., Verseghy D., Warrach K., Wetzel Y., Xue Y., Yang Z.-L. and Zeng Q.-C., 1998, The Project for

4 I O Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red-Arkansas River basin experiment: 1.

4 I I Experiment description and summary intercomparisons, *Glob. Planet. Chng*, 19, 115-135.

A - - - - Met opmaak: Links

	retriew of GLASS projects		1	Met opmaak: Lettertype pt
Acronym	<u>Meaning</u>	<u>Reference(s)</u>	i J	Met opmaak: Lettertype pt, Nederlands (standaard
PILPS	Project for Intercomparison of Land surface	Pitman et al, 1993; Chen et al, 1997	/	Met opmaak: Lettertype pt
.GSWP.	Global Soil Wetness Project	Dirmeyer et al, 1999; 2006		Met opmaak: Lettertype pt, Nederlands (standaard
ALMA	Assistance for Land-surface Modelling activities	www.lmd.jussieu.fr/~polcher/ALMA		Met opmaak: Lettertype
<u>GLACE</u>	Global Land Atmosphere Coupling Experiment	Koster et al, 2004; 2009		Met opmaak: Lettertype pt, Nederlands (standaard
LDAS	Land Data Assimilation System	Rodell et al. 2004		Met opmaak: Lettertype
LUCID	Land-Use and Climate, IDentification of	Pitman et al. 2009		Met opmaak
	robust impacts			Met opmaak (
LoCo	Local Coupling	Van den Hurk and Blyth, 2008		Met opmaak
PILDAS	Project for Intercomparison of Land Data	- *		Met opmaak (Met opmaak (
	Assimilation Systems			Met opmaak
PALS	Protocol for the Analysis of Land Surface	<u>pals.unsw.edu.au</u>		Met opmaak
	models			Met opmaak
		·	꼝	Met opmaak
•			쪮	Met opmaak
		8	節	Met opmaak
			節的	Met opmaak
			휇	Met opmaak

Met opmaak

Met opmaak: Links

... [17]

... [18]

... [19]

... [21]

... [22]

[... [23]

... [24]

[... [25]

... [26]

... [27]

... [28]

... [29]

[... [30]

... [20]

Figure 1: example of "PILPS" scatter-line plot (from Chen et al, 1997)

416 Figure 2: Regions of strong coupling between modeled soil moisture and precipitation,

determined in the GLACE experiment (Koster et al, 2004) (Reprinted with permission from

418

AAAS).

The structure of GLASS

419	
420	Figure 3: Layout of new GLASS structure.

Pagina 18: [1] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt, Nederlands (standaard)		
Pagina 18: [2] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt		
Pagina 18: [3] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt, Nederlands (standaard)		
Pagina 18: [4] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt, Engels (Groot-Brittannië)		
Pagina 18: [5] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt		
Pagina 18: [6] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt, Engels (Groot-Brittannië)		
Pagina 18: [7] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt		
Pagina 18: [8] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt, Engels (Groot-Brittannië)		
Pagina 18: [9] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt		
Pagina 18: [10] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt		
Pagina 18: [11] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt, Engels (Groot-Brittannië)		
Pagina 18: [12] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt, Engels (Groot-Brittannië)		
Pagina 18: [13] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt		
Pagina 18: [14] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt, Engels (Groot-Brittannië)		
Pagina 18: [15] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt		
Pagina 18: [16] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt, Engels (Groot-Brittannië)		
Pagina 18: [17] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt, Nederlands (standaard)		
Pagina 18: [18] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt		
Pagina 18: [19] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt, Engels (Groot-Brittannië)		
Pagina 18: [20] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt		
Pagina 18: [21] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt		
Pagina 18: [22] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt, Engels (Groot-Brittannië)		
Pagina 18: [23] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt, Engels (Groot-Brittannië)		
Pagina 18: [24] Met opmaak	hurkvd	28-4-2011 12:05:00
Lettertype: 10 pt		

Pagina 18: [25] Met opmaak	hurkvd	28-4-2011 12:05:00				
Lettertype: 10 pt, Engels (Groot-Brittannië)						
Pagina 18: [26] Met opmaak	hurkvd	28-4-2011 12:05:00				
Lettertype: 10 pt						
Pagina 18: [27] Met opmaak	hurkvd	28-4-2011 12:05:00				
Lettertype: 10 pt						
Pagina 18: [28] Met opmaak	hurkvd	28-4-2011 12:05:00				
Lettertype: 10 pt, Engels (Groot-Brittannië)						
Pagina 18: [29] Met opmaak	hurkvd	28-4-2011 12:05:00				
Lettertype: 10 pt, Engels (Groot-Brittannië)						
Pagina 18: [30] Met opmaak	hurkvd	21-4-2011 12:05:00				

Lettertype: 1 I pt, Geen spelling- of grammaticacontrole uitvoeren