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1.  Introduction  
 
Since the mid 1990s rainfall generators for the Rhine and Meuse basins have been developed. 
These rainfall generators form part of the GRADE instrument for the Generation of Rainfall 
and Discharge Extremes (de Wit and Buishand, 2007). This report describes work on the 
Rainfall generator for the Rhine basin performed during the period September 2011 to 
November 2011 as part of the KNMI contribution to the Waterdienst-Deltares-KNMI 
collaboration regarding GRADE. Only one subject was studied, namely the inclusion of a 
memory term in the feature vector and its effect on long (50K years) simulations. This work is 
motivated by similar simulations for the Meuse basin in which the use of a memory term 
resulted in a significant reduction of the standard deviation of monthly precipitation sums in 
winter. Although the underestimation of the standard deviation of monthly precipitation sums 
in winter in simulations (without a memory term) for the Rhine basin is smaller (and 
statistically not significant) than for the Meuse basin, it is still interesting to see if any 
improvement is possible by including one, especially because the Rainfall generator for the 
Rhine basin will be ‘updated’ in 2012 by using a longer historical base period (i.e. 1951 to 
2006 in stead of 1961 to 1995). For the Rainfall generator for the Meuse basin a 4-day 
memory turned out to be most successful (Leander et al, 2005), in this paper it is investigated 
whether a memory term is also beneficial for the Rainfall generator for the Rhine basin and 
what the optimal memory length is.  
 
 
2.  Sensitivity to the length of the memory term  
 
Leander and Buishand (2004) and Leander et al. (2005) included a 4-day memory term in 
simulations with the Rainfall generator for the Meuse to improve the reproduction of the 
autocorrelation of daily precipitation and the standard deviation of monthly totals. Here 
memory terms with different lengths (4, 10 and 30 days) are considered. The feature vector 
for day t of these simulations is based on the composition of the feature vector of the earlier 
ue241 type simulations (see e.g. Beersma, 2011), i.e. the average (standardized) precipitation 

of the 34 stations used for the Rhine basin *~
tP , the fraction of stations with precipitation *

tF , 

and the average (standardized) temperature *~
tT  with constant weights 2, 4 and 1 and hence 

“241” in the simulation type. The star denotes here a simulated value for day t, and the tilde 
refers to a standardized value. For the additional memory term:  

nPPPP ntttt /)
~
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*
1 −−−− ++++  with n=4, 10 or 30, the weights are set automatically, and are 

inversely proportional to the variance of this memory term. Since the variance of these 
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memory terms varies considerably throughout the year (strong seasonal cycle) the weights are 
determined and applied separately for each calendar day (so called ‘local weights’).  
 
Also note that the Rainfall generator for the Meuse basin in Leander et al. (2005) does not 
contain *

tF  as a feature vector element. Therefore to make the comparison between the 

rainfall generators with an additional memory as fair as possible simulations for the Rhine 
basin were also performed with the weight for *F set to zero. These simulations are denoted 

as ‘ue201’ type simulations. So in total 6 different simulations with a memory term are 
compared with the reference simulation (ue241) without a memory term. Table 2.1 presents 
the results of these 7 simulations for the standard deviation of the monthly precipitation totals 
and the lag 1 and 2 autocorrelation coefficients of daily precipitation both for the winter and 
summer halves of the year. The first observation is that for the reference simulation without 
memory (ue241) the standard deviation differs significantly from the historical one in the 
summer half-year but not in the winter half-year. For the simulations with a 4- and 10-day 
memory term the underestimation of the standard deviation is reduced in particular for the 
summer season. A 30-day memory gives only a slight improvement in summer and a 
deterioration in winter. As for the lag 1 and lag 2 autocorrelation coefficients there is little 
difference between the simulations with and without memory. In all cases (both winter and 
summer) the lag 1 autocorrelation is significantly underestimated. The lag 2 autocorrelation in 
winter is in all cases slightly underestimated and in summer slightly overestimated but none of 
these differences is significant. This may not be a surprise since Leander et al. (2005) already 
showed that differences in autocorrelation between simulations with and without memory 
become more apparent for higher order autocorrelation coefficients (lag 3 and higher). Figure 
2.1 presents for the same 7 simulations the autocorrelation function in comparison with the 
one obtained for the historical series both for the winter and summer halves of the year. 
Compared with the reference simulation (ue241) the influence of the 4- and 10-day memory 
on the autocorrelation for the higher lags is clear both for winter and summer. A 4-day 
memory has a visible effect around lag 4 while a 10-day memory has a noticeable effect 
around lag 10. A 30-day memory seems to have only a marginal effect in summer for lags  
 
 
Table 2.1.  Differences between statistical properties of the simulated time series (50K years) and the historical 
records (1961–1995) for winter (October – March) and summer (April – September) precipitation. For the mean 
standard deviation of monthly values ( Ms ) the percentage differences are given and for the mean lag 1 and 2 
autocorrelation coefficients ( r ) the absolute differences. Values between  denote averages over the 34 stations 
(details in Beersma, 2002). Bottom lines: average historical estimates (standard deviation in mm) and their 
standard error se (standard errors for the standard deviation in % and for the auto-correlation coefficients 
dimensionless). Values in bold refer to differences more than 2 × se from the historical estimate. 
 
 Winter half-year Summer half-year 
Simulation MsΔ  )1(rΔ  )2(rΔ  MsΔ  )1(rΔ  )2(rΔ  

ue241 -4.0 -0.035 -0.012 -8.0 -0.027 0.008 
ue241_4d -2.3 -0.040 -0.011 -4.8 -0.032 0.010 
ue201_4d -2.9 -0.041 -0.012 -5.4 -0.035 0.006 
ue241_10d -2.0 -0.039 -0.012 -2.3 -0.031 0.012 
ue201_10d -2.6 -0.039 -0.014 -2.7 -0.033 0.007 
ue241_30d -5.1 -0.036 -0.013 -5.7 -0.027 0.012 
ue201_30d -6.3 -0.035 -0.016 -6.9 -0.030 0.006 
Historical 35.8 0.285 0.144 36.7 0.178 0.044 
se 4.53 0.008 0.009 3.91 0.009 0.010 
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larger than 10. For winter there is no evidence that the inclusion of a memory term really 
improves the higher order autocorrelation. For summer the situation is a bit different. The lag 
4 to 7 autocorrelation is systematically underestimated in the simulation without memory and 
in the simulations with a 30-day memory. This result seems also consistent with the large 
underestimation of the monthly precipitation totals in these simulations in summer. In 
conclusion, for the summer half-year inclusion of a memory term is clearly beneficial both in 
terms of reproduction of monthly precipitation totals and higher order autocorrelation 
coefficients. Based on visual inspection of Figure 2.1 it is expected that the optimal memory 
length lies somewhere between 4 and 10 days. For winter the reduction of the underestimation 
of the standard deviation of monthly precipitation sums is small and the relation between this 
reduction and the reproduction of the autocorrelation function is not clear. 
 
Finally, and for completeness, also the effect of the inclusion of a memory term on the 
reproduction of the quantiles of the distributions of extreme 4-day, 10-day and 20-day 
precipitation amounts is analyzed. Figure 2.2 presents Gumbel plots of the maxima of basin-
average 4, 10 and 20-day precipitation in the historical 1961 – 1995 series and those in the 
seven 50K-year simulated series for the winter and summer halves of the year. In winter the 
most extreme quantiles of the 4, 10 and 20-day amounts are all reduced in the simulations 
with a memory term. The decrease is relatively large for the extreme 10-day quantiles and 
small for the extreme 4-day quantiles. For 20-day amounts the largest reduction is found for 
simulations with a 30-day memory and the smallest reduction for the 4-day memory 
simulations. These results can not be explained by differences in the standard deviation of the 
monthly precipitation amounts or the autocorrelation coefficients. For summer the effect of 
inclusion of a memory term is (relatively) also largest for the extreme quantiles of 10-day 
precipitation amounts. A 4-day memory leads to a reduction of the extreme quantiles, a 10-
day memory has little influence and a 30-day memory results in larger extreme 10-day 
quantiles. For the 4-day and 20-day amounts these effects are much smaller but qualitatively 
they point in the same direction. Again, the difference in the extreme quantiles could not be 
related to the differences in the standard deviation of the monthly precipitation amounts 
and/or autocorrelation coefficients. 
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Figure 2.1.  Average (34 stations) autocorrelation coefficients of daily precipitation in the historical 1961 – 1995 
series and those in 50K-year simulated series for winter (October to March) and summer (April to September). 
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Figure 2.2.  Gumbel plots of the maxima of basin-average 4, 10 and 20-day precipitation in the historical 1961 - 
1995 series and those in 50K-year simulated series for winter (October to March) and summer (April to 
September). T refers to the return period (in years). Basin average precipitation is determined as the average of 
the 34 stations in the Rhine basin. 
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3.  Conclusions  
 
The simulations with the Rainfall generator for the Rhine with an additional memory term 
show that this term has an influence. Such a term seems beneficial for the summer half-year, 
both in terms of the reproduction of the standard deviation of monthly precipitation amounts 
and the higher order autocorrelation coefficients of daily precipitation. From the preliminary 
results it is expected that the optimal memory length for the summer half-year lies between 4 
and 10 days. From the results in Figure 2.2 it can also be expected that this will lead to some 
reduction of the extreme quantiles of 10- and 20-day precipitation amounts compared with the 
simulation with no memory term. For the winter season, the influence of a memory term on 
the standard deviation of the monthly precipitation amounts is small and it also does not 
improve the reproduction of the autocorrelation function. The inclusion of such a term leads, 
however, to a reduction of the extreme quantiles of the 4-, 10- and 20-day precipitation 
amounts in winter, which is most pronounced for the 10-day precipitation. This effect can not 
be explained by the effects of the memory terms on the standard deviation of the monthly 
precipitation amounts and on the autocorrelation structure. Therefore, before any decisions are 
taken regarding the inclusion of a memory term, it is recommended to repeat part of this 
analysis with simulations based on the Hyras 1951 – 2006 precipitation data for the Rhine 
basin combined with the E-Obs temperature data for the same period (see also Buishand, 
2011). Comparison with the results presented here could indicate whether the effects that we 
see are systematic or are related to ‘noise’ in the historical reference data. Thereby laying a 
better foundation for the definite decision to include a memory term for the ‘updated’ Rainfall 
generator for the Rhine basin. 
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