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Samenvatting 
 
Tot op heden heeft onderzoek naar toekomstig overstromingsrisico vooral gebruik gemaakt van de 
scenarioaanpak. Het belangrijkste doel van deze studie is om een demonstratie te geven van een 
methode voor het produceren van probabilistische schattingen van overstromingsrisico’s als gevolg 
van klimaatverandering. Het onderzoek richt zich op twee casestudy trajecten langs de Rijn: Bonn-
Duisburg en Mainz-Koblenz. 
 
Eerst hebben we een ensemble van lange (3000-jaar) geresampelde tijdreeksen van 
klimaatvariabelen gegenereerd op basis van 12 GCM simulaties. Aan dit ensemble hebben we een 
ensemble van zes RCM simulaties toegevoegd uit het RheinBlick 2050 project. Deze zijn gebruikt in 
het hydrologische model HBV-96 om rivierafvoer te simuleren. Daarna is een schatting gemaakt van 
extreme afvoerkwantielen per klimaattijdreeks voor herhalingstijden tot 3000 jaar. Om van extreme 
rivierafvoeren tot overstromingsschade- en risico te komen hebben we een eenvoudig inundatiemodel 
ontwikkeld (Floodscanner), en dit gekoppeld aan een overstromingsschademodel (Damagescanner). 
 
Met deze aanpak hebben we probabilistische overstromingsrisico scenario’s ontwikkeld. Hiermee 
kunnen we de kans schatten dat een toekomstig overstromingsrisico hoger is dan het huidige risico 
(binnen de grenzen van deze studie), namelijk: 92% voor het gebied Bonn-Duisburg en 96% voor het 
gebied Mainz-Mosel. Met deze methode kan de kans worden geschat dat een overstromingsrisico 
hoger wordt, wat een evaluatie van risico onder extreme toekomstige situaties mogelijk maakt. 
 
Summary 
To date, flood risk research has predominantly relied on a discrete scenario-based approach. In the 
present study we demonstrate a framework for producing probabilistic estimates of flood risk under 
climate change, focussing on two case-study stretches of the Rhine: Bonn-Duisburg and Mainz-
Koblenz. 
 
We used an ensemble of six (bias-corrected) RCM future simulations to create a 3000-yr time-series 
through resampling. This was complemented with 12 GCM-based future time-series, constructed by 
resampling observed climate time-series and modifying these to represent future conditions using an 
advanced delta-change approach. The resampled time-series were used as input in the hydrological 
model HBV-96 to simulate discharge, and extreme discharge quantiles were estimated. To convert 
extreme discharges to estimates of flood damage and flood risk, we developed a simple inundation 
model (Floodscanner), and coupled this with a flood damage model (Damagescanner). 
 
Using this approach, we developed probabilistic flood risk scenarios. This allows us to estimate the 
probability of future flood risk exceeding current risk (given the limitations of the study), namely: 92% 
for the section Bonn-Duisburg and 96% for the section Mainz-Mosel. Using such a framework it is 
possible to assess the probability that flood risk will increase by any given factor, allowing for the 
assessment of risk under possible extreme future scenarios. 
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Extended summary 
 

Background 
To date, future flood risk assessments have predominantly relied on a discrete scenario-based 
approach. This is also the case in climate change impact assessments in general. The discrete 
scenarios approach is useful for exploring potential impacts of climate change, but presents problems 
for assessing the effectiveness of adaptation options. Recent research proposes a probabilistic 
approach, generating probability density functions (PDFs) of climate change. Next to research on 
probabilistic climate change scenarios, the climate impacts community has expressed the need for 
probabilistic impact assessments. In the Netherlands, the project Attention for Safety (AvV), as well as 
the report of the Veerman Commission (www.deltacommissie.com), recommended the development 
of such methods for probabilistic flood risk assessments. The present study responds to this, and is 
the first attempt to assess future flood risk under climate change in a probabilistic framework. 
 
Aims and objectives 
The main aim of this research is to provide a demonstration of a framework for producing probabilistic 
estimates of flood risk, and to demonstrate how ensembles of climate projections can be constructed 
and used for this purpose. 
 
The main objectives are: 

• To generate long resampled time-series of climate variables and discharge for use in 
probabilistic flood risk assessments; 

• To develop probability density functions of extreme discharge under climate change; 
• To develop a rapid inundation model capable of providing the large number of inundation 

maps needed in probabilistic flood risk assessments, and to couple this with a flood damage 
model; 

• To demonstrate the production of flood risk estimates in a probabilistic framework. 
 
Setup of main report 
The main part of this synthesis report is set up as follows. In Section 1 we discuss the background to 
the study and the aims and objectives. In Section 2 we describe the study area, followed in Section 3 
with methods and data used in the project. Section 4 describes the results of a pilot study carried out 
to develop and validate the new inundation model; the pilot study was carried out for the Meuse River 
in Dutch Limburg, since relatively good data are available for model testing and validation. In this 
section we also present a limited validation for the Rhine basin. In Section 5 we present the results of 
the probabilistic flood risk analyses for two case-study stretches of the Rhine in Germany, namely: (a) 
Bonn-Duisburg; and (b) Mainz-Koblenz. In Section 6 we discuss the findings, limitations, and future 
research needs, and finally we provide conclusions in Section 7. 
 
Study area 
The probabilistic flood risk assessment focuses on two case-study stretches of the Rhine River in 
Germany, namely the sections: (a) Bonn-Duisburg; and (b) Mainz-Koblenz. The Rhine is one of the 
most important industrial transport routes in the world, and about 58 million people inhabit the river 
basin, of which an estimated 10.5 million live in flood-prone areas. Many studies have assessed how 
climate change may alter the discharge regime of the River Rhine. These studies suggest that mean 
winter discharge at Lobith (border Germany-Netherlands) may increase by 0 to 30% by 2050, while 
mean summer discharge may change by -45 to +15%. Moreover, the magnitude of extreme flood 
events is generally projected to increase. However, the assessment of current and future flood risk in 
the basin is still in its early phases. 
 
Developing long time-series of climate variables and discharge for use in probabilistic flood risk 
assessments 
For this research, bias-corrected, resampled time-series of 3000 years from an ensemble of six 
Regional Climate Model (RCM) simulations were made available through the RheinBlick 2050 project. 
Some of the RCM simulations used in RheinBlick 2050 were driven by the same General Circulation 
Model (GCM) simulation or by an alternative simulation run or version of the same GCM. In order to 
enlarge the number of GCMs in our ensemble, 12 GCM simulations run in the context of the 3rd 
Coupled Model Intercomparison Project (CMIP3) were downscaled using an advanced delta-change 



 

Attention to Safety 2 (AvV2) - Final report 

 

 3 

approach. The GCM simulations used were all driven by the Intergovernmental Panel on Climate 
Change (IPCC) Special Report on Emission Scenarios (SRES) A1B emission scenario. 
 
Representative time-series of the future GCM climates were obtained by transforming a 3000-year 
resampled sequence of daily precipitation and temperature from historical observations for the period 
1961-1995 from the International Commission for the Hydrology of the Rhine basin (CHR) reference 
dataset. An advanced delta method was used taking into account the changes in extreme rainfall and 
temperature variability as well as the changes in their means. The resampling algorithm in this study, 
which can be regarded as a weather generator, is the same as that used in the RheinBlick 2050 
project. The hydrological model HBV-96 was then forced with the 3000-year time-series for the 12 
GCM and six RCM simulations to derive 3000-year synthetic sequences of daily discharge. Discharge 
quantiles for the different flood return periods were estimated using the Weissman approach. 
 
The winter half-year maximum 10-day basin-average precipitation sums were analysed, because 
these events often cause high discharge in the lower part of the Rhine basin. The GCM ensemble 
showed higher quantiles of winter half-year maximum 10-day basin-average precipitation sums than 
in the RCM future ensemble for each return period. The spread between the estimated quantiles of 
winter half-year maximum 10-day basin-average precipitation sums for the RCM future ensemble 
members increases as the return periods become longer. For the extreme discharge events, the 
bandwidths of the two ensembles are similar at Lobith and Cologne, but the bandwidth of the RCM 
ensemble is smaller than that of the GCM ensemble at Kaub. We also found interesting spatial 
differences in the results. For example, the climate model ensemble members do not cause the same 
changes in extreme discharge in all parts of the basin. This demonstrates the importance of using 
spatially distributed climate simulations when carrying out climate change impact studies. 
 
The results show that adding the ensemble of 12 GCM members to the existing ensemble of six RCM 
members (driven by four parent GCMs) from RheinBlick 2050 leads to a relatively small increase in 
the overall spread of the extreme discharge results, although the ensemble means of the estimated 
discharge quantiles appear to be greater for the GCM ensemble. It must therefore be concluded that 
the 6 RCMs used have a considerable influence on the climate, and therefore discharge, projections. 
 
Developing an inundation model capable of providing the large number of inundation maps needed in 
probabilistic flood risk assessments 
A hindrance to probabilistic flood risk modelling has been the large number of inundation maps 
required, since for each ensemble member and/or scenario, damage estimates must be made for 
several flood return periods, each with a different associated inundation depth and extent. Generally, 
the production of flood hazard maps is very time-consuming and computationally expensive. In this 
project, we developed a rapid flood inundation model (Floodscanner), coupled to an existing flood 
damage model (Damagescanner). The Floodscanner model appears to perform fairly well in both the 
Rhine and Meuse basins, but the simplifications used dictate its application. The Floodscanner 
method is certainly not intended to replace the need for hydraulic modelling with more complex 
models. The approach is neither suitable for localised flood risk assessments (e.g. street to city 
scale), nor for presenting flood risk at the grid-cell level. Rather, the approach is intended to be 
complementary to state-of-the-art methods for use in regional-to-basin scale studies in which large 
numbers of inundation maps are required. More attention is needed to the development of relatively 
simple inundation models. The method developed and applied here is capable of this, but refinements 
could be added to include the most important physical processes in a simple manner. 
 
Flood risk estimates in a probabilistic framework 
Flood damage was calculated using the Damagescanner model, which uses the inundation maps 
from Floodscanner to estimate direct economic damage per inundation scenario. For each climate 
model ensemble member, damage was estimated for all flood return periods from 200 to 3000 years 
(with a step of 10 years). Flood risk, or expected annual loss, was then estimated as the area under 
the exceedance probability-loss curve (risk curve). A risk curve was developed for the reference 
climate (resampled observations, representative of the period 1961-1995), and also for the future 
climate for each GCM/RCM ensemble member (representative of the period 2081-2100). 
 
The individual estimates of flood risk per ensemble member were used to derive probability density 
functions (PDFs) of risk for the RCM ensemble, the GCM ensemble, and the full ensemble (i.e. all 
future GCM and RCM ensemble members combined). We applied a two-parameter gamma 
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distribution to the individual risk estimates within each future ensemble, whereby each ensemble 
member was assumed to have an equal likeliness (i.e. no weighting was carried out). Our analyses 
allow us to estimate the probability of future flood risk exceeding current risk (given the limitations of 
the study), namely: 92% for the section Bonn-Duisburg and 96% for the section Mainz-Mosel. By 
extension, using such a framework it is possible to assess the probability that flood risk will increase 
by any given factor, allowing for the assessment of risk under possible extreme future scenarios. 
 
The range between the maximum and minimum risk estimate is slightly larger in the GCM ensemble 
than in the RCM ensemble for both case-study areas, although the standard deviation is smaller. 
However, the differences between both ensembles are small and may be partly related to the 
difference in ensemble size. The addition of the GCM ensemble to the existing RCM ensemble from 
RheinBlick 2050 leads to an increase in the spread of the PDF, and also leads to a higher mean 
estimate of flood risk. Whilst the results show that the RCMs in our ensembles have a major impact 
on the climate, discharge, and risk projections, the analyses do not allow for a more general 
statement of the relative influence of RCMs and GCMs on these variables. 
 
Future research 
This project presents the first assessment of future flood risk under scenarios of climate change in a 
probabilistic framework. It is intended to give a demonstration of the methods that can be used in such 
a framework. The absolute figures should be used for qualitative comparison only in decision-making 
at this time. Probabilistic flood risk assessments hold promise, but research remains to be carried out 
to: refine the methods presented here; examine how the methods can be applied to improve 
adaptation planning; assess how decision-makers use results of probabilistic impacts assessments; 
and to investigate how the information provided can most effectively be communicated to 
stakeholders. 
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1. Introduction 
 
Traditionally, flood management has concentrated on providing protection against floods through 
technical measures aimed at reducing the probability of flooding, such as dikes, river straightening, 
and retention by reservoirs [e.g. Merz et al., 2010a; Vis et al., 2003]. Due to climate change, the 
intensity and/or frequency of flooding is projected to increase in the future in many parts of the world 
[IPCC, 2007a]. The same tendency is found for the middle and lower part of the international Rhine 
basin [Görgen et al., 2010]. This means that technical measures of flood protection would need to be 
constantly upgraded in order to comply with designated safety standards. Moreover, recent studies on 
trends in losses due to weather-related natural disasters show that the observed increases in damage 
over the last century are, in fact, caused primarily by an increasing exposure of population and capital 
to floods [Bouwer, 2010]. Therefore, flood management should not only aim to reduce the probability 
of flooding, but also to reduce the impacts if a flood occurs. Indeed, international water management 
is increasingly shifting towards a more integrated system of flood risk management [Few, 2003; Merz 
et al., 2010a; Tunstall et al., 2004], whereby flood risk is defined as the probability of flooding 
multiplied by the potential consequences [Kron, 2005]. 
 
In economic terms, flood risk can be expressed as the expected annual loss [e.g. Meyer et al., 2009]. 
In order to calculate (potential) flood damage (or loss) for a given flood event, the most common 
approach involves combining data on the characteristics of the event (hazard) with information on the 
assets that would be exposed to it (exposure), and information about the vulnerability of those 
exposed assets to the particular hazard [e.g. De Moel and Aerts, 2011; Kron, 2005; Merz et al., 
2010b]. In these studies, hazard is represented by hazard-maps, showing certain flood characteristics 
(per grid-cell) related to a particular flood, for example inundation depth, flow velocity, inundation 
duration, and sediment or contamination load. Exposure is often represented by land use maps, 
whereby each land use class is assigned an economic value per hectare. Finally, vulnerability is most 
commonly represented by depth-damage functions, which show the amount of damage that would 
occur per hectare for each land use class and for different inundation depths [e.g. Merz et al., 2010b]. 
 
To date, future flood risk assessments have predominantly relied on a discrete scenario-based 
approach [e.g. IPCC, 2007a]. This is not only the case in flood risk assessment, but also in climate 
change impact assessments in general. The discrete scenarios approach is useful for exploring 
potential impacts of climate change, but presents problems for assessing the effectiveness of 
adaptation options [New et al., 2007]. Recent research proposes a probabilistic approach, generating 
probability density functions (PDFs) of climate change [e.g. Fowler et al., 2005; Rougier, 2007; 
Tebaldi et al., 2004]. Potentially, large ensembles of General Circulation Model (GCM) and Regional 
Climate Model (RCM) simulations (containing, for example, hundreds of ensemble members), could 
provide more information on risk and uncertainty than using a limited number of discrete scenarios 
[New et al., 2007]. Next to research on probabilistic climate change scenarios, the climate impacts 
community has expressed the need for probabilistic impact assessments [e.g. Pittock et al., 2001; 
Reilly et al., 2001; Tebaldi et al., 2004; Webster, 2003]. Examples of probabilistic climate impact 
studies exist in several fields, including: global crop yields [Tebaldi and Lobell, 2008]; water resources 
management [Manning et al., 2009; New et al., 2007]; and storm surge impacts [Gaslikova et al., 
2011]. 
 
In the Netherlands, the project Attention for Safety (AvV) [Aerts et al., 2008], as well as the report of 
the Veerman Commission (www.deltacommissie.com), recommended the development of methods 
for probabilistic flood risk assessments. To date, the only probabilistic flood risk framework is that of 
Apel et al. [2006], in which a simple stochastic approach allowing a large number of simulations in a 
Monte Carlo framework provided the basis for a probabilistic risk assessment for an area of the Rhine 
(between Cologne and Rees, with a focus on the polder at Mehrum). However, their study only 
examines probabilistic risk assessments based on current climate observations, and does not develop 
scenarios of flood risk under future climate change. In the AvV2 project, we describe such an 
assessment for the first time. 
 
A hindrance to probabilistic flood risk modelling is the number of inundation maps required, since for 
each ensemble member and/or scenario, damage estimates must be made for several flood return 
periods, each with a different associated inundation depth and extent. Generally, the production of 
flood hazard maps is very time-consuming and computationally expensive [Apel et al., 2008; Gouldby 
and Kingston, 2007; Woodhead et al., 2007]. Even relatively simple 1D and coupled 1D-2D models 
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run on the order of minutes to hours for river-stretches of the order of magnitude 10-100 km, whilst full 
2D or 3D models may take several days [e.g. Woodhead et al., 2007]. Hence, inundation mapping 
models are required that are capable of rapidly simulating inundation extent and depth. Ideally, these 
would also be dynamically coupled to models for estimating the associated flood damage. In this 
project, we developed a rapid flood inundation model, coupled to an existing flood damage model. 
 
The estimation of the probabilities (or return periods) of extreme flood events is also far from trivial. 
For current climate conditions, frequency analysis is often applied on historical discharge series, 
which requires the extrapolation of fitted extreme value distributions [Garrett and Müller, 2008]. More 
sophisticated approaches combine weather generators with hydrological models to create such long 
discharge series that extrapolation is redundant. For the Rhine basin, a multi-site weather generator 
has been developed based on non-parametric resampling [Buishand and Brandsma, 2001, Wójcik et 
al., 2000]. This resampling technique has recently been applied to RCM data for the Rhine basin in 
the RheinBlick 2050 project [Görgen et al., 2010]. 
 
Ideally, climate model ensembles for probabilistic impact studies should be designed to sample the 
full range of uncertainty. However, in practice they are assembled on an opportunity basis and are 
restricted by limited resources [Kendon et al. 2010]. GCMs are the primary tool for understanding how 
climate variables will change. However, their scale is rather coarse, and hydrological processes occur 
on finer scales. Hence, to assess the influence of climate change on river flows, higher resolution data 
are required. To resolve this scale discrepancy, different downscaling methodologies have been 
developed ranging from statistical techniques to the use of RCMs (see Fowler et al. [2007], Haylock et 
al. [2006], and Maraun et al. [2010]). For the present study, an ensemble of RCM simulations, 
specifically resampled for flood analysis, was made available through the RheinBlick 2050 project 
[Görgen et al., 2010]. The RheinBlick 2050 ensemble includes four GCMs from three climate 
modelling centres, and six different RCMs. It is assumed that the number of GCMs is determinative 
for the bandwidth of the ensemble. To assess whether this ensemble size is consistent with the 
spread in a larger model ensemble, 12 different GCM simulations have been downscaled using a 
delta-change approach [Lenderink et al., 2007; Prudhomme et al., 2002; Te Linde et al., 2010]. This 
resulted in the largest GCM ensemble used for flood probability estimation in the Rhine basin to date. 
 
The main aim of this research is to provide a demonstration of a framework for producing probabilistic 
estimates of flood risk, and to demonstrate how ensembles of climate projections can be constructed 
and used for this purpose. 
 
The main objectives are: 

• To generate long resampled time-series of climate variables and discharge for use in 
probabilistic flood risk assessments; 

• To develop probability density functions of extreme discharge under climate change; 
• To develop a rapid inundation model capable of providing the large number of inundation 

maps needed in probabilistic flood risk assessments, and to couple this with a flood damage 
model; 

• To demonstrate the production of flood risk estimates in a probabilistic framework. 
 
This report is set up as follows. In Section 2 we describe the study area, followed in Section 3 with 
methods and data used in the project. Section 4 describes the results of a pilot study carried out to 
develop and validate the new inundation model; the pilot study was carried out for the Meuse River in 
Dutch Limburg, since relatively good data are available for model testing and validation. In this section 
we also present a limited validation for the Rhine basin. In Section 5 we present the results of the 
probabilistic flood risk analyses for two case-study stretches of the Rhine in Germany, namely: Bonn-
Duisburg; and Mainz-Koblenz. In Section 6 we discuss the findings, limitations, and future research 
needs, and finally we provide conclusions in Section 7. 
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2. Study area 
 
The research on probabilistic flood risk assessment focuses on two case-study stretches of the Rhine 
River in Germany, namely the sections: (a) Bonn-Duisburg; and (b) Mainz-Koblenz (Figure 2.1). 
However, the climate model downscaling and hydrological modelling were carried out for the entire 
Rhine River upstream from Lobith (at the German-Dutch border) to produce the relevant input data for 
future basin-wide studies. 
 
The Rhine originates in the Swiss Alps as a mountain river, fed by glacier water, snowmelt, and 
rainfall. From Switzerland it flows through Germany, and the Netherlands into the North Sea. The 
basin has a total catchment area of about 185,000 km2 with a length of 1320 km, making it the longest 
river in Western Europe. The annual mean discharge (1901-2000) at Lobith is 2200 m3s-1. The Rhine 
is one of the most important industrial transport routes in the world [Jonkeren, 2009], and about 58 
million people inhabit the river basin, of which an estimated 10.5 million live in flood-prone areas 
[ICPR, 2001]. In Germany, safety-levels of flood defences vary from a return period of 200 to 500 
years; in the two case-study stretches discussed in this report, the return period is 200 years. 
 
Many studies have assessed how climate change may alter the discharge regime of sections of the 
River Rhine [e.g. Bronstert et al., 2002; Kwadijk, 1993; Kwadijk and Middelkoop, 1994; Lenderink et 
al., 2007; Menzel et al., 2006; Middelkoop et al., 2001; Shabalova et al., 2003; Te Linde et al., 2010]. 
However, only recently has an international study assessed changes in the discharge regime over the 
entire Rhine basin [Görgen et al., 2010]. Using a range of climate change scenarios and modelling 
methods, these studies suggest that mean winter discharge at Lobith (border Germany-Netherlands; 
Figure 2.1) may increase by 0 to 30% by 2050, while mean summer discharge may change by -45 to 
+15%. Moreover, the magnitude of extreme flood events is generally projected to increase. Note that 
important challenges remain due to large uncertainties in the climate models used as well as the 
robustness of the hydrological models under changing regimes. 
 
For the Rhine basin, the assessment of current and future flood risk is still in its early phases. The 
International Commission for the Protection of the Rhine (ICPR) uses the Rhine Atlas approach to 
estimate aggregated flood damage for the whole basin [e.g. ICPR, 2001, 2005], but: (a) it yields rather 
low damage potential values for different land use classes compared to other studies [De Moel and 
Aerts, 2011; Thieken et al., 2008]; and (b) Rhine Atlas does not differentiate between different urban 

classes, whilst such a differentiation is 
essential for flood damage estimates [Apel et 
al., 2009]. Recently, Te Linde et al. [2011] 
estimated flood risk along the River Rhine 
using the Damagescanner model [Klijn et al., 
2007; Aerts et al., 2008], but only assessed the 
damage for one return-period, and did not carry 
out a probabilistic risk analysis. As mentioned 
in the introduction, Apel et al. [2006] developed 
a simple stochastic approach for probabilistic 
risk estimates in a section of the Rhine 
between Cologne and Rees, with a focus on 
the polder at Mehrum. 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 Map of the two case study 
sections (in red) of the River Rhine. 
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3. Methods 
 
In this section we discuss the data and methods used in the study. In essence, the overall approach 
can be broken down into the following steps: 

• Generating long (3000-year) climate time-series; 
• Generating long (3000-year) discharge time-series; 
• Estimating discharge values for low probability flood events; 
• Simulating flood inundation extent and depths; 
• Estimating flood damage; 
• Estimating flood risk and probability distributions of flood risk. 

 
In the rest of this section we describe each of the methodological steps in detail. 
 
3.1 Generating long (3000-year) climate time-series 
For this research, bias-corrected, resampled time-series of 3000 years from an ensemble of six RCM 
simulations were made available through the RheinBlick 2050 project [Görgen et al. 2010]. Five of 
these simulations were carried out in the framework of the EU ENSEMBLES project [Van der Linden 
and Mitchell 2009]. Some of these RCM simulations were nested in different versions or runs of the 
same GCM. In order to enlarge the number of GCMs in our ensemble, 12 GCM simulations run in the 
context of the 3rd Coupled Model Intercomparison Project (CMIP3) were downscaled using an 
advanced delta-change approach. The models used are listed in the results table, Table 5.1. For this 
study, a delta-change approach was considered preferable to a dynamical downscaling technique 
since the latter is computationally intensive. Downscaling with the delta-change approach on the other 
hand is comparatively cheap and is able to incorporate observations into the method. We used an 
advanced method to account for the changes in extreme rainfall and temperature variability, and not 
just changes in the mean (see Section 3.1.1). Note that the potential evapotranspiration is calculated 
based on temperature within the hydrological model (Section 3.2). 
 
The GCM simulations used were all driven by the Intergovernmental Panel on Climate Change (IPCC) 
Special Report on Emission Scenarios (SRES) A1B emission scenario. Since the aim of this project is 
to demonstrate methods and framework that can be used in probabilistic flood risk assessment, we 
only used one scenario for demonstrative purposes; of the IPCC SRES scenarios the A1B scenario 
has the most model runs available. We selected daily data from the GCMs for a control period of 35 
years (1961-1995) and a future period of 20 years (2081-2100). Observations of precipitation and 
temperature from the International Commission for the Hydrology of the Rhine basin (CHR) were 
used, which contain area-averaged daily precipitation and temperature for 134 sub-basins of the 
Rhine, for the period 1961-1995. These short (35-year) time-series were resampled to produce long 
(3000-year) time-series. An advanced delta method was applied to transform the resampled data for 
each of the 134 sub-basins of the HBV-96 hydrological model in accordance with the changes in the 
GCM output. The transformation is discussed first in Section 3.1.1, and the time-series resampling is 
described in Section 3.1.2. 
 
3.1.1 Delta-change approach 
Applying a delta method essentially involves transforming observed data such that the changes 
correspond to those derived from the GCM control and future run. The main points of the delta 
method used in this study are presented below [see also Van Pelt et al., 2011a; 2011b; in prep.]. 
 
3.1.1.1 Precipitation 
Firstly, non-overlapping observed 5-day average precipitation amounts over the GCM grid-cells were 
transformed, using the non-linear formula introduced by Leander and Buishand [2007]: 
 
                    (1) 
 
where, a and b are empirically derived coefficients to scale the observed precipitation (P) to a future 
precipitation (P*). Change factors were then applied to disaggregate the transformed 5-day 
precipitation over the GCM grid-cell to daily values over the 134 HBV-96 sub-basins. An overview of 
the transformation process can be found in Figure 3.1. The coefficients a and b in equation (1) are 
derived from the 60% quantile (P60) and the 95% quantile (P95) of the 5-day precipitation sums. Both 
quantiles are calculated for the control (C) run (1961-1995) and future (F) run (2081-2100) of the 
GCM precipitation output: 

b
aPP* =
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Figure 3.1 Overview of the climate downscaling methodology. Panel 1 shows the Rhine basin, 
divided into eight (GCM) grid-cells and 134 sub-basins. Panel 2 shows the mean precipitation over a 
5-day period in each grid-cell for the observations and the two GCM runs, all on grid-cell level. The 
observations are upscaled to grid-cell level by taking a weighted average over the sub-basins. In 
panel 3 the probability density of 5-day precipitation is shown, with the 60% quantile (P60) and the 
95% (P95) quantile (both for the observations and GCM runs). Also the excess, i.e. the amount of 
precipitation above the 95% quantile, is shown for the control and the future model run. Panel 4 
displays the transformation. The daily observations in each sub-basin are multiplied by the change 
factor R, which is obtained from the observed (P) and transformed (P*) 5-day precipitation amount 
and depends on the coefficients a and b and for P > P95 also on EF/EC. For each sub-basin the daily 
precipitation is transformed using the GCM signal from the grid-cell that contains most of its surface 
area. 
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The quantities g1 and g2 are bias correction factors for the quantiles P60 and P95, respectively. The 
superscript O refers to the observations. 
 
Equation (1) is applied to the observed values for which P ≤ P95. For larger values of P, this equation 
may result in very high and unrealistic precipitation values, when exponent b is larger than 1. The 
transformation (1) is also not flexible enough to reproduce changes in the extremes adequately. The 
latter can be improved by taking into account the change in the mean precipitation of all events > P95, 
referred to as the excesses E= P- P95 of the exceedances of P95. The mean excess for the control and 
future period is defined as:  
 

C

C
C

n

E
E


=  and F

F
F

n

E
E


=         (6) 

 
where nC and nF  are the numbers of 5-day periods during which the 95% quantile is exceeded in the 
control and future run, respectively. The mean control- and future excess are used to rescale the 
observations P that exceed P95: 
 

bO
95

O
95

CF
)a(P)P(P*E/EP* +−=         (7) 

 
The 12 monthly estimates of the quantiles P60 and P95  are smoothed using a weight of 0.5 on the 
month of interest and a weight of 0.25 on the previous and next month. Then, equation (3) is applied 
to obtain monthly estimates of b, and the median of these estimates over the eight grid-cells for each 
month is taken as the value of b in equations (1) and (7). With these final estimates of b, the values of 
a are determined using equation (2). The mean excesses EC and EF are smoothed both in time in the 
same way as the quantiles P60 and P95, and then the median of their relative changes over the eight 
grid-cells is taken for each month. 
 
3.1.1.1 Temperature 
Observed daily temperature was transformed for each sub-basin taking into account the changes in 
the mean and standard deviation of the daily temperatures from the GCM simulation: 

 FC
C

F

T)T(T *T*
σ

σ
+−=          (8) 

 

where FFT σ,  are the mean and standard deviation of the future daily temperature series and 

CCT σ,  are the mean and standard deviation of the control daily temperature series. 

 
3.1.2 Resampling 
To estimate extreme quantiles of the distributions of precipitation sums and river discharges, we 
generated 3000-year synthetic sequences of daily precipitation and temperature by resampling from 
the historical observations for the 35-year period. These series were then transformed to future time-
series with the delta-change approach, as described in Section 3.1.1. The method of time-series 
resampling of meteorological variables in the Rhine basin was originally developed as part of a new 
methodology to determine the design discharge for flood protection in the Netherlands [Buishand and 
Brandsma, 2001; Wójcik et al., 2000]. Nearest-neighbour resampling, as originally proposed by Young 
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[1994], is used to reproduce temporal correlation. Daily precipitation and temperature at different 
locations in the river basin are sampled simultaneously with replacement from the historical data to 
preserve their mutual dependencies. The resampling algorithm in this study, which can be regarded 
as a weather generator, is the same as that used in the RheinBlick 2050 project [Görgen et al., 2010]. 
 
3.2 Generating long (3000-year) discharge time-series 
The hydrological model used to generate the daily discharge time-series is the HBV-96 model for the 
Rhine. It is a conceptual model divided into 134 sub-basins for the entire Rhine basin upstream from 
Lobith, and has a daily time-step. HBV-96 calculates daily potential evapotranspiration by applying a 
temperature anomaly correction to the long term mean monthly (historical) potential 
evapotranspiration. The ‘robustness’ under future climate change of the HBV-96 model is a source of 
uncertainty as structural changes may occur in the river basin (soil, vegetation, etc.) and empirical 
parameter values and relations may change in the future. Further details of the applied model can be 
found in Görgen et al. [2010]. Note that activities are currently being undertaken by Deltares and the 
German Federal Institute of Hydrology (BfG), in cooperation with the Waterdienst, to re-calibrate the 
HBV-96 model. The main reasons are to create more transparency in the model’s structure, as well as 
to make use of a newly available climate reference dataset that covers a longer period. It is important 
to mention that no hydrodynamic modelling was performed, so the effects of upstream flooding on 
discharge downstream are not considered. 
 
The hydrological model was forced with the 3000-year time-series for the 12 GCM simulations and six 
RCM simulations described above. The future simulations refer to the period 2081-2100, whilst the 
reference period is 1961-1995. As described above, the GCM climate time-series were generated by 
applying the advanced delta-change approach to the resampled CHR dataset (consequently this 
resampled dataset is the reference time-series for each GCM) whilst the RCM climate time-series 
were constructed by applying a non-linear bias-correction (based on the CHR dataset) to the 
resampled RCM data (i.e. each future RCM simulation has its own corresponding control simulation). 
A validation of discharge computed from the bias-corrected control RCM simulations was applied by 
comparing discharge values calculated with the CHR data as input by Görgen et al. [2010]. For the 
middle and lower part of the Rhine basin, which are part of this case study, the extreme discharges 
from these simulations reproduced observed flood statistics well. 
 
3.3 Estimating discharge values for low probability flood events 
The river stretches of the Rhine considered in this study are protected by dikes with a protection level 
against floods with a return period of approximately 200 years. Hence, we only considered discharge 
events with a return period in excess of 200 years for the inundation scenarios and damage 
estimates. As previously described, for each GCM or RCM ensemble member, a 3000-year discharge 
time-series was generated using HBV-96. From the discharge time-series we took the maximum 
discharge for each hydrological year (November to October), resulting in 2999 annual discharge 
maxima per ensemble member. We then estimated extreme discharge using the Weissman approach 
[Boos, 1984; Weissman, 1978], whereby a joint limiting distribution of the largest order statistics is 
fitted to the highest 0.5% of the data values. This method provides more consistent results than the 
Generalized Extreme Value (GEV) distribution fitted to the whole data series [Görgen et al., 2010]. 
 
3.4 Simulating flood inundation extent and depths 
The methodological framework used in this study requires the simulation of hundreds to thousands of 
inundation maps showing inundation extent and depth. For detailed flood risk analyses, inundation 
maps at a high resolution are required from state-of-the-art methods describing the detailed 
hydrodynamics of the study area [e.g. Ernst et al., 2010]. However, given the large number of 
simulations needed for our probabilistic framework, we developed a new model, Floodscanner. We 
used the zero-dimensional planar-based approach, conceptually similar to that described in Priestnall 
et al. [2000]. The model’s setup and development is described in detail in Ward et al. [2011a; 2011b]. 
The model’s performance was first tested and validated for a section of the Meuse River in Dutch 
Limburg, since relatively good data are available for validation in this river section (e.g. from aerial 
photography and hydrodynamic modelling using the WAQUA model). This validation, and a validation 
for the Rhine, are described in Section 4. 
 
Floodscanner is raster-based, with a spatial resolution of 50 m x 50 m. In brief, the method uses 
stage-discharge relationships to estimate the water level at each river grid-cell within the case-study 
region, for different discharges. These water levels are then assigned to the nearest non-river grid-
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cells, essentially creating a planar surface representing the water level per grid-cell. This planar water 
level is then intersected with a Digital Elevation Model (DEM), and the inundation depth is the 
difference between the cell values of water level and elevation. Several steps are required to carry out 
the simulation: (a) derive river network raster; (b) develop stage-discharge relationships; (c) simulate 
planar water level surface; and (d) estimate flood inundation depth. These steps, and the data 
sources used in this study, are described in the following paragraphs. Note that no hydrodynamic 
modelling was performed, so the effects of upstream flooding on inundation depth downstream are 
not considered. 
 
a) Derive river network raster: We extracted the river network raster from the SRTM DEM [Jarvis et 
al., 2006], available from http://srtm.csi.cgiar.org. The DEM has a horizontal resolution of 90 m x 90 
m, and was regridded to a higher resolution of 50 m x 50 m. Ideally, a higher resolution DEM would be 
used, such as a DEM derived from TIN height map used in the WAQUA model of the Rhine basin. 
Unfortunately, these data were not available for use in this study. 
 
b) Develop stage-discharge relationships: Stage-discharge (h-Q) relationships show the relationship 
between river stage (h) at a given point and discharge (Q) at that or another point; they can either be 
observed or derived from models. For a review on the use of h-Q relationships, the reader is referred 
to Braca [2008]. For this study we used relationships derived from the SOBEK model described by Te 
Linde et al. [2010; 2011]. The data from SOBEK show the river stage corresponding to 30 discharge 
values. These data are available at irregular distances along the river, but ranging from ca. 0.5 km to 
1.0 km. Floodscanner first assigns these values to the correct river grid-cell in the river network raster, 
and then estimates values for each intervening river cell through linear interpolation. For each river 
cell, an h-Q relationship is then derived in the form: 
 
h = aQb            (9) 
 
where h is the water level (m.a.s.l. NAP), Q is the discharge, and a and b are coefficients empirically 
derived from the data described above. 
 
c) Simulate planar water level surface: For the two sections studied in this research, i.e. Bonn-
Duisburg and Mainz-Koblenz, the discharges at Cologne and Kaub respectively are given to the 
model as input. The model then estimates the corresponding water level at each river grid-cell based 
on the h-Q relationships. All grid-cells in the study area are assigned to their nearest river grid-cell 
based on the Euclidean distance. This results in a theoretical planar water-level surface for the entire 
case study area. 
 
d) Estimate flood inundation depth: The elevation of each grid-cell is subtracted from the planar water 
level surface, to give a theoretical inundation depth per grid-cell. However, this results in cells being 
inundated where there is no flow connection with the river. Hence, we removed inundated cells not 
connected to the river via a flow-path with direct connectivity (in at least one of 8 directions). 
 
3.5 Estimating flood damage 
We calculated potential direct economic damage for each inundation scenario using the 
Damagescanner model [Klijn et al., 2007]. Damagescanner has been described in several studies 
[e.g. Aerts and Botzen, 2011; Aerts et al., 2008; Bouwer et al., 2009, 2010; Te Linde et al., 2011], so 
we only provide a brief overview here. Damagescanner needs two inputs: a land use map and an 
inundation map. The land use map (for the year 2000) is derived from the Landuse scanner model 
[Hilferink and Rietveld, 1999] for the Rhine described in detail by Te Linde et al. [2011]. The 
inundation maps were derived from Floodscanner. Damagescanner combines information on land use 
and inundation depth using depth-damage functions, which estimate the expected damage for a given 
inundation depth (x-axis) and a given land use (different curves) for each grid-cell; the depth-damage 
functions used by Damagescanner are shown in Figure 3.2. 
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Figure 3.2 Depth-damage functions used in the Damagescanner model 
 
3.6 Estimating flood risk and probability distributions of flood risk 
Economic flood risk, or expected annual loss, can be considered as the area under an exceedance 
probability-loss curve (risk curve); a theoretical risk curve is shown in Figure 3.3. In practice, the 
number of exceedance probabilities used to develop such a curve is limited by available computer 
and manpower resources; for example in Figure 3.3, loss has been calculated for three exceedance 
probabilities, and the curve interpolated based on points. However, research carried out as part of this 
project by Ward et al. [2011a; 2011b] has shown that estimates of flood risk are strongly affected by 
the choice of exceedance probabilities used to develop the risk curve. We assessed losses 
associated with return periods between 200 and 3000 years (i.e. exceedance probabilities between 
0.005 and 0.00033), with a step of 10 years. A risk curve was developed for the reference climate 
(resampled CHR-dataset, corresponding to 1961-1995), and also for the future climate for each 
GCM/RCM ensemble member (corresponding to the late 21st century, ca. 2081-2100). The strict 
deadlines of the project prevented the development of risk curves for the control RCM time-series to 
account for remaining biases in extreme events in the RCM ensemble. Risk was calculated for each 
ensemble member as the area under the risk curve approximated using the trapezoidal rule [e.g. 
Meyer et al., 2009]. The change in risk between current and future conditions was calculated for each 
ensemble member in relation to risk estimate for the CHR reference dataset. In a final step, we fitted 
PDFs to the estimates of risk from each of the climate model simulations, in order to produce the 
probabilistic risk assessment, and to demonstrate the location of the current risk within this PDF. 
 

 
Figure 3.3 Theoretical exceedance probability-loss (risk) curve; the area under the curve (in 
grey) represents the risk, expressed as the expected annual loss. 
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4. Floodscanner: validating the first setup 
 
4.1 Initial setup and validation for the Meuse in Dutch Limburg 
As part of this study, and also as part of the Knowledge for Climate study HSGR06, we first setup and 
validated the Floodscanner approach for the Meuse River in Dutch Limburg. One of the reasons for 
selecting this area is that relatively good data are available for model validation. The model was then 
coupled with the existing Damagescanner model. The setup and validation are described in detail in 
Ward et al. [2011a; 2011b]; these publications also assess how estimates of risk are affected by the 
selection of return periods (which ones and how many) used to estimate the risk. 
 
Floodscanner was set up for the Meuse basin, following the method described in Section 3.4. 
However, different data sources were used since this is a different river and case-study area. These 
are summarised below: 
 
DEM: derived from elevation data used in the WAQUA model of the Meuse (WAQUA-version 2005-
02, configuration J09_4). For areas outside the WAQUA configuration we used the AHN5 (Actueel 
Hoogtebestand Nederland) DEM, which covers the Netherlands at a resolution of 5 m x 5 m. Again, 
this DEM was regridded to a resolution of 50 m x 50 m. 
 
h-Q relationships: derived from Meuse WAQUA schematisation J09_4, supplied by RWS Limburg. 
 
To verify the quality of the method in producing inundation maps usable in studies of flood damage 
and risk, we compared: (a) our inundation extent maps with observed inundation extents for the floods 
of 1993 and 1995; and (b) our inundation depth maps with those produced using the process-based 
2D hydrodynamic model WAQUA. These maps were provided by Rijkswaterstaat Limburg (RWS 
Limburg): Rijkswaterstaat is the executive arm of the Dutch Ministry of Infrastructure and the 
Environment. 
 
Maps showing the extent of the inundated area during the floods of 1993 and 1995, based on aerial 
photography and satellite imagery, were provided by RWS Limburg; these floods were associated 
with discharges at Borgharen of 3120 m3s-1 and 2861 m3s-1 [Wind et al., 1999], corresponding to 
return periods of ca. 160 and 77 years respectively. Hence, we used these discharge values to force 
Floodscanner and to derive modelled inundation maps. The observed and modelled flood events were 
then compared; the results are shown in Figure 4.1. 
 

 
Figure 4.1 Inundation extent maps based on aerial photography and satellite imagery (observed) 
and Floodscanner (modelled) for the floods of 1993 and 1995. Blue circles show the confluence of the 
Niers and Meuse rivers; red circles show the lake known as the Lange Vlieter, completed post-1995 
 
In Table 4.1 we show the number of cells inundated in the observed datasets only, the modelled 
datasets only, and the number of cells inundated in both datasets. The agreement between the 
datasets is good. Reference to the maps (Figure 4.1) shows only a few locations with large 
differences. For example, the modelled maps show an inundation area at the confluence of the Niers 
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tributary and the Meuse (blue circles). Clearly, the simple inundation model has difficulty in dealing 
with hydraulically complicated backwater effects. A second source of anomalies is around several of 
the new ‘Maasplassen’; these lakes were created by sand and gravel mining, and some were not 
completed until after 1995 (e.g. the Lange Vlieter, shown by red circles in Figure 4.2). Hence, these 
lakes are ‘inundated’ in our model (which represents the current situation), but were not inundated in 
1993 and 1995 because at that time the gravel and sands had not been extracted. 
 
Table 4.1 Number of inundated cells in the observed dataset only, the modelled dataset only, 
and number of cells that are inundated in both datasets 
 
 Number of inundated cells 
Year Observed dataset only Modelled dataset only Both datasets 
1993 48867 53291 47497 
1995 47639 51982 46511 
 
Next, we compared inundation depths per grid-cell for several return periods (2, 5, 20, 75, 250, and 
1250 years) between the maps produced using Floodscanner and those produced by WAQUA. The 
discharge at Borgharen associated with each return period was estimated using the standard 
formulae provided in the official Dutch HR2001 guidelines [Van de Langemheen and Berger, 2001]. 
The depth differences per grid-cell (Floodscanner minus WAQUA) are shown in Figure 4.2. As the 
return period increases, so too does the spread between the two datasets. The figures show that 
Floodscanner overestimates inundation depths at very low return periods (2 years), has little bias at 
medium return periods (up to 20 years) and slightly underestimates inundation depths at high return 
periods (from 75 years upwards) with respect to the WAQUA estimates. Overall, for the return periods 
shown, the difference is ≤0.5 m for 71% (RP = 1250 years) to 93% (RP = 75 years) of the cells; and 
the difference is ≤1 m for 91% (RP = 1250 years) to 97% (RP = 10 years) of the cells. Research 
carried out by De Moel and Aerts [2011] in the Netherlands shows that an overall change in 
inundation level by 0.5 m (in all grid-cells) may lead to a change in damage by a factor of 1.35-1.44, 
whilst an overall change in inundation level by 1 m (in all grid-cells) leads to a change in damage by a 
factor of ca. 2. Hence, Floodscanner performed reasonably well compared to the historical floods of 
1993 and 1995, as well as compared to results from a 2D hydrodynamic model (WAQUA). 
 

 
Figure 4.2 Frequency distributions (%) of the differences between the inundation depth (in 
metres) per grid-cell in the inundation maps produced using Floodscanner WAQUA (Floodscanner 
minus WAQUA). The depth differences were only calculated for cells that were inundated in the 
Floodscanner model (i.e. non-inundated cells are not used in the calculation): the frequency bins have 
an interval of 10 cm, centred on 0 m. 
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4.2 Initial validation for the Rhine 
A recurring problem in flood risk assessment is the poor availability of high-resolution observed 
inundation data, making verification difficult (Merz et al. 2010). For the Rhine basin, we were therefore 
only able to carry out a limited validation. The only publicly available inundation maps of the German 
Rhine are those developed for the Rhine Atlas (ICPR 2001). This dataset shows the potential flooded 
area in the Rhine basin at different flood return periods (10 years, 100 years, and ‘extreme’). The 
‘extreme’ inundation map, however, does not have a probability estimate; rather it assumes that all 
potentially flood-prone areas are inundated completely. We compared our simulated inundation 
depths for a return period of 1250 years with those in the extreme inundation map of the Rhine Atlas. 
Depth anomalies per grid-cell (Floodscanner minus Rhine Atlas) are shown in Figure 4.3. Overall, the 
difference is ≤1.0 m for 51% (Bonn-Duisburg) and 41% (Mainz-Koblenz) of the cells. A study by the 
(Dutch) Ministry of Transport, Public Works and Water Management et al. (2004) used the 2D-
hydrodynamic model DelftFLS to simulate inundation depths for several scenarios corresponding to a 
flood return period of 1000 years for the lower Rhine in Germany. Unfortunately, these maps were 
only made available in paper format; the GIS maps are not available for research activities. However, 
visual inspection shows the inundation extents in the latter to be much smaller than in the Rhine Atlas. 
Thus, for this demonstration study of a probabilistic flood framework, our estimates are of sufficient 
accuracy to give meaningful results. 
 

 
Figure 4.3 Frequency distributions (%) of the differences between the inundation depth (in 
metres) per grid-cell in the Floodscanner inundation maps (return period 1250 years) and the Rhine 
Atlas ‘extreme’ scenario. The depth differences were only calculated for cells that were inundated in 
the Floodscanner model (i.e. non-inundated cells are not used in the calculation): the frequency bins 
have an interval of 25cm, centred on 0 m. 
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5. Probabilistic flood risk estimates for the Rhine 
 
5.1 Precipitation extremes for GCM simulations 
High river discharge and floods in the middle to lower part of the Rhine basin are often associated 
with multi-day extreme precipitation in the winter season [Beersma et al., 2001]. Therefore, to assess 
possible future changes in the occurrence of such multi-day extreme precipitation, we compared the 
winter half-year (Oct-Mar) maximum 10-day precipitation sums of the transformed (resampled) time-
series (representative of future conditions in a GCM simulation) with those in the (resampled) 
observed time-series (Figure 5.1). The figure shows Gumbel plots of the winter half-year maximum 
10-day precipitation sums for the short time-series (35-year) (left panel) and for the long time-series 
(3000-year) based on resampling (right panel). The precipitation is averaged over all sub-basins in the 
Rhine basin upstream from Lobith. Both panels refer to the largest 10-day precipitation amounts in the 
winter half-year. Although the spread between the GCMs increases with longer return periods, the 
range between the GCMs varies between almost no change compared to the reference observations, 
to an increase of ca. 35 %; this is the case in both the 35-year and 3000-year time-series. 

Figure 5.1 Gumbel plots of winter half-year maximum 10-day basin-average precipitation sums 
for short time-series of transformed observations (35 years; left) and long time-series of transformed 
resampled observations (3000 years; right). The black line shows the ordered 10-day maxima in the 
(resampled) CHR reference dataset; the grey lines represent the individual GCM ensemble members; 
and the coloured lines denote the GCM ensemble members generating the lowest and highest 
precipitation sums 
 
5.2 Range of quantiles of the maximum 10 day precipitation sum for the GCM and RCM 

ensembles 
Figure 5.2 shows the range in the quantiles of the winter half-year maximum 10-day basin-average 
precipitation sum for different return periods, derived from the RCM and GCM ensembles. For the 
RCM ensemble, the quantiles for the control and future periods are shown. For the GCM ensemble, 
the estimated quantiles from the resampled observations are shown as a reference, together with the 
range of the estimated quantiles for the transformed resampled observations for the future period. The 
GCM ensemble shows higher quantiles of winter half-year maximum 10-day basin-average 
precipitation sums than in the RCM future ensemble for each return period, while the RCM control 
ensemble is fairly consistent with the observations (due to the bias correction applied to the RCM 
data). This means that the GCM ensemble shows a larger change in quantiles of extreme 
precipitation sums compared to the RCM ensemble. The spread within the ensembles is roughly 
similar, except at short return periods, where the spread of the RCM ensemble is slightly larger. 
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Figure 5.2 The winter half-year maximum 10-day basin-average precipitation sum for four return 
periods generated with the RCM and GCM ensembles. Each box-plot contains the median, the 25th 
and 75th percentiles, and the smallest and largest values (the whiskers) for the given return period for 
all members of the RCM or GCM ensemble. For the observations there is only one estimate 
 
5.3 Discharge extremes 
In order to assess possible future changes in 
discharge compared to present day, Figure 5.3 shows 
the mean annual maximum discharge (MHQ) and the 
200- and 1000-year discharges (HQ200 and HQ1000 
respectively) at Lobith, Cologne, and Kaub. Also the 
reference values for the 1961-1995 period are 
indicated based on the CHR dataset. A thorough 
analysis of the reference values resulting from the 
CHR dataset (as well as the control runs of each 
RCM) is described in Görgen et al. [2010]. 
 
In general, the (resampled) time-series indicative of 
future conditions tend to show an increase in the 
estimated quantiles of average and extreme discharge 
compared to the (resampled) CHR reference dataset. 
These increases are generally greater for the GCM 
ensemble compared to the RCM ensemble, although 
the relative difference between the two ensembles is 
less than that seen for extreme 10-day precipitation 
sums in Figure 5.2. This indicates a non-linearity in the 
process of transforming precipitation to discharge. 
 
Still, there are also several ensemble members that do 
project a decrease in flood discharges (ECHAM GCM, 
and ARPEGE-HIRHAM5 and ECHAM-REMO 10km 
RCMs for the 200 and 1000 year return periods at 
Cologne and Lobith; and the HADCM3Q0-CLM and 
ECHAM-REMO 10km RCMs for the 1000 year return 
period at Kaub). 
 
Figure 5.3 Plots for (a) Lobith, (b) Cologne, and 
(c) Kaub, of projected: mean annual maximum 
discharge (MHQ); and 200- and 1000-year discharges 
(HQ200 and HQ1000). GCM members are shown in 
red, and RCM members in blue (both representing 
future conditions). The black lines denote the 
discharge for the CHR reference dataset (1961-1995). 
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All values based on resampled 3000-year time-series 
For MHQ, the bandwidth of the RCM ensemble is larger than that of the GCM ensemble, despite the 
fact that the latter ensemble contains twice as many members. For HQ200 and HQ1000 the 
bandwidths are similar at both Lobith and Cologne, as was the case between the ensembles for 
precipitation. However, the bandwidth of the GCM ensemble is slightly larger than that of the GCM 
ensemble at Kaub. 
 
At Kaub, the highest HQ1000 is for the MIUB GCM, whereas at Cologne and Lobith the HADCM3Q0 
GCM is the highest. The MIUB GCM simulates much wetter conditions in the river basin upstream 
from Kaub, whilst the HADCM3Q0 GCM simulates the wettest conditions in the lower part of the basin 
and the Mosel river basin. It is noteworthy that whilst the HADCM3Q0 GCM simulates very wet 
conditions, the RCM simulation HADCM3Q0-CLM (i.e. the CLM RCM forced by the HADCM3Q0 
GCM) is one of driest simulations. Hence, the RCMs have a large influence on the results of the 
climate projections. 
 
5.4 Meteorological indicators of extreme discharge 
Previous analyses by Leander et al. [2008] for the Meuse have shown that changes in the distribution 
of extreme discharges strongly depend on changes in average winter half-year precipitation and the 
coefficient of variation of 10-day precipitation in the winter half-year. This suggests a relationship 
between changes in the quantiles of extreme discharge and changes in the corresponding quantiles 
of the winter half-year maximum 10-day precipitation sum. In Figure 5.4 we test this relationship for 
the Rhine basin, by plotting the relative changes in discharge at Lobith with a return period of 200 
years versus relative changes in the winter half-year maximum 10-day basin-averaged precipitation 
sum with a return period of 200 years. Each point in the graph represents one ensemble member of 
either the RCM ensemble (blue) or the GCM ensemble (red). The same analysis was applied for 10 
and 1000 year return periods, and different seasonal definitions, but the results were similar. The 
winter half-year maximum 10-day precipitation sum is shown to be a fairly accurate predictor of 
changes in the peak discharge regime. Including temperature of the Alpine grids (indicative of snow 

melt) in the analysis did not lead to 
improved predictions of the changes in 
extreme discharges. 
 
 
 
 
 
 
 
 
Figure 5.4 Relative change in the 
200-year discharge at Lobith compared to 
the relative change in the 200-year 10-day 
basin-average precipitation. Each symbol 
represents one GCM or RCM (red: GCMs, 
blue: RCMs). 

 
 
 
5.5 Extreme discharge probability distributions 
So far we have presented the results of the individual members of the RCM and GCM ensembles. 
However, one of the main aims of this research is to provide a demonstration of a framework for 
producing probabilistic estimates of flood risk. Before assessing the risk in a probabilistic framework, 
we first present PDFs of the extreme discharge results. Figure 5.5 shows PDFs for the RCM and 
GCM ensembles, based on the normal distribution (for Lobith, Cologne, and Kaub). The normal 
distribution does not necessarily give the best fit to the data, but considering the low number of 
ensemble members it is used as a demonstration of how probabilistic assessments of flood scenarios 
can be developed. In this case the PDFs are given for discharge with a return period of 1000 years 
(HQ1000). The HQ1000 for the CHR reference dataset is shown by the black line. The GCM 
ensemble is based on transformed resampled CHR data conform to the changes in the GCM 
simulations; the RCM ensemble is based on the individual future RCM ensemble members. 
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Figure 5.5 PDFs of HQ1000 at: (a) Lobith, (b) 
Cologne, and (c) Kaub. As the number of ensemble 
members is limited the normal distribution used is only 
demonstrative. The black line shows the 1000 year flow 
for the resampled CHR reference dataset (as resulting 
from our hydrological simulations) for current climate 
conditions 

 
5.6 From extreme discharge to risk 
The next step in our research was to derive flood risk estimates based on the climate model 
downscaling and hydrological simulations. As described in Section 3.6, the risk was estimated as the 
area under an exceedance probability-loss curve, using the trapezoidal rule. A risk curve was 
developed for each (future) RCM and GCM ensemble member and for the CHR reference dataset, 
using damage estimates with return periods between 200 and 3000 years (i.e. exceedance 
probabilities between 0.005 and 0.00033), with a step of 10 years. We assumed that no damage 
occurs at flood return periods shorter than 200 years, due to safety measures designed for this return 
period. We also estimated the risk by simply summing the modelled damage associated with the top-
15 discharge events per ensemble member (i.e. those with a return period of 200 years or longer), 
and dividing this by 3000 (years); this led to very similar results. Hence, the results shown in this 
section are those obtained by estimating the area under the risk curve. 
 
The risk curves for each ensemble member (RCMs in blue; GCMs in red) and for the CHR reference 
dataset (black solid line) are shown in Figure 5.6. Again, the GCM ensemble is based on transformed 
resampled CHR data for each GCM simulation; the RCM ensemble is based on the individual future 
RCM ensemble members. In Table 5.1, several key statistics referring to each ensemble (RCM, GCM, 
full ensemble) are listed. The range between the maximum and minimum risk estimate is slightly 
larger in the GCM ensemble than in the RCM ensemble for both case-study areas, although the 
standard deviation is smaller. However, the differences between both ensembles are small and may 
be partly related to the difference in ensemble size. Nevertheless, the mean risk is higher for the GCM 
ensemble compared to the RCM ensemble for both the sections Bonn-Duisburg and Mainz-Koblenz. 
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Figure 5.6 Risk curves for Bonn-Duisburg (left) and Mainz-Koblenz (right). The solid black line 
shows the risk curve for the CHR reference dataset. Risk curves for the future RCM ensemble 
members are shown in blue, and for the future GCM ensemble members are shown in red. The black 
dashed lines show the average and the 5% and 95% percentiles of a two-parameter gamma 
distribution fitted to all members of the full future model ensemble 
 
Table 5.1 Key statistics related to the (future) annual risk (€ million) for the two case-study 
regions for the RCM ensemble, the GCM ensemble, and the full ensemble. For comparison, risk for 
the reference simulation is €60.3 million for Bonn-Duisburg and €5.1 million for Mainz-Koblenz 
 Bonn-Duisburg Mainz-Koblenz 
 RCM 

ensemble 

GCM 

ensemble 

Full 

ensemble 

RCM 

ensemble 

GCM 

ensemble 

Full 

ensemble 

Maximum 145.9 170.4 170.4 9.0 10.0 10.0 

Minimum 42.6 54.2 42.6 5.0 5.1 5.0 

Range 103.3 116.2 127.7 4.0 4.9 5.0 

Mean 85.1 121.0 109.1 6.7 8.1 7.7 

St. dev. 35.1 31.6 36.3 1.7 1.4 1.6 
 
The results are shown for each ensemble member in Table 5.2. Next to total annual risk (based on 
damage to all land use categories), we also show risk per capita for residential losses only (residential 
risk per capita). To do this, we calculated the expected annual loss (risk) based only on the damage 
estimates for residential grid cells (high and low density). We then divided this by the number of 
people living in the area exposed to the 3000-year return period flood. The latter was estimated using 
LandScan2008TM data [LandScan, 2008]. Such information could be of use when calculating 
insurance premiums for private households. Interestingly, whilst the total annual risk is higher for the 
section Bonn-Duisburg – since the inundation extent in this area is much larger and the area is more 
urbanised – the annual residential risk per capita in the former is lower. 
 
The highest risk is simulated for Bonn-Duisburg by the HADCM3Q0 GCM, and for Mainz-Koblenz by 
the MIUB GCM. This is consistent with the extreme discharge results (HQ1000), for which these 
models resulted in the highest values at Cologne and Kaub respectively. The lowest risk is simulated 
by the ECHAM5R1-REMO RCM and the HADCM3Q0-CLM RCM for Bonn-Duisburg and Mainz-
Koblenz respectively. 
 
5.7 Probabilistic flood risk estimates 
The final step in the analyses is the presentation of a probabilistic scenario of future flood risk, 
demonstrating how this approach could be further developed in the future as more and more tailor-
made probabilistic climate change scenarios become available. The probabilistic future flood scenario 
consists of a PDF of future risk, based on the individual ensemble members. We applied a two-
parameter gamma distribution to the individual risk estimates within each future ensemble (RCM, 
GCM, and full ensemble), whereby each ensemble member was assumed to have an equal likeliness 
(i.e. no weighting was carried out). We assumed a two-parameter gamma distribution, since this is 
left-bounded to zero (i.e. no negative risk can be predicted) and is frequently used in risk analysis. 
The resulting probabilistic flood risk scenarios can be found in Figure 5.7, and the average and 5% 
and 95% percentiles of the gamma distribution are also shown on the risk curves in Figure 5.6. 
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Figure 5.7 shows that the addition of the GCM ensemble to the existing RCM ensemble from 
RheinBlick 2050 leads to an increase in the spread of the PDF, and also leads to a higher mean 
estimate of flood risk. For the section Bonn-Duisburg, two ensemble members of the full ensemble fall 
below the 5% percentile of the distribution (ECHAM5R1-REMO; ECHAM5). For the section Mainz-
Koblenz, three ensemble members of the full ensemble fall below the 5% percentile of the distribution 
(HADCM3Q0-CLM; ECHAM5R1-REMO; ECHAM5). 
 
Table 5.2 Annual risk and annual residential risk per capita for the two case-study regions 
 Bonn-Duisburg Mainz-Koblenz 
Climate simulation 

Annual risk 

(€) 

Annual 

residential risk 

per capita (€) 
Annual risk 

(€) 

Annual 

residential risk 

per capita (€) 

Reference (1961-1995) 60,276,307 24 5,132,916 44 

RCMs     

ARPEGE; HIRHAM5 70,882,826 28 5,809,432 50 

ECHAM5R1; REMO 42,617,043 16 5,138,936 44 

ECHAM5R3; RACMO 145,876,835 61 9,002,613 79 

ECHAM5R3; REMO 99,833,127 41 7,658,706 66 

HADCM3Q0; CLM 69,300,307 27 4,988,060 42 

HADCM3Q3; HADRM3Q3 82,156,253 33 7,817,551 68 

GCMs     

CCCMA 114,928,051 47 8,305,417 73 

CNRM 121,894,832 50 8,352,761 73 

CSIRO 82,212,647 33 6,194,293 53 

ECHAM5 54,179,309 21 5,111,187 44 

GFDL 2.0 100,975,776 41 7,466,638 65 

GFDL 2.1 148,693,686 63 9,145,282 80 

HADCM3Q0 170,362,813 73 9,658,859 85 

HADCM3Q3 133,293,053 56 8,489,891 74 

IPSL 128,905,749 54 8,269,451 72 

MIROC 109,325,301 45 7,937,314 69 

MIUB 142,785,242 60 10,001,199 88 

MRI 144,939,789 61 8,465,437 74 
 

 
Figure 5.7 Probability distribution of flood risk for: (a) Bonn-Duisburg (left); and (b) Mainz-
Koblenz (right). The black vertical solid line shows risk associated with current climate conditions 
(based on the resampled CHR reference dataset (1961-1995)). Curves show the risk probabilities 
derived from the RCM ensemble (blue), GCM ensemble (red), and full ensemble (i.e. all members of 
the RCM and GCM ensembles). Distributions are obtained by applying a two-parameter gamma 
distribution 



 

Attention to Safety 2 (AvV2) - Final report 

 

 25 

6. Discussion 
 
6.1 Developing long time-series of climate variables and discharge for use in probabilistic 

flood risk assessments 
Long time-series (3000-year) of daily climate variables (precipitation and temperature) and discharge 
were developed based on 12 GCMs and six RCMs. The time-series for the RCM simulations were 
made available through the RheinBlick 2050 project [Görgen et al., 2010], while the GCM simulations 
were downscaled with an advanced delta-change approach. The winter half-year maximum 10-day 
basin-average precipitation sums were analysed, as these events often cause high discharge in the 
lower part of the Rhine basin [Beersma et al., 2001]. The range between the 12 GCM ensemble 
members representing future conditions was about 35% for the longest return period studied (3000 
years). Moreover, the GCM ensemble showed higher quantiles of winter half-year maximum 10-day 
precipitation sums than in the RCM future ensemble for each return period. The analyses also show 
that the bias-corrected RCM control time-series match the CHR reference dataset fairly well. The 
spread between the estimated quantiles of the winter half-year maximum 10-day precipitation sums 
for the RCM future ensemble members increases as the return periods become longer. 
 
For the extreme discharge events, the bandwidths of the two ensembles are similar at Lobith and 
Cologne, but the bandwidth of the RCM ensemble is slightly smaller than that of the GCM ensemble 
at Kaub. We also found interesting spatial differences in the results. For example, the climate model 
ensemble members do not cause the same changes in extreme discharge in all parts of the basin. 
This demonstrates the importance of using spatially distributed climate simulations when carrying out 
climate change impact studies. 
 
The results show that adding the ensemble of 12 GCM members to the existing ensemble of six RCM 
members (driven by four parent GCMs) from RheinBlick 2050 leads to a relatively small increase in 
the overall spread of the extreme discharge results, although the ensemble means of the estimated 
discharge quantiles are higher for the GCM ensemble (as was the case for extreme precipitation). 
Given the large range of GCMs, one may have expected a larger increase in the spread when they 
were added to the RCM ensemble. The ensemble of RCM members used for the extreme discharge 
analyses was selected from a total of 17 members used in the RheinBlick 2050 study. These 17 
ensemble members include combinations of four GCMs and 11 RCMs. Hence, even if the RCM 
ensemble members used for the extreme analyses (i.e. the RCM members used here) were chosen in 
an optimal way, the number of parent GCMs is still much lower than the 12 GCMs used in the present 
study. It appears that the RCMs used in this project have a large influence on the climate, and 
therefore discharge, projections. This is demonstrated by the fact that whilst the RCM ensemble 
member HADCM3Q0-CLM (i.e. the CLM RCM forced by the HADCM3Q0 GCM) is one of driest 
members, the HADCM3Q0 GCM ensemble member (not coupled to an RCM) is the wettest. 
 
6.2 Relationship between variables of extreme climate and discharge 
The relative change in the winter half-year maximum 10-day basin-average precipitation was found to 
be a relatively good predictor of extreme discharge. However, in the analyses, extreme precipitation 
and discharge values were determined independently, so the annual maxima of the precipitation and 
discharge events may have been related to different episodes or events. 
 
In reality, the relationship between precipitation and discharge is complex [Ward and Robinson, 1990], 
especially for a large river basin such as the Rhine. In some basins, temperature (through its influence 
on potential evapotranspiration) can play an important role in this relationship [Ward et al., 2011c]. For 
the Rhine basin, temperature also plays an important role in snow accumulation and snowmelt, which 
can significantly affect the river’s discharge [Hurkmans et al., 2010; Te Linde et al., 2010]. However, 
additional analyses carried out for this research (not shown) did not result in a stronger relationship 
between predicted extreme precipitation and discharge when temperature was included. Other factors 
may also be of influence in the relationship between extreme precipitation and discharge, such as soil 
moisture, groundwater levels, infiltration rates, flow routing, land cover, and land use [e.g. Ward and 
Robinson, 1990]. 
 
Nevertheless, the results presented here do suggest that, for the Rhine basin, multiday precipitation 
can give a first estimate of effects of changes in the discharge regime, although they cannot replace 
the complex behaviour of the non-linear and heterogeneous hydrological system. Also, hydrological 
models used for large scale river basins like the Rhine are conceptual and calibrated towards the 
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current climate, resulting in a limited robustness under climate change. Both of these areas, i.e. the 
use of multiday precipitation totals as a first-order estimator of discharge, and improving the ‘climate 
change robustness’ of hydrological models, warrant further research. 
 
6.3 Developing an inundation model capable of providing the large number of inundation 

maps needed in probabilistic flood risk assessments 
One of the main problems in developing probabilistic flood risk assessment methods has been the 
large number of inundation maps required, since the production of flood hazard maps is very time-
consuming and computationally expensive [Apel et al., 2008; Gouldby and Kingston, 2007; Woodhead 
et al., 2007]. Therefore, in this project we developed a rapid flood inundation model (Floodscanner), 
and coupled it to an existing flood damage model (Damagescanner). 
 
For the Rhine basin, relatively few inundation maps are available for model validation. Hence, we first 
setup the model for a section of the neighbouring Meuse basin in Dutch Limburg. Floodscanner 
performed reasonably well compared to images of the historical floods of 1993 and 1995, as well as 
compared to results from a process-based 2D hydrodynamic model (WAQUA) [Ward et al., 2011a; 
2011b]. We also carried out a limited validation for the Rhine basin [Ward et al., 2011d, in prep.], by 
comparison of the flood extents simulated by Floodscanner with those in the Rhine Atlas [ICPR, 
2001]. 
 
The simplifications used in the approach do not allow flood damage estimates at fine resolutions (e.g. 
street to city scale), which need state-of-the-art hydraulic modelling methods [e.g. Ernst et al., 2010]. 
Rather, the approach is intended to be complementary to such methods for use in regional-to-basin 
scale studies in which large numbers of inundation maps are required. For example, where accurate 
basin-wide flood risk estimates are required, it may be useful to first employ a method such as 
Floodscanner to identify the sensitivity of the risk estimates to the number of return periods used to 
develop the risk curve. Once these have been established, it may still be preferential to employ a 
more complex process-based model to simulate inundation for a selected number of return-periods 
[Ward et al., 2011a, 2011b]. 
 
In addition, the coupled methodology is useful for Monte Carlo based uncertainty analyses [e.g. Apel 
et al, 2008] and the evaluation of combinations of many different future projections. In the latter case, 
Floodscanner can be used to derive change factors for many different future projections, which can 
then be applied to detailed baseline estimates of risk under current conditions using damage 
estimates based on the most state-of-the-art process models. As illustrated, there are many cases 
where large numbers of model evaluations are useful. This shows that more attention is needed on 
the development of relatively simple inundation models. The method developed and applied here is 
capable of this, but refinements could be added to include the most important physical processes in a 
simple manner. 
 
6.4 Flood risk estimates in a probabilistic framework 
The present research is the first attempt to assess future flood risk under climate change in a 
probabilistic framework. It should be understood as a first demonstration of the methodological steps 
needed to perform such an assessment. In this research, the size of the full ensemble used to 
develop the PDFs of risk (18 members) is still fairly limited. This means that the selection of a 
theoretical distribution to describe the PDF of risk is also difficult [e.g. Hall, 2007; Hall et al., 2007; 
New et al., 2007; Rougier, 2007]. In this study we assumed a two-parameter gamma distribution, 
since this is left-bounded to zero (i.e. no negative risk can be predicted) and is frequently used in risk 
analysis. We did not assign weights to individual model members. Theoretically, a weighting could be 
given to each GCM/RCM simulation based on its ability to realistically downscale observed climate for 
the reference period. However, models that reproduce the past climate are not necessarily those that 
will give the most realistic realisation of future climate. 
 
Keeping these limitations in mind, the results do demonstrate the potential use of the approach, 
especially given the ongoing research efforts in developing probabilistic climate change projections for 
the Fifth Assessment Report (AR5) of the IPCC. For example, a novelty of the probabilistic risk 
assessment approach is that it allows us to estimate the probability of future flood risk being larger 
than present flood risk. Based on the analyses in this study, the probability of future flood risk 
exceeding current risk is 92% for the section Bonn-Duisburg and 96% for the section Mainz-Mosel. 
Moreover, the probability of future flood risk exceeding twice as much as at present is 34% for Bonn-
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Duisburg, but just 6% for Mainz-Mosel. By extension, it is possible to assess the probability that flood 
risk will increase by any given factor, allowing for the assessment of risk under possible extreme 
futures. Figure 5.7 shows that the addition of the GCM ensemble to the existing RCM ensemble from 
RheinBlick 2050 leads to an increase in the spread of the PDF, and a higher mean estimate of flood 
risk. 
 
A recent study by Te Linde et al. [2011] examined flood risk for the entire Rhine basin, for a reference 
year 2000 and two climate change scenarios for 2030. The scenarios were derived using different 
methodologies [Te Linde et al, 2010] and are labelled as “extreme” and “moderate”. The “extreme” 
scenario represents an extreme climate change scenario corresponding to a 2ºC increase in global 
temperature in 2050 with respect to 1990, and changes in atmospheric circulation resulting in drier 
summers and wetter winters in the Netherlands. This scenario is based on the so-called KNMI’06 W+ 
scenario of Van den Hurk et al. [2006, 2007]. The “moderate” scenario represents more moderate 
climate change effects, and follows the output of the RACMO2.1 RCM driven by the ECHAM5 GCM. 
As with the climate model runs used in the present study, this run corresponds with the IPCC SRES 
A1B scenario. Te Linde et al. [2011] simulated increases in basin-wide flood risk of 43% (moderate) 
and 161% (extreme) by 2030 (compared to 2000). Results from our demonstration study suggest that 
the probability of flood risk increasing by 43% by 2081-2100 is 67% for Bonn-Duisburg and 55% for 
Mainz-Koblenz, whilst the probability of flood risk increasing by 161% by 2081-2100 is 11% for Bonn-
Duisburg and 0.1% for Mainz-Koblenz. A comparison with results of Te Linde et al. [2011] is limited 
by: (a) the use of different methods to calculate risk; (b) the choice of a different analysis period; and 
(c) a different areal aggregation level. However, these limitations notwithstanding, the extreme risk 
estimate of Te Linde et al. (2011) is at the upper tail of our results. This comparison illustrates an 
interesting feature of the probabilistic framework explored here: it allows evaluation of a discrete 
scenario in the context of a wider probability distribution. 
 
Such probabilistic information could provide information of use to stakeholders in the insurance 
industry. For example, it could aid insurers and reinsurance companies in computing insurance 
premiums under uncertainty [Michel-Kerjan, 2008] and deriving the amounts of capital reserves 
required for potential damage reimbursements. Our results also illustrate how spatially differentiated 
estimates of risk per capita can be developed. For example, our demonstrative analyses suggest that 
whilst the total annual risk is higher for the section Bonn-Duisburg than for Mainz-Koblenz, the annual 
residential risk per capita is lower. Moreover, information about extreme risk is relevant for decisions 
concerning the hedging of the tails of the loss distribution on reinsurance or capital markets [Froot, 
1999]; the tails of the flood risk PDFs could assist in such assessments. At the moment, insurance 
coverage for flood damage is not available in the Netherlands. In recent years, insurers, the 
government, as well as academics, have been examining the possibilities of introducing partly private 
flood insurance [Botzen and van den Bergh, 2008; 2009]. In cases where governments (partly) 
compensate for the flood damages, like in the Netherlands, the framework can also provide 
information to the government about its financial risk exposure [Grossi and Kunreuther, 2006]. 
 
6.5 Key limitations and recommendations for future study 
This project presents the first assessment of future flood risk under scenarios of climate change in a 
probabilistic framework. It is intended to give a demonstration of the methods that can be used in such 
a framework. The absolute figures should be used for qualitative comparison only in decision-making 
at this time. Of course, there remain several key limitations, and many opportunities for further 
research; these are listed briefly, and discussed in more detail in the publications related to this 
project. 

• The ensembles of climate change projections used for the extreme flood and flood risk 
analyses contain a total of 18 members. This is the largest ensemble of climate model 
simulations yet for flood risk analysis in the Rhine basin. However, its size (18 members) still 
makes the selection of a theoretical distribution to describe the PDF of risk difficult. Future 
research should aim to expand the number of climate model members, and where possible 
increase the number of parent GCMs used in the RCM ensemble. 

• Probabilistic projections start with having high quality climate ensembles available. Much 
climate modelling research is focused on improving individual models [IPCC, 2007b]. More 
research is needed to construct equilibrated climate model ensembles that can be used for 
hydrological and subsequently flood risk analyses. 

• The climate projections used are all for the IPCC A1B scenario, since the most model runs 
are available for this scenario. Future studies should aim to cover a larger range of emission 
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scenarios; new GCM simulations currently being carried out for the Fifth Assessment Report 
(AR5) of the IPCC may facilitate such studies. 

• Climate models make future projections based on changes in greenhouse gas 
concentrations. However, natural climate variability also has a large influence on extreme 
river discharges [Ward et al., 2010]. More research is needed on how flood risk is affected by 
natural climate variability, as variability could exacerbate/ameliorate climate change impacts 
in the near future [Swanson et al 2009]. For example it would be useful to use several 
realisations from each GCM or RCM. 

• Flood estimates based on long resampled precipitation and temperature series are also prone 
to natural variability. For the Meuse basin this has been explored by resampling from different 
sub-series of the historical data [Kramer et al., 2008; Leander and Buishand, 2008]. A similar 
study is planned for the Rhine basin. 

• The limited length of the resampled sequences causes a random error in the flood risk 
estimates. Therefore it may be useful to study the sensitivity of these estimates to the length 
of the resampled sequences. The error in the 1250-year discharge due to the limited 
simulation length has been quantified for the river Meuse (Leander, 2009), but for an 
empirical quantile estimate rather than the Weissman estimate. 

• The GCM time-series have been downscaled using the delta-change approach. This 
approach is useful as it is relatively cheap and it incorporates the observations, but it also has 
several limitations. It does not use physics for processes on smaller scales, only changes in 
statistical properties. Some potentially influential feedbacks are not incorporated. The method 
also has many degrees of freedom. Most of these were tested carefully, and choices were 
made based on expert opinions or literature, but still the change between the resampled 
observations and the transformed resampled observations has to be interpreted with care. 

• The RCM simulations have been bias corrected. This correction is uncertain for extreme daily 
precipitation amounts. It is further assumed that the same correction applies to the control 
and future simulations. In future studies it would be preferable to assess the change in 
discharge quantiles for the RCM simulations based on the control simulation of each RCM 
(rather than using the observations as the reference). 

• The HBV-96 hydrological model is calibrated based on historical data. Changes induced by 
climate change, for example changes in vegetation or groundwater levels, are not taken into 
account sufficiently; research is needed to develop more climate-robust hydrological models. 

• In this research, no hydrodynamic model was used. Hence, it is assumed that no upstream 
inundation takes place. The values for extreme discharges presented will therefore generally 
be overestimations. 

• We have developed a simple inundation model and coupled it to a flood damage model. The 
simplifications dictate the method’s applications. The Floodscanner method is not intended to 
replace the need for hydraulic modelling with more complex models. Flood damage estimates 
at fine resolutions need to employ more state-of-the-art methods [e.g. Ernst et al., 2010]. 
However, the use of such detailed models is not feasible in studies requiring large number of 
inundation scenarios over large areas. Our research shows that more attention is needed on 
the development of relatively simple inundation models. The method developed and applied 
here is capable of this, but refinements could be added to include the most important physical 
processes in a relatively simple manner. In future studies it may be useful to first employ a 
method such as Floodscanner to identify which return periods have the most important 
influence on the risk estimate. Once these have been established, it may still be preferential 
to employ a more complex process-based model to simulate inundation for a selected number 
of return-periods [Ward et al., 2011a, 2011b].  

• Since one of the main aims of the present study is to demonstrate a framework for producing 
probabilistic flood risk estimates, we do not examine other sources of uncertainty. At each 
stage of the modelling process, large uncertainties can be introduced, and a full flood risk 
assessment should attempt to assess their influence on the final risk estimates [Apel et al., 
2004]. Future research should attempt to estimate the uncertainty associated with the 
different parts of the model chain and input data [e.g. De Moel and Aerts, 2011]. 

• Moreover, we only present a probabilistic flood risk scenario under climate change. In reality, 
flood risk is also affected by many other factors (such as land subsidence, land use change, 
and population growth) which should also be examined in future research.  

• Coping with climate change requires the undertaking of various adaptation measures to limit 
the projected rise in flood risk. The effectiveness of such adaptation measures in preventing 
flood damage could be evaluated using a probabilistic flood-risk framework. However, we 
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were specifically requested to concentrate on scientific methods for risk estimation, rather 
than research on how to use the methods and/or framework for assessing adaptation options. 
Future research should examine both how the methods developed here can be applied to 
improve adaptation planning and decision-making; how decision-makers use the results of 
probabilistic impacts assessments; and how the information provided by probabilistic flood 
risk estimates can most effectively be communicated to stakeholders.  



 

KvR report number (arial 10) 

 

30 



 

Attention to Safety 2 (AvV2) - Final report 

 

 31 

7. Conclusions 
 
We present a first attempt to demonstrate a framework for producing probabilistic estimates of flood 
risk. We simulated discharge, flood damage, and flood risk for current conditions and for a future 
ensemble based on 18 climate model simulations (12 GCM simulations and six RCM simulations). For 
the extreme discharge quantiles, the bandwidths of the two ensembles are similar at Lobith and 
Cologne, but the bandwidth of the RCM ensemble is smaller than that of the GCM ensemble at Kaub. 
We found that extreme precipitation and discharge quantiles are, on average, lower for the RCM 
ensemble compared to the GCM ensemble. We found interesting spatial differences in the results. For 
example, the ensemble members do not cause the same changes in extreme discharge in all parts of 
the basin. This demonstrates the importance of using spatially distributed climate simulations in 
climate change impact studies. 
 
We found relative change in winter half-year maximum 10-day basin-average precipitation to be a 
relatively good predictor of relative change in extreme discharge. However, in reality the relationship 
is complex, and also affected by factors such as temperature, evapotranspiration, snowmelt, soil 
moisture, groundwater levels, infiltration rates, flow routing, and land use. Nevertheless, the results 
suggest that, for the Rhine basin, change in multiday precipitation can give a first estimate of effects 
of changes in the discharge regime. 
 
The availability of rapid inundation models is essential in a probabilistic flood risk modelling 
framework. The method applied here (Floodscanner) is capable of this, but refinements could be 
added to include the most important physical processes in a relatively simple manner.  
 
We developed probabilistic flood risk scenarios for two case study sections of the Rhine, resulting in 
baseline flood risk estimates of €60 million p.a. and €5 million p.a. for the sections Bonn-Duisburg and 
Mainz-Koblenz respectively. The framework allows us to estimate the probability of future flood risk 
exceeding current risk (given the limitations of the study), namely 92% for the section Bonn-Duisburg 
and 96% for the section Mainz-Mosel. Using such a framework it is possible to assess the probability 
that flood risk will increase by any given factor, allowing for the assessment of risk under possible 
extreme future scenarios. 
 
The research shows that the addition of the GCM ensemble to the existing RCM ensemble from 
RheinBlick 2050 leads to a slightly wider distribution of future flood risks estimates. However, the 
spread of the individual RCM and GCM ensembles is rather similar. 
 
The research is intended to give a demonstration of the methods that can be used in a probabilistic 
flood risk framework; the absolute figures should be used for qualitative comparison only. Probabilistic 
flood risk assessments hold promise, but research remains to be carried out to: refine the methods 
presented here; examine how the methods can be applied to improve adaptation planning; assess 
how decision-makers use results of probabilistic impacts assessments; and to investigate how the 
information provided can most effectively be communicated to stakeholders. 
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