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1 Goal of the project

Ocean models are generally forced by synthetic (global) NWP model wind fields.
It has however been shown that these fields lack mesoscale wind structures on
scales below 500 km, i.e., on the ocean eddy scale. Also, compared to wind
observations, NWP model wind fields have persistent wind direction biases and
lack response to SST gradients or air-sea temperature difference.

Based on Kolmogorov turbulence theory it is well known that the wind in the
boundary layer has a kinetic energy spectrum with wave number power slope
of −5/3 in mesoscales. It is a very important property and preservation of this
property in dynamical models can significantly improve ocean forcing.

The scatterometers nowadays provide a very accurate measurement of wind over
the ocean and the retrieved winds contain the mesoscale structure consistent with
the Kolmogorov theory. The scatterometer winds are available over the ocean only
at a specific time and at a specific location. The goal of this project is to propagate
the physically correct scatterometer winds both in time andspace and provide a
uniform wind forcing over the ocean.

For the spatial and temporal propagation of the scatterometer winds we use a sim-
plified dynamical model of Boussinesq type which is forced by ECMWF pressure
field. The scatterometer winds are incorporated into the model by using a simple
nudging approach.
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2 Boundary layer model

Over the tropics and near the tropics the boundary layer can be considered as well-
mixed, where the velocity is considered to be constant in height, see [22,17,18,
20,10]. In this case, by using the hydrostatic assumption, the Reynolds averaging
and averaging over the height of the mixed boundary layer, one can write the
momentum and continuity equations in the following form

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

− f v+g′
∂ (h+hs)

∂x
= −

1
ρ0

∂ p
∂x

−
Cd|u|u

h
+we

ug −u

h
, (1a)

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

+ f u+g′
∂ (h+hs)

∂y
= −

1
ρ0

∂ p
∂y

−
Cd|u|v

h
+we

vg − v

h
, (1b)

∂h
∂ t

+
∂hu
∂x

+
∂hv
∂y

= we, (1c)

whereu = (u,v) is the velocity,h is the mixed-layer height andhs is the topogra-
phy (over ocean it is ignored, i.e.hs = 0 for the res of this report),g′ is the reduced
gravity,Cd is the surface drag coefficient andwe denotes the entrainment velocity.
The wind on top of the mixed layer is denoted by(ug,vg) and the mean sea level
pressure is denoted byp.

2.1 In spherical coordinates

If one has to consider the model over a large region, then the earth sphericity has
also to be considered. To write the system (1) in the spherical coordinates let us
first recall couple of relations between the spherical and the Cartesian coordinate
systems.

If we denote the longitude and the latitude byλ andϕ, respectively, then we have
the following relation

dx = Rcosφdλ , dy = Rdϕ, (2)

whereR is the radius of the earth.

After substitution of (2) in (1) we obtain the equations of the motion in the spher-
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ical coordinates:
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2.2 In conservative form

From the numerical discretization point of view it is desirable to write the system
(3) into an equivalent conservative form [1]
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This set of equations are discretized with a finite difference method on a C-grid.
In the absence of the external forces the resulted discrete system is conservative.
For details about the discretization on Arakawa C-grid we refer to [1].
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3 Boundary conditions

Because we consider the model on a limited area, then proper lateral boundary
conditions are required. There are different types of boundary conditions for
limited area models, however it is not very straightforwardto point out the best
boundary conditions applicable for all problems.

I have basically considered Orlanski type open boundary conditions and its varia-
tions, see for example [15,3,7,16,12]. For hyperbolic type of problems Orlanski
proposed to use the following condition on the boundary

∂φ
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+ c
∂φ
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= 0, (5)

wherec is the phase velocity of the wave (still to be determined),n is the normal to
the boundary andφ is any predictive variable. For example, if we consider a lim-
ited area with lateral boundaries along latitudes and longitudes, then on the west
and south boundaries the boundary condition (5) is modified into the following
form
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The phase velocityc has to be determined numerically and there are different ways
to computec from (5).

For my problem I have tried the Orlanski boundary condition and also some of
its variations [15, 3, 7, 16, 12]. However I have to admit that there was no best
open boundary condition applicable everywhere. In some cases I had to change
between one condition to the other to find out the better condition. In general
these type of boundary conditions work, but in some small part on the boundaries
the numerical wave speed is not determined correctly and it leads to some wrong
oscillations close to the boundary.

It is pointed out in [13] that using (5) may result in unbalance between the bound-
ary layer height and the velocity, and this could lead to spurious strong localized
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velocity gradients at the boundaries. It is suggested in [13] to add to the right hand
side of (5) some of additional terms (pressure gradient force, the surface drag) to
make more robust boundary condition. I have also tried this approach and the
results have been improved a bit, but there were still problems at the boundaries.

4 Pressure gradient force

The wind in our model is basically forced by the pressure gradient. In our case
pressure (the mean sea level pressure) is not a predictive parameter, I rather con-
sider it as an external input.

If one considers a relatively small region then the geostrophic approximation can
be applied. In this case the pressure gradient force is replaced with constant
geostrophic wind, see for example [5,8,13,23].

In my opinion we can not use the geostrophic approximation over larger domains
and for a longer simulation period. Therefore I decided to use the mean sea level
pressure (hereafter pressure) from ECMWF.

To use the ECMWF pressure in my model I have done the following steps: first I
retrieved the pressure from ECMWF using source ofOperational archive, Atmo-
spheric model, Forecast. This provides pressure on a user pre-defined resolution
in every three hour. Because in the model during the time integration the pressure
gradient force (PGF) needs to be evaluated at every time step, then I applied a
simple linear interpolation in time. However I have to stress out that this approach
is not that popular and there are very few papers where this kind of pressure inter-
polation is used, see for example [4,19].

5 Physical parametrization

To complete the description of our dynamical model it remains to discuss parametriza-
tion of surface drag coefficient (Cd) and the entrainment velocity (we) in (3).

There is an established theory for the parametrization of the surface drag and there
are also many ways to computeCd. But for the parametrization ofwe there is no
unified theory and it is hard to say which parametrization approach is the best.
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5.1 Drag coefficient parametrization

For simplicity we consider the drag coefficient in neutral conditions. In this case
the stratification of the atmosphere is ignored and the resulting formulas become
simpler. For our experiments we follow the formulation presented in [11].

In a neutral condition the wind speeduz in the surface layer at a given heightz
relates to the surface roughness lengthz0 by the following formula

uz =
u∗
κ

ln(
z
z0

), (6)

whereu∗ is the friction velocity andκ = 0.41 is the von Karman constant.

Over the sea and oceans the surface roughness length is determined by the Charnock
relation

z0 = Cch
u2
∗

g
+0.11

ν
u∗

, (7)

whereCch = 0.018 is the Charnock parameter andν = 1.5 · 10−5m2s−1 is the
kinematic viscosity of air.

And finally the drag coefficient is determined as

Cd =
κ2

ln2( z
z0

)
. (8)

The surface roughness lengthz0 is computed from the coupled nonlinear system
of equations (6) and (7). Because in our model equations we are interested in de-
termining the 10 meter wind, then it is also logical to consider in (6) the reference
lengthz = 10 meter.

The system (6) and (7) is a nonlinear set of equations foru∗ and z0 which can
be solved with Newton Raphson method. It means that in every time step we
have to apply the nonlinear solver at each grid point in the computational domain.
This can be very costly and will consume to much time to determine the drag
coefficient.

In the code called UWPBL [2] which is used in [17, 18] a very simple iterative
approached is used to determine the roughness length.
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Let us define an error toleranceε for computation of the friction velocity and the
maximum iterations to beI0. Then the following algorithm is used to determine
the drag coefficient:

Algorithm 1 Computation of the drag coefficientCd, the friction velocityu∗ and
the roughness lengthz0

1: SETz = 10 m and we assumeu10 is given from the model
2: Set (for example)ε = 10−8 andI0 = 50
3: Setuerror

∗ = 10 andIcount = 0
4: Initialize u∗ = 0.35
5: while uerror

∗ < ε andIcount < I0 do

6: z0 = Cch
u2
∗

g +0.11ν
u∗

,

7: unew
∗ = κ

u10

ln( z
z0

)

8: uerror
∗ = |unew

∗ −u∗|
9: u∗ := unew

∗

10: Icount = Icount +1
11: end while
12: Cd = κ2

ln2( z
z0

)

5.2 Entrainment parametrization

There are many ways to parametrize the entrainment velocity, see for example [].

In my experiments I used the parametrization suggested by [23]

we =
CF

CT

(

2.5
CF

)1/3

u∗ (9)

whereu∗ is the friction velocity,CF = 0.2 andCT = 1.5.

6 Newtonian nudging

The Newtonian nudging is a very simple, easy to implement assimilation method,
which can be used to nudge the model simulation towards the available observa-
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tions. For our problem we use the nudging algorithm described in [14] with the
scatterometer wind observations.

The basic idea is the following. For any given predictive variable α (u or v) its
corresponding equation at any given pointxi is modified into the following form

∂α(x, t)
∂ t

= F(α,x, t)+G
∑N

j=1(W j(x−x j, t − t j))
2(α j −αi(x j, t))

∑N
j=1W j(x−x j, t − t j)

, (10)

whereF represents all the physical process. The second term is the nudging
contribution, where the summation is performed over the allobservations.It is
important to note that the nudging terms are evaluated at theobservation
points.

The weighting functionsW j as defined in [14] are given by

W j = wxy(D j) ·wσ (σ −σ j) ·wt(t − t j),

wherewσ , wxy andwt are the vertical, the horizontal and the time weights, respec-
tively. Note that in our casewσ = 1, because we consider only two dimensional
problem.

The spatial weightwxy is a Cressman-type weighting function which depends on
the distance between the observation point and the grid point and is defined as

wxy =
1−D2

j/R2

1+D2
j/R2

, if D j ≤ R,

wxy = 0, if D j > R,

whereR is a predefined radius of influence andD j is the distance between the
observation point and the grid point.

Here is a list of references where the scatterometer winds are used in a dynamical
model with nudging method [6,21,9].
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Figure 1: The simulation domain, where the scatterometer winds are available.

7 Simulation results

The model (3) is discretized on a uniform Arakawa A lat-lon grid on the area
[−140◦,−110◦]×[−40◦,−10◦] with spatial resolution 0.2◦ is both directions. The
model is initialized on 01-11-2010 at 0 UTC with ECMWF wind and is run for 9
hour. For this test case we use ASCAT 25 km resolution wind product which is
available for our example during 2 UTC – 2:30 UTC.

The simulation domain and the scatterometer winds are givenin Figure1.

First we compare the results running the model by using the scatterometer wind
as a nudging term with the results of the model without any scatterometer wind.
Because the scatterometer winds are available between 2 UTC –2:30 UTC in Fig-
ure2 we show the kinetic energy spectrum averaged between 1:30 UTC – 4 UTC.
The results show that by using the scatterometer winds the model in mesoscales
produces (specially for thev component) more kinetic energy than without the
scatterometer data. However the results are not yet encouraging enough, because
from the theoretical point of view we expect to have -5/3 spectrum, which is
clearly not a case at mesoscales.

To check how long can the model carry the inserted scatterometer mesoscale en-
ergy in time in Figure3 we present results by running the model with the scat-
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Figure 2: Comparison of the kinetic energy spectrum by using scatterometer
winds for nudging (blue line) and the model run without nudging (red line). The
spectrum is averaged between 1 UTC and 4 UTC.

terometer winds. The blue line shows the spectrum averaged between 1 UTC –
4 UTC and the red line corresponds to the results averaged 5 UTC – 8 UTC. Be-
cause the scatterometer data are available at around 2 UTC then we expect to have
more kinetic energy between 1 UTC – 4 UTC. Indeed, as we can see at mesoscales
around 1 UTC – 4 UTC (blue line) the model produces more energythan between
5 UTC – 8 UTC. But also we note while we progress in time the energyis not dis-
sipated to much, which implies that the current model does not dissipate energy
quickly.

8 Discussions

I have considered assimilation of the scatterometer winds using well-mixed bound-
ary layer model (3). The model is discretized on an Arakawa-A grid, i.e. the
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Figure 3: Comparison of the kinetic energy spectrum by using scatterometer
winds for nudging. The spectrum averaged between 1 UTC – 4 UTCblue line,
5 UTC – 8 UTC red line.
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variables are considered on the same grid point. It was observed that by using
the scatterometer winds the kinetic energy spectrum of the assimilated wind has
more energy in mesoscales (down to 20 km) as compared to the wind spectrum
obtained without assimilation. However the slope of the kinetic energy spectrum
is not consistent with the theoretical data, which predicts-5/3 slope.
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