
 1 

TRIPLE COLLOCATION OF SUMMER 1 

PRECIPITATION RETRIEVALS FROM SEVIRI OVER 2 

EUROPE WITH GRIDDED RAIN GAUGE AND 3 

WEATHER RADAR DATA 4 

 5 

 6 

R. A. Roebeling
1,2

, E.L.A. Wolters
1
, J.F. Meirink

1
 and H. Leijnse

1
 7 

 8 
1 

Royal Netherlands Meteorological Institute (KNMI) P.O. Box 201, 3730 AE De Bilt, 9 

The   Netherlands 10 

2
 EUMETSAT, Eumetsat Allee 1, D-64295, Darmstadt, Germany 11 

 12 

Corresponding author: 13 

R. A. Roebeling 14 

EUMETSAT, 15 

Eumetsat Allee 1, 16 

D-64295 Darmstadt,  17 

Germany.  18 

Tel : +49 (0) 6151 807-0 19 

Email : rob.roebeling@eumetsat.int 20 

 21 



 2 

ABSTRACT 22 

Quantitative information on the spatial and temporal error structures in large-scale (regional 23 

or global) precipitation data sets is essential for hydrologic and climatic studies. A powerful tool 24 

to quantify error structures in large-scale data sets is triple collocation. 25 

In this paper, triple collocation is used to determine the spatial and temporal error 26 

characteristics of three precipitation data sets over Europe, i.e., the Precipitation Properties 27 

Visible Near InfraRed (PP-VNIR) retrievals from the Spinning Enhanced Visible and Infrared 28 

Imager (SEVIRI) instrument onboard Meteosat Second Generation (MSG), weather radar 29 

observations from the European integrated weather radar system, and gridded rain gauge 30 

observations from the Global Precipitation Climatology Centre (GPCC) and the European 31 

Climate Assessment and Dataset (ECA&D) data sets. For these data sets the spatial and temporal 32 

error characteristics are evaluated and their performance is discussed. Finally, weather radar and 33 

PP-VNIR retrievals are used to evaluate the diurnal cycles of precipitation occurrence and 34 

intensity during daylight hours for different European climate regions.  35 

The results suggest that the triple collocation method provides realistic error estimates. The 36 

spatial and temporal error structures agree with the findings of earlier studies, and reveal the 37 

strengths and weaknesses of the data sets, such as the effect of morphological variations in  38 

weather radar data set, the effect of sampling density in the gridded rain gauge data set, and the 39 

sensitivity to retrieval assumptions in the PPVNIR data set. This study can help us in developing 40 

adequate strategies for combining various precipitation data sets, for example for improved 41 

monitoring of diurnal variations or for detecting temporal trends in precipitation.42 
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Introduction 43 

Accurate information on spatial and temporal variations in precipitation occurrence (areal or 44 

temporal fraction at which precipitation occurs) and intensity (rain rates) is of great importance 45 

for evaluating precipitation parameterizations in weather and climate models, and for studying 46 

feedbacks between precipitation and atmospheric or surface quantities. These studies require 47 

information at high spatial and temporal resolutions. Although operational weather radars provide 48 

information on precipitation occurrence and intensity and the networks of these radars are 49 

expanding over Europe and the United States, large areas of the world remain undersampled or 50 

are not sampled at all (e.g. ocean). Passive imagers operated on geostationary satellites can bridge 51 

this gap and provide quasi-global information on the occurrence and intensity of precipitation. 52 

Over the past decades, several methods have been developed to detect precipitating clouds 53 

and retrieve rain rates from passive imagers (Kidd and Levizzani, 2011). The methods developed 54 

for geostationary satellites often use thermal infrared observations, and relate daily minimum 55 

cloud top temperatures (Adler and Negri, 1988) or Cold Cloud Durations (CCD) to rain rates 56 

(Todd et al., 1995). The infrared-based methods give fair accuracies over areas where rainfall is 57 

governed by deep convection. Several methods have been developed to detect precipitating clouds 58 

from cloud physical properties retrieved from passive imagers (Rosenfeld and Gutman, 1994; 59 

Lensky and Rosenfeld, 2006; Nauss and Kokanovsky, 2006; Thies et al., 2008 and Roebeling and 60 

Holleman, 2009). These methods exploit the information that can be derived from the observed 61 

reflection in the non-absorbing visible channels (0.6 or 0.8 m), which is primarily a function of 62 

the cloud optical thickness, and the absorbing near-infrared channels (1.6, 2.1 or 3.8 m), which 63 

is primarily a function of cloud particle size. Roebeling and Holleman (2009) developed a cloud 64 

microphysics based algorithm to retrieve precipitation occurrence and intensity named the 65 
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Precipitation Properties Visible and Near InfraRed (PP-VNIR) algorithm. Although their 66 

algorithm only requires visible and near-infrared observations from passive imagers, it combines 67 

two physical approaches that have been developed for visible and near-infrared observations and 68 

for Microwave Radiometer (MWR) observations, respectively. The approach to retrieve 69 

precipitation occurrence is taken from Lensky and Rosenfeld (2006), which was developed for 70 

visible and near-infrared observations. The approach to retrieve precipitation intensity is taken 71 

from Wentz and Spencer (1998), which was developed for MWR observations. Wolters et al. 72 

(2011) validated the PP-VNIR algorithm over West Africa against Tropical Rainfall Measuring 73 

Mission Precipitation Radar (TRMM-PR) and Climate Prediction Center Morphing Method 74 

(CMORPH) observations. It was found that in general the difference between the PP-VNIR and 75 

TRMM-PR rain rates is within +/- 10%. In addition, it was shown that the PP-VNIR algorithm is 76 

well suitable for monitoring the daytime diurnal cycle of precipitation in tropical areas. 77 

The retrieval of precipitation intensities for stratiform and convective clouds is feasible with 78 

the more physically-based satellite MWR retrieval methods (e.g. Wentz and Spencer, 1998) that 79 

relate retrieved liquid water path and rain column height to precipitation intensity. The main 80 

drawbacks of the MWR-based retrievals are that they only apply to liquid precipitation and are 81 

only available from polar orbiting satellites, and hence have a very limited time resolution. Recent 82 

studies attempt to exploit MWR observations for solid precipitation retrievals as well. The way 83 

forward, however, is complex as it requires a multi-sensor approach combining active and passive 84 

instrument observations, as well as a need to increase our physical understanding of the 85 

microphysical and radiative properties of ice hydrometeors (Levizzani et al., 2011; Grecu and 86 

Olson, 2008). 87 
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Beside single instrument retrievals, methods have been developed that combine measurement 88 

from different sources. The CMORPH method provides global precipitation estimates by 89 

propagating motion vectors derived from geostationary satellite infrared observations on passive 90 

microwave satellite scans (Joyce et al., 2004). The Global Precipitation Climatology Project 91 

(GPCP, Adler et al., 2003) merges measurements from three different sources, i.e., precipitation 92 

estimates from low-orbit satellite microwave data, geosynchronous-orbit satellite infrared data, 93 

and surface gauge precipitation observations from the Global Precipitation Climatology Centre 94 

(GPCC, Rudolf et al., 2011). The Precipitation Estimation from Remotely Sensed Information 95 

using Artificial Neural Networks (PERSIANN) combines information from infrared and 96 

microwave satellite imagery, and ground-surface topography to estimate precipitation, whereas 97 

rain gauge and weather radar data are used for calibration (Hsu et al., 1997). Because most 98 

combined precipitation products are tuned towards rain gauge observations, their bias with 99 

respect to these observations is small. However, combining information from different sources 100 

with different temporal and spatial resolutions will change the statistics of the precipitation data 101 

sets, which makes them less suited for evaluating the probability density functions of precipitation 102 

as is done in studies of, for example, extreme statistics.  103 

Frequent observations of precipitation occurrence and intensity are needed to evaluate and 104 

improve model predictions of precipitation. Weather radars and geostationary satellites can 105 

provide these observations at the required spatial and temporal scales. This paper aims to 106 

determine the applicability of precipitation retrievals from the European network of weather 107 

radars and from the PP-VNIR algorithm using observations from the Spinning Enhanced Visible 108 

and Infrared Imager (SEVIRI) for climate and weather model evaluation studies. First, the ability 109 

of the weather radar and PP-VNIR retrievals to capture spatial and temporal variations in 110 
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precipitation over Europe is determined. Hereto, we will perform a triple collocation analysis 111 

between these retrievals and the GPCC and/or the European Climate Assessment and Data set 112 

(ECA&D) gridded rain gauge data for the summer months of 2005, 2006, and 2007. Second, our 113 

study will analyze whether the precipitation occurrence and intensity retrievals of weather radars 114 

and the PP-VNIR algorithm reveal similar diurnal cycles during daylight hours, so as to determine 115 

their applicability for evaluating corresponding diurnal cycles predicted by weather and climate 116 

models. 117 

The outline of this paper is as follows. In Section 2, the satellite, weather radar and ground-118 

based measurements and retrieval methods are presented. In Section 3, the triple collocation 119 

method is explained. The results of the triple collocation for the summer months of 2005, 2006, 120 

and 2007 are presented in Section 4. The applicability of weather radar observations and PP-121 

VNIR retrievals is further discussed in Section 5. Finally, in Section 6, a summary is given and 122 

conclusions are drawn. 123 

 124 

1. Measurements and methods 125 

a. Satellite observations 126 

Meteosat Second Generation (MSG) is a series of European geostationary satellites that are 127 

operated by the European Organisation for the Exploitation of Meteorological Satellites 128 

(EUMETSAT). The first MSG satellite (METEOSAT8) was successfully launched in August 129 

2002, while in December 2005 the second MSG satellite (METEOSAT-9) was launched. The 130 

MSG is a spinning stabilized satellite that is positioned at an altitude of about 36000 km above 131 

the equator at 3.4° W for METEOSAT-8 and 0.0° for METEOSAT-9. The SEVIRI instrument 132 
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scans Europe and Africa every 15 minutes and operates three channels at visible and near-infrared 133 

wavelengths between 0.6 and 1.6 m, eight channels at infrared wavelengths between 3.8 and 14 134 

m, and one high-resolution visible channel at 0.7 m. The nadir spatial resolution of SEVIRI is 135 

1×1 km
2
 for the broadband high-resolution channel and 3×3 km

2
 for the other channels. Over 136 

Northern Europe (the Netherlands) the satellite viewing zenith angle of SEVIRI is about 60° and 137 

as a consequence the spatial resolution is reduced to about 4×7 km
2
.  138 

b. Satellite retrievals 139 

The Cloud Physical Properties (CPP) algorithm of the Satellite Application Facility on 140 

Climate Monitoring (CM-SAF) is used to retrieve Cloud Phase (CPH), Cloud Optical Thickness 141 

(COT), particle size (re), and Condensed Water Path (CWP) from SEVIRI reflectances (Roebeling 142 

et al., 2006). COT and re are retrieved for cloudy pixels in an iterative manner by simultaneously 143 

comparing satellite-observed reflectances at visible (0.6 m) and near-infrared (1.6 m) 144 

wavelengths with Look Up Tables (LUTs) of reflectances calculated for water and ice clouds with 145 

given optical thicknesses, particle sizes and surface albedos. The LUTs have been generated with 146 

the Doubling Adding KNMI (DAK) radiative transfer model (De Haan et al., 1987; Stammes, 147 

2001). The retrieval of CPH is done simultaneously with the retrieval of COT and particle size. 148 

The phase “ice” is assigned to pixels for which the observed 0.6 m and 1.6 m reflectances 149 

correspond to simulated reflectances of ice clouds, and the cloud-top temperature is lower than 150 

265 K. The remaining cloudy pixels are considered to represent water clouds (Wolters et al., 151 

2008). The CWP is computed from the retrieved COT and particle size. The retrievals are limited 152 

to satellite and solar viewing zenith angles smaller than 72°.  Varnai and Marshak (2007) found 153 

that cloud property retrievals become more sensitive to errors with increasing satellite and solar 154 
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viewing zenith angles as a result of larger inaccuracies in the radiative transfer simulations, lower 155 

signal-to-noise ratio of the reflectance observations, and larger differences between one-156 

dimensional and three-dimensional cloud reflectances. In addition, Roebeling et al. (2008) 157 

showed that the uncertainties in COT retrievals increase with increasing visible reflectances, 158 

which saturate at high COT values. 159 

PP-VNIR is a cloud microphysics-based algorithm for the retrieval of precipitation occurrence 160 

and intensity from passive imager observations (Roebeling and Holleman, 2009). Precipitation 161 

occurrence is retrieved from information on CWP, CPH, and droplet effective radius using three 162 

detection criteria. First, clouds with CWP values larger than a threshold value (CWPT) are 163 

considered potentially precipitating. Second, information on CPH is used to separate ice from 164 

water clouds. All ice clouds with CWP values larger than CWPT are labeled precipitating. Third, 165 

information on the droplet effective radius is used to separate precipitating from non-precipitating 166 

water clouds. All water clouds with a droplet effective radius larger than a threshold value (reT) 167 

and CWP values larger than CWPT are labeled precipitating.  Precipitation intensity (R) is 168 

retrieved from information on CWP and height of the rain column (H) using the following 169 

equation:  170 

 
0

0

CWP

CWPCWP

H

c
R  (1) 171 

where R is given in mm h
-1

 and H is given in km,  CWP0 is the CWP offset value in g m
-2

 172 

above which R is calculated,  is a dimensionless constant, and c is a constant in mm h
-1

 km that 173 

has a value of 1. The retrieved rain intensities are limited to a maximum intensity (Rmax). Inspired 174 
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by the empirical relationship between R and CTT suggested by Vicente et al. (1998), we calculate 175 

Rmax as function of H and an offset rain intensity (R0) with the following equation: 176 

 
6.1

0max HRR
 (2) 177 

To reduce the impact of Rmax on our precipitation retrievals R0 is chosen to be conveniently large 178 

and set at 2 mm hr
-1

. H is determined from the difference between the highest cloud-top 179 

temperature over an area of 100×100 SEVIRI pixels (CTTmax), which is assumed to represent a 180 

thin water cloud with a minimum rain column height (dH), and the cloud top temperature of the 181 

observed pixel (CTTpix). Assuming that the vertical decrease in temperature obeys a wet adiabatic 182 

lapse rate of 6.5 K km
-1

, H can be derived as follows: 183 

 dH
CTTCTT

H
pix

5.6

)( max
 (3) 184 

Roebeling and Holleman (2009) calibrated the PP-VNIR algorithm over the Netherlands with 185 

weather radar observations yielding the following optimum settings for: CWPT  (160 g m
-2

),  reT 186 

(15 m) , CWP0 (120 g m
-2

),  (1.6), and dH (0.6 km). PP-VNIR retrievals have been validated 187 

over the Netherlands against weather radar observations (Roebeling and Holleman, 2009) and 188 

over West Africa against TRMM-PR observations (Wolters et al., 2011), which revealed that 189 

these retrievals have an accuracy of about 0.8 mm h
-1

 and a precision of about 1.0 mm h
-1

. 190 

c. Weather radar observations 191 

The EUMETNET Operational Programme for the Exchange of weather RAdar information 192 

(OPERA) is an ongoing European program that provides a platform to exchange expertise on 193 

operational weather radar issues and to harmonize and improve the operational exchange of 194 
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weather radar information between national meteorological services (e.g. Huuskonen, 2006; 195 

Holleman et al., 2008; Huuskonen et al., 2010). An important achievement of OPERA is the 196 

establishment of the exchange of weather radar data through a data hub. Current work of OPERA 197 

is focused on the harmonization and quality control and improvement of radars across Europe. 198 

The radar data used in this study is a composite of the national composites of 6 countries: 199 

Belgium (2), France (23), Germany (16), Ireland (2), Netherlands (2), and United Kingdom (14). 200 

This means that the radar data used in this paper is a European composite based on a network of 201 

59 radars distributed over Western Europe. It should be noted that this network comprises 202 

different types of radars i.e., the majority are C-band radars (with some S-band radars), most of 203 

which are Doppler radars, and some are dual polarization radars. The European composite is 204 

provided as dBZ values, which are observed every 5 minutes at a horizontal resolution of 4×4 205 

km
2
. More details on the radar network used in this study can be found in Huuskonen (2006).  206 

Note that weather radar retrievals are not without problems, and are subject to numerous 207 

uncertainties, including calibration, attenuation, beam blockage, ground clutter, or variations in 208 

the relation between the radar echoes and rainfall rate (e.g. Wilson and Brandes, 1979; Krajewski 209 

et al., 2010; Hazenberg et al., 2011). Weather radar observations are only quantitatively usable for 210 

the central part of the image, covering an area of about 200 km around the weather radar station. 211 

Due to the Earth’s curvature, the distance over which weather radars observe the entire cloud is 212 

limited and at KNMI a maximum range of 200 km is used for quantitative precipitation 213 

estimation (Overeem et al., 2009). 214 

Weather radars employ backscattering of radio-frequency waves (5.6 GHz for C-band) to 215 

measure precipitation and other particles in the atmosphere (e.g. Battan, 1973; Doviak and Zrnic, 216 

1993). The intensity of the atmospheric echoes is converted to the so-called radar reflectivity 217 
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factor (Z) using the Rayleigh-scattering approximation. This approximation is valid when the 218 

radar wavelength (5 cm) is much larger than the raindrop diameters (<6 mm). Radar reflectivity 219 

factors are converted to rainfall intensities (R) using a fixed power law (Marshall et al., 1955): 220 

 6.1200RZ  (4) 221 

with the radar reflectivity factor Z in mm
6
 m

-3
 and rainfall intensity R in mm h

-1
.  222 

d. GPCC and E-OBS data sets 223 

Gauge-based gridded precipitation data sets are another source of information. For Europe the 224 

two most widely used gauge-based gridded data sets are the GPCC data set provided by the 225 

German Weather Service (Rudolf et al., 2011) and the European Daily High-resolution 226 

Observational Gridded Dataset (E-OBS) provided by the Royal Netherlands Meteorological 227 

Institute (Haylock et al., 2008). 228 

The GPCC data set is available at a regular grid of 0.5°, 1.0° or 2.5° at a monthly resolution. 229 

This data set covers the global land areas excluding Greenland and Antarctica over a period of 230 

more than 100 years (1901 to 2009), and is freely available for scientific purposes 231 

(http://gpcc.dwd.de). This gridded data set is generated from the most comprehensive station 232 

database of monthly observed precipitation world-wide. The amount of available stations varies 233 

with time, and reached a maximum of ca. 45000 stations globally in 1986/87. Over Europe the 234 

number of observing stations is larger than 7000. These stations are unevenly distributed, with the 235 

highest densities in the Germany, France, the UK, the Netherlands and Switzerland. All 236 

observations in this database are subject to a multi-stage quality control to minimize the risk of 237 

generating temporal inhomogeneities in the gridded data due to varying station densities. 238 

Hereafter the data are projected on a regular grid by spatially interpolating the anomalies from 239 
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climatological normals at the stations using a modified version of the Spheremap method 240 

(Willmott et al., 1985), and super-imposing these gridded anomalies on the background 241 

climatology. For our study we used the GPCC Full Data Reanalysis Product version 4 of monthly 242 

precipitation amounts projected at regular grid of 0.5°x0.5°. 243 

The European Daily High-resolution Observational Gridded Dataset (E-OBS) of rain gauge 244 

observations is available on a regular grid of 0.25° 0.25° and at a daily resolution. The daily 245 

observations at point locations are taken from the European Climate Assessment and Dataset 246 

(ECA&D; http://eca.knmi.nl) comprising a set of about 2300 observing stations. These stations 247 

are unevenly distributed, with the highest densities in the UK, the Netherlands and Switzerland.  248 

E-OBS provides land-only information on precipitation amounts and minimum, maximum, and 249 

mean surface temperatures over Europe for the period 1950–2006 (Haylock et al, 2008). This data 250 

set improves on previous products in its spatial resolution and extent, time period, number of 251 

contributing stations, and attention to find the most appropriate method for spatial interpolation of 252 

daily climate observations. The data set has been designed to provide the best estimate of grid box 253 

averages rather than point values to enable direct comparisons with regional climate models. The 254 

interpolation process is employed in three steps. First, the monthly precipitation totals and 255 

monthly mean temperature are interpolated using three-dimensional thin-plate splines. Second, 256 

the daily anomalies are interpolated using indicator and universal kriging for precipitation and 257 

kriging with an external drift for temperature. Finally, the monthly and daily estimates are 258 

combined. Interpolation uncertainty is quantified by the provision of daily standard errors for 259 

every grid square. 260 

2. Triple collocation 261 
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Triple collocation is a method that can be used to estimate the errors and the cross-calibration 262 

of three linearly related data sets with uncorrelated errors (Stoffelen et al., 1998). Until now, triple 263 

collocation has been mainly applied for error estimates and calibration of scatterometer winds 264 

(Stoffelen et al., 1998; Jansen et al., 2007) and soil moisture retrievals (Scipal et al, 2008; Dorigo 265 

et al., 2010). However, triple collocation can be applied to all types of physical parameters that 266 

represent the same spatial and temporal scales, and are subject to mean random errors with a 267 

Gaussian nature. In this paper, the method is applied to quantify the residual errors in three 268 

independent precipitation data sets. Below we will introduce the general principles of the triple 269 

collocation method. 270 

Triple collocation assumes that the rainfall data sets (Rx) are related to a hypothetical true 271 

precipitation (R) as follows (Stoffelen et al, 1998): 272 

 

ssss

rrrr

gggg

eRR

eRR

eRR

 (5) 273 

in which x are the offsets, x the gains and ex the residual errors. Here x represents the gridded 274 

rain gauge (g), weather radar (r), and satellite (s) data sets, respectively. To eliminate differences 275 

due to differences in the x and x, the three data sets are recalibrated to the hypothetical true 276 

precipitation R. The recalibrated data sets are defined as **

xx eRR , which are calculated by 277 

eliminating the calibration coefficients in the observational data sets xxxxx RR //*  and in 278 

the residual errors xxx ee /* . Because the hypothetical true precipitation is not known, one of 279 

the three data sets is chosen as a reference. The residual errors do not depend on the chosen 280 
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reference data set. Now the unknown true precipitation can be removed, and Eq. 5 can be 281 

rewritten to: 282 

 

****

****

****

srsr

sgsg

rgrg

eeRR

eeRR

eeRR

 (6) 283 

By cross-multiplying the equations of Eq. 6 and assuming that the residual errors are 284 

uncorrelated, the mean variance of residual errors ( 2*

xe ) can be fully determined by three 285 

independent and calibrated precipitation estimates using the following equations: 286 

 

))((

))((

))((

****2*

****2*

****2*

'

'

'

rsgss

srgrr

sgrgg

RRRRe

RRRRe

RRRRe

 (7) 287 

The triple collocation errors that are evaluated in this paper are ** , rg ee  and *

se . We 288 

assume that the data sets represent similar spatial and temporal scales, and their error structure is 289 

Gaussian. Note, if the data sets resolve different scales the variance common to the smaller spatial 290 

and/or temporal scales are part of the variances of residual errors. These variances, also referred 291 

to as the representativeness errors, can be minimized by rescaling all data sets to the scale of the 292 

coarsest data set. 293 

3. Results 294 

In this section we present the results of the triple collocation analysis. The data used for this 295 

analysis are the daily E-OBS and the monthly GPCC gridded rain gauge data sets, and the 15-296 

minutes weather radar and PP-VNIR precipitation occurrence and intensity data sets. The study is 297 



 15 

performed for European land for the years 2005, 2006, and 2007. The area restriction is imposed 298 

by the criterion of data availability in all data sets. Since the PP-VNIR retrievals are limited to 299 

daylight hours (solar zenith angles < 72°), we restricted the study period to the summer months, 300 

i.e., May, June, July, and August. During these months the availability of PP-VNIR retrievals 301 

over Europe is at a maximum. During winter the PP-VNIR algorithm is less suited for 302 

precipitation retrievals over Europe. Beside the very limited number of daylight-only observations 303 

with solar zenith angles < 72°, precipitation manifests in more different forms during winter (e.g. 304 

convective, stratiform, drizzle, and solid precipitation). During summer the dominant form is 305 

convective precipitation. For similar reasons weather radar observations during winter are less 306 

reliable than during summer. The weather radar data were used to calculate the ratios between 24-307 

hr and daylight-only precipitation on a pixel-by-pixel basis, which were used to convert the 308 

daylight-only PP-VNIR retrievals to 24-hr sums. Wüest et al. (2009) found that diurnal cycles of 309 

precipitation, derived from weather radar data that are bias-corrected with daily rain gauge 310 

observations, provide accurate diurnal cycles of precipitation occurrence and intensity. Their 311 

study confirms that temporal variations in weather radar data may be used to convert the daylight-312 

only values to 24-hr sums.  313 

As stated in Section 3, the main assumptions behind triple collocation are that all datasets are 314 

linearly related, and that the errors are Gaussian. These assumptions were tested and shown to 315 

hold (results not shown). The three data sets were averaged over sufficiently long periods and re-316 

gridded to sufficiently low resolutions to achieve data sets that are distributed Gaussian. The 317 

linearity between the three data sets was verified as well (not shown), and was also shown by 318 

Roebeling and Holleman (2009) and Wolters et al. (2011). 319 

 320 
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Spatial errors in the precipitation data sets 321 

To quantify the spatial errors in the precipitation data sets the triple collocation errors, 322 

hereinafter referred to as triple-errors, were calculated for the mean precipitation amounts, 323 

expressed in mm day
-1

, over the summer months of 2005, 2006, and 2007. The weather radar and 324 

PP-VNIR data sets were re-sampled to the spatial resolution of the data sets with the coarsest 325 

resolution, which is 0.50x0.50° in case the GPCC data set is used and 0.25°x0.25° in case the E-326 

OBS data set is used. As an example Figure 1 presents the spatial distributions of the precipitation 327 

amounts over the summer months of 2006, as derived from the E-OBS, PP-VNIR and weather 328 

radar data sets. These types of data sets (images) were generated for the summer months of 2005, 329 

2006, and 2007. For each year of summer months a single triple-error can be calculated from 330 

three of these data sets, which is representative for the spatial coherence between these data sets 331 

for the entire observation domain and period of summer months. The triple-errors and data sets 332 

statistics are presented in Table 1 taking E-OBS as a reference, and Table 2 taking GPCC as a 333 

reference. 334 

A qualitative analysis of this Figure 1 reveals large differences between the three data sets. 335 

Especially the weather radar data deviate much from the other two data sets, and seem to be 336 

wetter over major parts of France and drier over major parts of the UK as compared to the other 337 

data sets. These differences are in agreement with the results of Lopez (2008) and Kidd et al. 338 

(2011), who found that the OPERA precipitation radar composite exhibit systematic and 339 

consistent differences with respect to CMORPH, rain gauge, and European Centre for Medium-340 

Range Weather Forecasts (ECMWF) model data sets. They found that the OPERA precipitation 341 

radar composite observes more precipitation over France and the North Sea, while a strong deficit 342 

is observed over the UK.  343 
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Although the spatial patterns of the E-OBS and PP-VNIR data sets are similar, the 344 

absolute precipitation amounts of E-OBS are systematically lower than the PP-VNIR amounts. 345 

This is confirmed by the statistics presented in Table 1 and Table 2. Compared to E-OBS, the 346 

median precipitation amounts of PP-VNIR and weather radar are respectively about 0.75 and 1.25 347 

mm day
-1

 higher, while they are respectively about 0.45 and 1.00  mm day
-1

 higher for GPCC. It is 348 

noteworthy that there is a bias of about 0.25 mm day
-1

 between the median precipitation amounts 349 

of GPCC (Table 1) and E-OBS (Table 2). This bias may be explained by differences in quality 350 

control procedures (van den Besselaar et al., 2011), and by differences in the number of observing 351 

stations and in the interpolation method that is used to prepare the data sets (Hofstra et al., 2009).  352 

The GPCC data set is likely to be more accurate over Germany and France, where many more 353 

observing stations contributed to GPCC than to E-OBS. The correlations, which were calculated 354 

relative to the E-OBS or GPCC data sets, show that the PP-VNIR retrievals correlate fairly well 355 

with these data sets, better than 0.62 for E-OBS and better than 0.71 for GPCC, whereas the 356 

weather radar data correlate very weakly with these data sets. The triple-errors of E-OBS, GPCC, 357 

and PP-VNIR, are of the same order of magnitude, and never exceed 1.0 mm day
-1

. PP-VNIR 358 

consistently has smaller errors than the weather radar observations. It also has smaller errors than 359 

E-OBS and GPCC for one of the three years. 360 

The high triple-errors in the weather radar data have three reasons. First, the weather radar 361 

composite is constructed from observations of a network of 59 weather radars. Making a reliable 362 

European composite requires very good harmonization between these radars. This is difficult to 363 

achieve because the network comprises different types of radars (see Section 2), operated by 6 364 

different European meteorological services. It implies that there are different detection thresholds, 365 

clutter filters, and calibration procedures as well as different operational practices. This may cause 366 
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differences between radars (and especially countries) in retrieved rainfall. In addition, Lopez 367 

(1998) found that part of the observed differences resulted from errors in the post-processing 368 

procedures that are used to prepare the data for OPERA. Currently, one of the main focuses of the 369 

OPERA program is to improve harmonization and data quality of radars across Europe (see 370 

Section 2).  Second, the radar signal is a function of distance from the radar and the terrain type, 371 

which can cause spatial biases in the observations. Third, the radar observations might be 372 

corrupted by clutter. Although sophisticated procedures to remove clutter have been applied by 373 

radar operators, a few missed events can still affect the maximum and standard deviation values 374 

of the weather radar products. This is confirmed by the high maximum rain amounts from 375 

weather radar presented in Table 1 and Table 2.  376 

 377 

Temporal errors in the precipitation data sets 378 

To quantify the temporal errors in the precipitation data sets, the triple-errors were 379 

calculated per grid box for the decadal (10 days) precipitation amounts during the summer months 380 

of 2005, 2006, and 2007. The decadal precipitation amounts from weather radar and PP-VNIR 381 

were re-sampled to the spatial resolution of 0.25° 0.25° of the E-OBS data set. Note that the  382 

statistics presented in this sub-section (e.g. the correlations in Figure 2 and the triple-errors in 383 

Figure 3) were calculated for each re-sampled grid box separately. These statistics represent the 384 

temporal relationship between the three data sets at a specific location only, and were calculated 385 

from 36 decadal precipitation values of the three data sets for that grid box.  386 

 387 

The triple collocation method only provides meaningful error estimates if the considered 388 

data sets represent the same physical quantity and are sufficiently correlated. This is verified by 389 
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evaluating the correlations between the three data sets. Figure 2 presents the spatial distributions 390 

of correlations between decadal precipitation amounts from weather radar and E-OBS, from PP-391 

VNIR and E-OBS, and from weather radar and PP-VNIR. This figure shows that the weather 392 

radar is highly correlated with the E-OBS data. The 10
th

 and 90
th

 percentiles of the correlations 393 

are 0.39 and 0.83. As expected, an offline evaluation of the sampling density of the rain gauges 394 

revealed that the areas with the highest correlations correspond to areas with the densest 395 

sampling, while the correlations are lower in coarser sampled and mountainous areas. The 396 

correlations between PPVNIR and E-OBS are weaker; the 10
th

 and 90
th

 percentiles of the 397 

correlations are 0.34 and 0.69. These values are close to the values found for the spatial error 398 

analysis (see Table 1). The PP-VNIR correlates better with the weather radar data, with 10
th

 and 399 

90
th

 percentiles of the correlations of 0.42 and 0.76.  400 

Figure 3 presents the triple-errors of the E-OBS, weather radar, and PP-VNIR data sets. 401 

This figure shows that the issues of weather radar observations regarding clutter and 402 

harmonization that greatly affect the spatial variations in precipitation amount have much less 403 

effect on temporal variations in precipitation amount on a sub-monthly scale. This can be seen 404 

from small triple errors in the weather radar and E-OBS data sets, which vary between 0.5 and 1.5 405 

mm day
-1

. The errors in the PP-VNIR data set are higher, and range between 1.0 and 2.0 mm 406 

day
1

.  These errors are close to the values that we found for the analysis of spatial errors. The 407 

strengths and weaknesses of the PP-VNIR algorithm for capturing temporal and spatial variations 408 

are similar. Given the fact that this cannot be said for weather radar, the PP-VNIR algorithm is 409 

shown to be a valuable new source of precipitation data. This is a major advantage of using a data 410 

from a single-platform instrument (i.e. SEVIRI).  411 

 412 
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Evaluation of the daylight-only diurnal cycle 413 

Information on the daylight-only diurnal cycle of precipitation occurrence and intensity is very 414 

important for model evaluations. In this subsection, the diurnal cycles of precipitation occurrence 415 

and intensity, as retrieved from weather radar and PP-VNIR observations during daylight hours, 416 

are examined in relation to prevailing atmospheric conditions. This examination is done for four 417 

subdomains, namely the Atlantic Ocean (ATL), France (FRA), Benelux (BNL), and Germany 418 

(GER). These subdomains represent different climate zones i.e., in subdomain FRA a summer 419 

convection climate with influence from the Atlantic Ocean; in subdomain BNL a Maritime 420 

climate; in the subdomain GER a humid continental climate; and in subdomain ATL an oceanic 421 

climate.  Figure 4 presents the location of these subdomains. In the previous sub-sections we have 422 

shown that the network of weather radars has great difficulty in capturing spatial variations in 423 

precipitation amounts, whereas it is well capable of capturing decadal variations in precipitation 424 

amounts. Hence, it is more useful to normalize the daylight-only diurnal cycles, and analyze the 425 

standardized anomalies rather than the absolute differences. The normalized daylight-only diurnal 426 

cycles are calculated with the following equation: 427 

 1
1

1'

'

n

t
t

t
t

R
n

R
NDP  (8) 428 

where NDP is the fractional deviation from the mean (between –1 and n-1),  Rt is the precipitation 429 

occurrence in % or intensity in mm hr
-1

 at time t, and n is the number of observations during the 430 

day.  431 

Figure 5 present the daylight-only diurnal cycles of normalized precipitation occurrence and 432 

intensity for the selected subdomains. The rain occurrence daylight-only diurnal cycles from 433 
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weather radar and PP-VNIR are very similar, as can be seen from the high correlations (> 0.77) 434 

and low standard deviation of the relative differences (< 0.06). The daylight-only diurnal cycles  435 

of precipitation intensities from weather radar and PP-VNIR have lower correlations (between 436 

0.25 and 0.87) and higher standard deviations of the relative differences (< 0.26) than the 437 

precipitation occurrence cycles. It can be seen that the largest differences occur in the early 438 

morning and late afternoon. It is suggested that these differences originate from higher sensitivity 439 

of the cloud microphysical property retrievals to errors. It has been shown in several studies that 440 

cloud physical property retrievals at slant solar and/or satellite zenith angles are very sensitive to 441 

retrieval errors (Loeb and Coakley 1998, Varnai and Marshak, 2007; Jonkheid et al., 2011). 442 

Especially for clouds with large optical thickness these errors can become very large (> 100%). 443 

Remarkably, infrared based retrievals also reveal a time lag in precipitation intensity at the end of 444 

the day. However, in the case of infrared based retrievals this time lag is caused by the cirrus 445 

clouds connected to convective clouds, which can persist for some hours after a convective cloud 446 

has dissipated (Gang et al., 2006). 447 

There are distinct differences between the daylight-only diurnal cycles of precipitation 448 

occurrence of the four subdomains. Over ocean (subdomain ATL) a typical stratocumulus related 449 

cycle is observed, similar to corresponding cycles over Ocean surfaces found from other data sets 450 

(Negri et al., 2002; Nesbitt and Zipser, 2003; and Dai et al., 2008. The highest probability of rain 451 

occurs at the end of the night. During the day the stratocumulus clouds start to dissolve, which is 452 

revealed by a decreasing probability of rain as the day progresses. Over land the summertime 453 

daylight-only diurnal cycles of the precipitation properties are dominated by convective clouds 454 

that strongly respond to the daylight-only diurnal cycle of the land surface temperature. During 455 

the night, the land surface cools down and convective cloud systems collapse. During the day, the 456 
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surface heats up and convective processes start to develop. The strongest convection is typically 457 

found in the afternoon when surface temperatures are highest. The daylight-only diurnal cycles of 458 

precipitation occurrence over the three terrestrial subdomains show remarkably similar patterns, 459 

with 20% lower occurrences in the morning and 20% higher occurrences at the end of the day. 460 

These variations are in line with the findings of Levizzani et al. (2010), who found from infrared 461 

observations that the percentage of cold clouds over Europe land increases by about 50% from 8 – 462 

16-h UTC. The daylight-only diurnal cycles of precipitation intensity over these subdomains 463 

exhibit a pronounced peak in intensity in the afternoon. Compared to the morning, the afternoon 464 

intensities are about 70% higher over subdomain GER, and about 50% higher over subdomains 465 

BNL and FRA, according to the radar data. The sharp increase in precipitation intensity over 466 

continental Europe (subdomain GER) suggests that the summertime weather over this subdomain 467 

is dominated by convection. The global mean diurnal cycle of precipitation over land from 468 

CMORPH data, as presented by Janowiak et al. (2005), shows a similar shape but a smaller 469 

increase from 8 - 16 h (~30%), than the daylight-only diurnal cycles presented in Figure 5. The 470 

latter is confirmed by Wolters et al. (2011), who compared PP-VNIR and CMORPH daylight-471 

only diurnal cycles of precipitation intensity over West Africa, and found that these cycles had 472 

similar shapes, but revealed a larger increase from morning till afternoon for PP-VNIR than for 473 

CMORPH, which may be related to the better spatial and temporal resolution of the SEVIRI 474 

instrument. 475 

4. Summary and conclusions 476 

In this paper the triple collocation method is applied to estimate spatial and temporal triple-477 

errors in three precipitation data sets, i.e., gridded rain gauge (E-OBS and GPCC), weather radar, 478 
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and PP-VNIR precipitation data sets. The large number of coinciding observations in these three 479 

data sets allows for a statistical assessment of the accuracy and precision of these types of 480 

information over Europe. The potential of using the PP-VNIR algorithm for precipitation 481 

occurrence and intensity retrievals from SEVIRI is shown. It is discussed that the weather radar 482 

composites face a number of shortcomings related to clutter and harmonization of the radar 483 

network with respect to obtaining spatially consistent distributions of precipitation amounts, 484 

whereas weather radar observations appear very well suited for monitoring temporal variations in 485 

precipitation.  486 

The results show that the spatial triple-errors are smaller than 1.0 mm day
-1

 for the gridded 487 

rain gauge and PP-VNIR data sets. However, the spatial triple-errors in the European weather 488 

radar composite are very large (up to 18 mm day
-1

) and the correlation to the other data sets is 489 

close to zero. It is argued that techniques to composite weather radar observations need major 490 

improvements, e.g., by harmonizing algorithms, intercalibrating instruments and improving 491 

distance correction procedures, before a spatially consistent European composite of precipitation 492 

amount can be generated from weather radar. In contrast, the analysis of temporal triple-errors 493 

reveals that weather radars are capable of capturing temporal variations. Apart from the 494 

mountainous areas, the temporal triple errors are smaller than 1.0 mm day
-1

.   495 

It is shown that the daylight-only diurnal cycles of the precipitation occurrence retrievals from 496 

weather radar and PP-VNIR agree very well over European climate regions, with correlations 497 

between 0.8 and 1.0.  Although the correlations of these cycles are lower for precipitation 498 

intensity they still range between 0.3 and 0.9, which is reasonable. It is argued that these 499 

differences are related to the fact that the SEVIRI retrievals experience saturation for very thick 500 

clouds or during the unfavorable viewing conditions that occur during early morning or late 501 
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afternoon. A disadvantage of the PP-VNIR algorithm is that the retrievals can only be carried out 502 

during daylight hours. However, PP-VNIR retrievals can be made from observations of 503 

geostationary satellites, such as MSG, at an unprecedented sampling rate of 15 minutes for one 504 

fifth of the globe over land and ocean surfaces. This makes these retrievals a valuable source of 505 

information for water and energy balance studies.  506 

This paper shows that the triple collocation technique is a promising method to estimate the 507 

errors in precipitation data sets. The magnitudes of the spatial and temporal triple-errors are 508 

reasonable and can be explained by performance issues of each data set. The observed differences 509 

in the spatial triple-errors reveal serious issues related to the aggregation of weather radar 510 

observations.  This confirms the need for harmonization and quality control and improvement of 511 

radar data across Europe, which is currently one of the main focuses of the OPERA program.  The 512 

observed patterns in the temporal triple-errors reveal larger triple-errors in the under-sampled 513 

regions of the E-OBS data sets as well as in mountainous areas. Moreover, these errors show the 514 

lower ability of PP-VNIR relative to E-OBS and weather radar to monitor temporal variations in 515 

precipitation. Although triple collocation is a powerful method, it should be realized that this 516 

approach cannot be applied blindly. Two assumptions are central for the validity of the derived 517 

error model. Firstly, the residual errors need to be uncorrelated. Secondly, there need to be linear 518 

relations between the data sets. The first assumption is true because the three data sets used in this 519 

study are derived with fundamentally different observation techniques and retrieval methods.  520 

However, systematic spatial correlations may occur due to different regional uncertainties in the 521 

data sets. The second assumption is not necessarily true. Although the three data sets represent the 522 

same physical quantity, their measurement methods observe precipitation at different altitudes 523 
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and sampling resolutions. Due to the latter differences, a more sophisticated calibration approach 524 

might be necessary to minimize systematic errors. 525 

In the future, the improvement of precipitation predictions in hydrostatic and non-hydrostatic 526 

NWP models would be a very valuable step towards better forecasting of extreme weather events, 527 

such as the area, intensity and lifetime of severe rainstorms. Until recently, only weather radars 528 

could provide the frequent precipitation observations required to evaluate precipitation 529 

predictions. Upcoming radars on the European Space Agency (ESA) Earth Clouds, Aerosols, and 530 

Radiation Explorer (EarthCARE), and the three-hourly observations that will be provided by the 531 

Global Precipitation Measurement (GPM) era constellation of satellites are important steps 532 

towards more frequent availability of accurate precipitation data (Kidd et al., 2010) through an 533 

improved understanding of the microphysical properties of the hydrometeors and of the vertical 534 

cloud and rain column (e.g., Barker et al., 2011; Iguchi et al., 2010). However, the single-sensor 535 

PP-VNIR algorithm is unique because it combines the strong points of different methods that 536 

were developed for different satellite instruments (passive microwave and passive imagers), and it 537 

provides precipitation retrievals over land and ocean at a 15-minute time resolution without the 538 

necessity of using additional information. Because the PP-VNIR retrievals are not corrected with 539 

other observations, the original precipitation statistics are conserved. Provided these statistics are 540 

realistic they would be of great value for model evaluation studies, while data sets such as 541 

CMORPH and GPCP are less suitable for such studies. 542 
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TABLES 702 

 703 

TABLE 1. Statistics and triple-errors for spatial variations in precipitation amounts during 704 

summer months (May – August) of 2005, 2006 and 2007 for EOBS, Weather radar and PP-705 

VNIR. Note that the correlations (Corr.) are calculated against E-OBS. 706 

Data set Median 

[mm day
-1

] 

95
th

 %  

[mm day
-1

] 

Std 

[mm day
-1

] 

Err. 

[mm day
-1

] 

Corr. 

[-] 

 

2005 

E-OBS 1.76 2.82 0.85 0.53 1.00 

Weather radar 3.01 4.98 1.56 19.69 0.04 

PP-VNIR 2.84 4.15 1.04 0.75 0.68 

 

2006 

E-OBS 2.03 3.11 0.82 0.63 1.00 

Weather radar 3.30 6.09 1.81 2.16 0.34 

PP-VNIR 2.77 4.22 0.96 0.82 0.62 

 

2007 

E-OBS 3.06 3.87 0.85 0.91 1.00 

Weather radar 4.45 6.99 2.07 6.38 0.13 

PP-VNIR 2.85 4.24 1.06 0.12 0.68 

707 
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TABLE 2. Similar to Table 1 but for GPCC, Weather radar and PP-VNIR  708 

Data set Median 

[mm day
-1

] 

95
th

 % 

[mm day
-1

] 

Std 

[mm day
-1

] 

Err. 

[mm day
-1

] 

Corr. 

[-] 

 

2005 

GPCC 2.08 3.11 0.87 0.59 1.00 

Weather 

radar 

3.05 4.93 1.50 11.54 0.08 

PP-VNIR 2.86 3.98 0.97 0.85 0.82 

 

2006 

GPCC 2.34 3.33 0.85 0.62 1.00 

Weather 

radar 

3.33 6.18 1.73 2.18 0.35 

PP-VNIR 2.77 4.07 0.89 0.57 0.71 

 

2007 

GPCC 3.31 4.34 0.90 0.51 1.00 

Weather 

radar 

4.46 6.87 1.95 4.02 0.22 

PP-VNIR 2.82 4.13 1.01 0.63 0.74 

 709 

710 



 37 

LIST OF FIGURE CAPTIONS  711 

FIG.  1. Example of the mean daily precipitation amounts from E-OBS (left panel), Weather radar 712 

(middle panel), and PP-VNIR (right panel) in mm day
-1

 over the period May-August 2006. All 713 

data sets are presented at the E-OBS equal latitudinal grid of 0.25°x0.25°. Over the entire domain 714 

the mean daily precipitation amounts are 2.12 mm day
-1

 for E-OBS, 3.51 mm day
-1

 for weather 715 

radar, and 2.91 mm day
-1

 for PP-VNIR. 716 

FIG.  2. Correlations between decadal precipitation amounts from Weather radar and E-OBS (left 717 

panel), PP-VNIR and E-OBS (middle panel), and Weather radar and PP-VNIR for the summer 718 

months (May-August) of the years 2005, 2006, and 2007. All data sets are presented at the E-OBS 719 

equal latitudinal grid of 0.25°x0.25°. 720 

FIG.  3. Triple-errors for temporal variations in decadal precipitation amounts in mm day
-1 

during 721 

the summer months (May-August) of 2005, 2006, and 2007 for E-OBS (left panel), Weather radar 722 

(middle panel), and PP-VNIR (right panel). All data sets are presented at the E-OBS equal 723 

latitudinal grid of 0.25°x0.25°. 724 

FIG.  4. Location of the subdomains, from left to right Atlantic Ocean (ATL), France (FRA), 725 

Benelux (BNL), and Germany (GER) 726 

FIG. 5. Normalized daylight-only diurnal cycles of precipitation occurrence (left panel) and 727 

intensity (right panel) for the Benelux (BNL), France (FRA), Germany (GER), and Atlantic 728 

Ocean (ATL) subdomains, calculated over the period May-August 2005, 2006, and 2007. 729 

730 
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FIGURES 731 

 732 

   
FIG.  1. Example of the mean daily precipitation amounts from E-OBS (left panel), Weather 733 

radar (middle panel), and PP-VNIR (right panel) in mm day
-1

 over the period May-August 2006. 734 

All data sets are presented at the E-OBS equal latitudinal grid of 0.25°x0.25°. Over the entire 735 

domain the mean daily precipitation amounts are 2.12 mm day
-1

 for E-OBS, 3.51 mm day
-1

 for 736 

weather radar, and 2.91 mm day
-1

 for PP-VNIR. 737 

738 
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 739 

 740 

   
FIG.  2. Correlations between decadal precipitation amounts from Weather radar and E-OBS 741 

(left panel), PP-VNIR and E-OBS (middle panel), and Weather radar and PP-VNIR for the 742 

summer months (May-August) of the years 2005, 2006, and 2007. All data sets are presented at 743 

the E-OBS equal latitudinal grid of 0.25°x0.25°. 744 

745 
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 746 

  
 

FIG.  3. Triple-errors for temporal variations in decadal precipitation amounts in mm day
-1 

747 

during the summer months (May-August) of 2005, 2006, and 2007 for E-OBS (left panel), 748 

Weather radar (middle panel), and PP-VNIR (right panel). All data sets are presented at the E-749 

OBS equal latitudinal grid of 0.25°x0.25°. 750 

751 
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 752 

 753 

 754 
FIG.  4. Location of the subdomains, from left to right Atlantic Ocean (ATL), France (FRA), 755 

Benelux (BNL), and Germany (GER) 756 

 757 

758 
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FIG. 5. Normalized daylight-only diurnal cycles of precipitation occurrence (left panel) and 760 

intensity (right panel) for the Benelux (BNL), France (FRA), Germany (GER), and Atlantic 761 

Ocean (ATL) subdomains, calculated over the period May-August 2005, 2006, and 2007. 762 

 763 


