
Satellite cloud and precipitation
property retrievals for climate
monitoring and hydrological

applications

Erwin Wolters



ISBN: 978-90-393-5731-6

©2012 E.L.A. Wolters
Cover picture: Mixture of clouds in a turbulent late-summer atmosphere on 10 September

2011. The clouds with well-defined edges contain water droplets, while the clouds with

feather-like patterns contain ice crystals. Picture taken by author.



Satellite cloud and precipitation property
retrievals for climate monitoring and

hydrological applications

Satellietbepalingen van wolken- en neerslageigenschappen ten behoeve van

klimaatmonitorings- en hydrologische toepassingen

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector

magnificus, prof. dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties

in het openbaar te verdedigen op

donderdag 29 maart 2012 des middags te 2.30 uur.

door

Erwin Leonardus Antonius Wolters

geboren op 1 februari 1976 te Roermond



Promotor: Prof. dr. ir. B. J. J. M. van den Hurk

Co-promotor: Dr. ir. R. A. Roebeling

The work presented in this thesis was funded through EUMETSAT’s Climate Monitoring Satellite

Application Facility (CM-SAF) and ESA’s Water Cycle Multi-Mission Observation Strategy (WACMOS,

contract number 22086/08/I-EC).



Contents

Samenvatting v

1 Introduction 1
1.1 Climate and climate change 1
1.2 Clouds in the climate system 3
1.2.1 The role of clouds in the radiation budget 3
1.2.2 The role of clouds in the hydrological cycle 4
1.3 Satellite remote sensing of clouds and precipitation 6
1.4 This thesis 8

2 Theory, data, and retrieval algorithms 11
2.1 Theory 11
2.1.1 Radiative transfer in a cloudy atmosphere 11
2.1.2 Radiative transfer models 16
2.1.3 Precipitation formation theory 17
2.2 Data 18
2.2.1 Spinning Enhanced Visible and Infrared Imager (SEVIRI) 19
2.2.2 Moderate-Resolution Imaging Spectroradiometer (MODIS) 19
2.2.3 Tropical Rainfall Measurement Mission - Precipitation Radar (TRMM-PR) 20
2.2.4 Advanced Microwave Scanning Radiometer - Earth Observing System

(AMSR-E) 21
2.3 Retrieval algorithms 21
2.3.1 Reflectance Lookup Tables 21
2.3.2 Cloud detection algorithm 22
2.3.3 Retrieval of cloud physical properties (CPP) 23
2.3.4 Precipitation Properties retrieval algorithm (CPP-PP) 25

3 SEVIRI cloud-phase retrieval evaluation using ground-based observations 27
3.1 Introduction 28
3.2 Cloud-phase determination algorithms 30
3.2.1 Satellite algorithms 30
3.2.2 Cloud-phase determination from ground-based measurements 33

i



Contents

3.3 Data and methods 35
3.3.1 Satellite data analysis 35
3.3.2 Ground-based data analysis 36
3.3.3 Comparison of satellite to ground-based cloud-phase observations 37
3.4 Results 40
3.4.1 Instantaneous cloud-phase retrievals 40
3.4.2 Monthly liquid water and ice cloud occurrence frequency 41
3.4.3 Daytime diurnal cycle of cloud phase 45
3.5 Conclusions 46

4 Broken and inhomogeneous cloud impact on satellite cloud property
retrievals 49

4.1 Introduction 50
4.2 Data and methods 52
4.2.1 MODIS data 52
4.2.2 CPP retrieval algorithm 53
4.2.3 Synthetic datasets 55
4.2.4 Aggregation of MODIS observations 58
4.3 Results 59
4.3.1 Description of observed cloud-type occurrence over ATL and EUR 59
4.3.2 Simulations with synthetic data 61
4.3.3 MODIS observations 64
4.4 Discussion and conclusions 68

5 SEVIRI precipitation retrieval evaluation over West Africa using
TRMM-PR and CMORPH 71

5.1 Introduction 72
5.2 Data and methods 75
5.2.1 CPP-PP precipitation retrieval technique 75
5.2.2 Precipitation retrieval from TRMM-PR 76
5.2.3 CMORPH precipitation retrieval technique 76
5.2.4 Evaluation of SEVIRI precipitation intensities 77
5.2.5 Evaluation of the monsoon progression over West Africa 79
5.3 Results 80
5.3.1 Validation of SEVIRI precipitation retrievals with TRMM-PR 80
5.3.2 Monitoring of the monsoon progression 82
5.3.3 Daytime diurnal cycle of precipitation 88
5.4 Summary and conclusions 90

6 A soil moisture–precipitation feedback study over West Africa 93
6.1 Introduction 93
6.2 Soil moisture and precipitation datasets 95
6.2.1 CPP-PP retrieval algorithm 95
6.2.2 AMSR-E soil moisture retrieval algorithm 96
6.2.3 Data analysis 97

ii



Contents

6.3 Results 99
6.4 Discussion and conclusions 100

7 Perspectives 103
7.1 Algorithm improvements 104
7.2 Applications 106

Summary 109

Bibliography 113

Dankwoord 131

Curriculum vitae 135

iii





Samenvatting

Wolken spelen een belangrijke rol in de stralingsbalans en hydrologische cyclus op aarde.

Het kortgolvige deel van het spectrum van de zonnestraling wordt door wolken effectief

gereflecteerd en zorgt voor een koelend effect. Uitgaande langgolvige straling vanaf het

aardoppervlak wordt door wolken vastgehouden en dit resulteert in een verwarmend effect.

Wolken dragen daarnaast bij aan het horizontale en verticale transport van waterdamp en

verdampingswarmte. In grote delen van de wereld is de ruimtelijke schaal waarop wolken-

en neerslageigenschappen vanaf de grond worden gemeten onvoldoende om de gewenste

nauwkeurigheid te kunnen waarborgen. Nauwkeurige en wereldwijde metingen zijn nodig

om te kunnen bepalen of genoemde eigenschappen op enige termijn veranderen binnen

het veranderende klimaatsysteem. Geostationaire satellieten zijn geschikt om nauwkeurige

metingen aan wolken en neerslag te verrichten. Uiteindelijk kunnen datasets van wolken- en

neerslageigenschappen gebruikt worden voor het evalueren van wolkenparameterisaties in

weer- en klimaatmodellen, het onderzoeken van land–atmosfeerinteracties en het detecteren

van veranderingen in de dagelijkse gang van wolken en neerslag.

Dit proefschrift beschrijft de afleiding, evaluatie en toepassing van de thermodynamische

fase, wolkendeeltjesgrootte, neerslagfrequentie en -intensiteit uit metingen van gereflecteerde

zonnestraling in het visuele en nabij-infrarode deel van het zonnespectrum door middel

van het op het KNMI ontwikkelde Cloud Physical Properties (CPP) algoritme. Het algoritme

wordt voor het grootste gedeelte toegepast op reflectanties gemeten door de Spinning En-

hanced Visible and Infrared Imager (SEVIRI), die zich op de geostationaire Meteosat Second

Generation (MSG) satellieten bevindt. De reflectanties worden elke 15 minuten gemeten

met een ruimtelijke resolutie variërend van 3×3 km2 boven Centraal-Afrika tot ongeveer 4×7

km2 boven West-Europa, waardoor ontwikkelingen zoals dagelijkse gang van wolken- en

neerslageigenschappen te volgen zijn.

Hoofdstuk 1 beschrijft een algemeen overzicht van het veranderende klimaat en verduidelijkt

de invloed van wolken op het klimaat. Een aantal terugkoppelingsmechanismen in het klimaat-

systeem, zoals de invloed van een stijgende temperatuur op wolken en atmosferisch water-

damp worden uitgelegd. Verder wordt in dit hoofdstuk ook het belang van wolken in de

hydrologische cyclus besproken. Tot slot worden de te beantwoorden onderzoeksvragen van

dit proefschrift geformuleerd.
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Samenvatting

De theorie die ten grondslag ligt aan de afleiding van wolken- en neerslageigenschappen uit

gemeten reflectanties en de gebruikte methodieken voor het in dit proefschrift uitgevoerde

onderzoek worden in Hoofdstuk 2 uitgelegd. Het hoofdstuk begint met de uitleg van stralings-

transport door de aardse atmosfeer en wolken en een kort overzicht van een aantal modellen

om dit stralingstransport te berekenen. Vervolgens worden de verschillende satellietinstru-

menten die in dit proefschrift zijn gebruikt besproken. Tot slot wordt het CPP-algoritme, dat

wordt gebruikt om vanuit gemeten reflectanties de wolken- en neerslageigenschappen te

bepalen, uitgelegd.

Hoofdstuk 3 beschrijft de evaluatie van verschillende satellietmethoden voor de bepaling van

wolkenfase. Deze evaluatie is uitgevoerd door de wolkenfase te vergelijken met een dataset van

wolkenfase bepaald vanaf het aardoppervlak bij Cabauw. Aangezien SEVIRI voornamelijk ge-

voelig is voor de gereflecteerde zonnestraling vanaf de wolkentop en de instrumenten aan het

aardoppervlak de gehele wolkenkolom observeren, moest een correctie op de grondwaarne-

mingen worden toegepast. De nauwkeurigheid en precisie van de CPP-wolkenfasebepalingen

zijn voor alle methoden respectievelijk ongeveer 5% en 10%. Verder is het vermogen voor het

volgen van de opbouw van ijswolken tijdens het West-Europese zomerseizoen voor elk van de

methoden onderzocht. Het blijkt dat alle gebruikte methoden hiertoe in staat zijn.

Hoofdstuk 4 bespreekt de invloed van gebroken wolkenvelden op de afleiding van de wolken-

deeltjesgrootte bij verschillende ruimtelijke meetresoluties. Hiertoe zijn bij verschillende

wolkenfracties zowel simulaties van de bepaling van wolkendeeltjesgrootte als bepalingen

uit waargenomen Moderate-Resolution Imaging Spectroradiometer (MODIS) reflectanties

uitgevoerd. Het blijkt dat de afgeleide wolkendeeltjesgrootte bij lage resolutie voor gebroken

wolkenvelden met ongeveer 5 µm kan worden overschat ten opzichte van de bepaling bij hoge

resolutie. De grootste overschattingen komen voor boven oceaanoppervlakken, omdat hier

het contrast tussen oppervlakte- en wolkenreflectantie het grootste is. Het effect van een te

hoge afgeleide wolkendeeltjesgrootte kan ook leiden tot een verkeerd afgeleide wolkenfase.

In Hoofdstuk 5 zijn de uit SEVIRI-reflectanties afgeleide neerslageigenschappen vergeleken

met neerslagobservaties uit andere satellietinstrumenten en met regenmeters op het aard-

oppervlak. Het onderzoek heeft zich gericht op West-Afrika. Deze regio kenmerkt zich door

een afwisseling van droge en natte perioden, de West-Afrikaanse moesson. Uit de vergelij-

kingen blijkt dat de neerslagfrequentie en -intensiteit die is afgeleid een nauwkeurigheid heeft

die voldoende is om de ontwikkeling van neerslag voor periodes van een dag tot een seizoen

te monitoren.

Hoofdstuk 6 beschrijft het gebruik van een satellietafgeleide bodemvocht- en neerslagdata-

set voor het onderzoeken van een aardoppervlak–atmosfeerinteractie. Voor West-Afrika is

de samenhang tussen bodemvocht en het optreden van neerslag gedurende de moesson

onderzocht. Op basis van gemeten bodemvocht werden dagelijks droge van natte bodems on-

derscheiden, waarna de boven deze gebieden door SEVIRI geobserveerde neerslagfrequentie

en -intensiteit van de volgende dag met elkaar zijn vergeleken. Boven zowel droge als natte

bodems nemen neerslagfrequentie en -intensiteit gedurende de dag toe, wat op basis van
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toenemende instraling in combinatie met atmosferische onstabiliteit mag worden verwacht.

Echter, de neerslagfrequentie boven droge bodems is in de middag significant hoger dan boven

natte bodems. Een mogelijke verklaring hiervoor is een grotere hoeveelheid voelbare warmte,

die in combinatie met voldoende waterdamp hoger in de atmosfeer kan leiden tot diepere

convectie en bijgevolg meer buienvorming.

De belangrijkste conclusies van dit proefschrift zijn samengevat in Hoofdstuk 7. Tevens zijn een

aantal aanbevelingen voor verbeteringen aan het CPP-algoritme en mogelijke toepassingen

van de uit SEVIRI-metingen afgeleide satellietwolkendatasets in toekomstig onderzoek gegeven.

Mogelijke verbeteringen zijn het toevoegen van een methode waarmee ook ’s nachts wolken-

fase, neerslagfrequentie en -intensiteit kan worden afgeleid. Hiermee kan de volledige da-

gelijkse gang van wolkenfase en neerslag bestudeerd worden. Daarnaast kan het algoritme

verbeterd worden door het corrigeren van de wolkendeeltjesgroottebepaling bij gebroken

wolkenvelden. Hiervoor kan gebruik worden gemaakt van het SEVIRI High-Resolution Vi-

sible (HRV) kanaal. Toepassingen van de afgeleide wolken- en neerslagdatasets liggen onder

andere in het monitoren van veranderingen in genoemde eigenschappen over lange tijd, de

ondersteuning voor meteorologen in het maken van weersverwachtingen, onderzoek van de

waterbalans aan het aardoppervlak, van land–atmosfeerinteracties en assimilatie in weer- en

klimaatmodellen. Vooral de hoge tijds- en ruimtelijke resolutie van het SEVIRI-instrument

geven hierbij een grote toegevoegde waarde.
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Chapter 1

Introduction

1.1 Climate and climate change

The way humans arrange their lives and their societies has been and still is for a large part

imposed by the climate. As weather has a very tangible meaning to people, the meaning of

“climate” is more abstract. It is mostly defined as the average weather over a time period of 30

years or more, supposed to be long enough to average out year-to-year fluctuations and short

enough not to be influenced by any long-term trend.

Obviously, global climate has not been constant throughout time. It has been subject to fluctu-

ations resulting from external forcings, such as changes in the Earth’s orbital parameters, the

most important of them being the periodical change of the Earth’s axial tilt and precession.

However, these changes take place at time scales of 10,000–100,000 years. Another external

forcing is the change in solar activity, which acts on time scales in the order of one hundred

years. For example, the relatively cold period during the largest part of the 17th century has

likely been caused by low solar activity (Lockwood et al. 2010; Yamaguchi et al. 2010).

In the latter part of the 20th century, climate has rapidly changed due to the increase of

various anthropogenic greenhouse gas emissions, most particularly carbon dioxide (CO2),

methane (CH4), and nitrous oxide (N2O), as stated by the Intergovernmental Panel on Climate

Change (IPCC) in their fourth Assessment Report [AR4, Solomon et al. (2007)]. Global warming

resulting from the increase in CO2 concentration and the subsequent enhanced greenhouse

effect was already predicted by Arrhenius (1896). One of the first reliable estimates on the

CO2-induced increase in global mean temperature was reported to be about 0.05 K per decade

by Callendar (1938). However, by 2010, the global-mean temperature had increased by 0.8 K

relative to the late 19th century (see Figure 1.1) and warming presently continues at a rate of

about 0.2 K per decade (Hansen et al. 2010).

The implications of a continuous increase in global-mean temperature are manyfold. As the

polar regions have the largest susceptability to an increase in global-mean temperature, the

extent of the Arctic sea ice and Greenland ice sheet rapidly decreases.
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Especially the Arctic sea ice extent has sharply decreased during the last decades and model

simulations have shown that an ice-free Arctic summer could be possible from about 2030

onwards (Wang and Overland 2009).

A warming climate also implies that water vapor will be more abundant in the atmosphere, as

the water-holding capacity increases with temperature. From the so-called Clausius-Clapeyron

relation it follows that per degree temperature change the amount of water vapor increases

by ≈7%. On a global scale, it has been shown through modeling efforts that the amount of

precipitation increases by only 2-3% (Held and Soden 2006; Stephens and Hu 2010), which

was recently confirmed by global precipitation observations (Arkin et al. 2010). However, on a

regional scale and at temperatures exceeding 20◦C extreme rain intensities could increase by

even more than 15% K−1 (Lenderink and van Meijgaard 2010).

An important aspect in climate research is the uncertainty associated with various climate

feedback mechanisms. From the increase in global-mean temperature resulting from the

enhanced greenhouse effect, myriad feedback mechanisms come into play. These feedback

mechanisms may either strengthen or diminish the initial temperature increase and are

referred to as positive and negative feedback, respectively. For example, due to the temperature

increase more water will evaporate from the surface and is thereby added to the atmospheric

water vapor burden. Because water vapor itself absorbs the outgoing longwave terrestrial

radiation, this water vapor increase enhances the temperature increase (positive feedback).

On the other hand, part of the extra water vapor added to the atmosphere will condensate into

clouds, which may dampen the temperature increase, because of the increased reflectance

of incoming solar radiation (negative feedback). At present, not all of the various feedback

mechanisms are entirely understood, nor is their impact on the climate system quantified with

sufficient accuracy. In addition, the feedback mechanisms affecting clouds, radiation, and

various land surface characteristics are mutual relationships, which adds to the complexity of

climate research.

Figure 1.1 Global surface temperature anomalies relative to the 1951–1980 mean for (a) annual (black
line) and 5-year (red line) running means through 2009 and (b) 12- month running mean using data
through June 2010. Green bars denote 2σ error estimates. From Hansen et al. (2010).

2



1.2 Clouds in the climate system

Figure 1.2 The global annual mean Earth’s energy budget for March 2000–May 2004. From Trenberth
et al. (2009).

1.2 Clouds in the climate system

1.2.1 The role of clouds in the radiation budget

Clouds govern the radiation budget of the Earth-atmosphere system by playing a role in both

the shortwave and longwave spectrum. The difference between the top-of-atmosphere (TOA)

net radiation for clear-sky and cloudy situations is generally referred to as cloud radiative

forcing (clear sky minus cloudy). It can be decomposed into a shortwave and a longwave

component.

Figure 1.2 shows the main components of the Earth energy budget, with the arrows on the left-

and righthand side representing the shortwave and longwave components, respectively. The

amount of solar energy received by the Earth at the top of atmosphere (TOA) is about 1366 W

m−2 (Liou 2002). As the area of the Earth is four times its projected area, the amount of solar

irradiance at TOA is 341 W m−2. About 79 W m−2 of the total incoming radiation is reflected

by clouds and atmospheric molecules, while about the same amount is absorbed, mainly by

oxygen (O2), ozone (O3), water vapor (H2O), and carbon dioxide (CO2). The total amount of

solar energy being reflected by the atmosphere and the Earth’s surface is about 30% (Kiehl and

Trenberth 1997), and is generally referred to as the planetary albedo. The averaged amount of

solar energy received at the surface is 161 W m−2.
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Because the Earth–atmosphere system is in an equilibrium, the amount of net incoming

shortwave energy should be equalled by the amount of outgoing longwave energy. This energy

is transferred to the atmosphere through convection (thermals), evapotranspiration, and

absorption of outgoing terrestrial radiation by clouds and atmospheric gases. In turn, the

absorbed energy by the atmosphere is radiated to both the surface and outer space. As can be

seen in Figure 1.2, atmospheric gases account for the largest part of the outgoing longwave

emission (169 W m−2). Clouds emit an amount of energy comparable to the atmospheric win-

dow emission (about 40 W m−2). However, the modeled and observed estimates of longwave

emission by clouds differ.

In general, warm, low-level clouds, which are mostly composed of water droplets, have a

negative shortwave cloud radiative forcing due to their reflection of incoming shortwave solar

radiation (Arking 1991; Hansen et al. 1997). However, the impact of these clouds on the long-

wave radiation balance is only marginal, because their temperature, and thus the amount

of longwave radiation emitted to space, does not differ much from the surface temperature.

Large amounts of water clouds are found in the subtropics west of the continents. These cloud

areas cover about 8% of the Earth’s surface (Karlsson et al. 2008) and are thus of significant im-

portance to the global energy balance. However, Global Climate Models (GCMs) do not always

accurately predict both the low-level cloud fraction and the accompanying cloud radiative

forcing of these clouds (Karlsson et al. 2008).

High, cold (cirrus) clouds, which are located at heights of ∼10 km or higher, have a positive

(warming) effect on the radiation budget by absorbing and re-emitting outgoing longwave

terrestrial radiation back to the surface. The higher ice clouds are located in the atmosphere,

the larger their impact on the longwave radiation budget, because the amount of outgoing

longwave radiation to space is reduced compared to a clear sky situation. In contrast, the pre-

sence of cirrus clouds causes a warming of the surface and atmosphere, because the amount of

re-emitted radiation is larger than for a clear sky situation. Ice clouds are abundant in tropical

convective systems (anvils) and in mid-latitude frontal weather systems.

From the above it follows that identification of the cloud thermodynamic phase of clouds is

important to assess the effect of clouds to the radiation budget. Water droplets and ice crystals

have different scattering and absorption properties, which implies a different shortwave

transmission and longwave radiation absorption/emission. In the shortwave spectrum, water

droplets scatter the incident radiation more forward than ice crystals, while in the longwave

spectrum water droplets absorb and re-emit radiation less efficiently compared to ice crystals.

1.2.2 The role of clouds in the hydrological cycle

Clouds are also an important factor in the hydrological cycle. They are generated through

the transition of water from the gaseous to the liquid or solid state (condensation). As a con-

sequence, latent heat is released, which warms the surrounding air and in turn stabilizes the

atmosphere. In contrast, the surrounding air is cooled if clouds evaporate, thereby destabili-

zing the atmosphere.

4



1.2 Clouds in the climate system

Therefore clouds not only play a role in the horizontal and vertical water transport, but also

in the latent heat transport. When the condensated water precipitates to the surface, clouds

have acted as a recycler of water, although the majority of the water evaporated is advected at

least 100 km before it precipitates (Douville et al. 2002). In addition, if precipitation evaporates

before reaching the surface, which may add up to ∼40% depending on among others cloud

base height and below-cloud relative humidity (Rosenfeld and Mintz 1988), the surrounding

air is cooled. The various components and estimates of the exchange and storage terms within

the hydrological cycle are presented in Figure 1.3.

Figure 1.3 Schematic representation of the hydrological cycle. Estimates of the main water reservoirs
and the flow of moisture through the sytem are given in 103 km3 and 103 km3 yr−1, respectively. From
Trenberth et al. (2007).

As for the effect on cloud physical properties, a warming climate also has an impact on the

hydrological cycle. A direct effect of higher temperatures is enhanced evaporation, as the

atmosphere can contain more water vapor at higher temperatures. On time scales in the order

of an hour, evaporation and precipitation are expected to increase in the order of 10% K−1 or

more (Allan and Soden 2008; Lenderink and van Meijgaard 2008). However, more evaporation

also leads to an increased cloudiness. The latter will cause a decrease in the amount of net

radiation reaching the surface and subsequently a decrease in evaporation.
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1.3 Satellite remote sensing of clouds and precipitation

In order to obtain accurate information on the role of clouds in the climate system and the

hydrological cycle, its properties need to be measured. Due to clouds’ large variability in

both time and space, they need to be observed at a sufficient temporal and spatial resolution.

Satellites are capable of regularly sampling a given location at the Earth at least once a day.

They have already been exploited for more than 50 years in supporting meteorologists on

a qualitative basis for making their weather forecasts, starting with the Television Infrared

Observation Satellite 1 (TIROS-1) in 1960. It was not until the late 1970s that ideas to study

clouds more quantitatively were conceived. As a result, over the last three decades various

efforts were taken to compose satellite-based long-term cloud property datasets.

With a history of continuous cloud observations from 1981 onwards, the Advanced Very High

Resolution Radiometer (AVHRR) onboard the National Oceanic and Atmospheric Admini-

stration (NOAA) satellites was the first instrument to enable the retrieval of cloud properties

at a high spatial resolution (1×1 km) using observed reflectances and radiances from five

channels within the spectral range 0.6-12.0 µm. The AVHRR Pathfinder Atmospheres Extended

project [PATMOS-x, Jacobowitz et al. (2003)] solely uses AVHRR data to construct global cloud

climatologies from 1981 onwards, thereby recalibrating the observed radiances of the various

AVHRR instruments and correcting for drifts in equator overpass times. Another large effort

to construct accurate and long-term cloud climatologies has come from the International

Satellite Cloud Climatology (ISCCP) project (Rossow and Schiffer 1999; Schiffer and Rossow

1983), which uses radiances observed from both polar orbiting and geostationary satellites to

obtain global cloud climatologies at a 3-hourly temporal and ∼280×280 km spatial resolution.

Recently, the development of more sophisticated radiometer instruments, enabling observa-

tions mainly at a higher spectral resolution, have been utilized. An example is the Moderate-

Resolution Imaging Spectroradiometer (MODIS) on the Terra (1999) and Aqua (2002) NASA

Earth Observing System (EOS) satellites. MODIS observes the Earth using 36 spectral channels

in the range 0.4–14.4 µm with a nominal spatial resolution of 1×1 km2 and even better for

the channels in the visible spectral range. From the MODIS-observed radiances, different

cloud physical property climatologies are made by various research groups, using separate

and well-developed retrieval algorithms [e.g. Minnis et al. (2003); Platnick et al. (2003)].

In 2002 and 2005, two satellites of the Meteosat Second Generation (MSG) series operated

by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)

were launched. These satellites carry the Spinning Enhanced Visible and Infreared Imager

[SEVIRI, Schmetz et al. (2002)], which enables to date the highest possible temporal and spatial

sampling, which, in combination with an increased number of narrowband spectral channels,

enables detailed quantitative studies on clouds.

With the launch in 2006 of the Cloud Profiling Radar (CPR) and the Clouds and Aerosol Lidar

with Orthogonal Polarization (CALIOP) onboard the Cloudsat and Calipso satellites, respec-

tively (Stephens et al. 2002), a new era in cloud research from space was started.
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1.3 Satellite remote sensing of clouds and precipitation

The CPR and CALIOP instruments enable detailed vertical profile information of clouds and

aerosols using active remote sensing instruments (radar and lidar), rather than obtaining

cloud-top information from passively observed radiances. Despite the ability to observe

clouds from space actively, this advantage of CPR and CALIOP is counterpointed by both a

limited lifetime and a limited spatial coverage compared to passive satellite instruments.

The retrieval of precipitation occurrence and precipitation intensity from passive satellite

imagery has been researched since the 1970s. The first retrieval schemes relied on thermal in-

frared (TIR) radiances and were based on the assumption that clouds start to precipitate if the

thermal infrared brightness temperature (BT) becomes lower than a certain threshold value.

This principle is generally referred to as Cold Cloud Duration technique (CCD). The rationale is

that precipitation is more likely to occur if ice crystals are abundant in the cloud top, because

the saturation vapor pressure of ice crystals is lower than that of water droplets (Pruppacher

and Klett 1997). However, the relation between BT and precipitation intensity is indirect,

because e.g. thick cirrus clouds have low temperatures, but generally do not produce any

(surface-observed) rain. This overestimation due to attributing rain rates to non-precipitating

cirrus is partly compensated for by an underestimation of rain rates from shallow convection.

Various rainfall retrieval techniques have been based on thermal infrared temperatures only,

mostly using the 10–12µm atmospheric window spectrum (Adler and Negri 1988; Arkin and

Meisner 1987; Ba and Gruber 2001; Negri and Adler 1993; Negri et al. 1984). Most CCD tech-

niques are calibrated locally or regionally with rain gauge and/or passive microwave (PMW)

data to obtain an optimum accuracy. Such a calibration is for example used by Huffman

et al. (2001) in their Global Precipitation Climatology Project One-Degree Daily (GPCP-1DD)

product. Recently, Behrangi et al. (2009) emphasized that combining water vapor channel

information with TIR radiances can significantly improve the accuracy in retrieving rain occur-

rence and intensity from SEVIRI.

During the last decade, the development of precipitation retrieval algorithms has more fo-

cused on incorporating information from multiple satellite sensors and combinations of

visible, TIR, and passive microwave (PMW) brightness temperatures, with the latter being

largely dependent on the emission–absorption process of hydrometeors. For example, the

TRMM Multi-Satellite Precipitation Algorithm [TMPA, Huffman et al. (2007)] combines data

from PMW imaging, sounding instruments, and geostationary-observed TIR radiances to

obtain a single precipitation product. In the Climate Prediction Center Morphing Technique

[CMORPH, Joyce et al. (2004)], TIR radiances are used to advect/morph cloud systems between

two consecutive PMW instrument overpasses to obtain intermediate rain rate estimates. The

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks

[PERSIANN, Hsu et al. (1997); Sorooshian et al. (2000)] system is a computer-based neural

network algorithm that uses both visible reflectances and infrared brightness temperature

of clouds from geostationary satellites as the basic input variables to retrieve surface precipi-

tation intensity.
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Introduction

In this thesis, mainly observations from the SEVIRI on the MSG satellites are used to retrieve

information on cloud physical properties and precipitation. The retrievals are performed

using the Cloud Physical Properties (CPP) algorithm developed at KNMI which uses visible

and near-infrared reflectances. A detailed description of the instrument characteristics, its

spectral channels, and the CPP retrieval algorithm will be given in Chapter 2.

1.4 This thesis

The research performed in this thesis focuses on the retrieval of cloud phase, cloud particle

effective radius, and precipitation from passive satellite imagery. The former two cloud pro-

perties largely determine the onset of precipitation. For clouds that do not contain any ice in

the cloud top, water droplets need to exceed a certain critical size before falling to the surface

(Rosenfeld and Gutman 1994). If ice is present in the cloud top, the precipitation formation

process becomes more efficient.

Therefore the first part of this thesis focuses on cloud phase and cloud particle effective ra-

dius. In order to properly determine whether clouds are precipitating, their thermodynamic

phase needs to be accurately determined. Subsequently, the sensitivity of cloud particle size

and cloud-phase retrievals to broken and inhomogeneous clouds is of importance, because

precipitating clouds are often of inhomogeneous nature.

Cloud-phase, cloud particle effective radius, and condensed water path information are then

used to infer if clouds are precipitating and if so, what the precipitation intensity is. These

precipitation retrievals are evaluated against several reference datasets to assess whether the

retrievals are of sufficient accuracy.

Finally, a precipitation dataset obtained from SEVIRI reflectance measurements is used to

investigate the relation between soil moisture and convective activity over the Sahel region

in West Africa. This area has been chosen for several reasons. First, this area is very sensitive

to year-to-year changes in precipitation, due to its location at the northernmost latitudinal

reach of the West African Monsoon. Second, a steep soil moisture gradient exists in this region,

with a corresponding change in vegetation. Lastly, the SEVIRI viewing geometry and pixel

resolution over the Sahel region are nearly optimal for studying cloud processes in this area.

In connection to the above, the following research questions addressed in this thesis are:

1) Is the CPP cloud-phase retrieval of sufficient accuracy and precision to construct reliable

long-term cloud-phase climatologies for mid-latitude coastal climates?

2) What is the impact of different horizontal resolutions to the retrieval of cloud particle effec-

tive radius and cloud phase using CPP?

3) Is the accuracy of precipitation occurrence frequency and precipitation intensity as retrieved

from CPP sufficient to monitor the seasonal monsoon progression and the rainfall dynamics
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at sub-daily scale over West Africa?

4) Is there a significant difference in the precipitation occurrence frequency and intensity over

wet and dry surfaces during the West African Monsoon?

Therefore the main aim of this thesis is to compose cloud-phase and precipitation datasets and

to evaluate their accuracy for assessing the effect of clouds on the radiation and hydrological

balance. It is noted that the actual assessment of the net effect on these balances is beyond

the scope of this thesis and will be subject of future research.

The thesis is outlined as follows. Chapter 2 discusses the Earth’s energy balance and highlights

the radiative transfer in the atmosphere, as well as the retrieval principle of the various cloud

physical properties relevant to this thesis.

The first research question, the evaluation of one year of cloud-phase retrievals with ground-

based cloud radar and lidar cloud-phase observations is addressed in Chapter 3. It is demon-

strated that the accuracy and precision of the CPP cloud-phase retrieval algorithm are best

during the summer half-year and that during summer the daytime evolution of convection,

i.e., the development from water clouds into ice clouds, can be well followed.

The research on the effect of a variable satellite sensor resolution on the retrieval of cloud

particle effective radius and cloud phase is presented in Chapter 4. It is shown from both

theoretical calculations and real observations at various satellite sensor resolutions that the

cloud particle effective radius and to a lesser extent cloud-phase retrieval are affected by the

presence of partially cloud-filled and inhomogeneous overcast satellite pixels.

The evaluation of precipitation retrievals over West Africa during the monsoon season is

outlined and discussed in Chapter 5 using precipitation observations from other satellite

platforms as reference. Furthermore, the ability of the CPP precipitation retrieval algorithm to

monitor both the seasonal progression of the West African Monsoon and the daytime evolution

of precipitation intensity is highlighted.

An investigation on the interaction between soil moisture and convection over the Sahel region

in West Africa is presented in Chapter 6. This investigation is performed using the cloud-phase

and precipitation retrievals from SEVIRI reflectances, as well as soil moisture observations

from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E).

Finally, Chapter 7 reflects on the current status of satellite cloud research and its applications

and provides some recommendations for future research directions on among others land

surface–atmosphere interactions and climate model evaluation.
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Chapter 2

Theory, data, and retrieval algorithms

This Chapter presents an overview of the theoretical framework that is used for the retrieval

of cloud physical and precipitation properties from satellite-observed radiances. First, the

concepts of radiative transfer as well as the models that solve the radiative transfer equation

are highlighted. Second, the theory of precipitation formation is shortly touched upon. Finally,

detailed information on the satellite instruments used in this thesis is presented, concluded

with a description of the Cloud Physical Properties (CPP) and Precipitation Properties (CPP-PP)

algorithms.

2.1 Theory

2.1.1 Radiative transfer in a cloudy atmosphere

The sun constantly emits electromagnetic radiation into all directions. This electromagnetic

energy is carried through photons. The photons radiated by the sun interact in various ways

with the Earth’s atmosphere. On their way to the surface, photons can be either scattered or

absorbed by various atmospheric constituents, such as water droplets or ice crystals, with

typical sizes of ∼10-30 µm and up to 100 µm, respectively. Other atmospheric constituents

are the atmospheric molecules (N2, O2, and H2O, with sizes ∼10−4 µm) and aerosol particles

(size ∼1 µm). At visible wavelengths, scattering is the dominant radiative process, while in the

thermal solar infrared radiation is mostly absorbed and emitted.

Scattering of incident sunlight by clouds

The scattering of sunlight is a physical process taking place at all wavelengths, in which a

cloud particle continuously abstracts energy from the incident beam of sunlight and reradiates

this energy into all directions. Because in the visible spectrum scattering is dominant over

absorption, photons are scattered numerous times before leaving a cloud. The amount of

scattering events within a cloud is largely dependent on both cloud microphysics, such as

the particle shape, and macrophysics, such as the amount of particles (optical thickness).

The scattering and absorption of sunlight by atmospheric particles over a distance d s is

mathematically described by the radiative transfer equation:
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d Iλ
kλ,ext d s

=−Iλ+ Jλ, (2.1)

in which Iλ is the intensity of radiation at wavelength λ, kλ,ext is the volume extinction coeffi-

cient for radiation of wavelength λ, and Jλ the source function. The latter can be physically

interpreted as the increase in radiation intensity resulting from emission and multiple scatter-

ing.

Figure 2.1 The principle of the Beer-Bouguer-Lambert law; a beam of electromagnetic radiation passes
through a medium, extinction outside the medium is neglected for simplicity.

Neglecting the diffuse radiation from multiple scattering, Jλ, the solution of Equation 2.1 leads

to the Beer-Bouguer-Lambert law, which describes the intensity of a beam of direct sunlight

with intensity Iλ(0) after passing through an extinction medium at a distance d s:

Iλ(s) = Iλ(0)exp(−
∫ s

0
kλ,ext d s), (2.2)

with Iλ(0) being the incident intensity and s the traversed distance.

For a plane-parallel (horizontally homogeneous) atmosphere, integration of the volume ex-

tinction coefficient results in the optical thickness τλ:

τλ =
∫ z

0
kλ,ext (z)d z. (2.3)

The volume extinction coefficient can be decomposed into a scattering and an absorbing part:

kλ,ext = kλ,sca +kλ,abs . (2.4)

The ratio of the scattering to the extinction coefficient is defined as the single scattering albedo:

12



2.1 Theory

ω= kλ,sca

kλ,ext
. (2.5)

ω is virtually 1.0 at visible wavelengths for any droplet or ice crystal size, which implies that

at these wavelengths the absorption by clouds does not play a significant role. However, in

the near infrared ω becomes substantially lower than 1, with the lowest values for large ice

crystals, as can be seen from Figure 2.2, which presents ω for various water droplets and ice

crystal sizes at 1.63 µm, being near the center wavelength of the SEVIRI 1.6-µm channel.

The decrease in single scattering albedo with particle size in the near-infrared enables the

retrieval of the cloud particle effective radius, which is defined as the ratio of the third to the

second moment of a particle size distribution (Hansen and Travis 1974):

re =
∫ ∞

0 r 3n(r )dr∫ ∞
0 r 2n(r )dr

, (2.6)

where r is the particle radius and n(r ) is the cloud particle radius distribution function.

As a result of the decrease in single scattering albedo, a lower reflectance for a cloud with

a given optical thickness is observed in the near infrared compared to in the visible, with

increasingly less reflectance for larger particles. In addition, the observed near-infreared

reflectance of an ice cloud is lower than that of a water cloud, which is the key principle of the

cloud-phase retrieval. It will be shown in Section 2.3 that from the observations of the SEVIRI

0.6 µm and 1.6 µm spectral channels the most important cloud physical properties relevant to

the research in this thesis are obtained.

Figure 2.2 Single scattering albedo at 1.63 µm for water droplets with effective radii 3–24 µm (triangles)
and roughened imperfect hexagonal ice crystals with effective radii of 6–51 µm (diamonds).
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The effect of the cloud particle size on the scattering properties is indicated by the size para-

meter, x, defined as the ratio of the cloud particle perimeter to the wavelength of the incident

radiation (x = 2πr /λ). For x ¿1, scattering is called Rayleigh scattering, which implies that

sunlight is equally scattered into forward and backward directions. If the size parameter is of

the order unity and particles are spherical, scattering is referred to as Lorenz–Mie scattering.

In this scattering regime the largest part of the incident solar radiation is scattered into the

forward direction. This scattering regime holds in principle for all particle sizes. For very large

particles, especially ice crystals, which have x À1 geometric optics can be applied.

The angular distribution of the scattered sunlight intensity is described by the phase function.

Figure 2.3 shows examples of phase functions for a range of water droplet and ice crystal

sizes at 0.64 µm and 1.63 µm. As can be seen, for water droplets the complexity of the phase

function increases with increasing particle size. For example, the cloud bow feature around

138◦ becomes more pronounced with increasing cloud droplet size (Figure 2.3, upper left

panel). Furthermore, for larger particles the backscatter features become more pronounced,

while less energy is scattered to the sides (∼80◦–120◦).

The lower panels show the phase functions for imperfect hexagonal columns (Hess et al. 1998),

which are the ice crystal types that are used in the CPP retrieval algorithm. It was shown by

Knap et al. (2005) that these imperfect hexagonal crystals are appropriate for calculating ice

cloud reflectances for satellite cloud retrievals. The most striking difference compared to the

water droplet phase functions is that the cloud bow and backscatter peaks are absent, because

these are phenomena related to the spherical shape of water droplets. Ice crystals have halos

at 22◦ and 48◦ scattering angles. However, these do not show up here, which is a consequence

of an applied roughening factor to the hexagonal columns, which tends to distribute scattered

light more evenly over the scattering angles outside the forward peak.

An important quantity for satellite remote sensing that is derived from the phase function is

the asymmetry parameter g , defined as the average cosine of the scattering angles (the angle

between direction of scattering and direction of incidence) found by integration over the entire

scattering phase function. For particles that scatter sunlight into forward directions (0◦–90◦),

0 < g < 1, while -1 < g < 0 when sunlight is scattered more into backward directions (90◦–180◦).

For most water droplet sizes, the asymmetry parameter is about 0.85, whereas values for ice

crystals are 0.75–0.80, depending on ice crystal type and particle roughening. The behavior of

the assymetry parameter for various water and ice crystal effective radii is shown in Figure 2.4.

Emission and absorption of thermal radiation by clouds

While scattering is the dominant extinction process taking place in the shortwave spectrum,

emission and absorption dominate over scattering in the thermal infrared part of the spectrum.

In the thermal infrared the single scattering albedo of both water droplets and ice crystals is

low (<0.5). This implies that within 4-5 scatter events more than 90% of the incident solar

radiation is absorbed.
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Figure 2.3 Scattering phase functions for (upper panels) spherical water droplets with effective radii 3–
24 µm and (lower panels) roughened hexagonal ice crystals with effective radii of 6–51 µm. Phase functions
are shown for 0.64 µm and 1.63 µm in the left and right panels, respectively.

The Planck function describes the amount of emitted radiance assuming a perfect black body,

i.e., a body that emits all of the absorbed radiance:

Bλ(T ) = 2hc2

λ5(ehc/KλT )−1
, (2.7)

where Bλ(T ) is the emitted Planck radiance at a given temperature [W m−2 sr−1 µm−1], h is

Planck’s constant (6.63×10−34 J s), K denotes the Boltzmann constant (1.38×10−23 J K−1), and

c is the speed of light (3.00×108 m s−1). In general, a body emits less than a perfect black body,

and the ratio of the thermal radiation emitted by a body at a temperature T to the radiation

emitted if the body obeyed Planck’s radiation law is defined as emissivity.

The cloud-top temperature (Tc ) is mostly retrieved from measured atmospheric window chan-

nel radiances (∼10–12 µm, which is the spectral region in which atmospheric gas absorption is

virtually absent). For optically thick clouds, the black body assumption is valid, as these clouds

have an emissivity close to unity. However, for optically thin clouds the measured window

channel radiance is an emissivity-weighted average of the surface and cloud contributions:
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Figure 2.4 Asymmetry parameter for water droplets and roughened imperfect hexagonal ice crystals at
0.64 µm (solid lines) and 1.63 µm (dashed lines). Water droplets and imperfect hexagonal ice crystals are
denoted by triangles and diamonds, respectively.

Iλ = ελ,c Bλ(Tc )+ (1−ελ,c )Bλ(Ts ), (2.8)

in which Iλ is the measured upwelling radiance at top-of-atmosphere at the specific infrared

wavelength, ελ,c the cloud emissivity and Bλ the Planck radiance at the given wavelength

for cloud-top (Tc ) and surface temperature (Ts ). In the above equation, the cloud emissivity

needs to be extracted in order to solve for the cloud-top temperature.

When neglecting thermal infrared scattering, the cloud emissivity at the window channel

wavelength, εi r , is calculated from τi r (Minnis et al. 1998):

εi r = 1−e−τi r /µ, (2.9)

with µ the cosine of the satellite viewing zenith angle and τi r ≈0.5τvi s for most cloud particle

sizes.

2.1.2 Radiative transfer models

Solving the radiative transfer equation in a multiple scattering atmosphere is computationally

expensive. During the last half century, numerous radiative transfer models (RTMs) have been

developed to numerically or analytically solve this equation.

The discrete-ordinates method (Chandrasekhar 1960) is an efficient and powerful method for

the calculation of the radiation fields in aerosol and cloudy atmospheres. It involves the discre-

tization of the radiative transfer equation and uses a set of first-order differential equations to
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numerically solve this equation for a discrete number of zenith angles. The discrete-ordinates

method is used as a solver in several radiative transfer models, such as the Discrete Ordinates

Radiative Transfer Model for a Multi-Layered Plane-Parallel Medium [DISORT, Stamnes et al.

(1988)], the Spherical Harmonics Discrete Ordinates Model [SHDOM, Evans (1998)], and the

Moderate-Resolution Atmospheric Transmission model [MODTRAN, Berk et al. (1987)].

In Monte Carlo methods (Macke et al. 1999), multiple scattering of sunlight is considered

to be a stochastic process. Therefore the cloud particle phase function, as shown in Figure

2.3 is treated as a probability of scattering into a specific direction. Photons are emitted by a

source, e.g. the sun, and are scattered and absorbed within a three-dimensional atmosphere

containing clouds. The calculations continue until either the photon intensity becomes too

low, photons leave the medium or become absorbed by clouds or the underlying surface. The

Monte Carlo approach is useful for studying radiative transfer in complex media or to study

3D cloud effects. However, Monte Carlo methods are still computationally expensive and are

hence less appropriate to be utilized in an operational environment.

The Doubling Adding KNMI (DAK) model has been developed to solve the multiple scattering

problem in an efficient way. It is based on the doubling-adding method (van de Hulst 1980),

that applies a physical approach to obtain a numerical solution of the multiple scattering

problem. The atmosphere is assumed to consist of a number of homogeneous layers. To

calculate the reflectance and transmission of each homogeneous layer, one starts with a very

thin layer with small optical thickness in which no more than two scattering events are allowed

to occur. Subsequently, layers with identical optical properties are doubled until the desired

layer optical thickness is obtained. At each doubling step, the multiple reflections between

two overlapping layers are calculated. The atmosphere is built up by adding layers on top of

each other and by calculating the multiple reflections between the layers. More details can

be found in De Haan et al. (1987) and Stammes (2001). DAK calculates the radiation field in a

multi-layer atmosphere, in which the surface is assumed to be a Lambertian reflector. Further,

clouds are considered to be plane-parallel and horizontally homogeneous. Rayleigh scattering,

which is the scattering of sunlight by atmospheric molecules, as well as absorption by various

gases (CO2, O2, O3, H2O) are taken into account.

2.1.3 Precipitation formation theory

The condensation of water vapor into water droplets or ice crystals and thus the formation of

clouds and subsequently precipitation is taking place through various processes. The spon-

taneous transition from the gaseous into the solid or liquid phase (homogeneous nucleation),

without aerosol particles acting as cloud condensation nuclei (CCN) would occur only at a

supersaturation of 100% or more. Therefore heterogeneous nucleation of water vapor, in

which CCNs are involved, into water droplets or ice crystals is the dominant process.
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The concentration of CCNs is larger over continents than over oceanic areas. As a consequence,

the concentration of water droplets and/or ice crystals in clouds will be larger over continental

areas, which in most cases suppresses the precipitation formation and extends cloud lifetime

(Albrecht 1989; Lohmann 2006). This suppression is found in both modeling studies on the

effect of aerosol size and abundance on precipitation formation (Roelofs and Jongen 2004; Tao

et al. 2007) and satellite observations (Rosenfeld and Lensky 1998).

The precipitation formation in clouds is generally divided into two types. The first type is

coalescence, which is the growth of water droplets through collision. The second type is gene-

rally referred to as the Wegener-Bergeron-Findeisen process and occurs when water droplets

and ice crystals coexist.

The coalescence process mostly takes place in ‘warm’ clouds with cloud-top temperatures

above 0◦C and is generally distinguished into three operating modes. The auto-convection

process refers to collisions between droplets generally smaller than 20 µm. A second mode

is when these smaller droplets collide with drizzle droplets (radius >20 µm), while the third

mode is the collision between drizzle-sized droplets that form rain drops. The time between

the start of coalescence and precipitation is in the order of one hour, although also time

periods of 20–30 minutes have been observed (Stephens and Haynes 2007). Rosenfeld and

Gutman (1994) translated the above process into a threshold of 14 µm for satellite-derived

cloud particle effective radius to distinguish raining from non-raining clouds.

The Wegener-Bergeron-Findeisen process occurs when ice crystals and supercooled water

droplets coexist. At equal temperatures and provided that the temperature is low enough for

ice crystals to exist, the equilibrium water vapor pressure with respect to ice is lower than with

respect to water, with the largest difference at 261 K (Pruppacher and Klett 1997). As a result,

ice crystals will gain mass through water vapor deposition at the expense of liquid droplets

losing mass through evaporation (Glickman 2000). When the ice particles have sufficient

weight, they fall through the cloud as snow flakes and gain mass through collision with other

ice crystals and/or supercooled water droplets.

In recent years, several techniques to trace the precipitation formation process in clouds

from satellites have been developed. Most of these techniques rely on tracing re information

(Rosenfeld and Gutman 1994) or the combination of re and infrared cloud-top temperature

(Rosenfeld and Lensky 1998). The latter technique describes the development of re versus Tc

and attributes this development to various formation modes, such as coalescence and the

Wegener-Bergeron-Findeisen process.

2.2 Data

A number of satellite instruments were introduced in Chapter 1. Most of these instruments fly

onboard polar orbiting satellites. The advantage of these satellite instruments is that due to

their low altitude (700–800 km) they observe the Earth at a high spatial resolution.
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However, polar orbiting satellite instruments observe the same location at the surface only

2-8 times per day, with the highest revisit frequencies over the polar regions. This implies that

for the largest part of the Earth various cloud development processes, such as the initiation

and maturing stage of convective clouds, cannot be properly observed. Geostationary satellite

instruments, which are placed at such a distance that their orbital velocity equals that of the

Earth (at ∼35800 km distance), observe a given location continuously at 15-30 minute intervals

and are thus suited to not only monitor possible long-term trends in cloud physical properties,

but also to observe several cloud development processes at sub-daily time scales, such as the

growth of convective clouds before they start to produce preciptation (Carbajal Henken et al.

2011).

2.2.1 Spinning Enhanced Visible and Infrared Imager (SEVIRI)

Since the launch of SEVIRI onboard the MSG Meteosat-8 and Meteosat-9 satellites in 2002

and 2005, respectively, the cloud research community has been provided with reflectances

and radiances observed at a to date unprecedented high spatial and temporal resolution.

Compared to the first generation of Meteosat satellites, the temporal resolution was improved

from 30 to 15 minutes. In addition, the spatial resolution was improved from 5×5 km2 to

3×3 km2 at nadir, while the amount of spectral channels increased from 3 broadband to 12

narrowband channels. The availability of numerous narrowband channels enables detection

of specific cloud and surface characteristics. A further improvement of the spatial resolution

to 1×1 km2 and 2×2 km2 for the visible and infrared spectral channels, respectively, and a

temporal resolution of 10 minutes is foreseen for the imager onboard the upcoming Meteosat

Third Generation (MTG) satellites, of which the first is expected to be launched in 2017.

The research described in this thesis mainly uses observations from SEVIRI. The measured

visible and near-infrared channel reflectances are used to retrieve several cloud physical

properties important to the climate system and the hydrological cycle, such as cloud phase,

cloud particle effective radius, and precipitation intensity. The SEVIRI 0.6-µm, 1.6-µm, 8.7-µm,

and 10.8-µm spectral channels are the most frequently used in this thesis. Their spectral

response functions are shown in Figure 2.5 together with the imaginary index of refraction

(an indicator of the absorption efficiency of a material) of water droplets and ice crystals. It

can clearly be seen that at 0.6 µm the amount of absorption for both water droplets and ice

crystals is negligible, while at 1.6 µm absorption of solar radiation has become significant,

with ice crystals absorbing radiation more efficiently than water droplets.

2.2.2 Moderate-Resolution Imaging Spectroradiometer (MODIS)

As already briefly touched upon in Chapter 1, the MODIS instrument flies onboard the Terra

(local overpass time at 10:30) and Aqua (local overpass time at 13:30) satellites that were

launched in 1999 and 2002, respectively. MODIS comprises 36 spectral narrowband channels

in the range 0.4–14.4 µm.

19



Theory, data, and retrieval algorithms

Figure 2.5 SEVIRI spectral response functions for (left) the 0.6-µm, 1.6-µm, and (right) 8.7-µm and
10.8-µm spectral channels. The imaginary index of refraction for water droplets (solid line) and ice crystals
(dashed line) is plotted in grey, with scaling on the right-hand axis. Note the logarithmic scaling for the
imaginary index of refraction in the left panel.

Two visible channels (centered at 0.65 µm and 0.86 µm) observe at a nominal resolution of 250

m2, five other visible and near-infrared channels observe at 500 m2, while the remaining 29

channels have a spatial resolution of 1 km2. A +/- 55◦ scanning pattern at an orbit of 705 km

results in a 2,330-km swath and provides global coverage every one to two days. Both Terra

and Aqua MODIS carry onboard calibration modules for the solar channels, which maintains

the longterm stability of the measured reflectances within 1% (Xiong et al. 2011).

2.2.3 Tropical Rainfall Measurement Mission - Precipitation Radar (TRMM-PR)

The Tropical Rainfall Measurement Mission [TRMM, Kummerow et al. (1998)] satellite was

launched in November 1997 and carries a Microwave Imager (TRMM-TMI) and a Precipitation

Radar (TRMM-PR) to obtain more detailed information on the spatial and temporal distribu-

tion of precipitation in the tropics, which are largely undersampled by ground observations.

For example, over the Netherlands the rain gauge density is such that for every ∼120 km2

precipitation is recorded, while in certain West African regions this density is sometimes as

low as one rain gauge per >1000 km2 (Ali et al. 2005). Furthermore, a considerable amount of

precipitation is reported as pentadal (5-day) or decadal (10-day) sums, in which information

at e.g. the diurnal cycle of precipitation is lacking. Therefore it was chosen to have the TRMM

satellite fly in a non sun-synchronous orbit between 37◦S and 37◦N. In other words, a given

location at the surface is sampled at different times of the day at each overpass. As a result,

a full diurnal cycle of precipitation is observed once every 47 days. A disadvantage of this

approach is that several years of data are required to obtain reliable statistics.

TRMM-PR is the first radar instrument to obtain precipitation information from space. Be-

cause the TRMM satellite flies at an altitude of about 402 km, the Precipitation Radar should

have sufficient power to detect the weak return echo of hydrometeors.
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Further, to obtain high-resolution three-dimensional information on precipitation, a higher

radar frequency about three times higher as typical ground-based weather radars was chosen.

The PR provides precipitation information at a horizontal and vertical resolution of 4.3 km2 and

250 m, respectively. Due to the restrictions with respect to the returned echo from precipitation

at off-nadir directions, its swath width is limited to 247 km, which results in a longer revisit

time for a given surface location.

2.2.4 Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E)

The AMSR-E instrument (Kawanishi et al. 2003) is a passive microwave instrument that flies

onboard the Aqua satellite and measures brightness temperatures at six frequencies ranging

from 7–89 GHz with a precision (RMSE) of 1 K. The horizontal resolution varies from about 5×5

km2 at the highest frequency to about 56×56 km2 at the lowest frequency. AMSR-E contains

all the separate channels of its precursors, the Scanning Multichannel Microwave Radiometer

(SSMR) and the Special Sensor Microwave/Imager (SSM/I) in one. The swath width is about

1450 km. The instrument was developed to measure key variables of the water cycle, such as

cloud water content, water vapor, snow depth, and soil moisture. In this thesis, soil moisture

retrievals from observed AMSR-E microwave brightness temperatures are used.

2.3 Retrieval algorithms

The retrieval of cloud physical and precipitation properties is performed in four steps. First, it

is assessed whether a pixel contains clouds, which is performed using a separate algorithm.

Second, if pixels are cloud-filled, the cloud physical properties are retrieved using the CPP

algorithm. Third, once these cloud physical properties are retrieved, the distinction between

raining and non-raining pixels is done and finally the rain rate for raining pixels is computed.

The CPP algorithm was developed by Roebeling et al. (2006a) and retrieves cloud optical

thickness (τ), cloud particle effective radius (re ), condensed water path (CWP), and cloud

thermodynamic phase (CPH) from measured SEVIRI 0.6-µm and 1.6-µm reflectances. It uses

a Lookup Table (LUT) approach based on the work of Nakajima and King (1990) and Nakajima

and Nakajima (1995).

2.3.1 Reflectance Lookup Tables

The earlier described DAK model was used for the computation of the lookup tables (LUTs)

for SEVIRI 0.6-µm and 1.6-µm water and ice cloud reflectances. First, the phase function for

water droplets was calculated using Mie theory for spherical shapes assuming a Gamma size

distribution with a fixed effective variance ve (a measure for the spread around the particle

effective radius, re ) of 0.15, while the phase function for ice crystals was calculated using ray

tracing. Reflectances for the 0.6-µm and 1.6-µm spectral channels were stored in LUTs for

cloud optical thicknesses of 0–256 and droplet effective radii of 1–24 µm.
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Reflectances for ice clouds were computed using imperfect hexagonal columns (Hess et al.

1998) with volume equivalent effective radii of 6, 12, 26, and 51 µm. The volume equivalent

effective radius is defined as the radius an ice crystal would have if the columnar volume were

converted into a sphere.

To obtain accurate reflectance calculations, the amount of integration points in the azimuth

direction (Fourier terms) and zenith angle direction (Gaussian µ points) used in the radiative

transfer calculations needs to be sufficiently large. The largest number of Fourier terms and

Gaussian µ points are required in the calculation for large cloud particles that are observed in

the vicinity of the backscatter region (Wolters et al. 2006). The LUTs used in this thesis were

generated with 140 Fourier terms and 180 Gaussian µ points.

The 0.6-µm and 1.6-µm reflectances were calculated by DAK for a black surface. The contribu-

tion of the surface albedo to the reflectance measured by a satellite instrument was computed

following a procedure given by Chandrasekhar (1960). Over land, the surface albedo was

obtained using a climatology derived from MODIS white-sky albedo data, which represents

the bi-hemispherical surface reflectance that occurs below optically thick clouds. Over ocean

surfaces, at both 0.6 µm and 1.6 µm an albedo of 0.05 was assumed.

Finally, the monochromatically calculated DAK reflectances were converted into the respective

SEVIRI spectral channel reflectances using line-to-band conversion factors obtained from

MODTRAN simulations (Meirink et al. 2009). Figure 2.6 shows an example of calculated water

and ice cloud reflectances for fixed solar zenith, viewing zenith, and relative azimuth angles of

20◦, 30◦, and 100◦, respectively. From this figure a number of features important to the cloud

physical property retrievals can be gleaned. First, for τ>4 the lines of τ and re dissect nearly

orthogonally, which implies that these two cloud physical properties can be independently

retrieved. Second, the retrieval of τ becomes extremely sensitive at large 0.6-µm reflectances,

which follows from the decreasing distance between the optical thickness lines. Last, the re

retrieval for optically thin clouds becomes unreliable due to a large sensitivity to a change in

1.6-µm reflectance, the contribution of the underlying surface to the measured reflectances,

and a decreased orthogonality with the optical thickness curves. The latter implies that the

retrieval of re is also sensitive to errors in the observed 0.6-µm reflectance.

2.3.2 Cloud detection algorithm

The distinction between cloud-filled and cloud-free pixels is based on an algorithm comprising

several spectral threshold and spatial coherence tests, which was developed by the MODIS

science team (Platnick et al. 2003). This algorithm has been adapted for use on SEVIRI data

and is available through www-loa.univ-lille1.fr/∼riedi. The SEVIRI cloud detection algorithm

is different from the MODIS algorithm in that some of the threshold values have been modified

taking into account the differences in spectral channel characteristics, calibration, and spatial

resolution. In addition, the SEVIRI algorithm has been simplified from MODIS by reducing the

number of tests.
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Figure 2.6 Transect through the water and ice reflectance LUT for θ=20◦, θ◦=30◦, and ϕ-
ϕ◦=100◦. The horizontally oriented lines denote a constant cloud particle effective radius,
whereas the vertically oriented lines denote a constant cloud optical thickness. Lines are set in
black and gray for the water and ice cloud particles, respectively.

Finally, the decision logic in the SEVIRI algorithm is different from the one used in the MODIS

algorithm. The SEVIRI cloud detection algorithm uses 0.6-, 0.8-, and 1.6-µm reflectances and

3.9-, 10.8-, and 12.0-µm brightness temperatures. In addition, the algorithm uses ancillary

data on solar and viewing geometry and a land/sea map. The spectral threshold and spatial

coherence cloud detection tests are different for land and ocean surfaces. The output of

the cloud detection algorithm contains three categories: clear, cloud-contaminated, and

cloud-filled.

2.3.3 Retrieval of cloud physical properties (CPP)

The CPP algorithm retrieves τ and re from measured SEVIRI reflectances at 0.6 µm and 1.6

µm. The principle to retrieve these two cloud physical properties is that cloud reflectance

at non-absorbing wavelengths in the visible spectral region (0.6 µm and 0.8 µm) is strongly

related to the scattering optical thickness and only to a minor extent to re , while in the near

infrared (1.6 µm, 2.2 µm, and 3.9 µm) the measured cloud reflectance is largely dependent on

re .

Due to the increasing absorption efficiency of both water droplets and ice crystals with in-

creasing wavelength, which determines the photon penetration depth, the re retrieval is more

weighted to the cloud top as wavelength increases (Platnick et al. 2001; Rosenfeld et al. 2004).

However, the SEVIRI 3.9-µm channel is less favorable for retrieving re , because the observed

radiance contains both reflected solar irradiance and thermally emitted radiance. Moreover,
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the signal-to-noise-ratio is lower as a result of the significantly lower solar irradiance at 3.9 µm

compared to at 1.6 µm. Especially for the re retrieval of ice crystals this implies a very limited

sensitivity. Lastly, due to the retrieved re being more representative of the cloud top it will be

less representative of the cloud bulk in case of optically thick clouds.

The retrieval of cloud physical properties is performed in an iterative manner. The measured

0.6- and 1.6-µm reflectances are alternately compared to the precalculated LUT values for

given cloud optical thickness and particle effective radius, respectively. During the iteration,

the τ (re ) value is used to update the re (τ) retrieval from the 1.6-µm (0.6-µm) reflectance. This

iteration procedure is continued until both τ and re converge to within an absolute value of

0.05 relative to the previous iteration step. On average, about four iteration steps are required

to meet the convergence criteria. Roebeling et al. (2005) showed that the retrieval of τ is

susceptible to errors of up to 10% per percent measurement error in the 0.6-µm reflectance,

especially for optically thick clouds, while the error in retrieved re is much less sensitive to

measurement errors in the 1.6-µm channel. The large sensitivity for τ is explained by the

asymptotic behavior of the 0.6-µm reflectance for large τ (see the decreased distance between

the τ lines in Figure 2.6). Because the re retrieval is rather unreliable for optically thin clouds

(τ<8), the retrieved re is smoothed to climatological values of 8 µm and 26 µm for water and

ice clouds, respectively, using a weighting function.

Cloud thermodynamic phase is retrieved through a consistency check of the difference

between the measured 0.6- and 1.6-µm reflectances for water and ice clouds and a cloud-top

temperature check from the observed 10.8-µm brightness temperature. In the consistency

check the observed and precalculated difference between the 0.6- and 1.6-µm reflectances

are compared. As a result of stronger absorption in the 1.6-µm spectral channel, the observed

reflectance is expected to be lower at 1.6 µm than at 0.6 µm. In addition, at 1.6 µm ice crystals

are more efficient absorbers of incident sunlight than water droplets, which implies that ice

clouds have a lower 1.6-µm reflectance than water clouds.

In order to avoid erroneous cloud-phase retrievals for optically thin water clouds (e.g. at cloud

edges or in case of broken cumuli clouds), an additional Tc check is applied if a cloud-flagged

pixel is labeled “ice" by the reflectance consistency test. If the retrieved cloud-top temperature

exceeds 265 K, the initial “ice" retrieval is changed into “water". The Tc is calculated from the

measured 10.8-µm brightness temperature, which is corrected for cloud emissivities lower

than unity. The cloud emissivity is in turn estimated using Equation 2.9.

From the retrieved τ and re the Condensed Water Path (CWP, in units of g m−2) is calculated

(Stephens 1978):

CWP = 2

3
ρwτre , (2.10)

with ρw the density of liquid water. At present, Equation 2.10 is used for calculating the CWP

for both liquid water and ice clouds.
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2.3.4 Precipitation Properties retrieval algorithm (CPP-PP)

The CPP-PP retrieval algorithm was developed by Roebeling and Holleman (2009). It has been

adapted from a method originally developed for use on the Special Sensor Microwave/Imager

(SSM/I) by Wentz and Spencer (1998) to make it suitable for use on SEVIRI data. The original

algorithm is only applicable to water clouds, as microwave radiation is only to a minor ex-

tent scattered by ice crystals. Therefore Roebeling and Holleman (2009) have extended the

applicability to ice clouds by including CWP. In other words, the CPP-PP algorithm is capable

of retrieving precipitation intensity for both stratiform and convective precipitation.

The separation of precipitating from non-precipitating clouds is the first step in the retrieval

of precipitation intensity. Precipitating clouds are detected from CWP, re , and cloud-phase

information. Water cloud pixels with CWP larger than 150 g m−2 and re values larger than 16

µm are flagged “precipitating”, while for ice clouds all pixels with CWP larger than 150 g m−2

are flagged “precipitating”.

For the pixels that are flagged “precipitating”, the precipitation intensity (P , in mm h−1) is

calculated using the following equation (Roebeling and Holleman 2009):

P = c

∆H

[
CWPa −CWPo

CWPo

]1.6
, (2.11)

with CWPa the actual condensed water path. CWPo is an offset CWP value that is currently set

at 125 g m−2, the constant factor c has a value of 1 and is of unit mm h−1 km, and ∆H is the

height of the rain column (in km), which is defined as:

∆H = Tc,m −Tc,a

γ
+d H , (2.12)

in which Tc,a and Tc,m denote the Tc of the actual pixel and the maximum Tc in a 100×100

pixel area around the actual pixel, respectively. The pixel with maximum Tc is assumed to

represent a low, thin cloud and thus gives an estimate of the cloud base. The denominator

γ represents the mean adiabatic lapse rate of 6.0 K km−1 and d H represents the minimum

height of the raining column in km, which is currently set at 0.6 km.
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Chapter 3

SEVIRI cloud-phase retrieval evaluation using ground-based
observations

Three cloud-phase determination algorithms [Moderate-Resolution Imaging Spectroradiometer

(MODIS)-like thermal infrared cloud-phase retrieval method, the Satellite Application Facility on Climate

Monitoring (CM-SAF) method, and an International Satellite Cloud Climatology Project (ISCCP)-like

method] are explored to assess their suitability for climate monitoring purposes in mid-latitude coastal

climate zones. Using one year (May 2004–April 2005) of data from SEVIRI onboard Meteosat-8, retrievals

of the methods are compared to collocated and synchronized ground-based cloud-phase retrievals

obtained from cloud radar and lidar observations at Cabauw, the Netherlands. Three aspects of the

satellite retrievals are evaluated: 1) Instantaneous cloud-phase retrievals, 2) monthly averaged water

and ice cloud occurrence frequency, and 3) daytime diurnal cycle of cloud phase for May–August 2004.

For the instantaneous cases, all methods show very small bias for thick water and ice cloud retrievals

(∼5%). The ISCCP-like method has a larger bias for pure water clouds (∼10%), which is likely due to the

260 K threshold leading to misdetection of water clouds existing at lower temperatures. For the monthly

averaged water and ice cloud occurrence frequency, the CM-SAF method is best capable of reproducing

the annual cycle, mainly for the water cloud occurrence frequency, for which an almost constant positive

bias of ∼8% was found. The ISCCP- and MODIS-like methods have more problems to detect the annual

cycle, especially during the winter months. The difference in annual cycle detection between the three

methods is most probably related to the use of visible/near-infrared reflectances which enable a more

direct observation of cloud phase. The daytime diurnal cycle of cloud phase is well reproduced by all

methods. The MODIS-like method reproduces the daytime diurnal cycle best, with correlations of 0.89

and 0.86 for water and ice cloud occurrence frequency, respectively.

Based on: Wolters, E.L.A., R.A. Roebeling, and A.J. Feijt, 2008: Evaluation of cloud-phase retrieval methods for SEVIRI on Meteosat-8 using

ground-based lidar and cloud radar data, J. Appl. Meteorol. Clim., 47, 1723–1738, doi:10.1175/2007JAMC1591.1.
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3.1 Introduction

The interaction between clouds and radiation is of great importance to the Earth’s surface

energy balance. Clouds reflect and absorb solar radiation and emit and absorb terrestrial

radiation. The cloud–radiation interaction is of a complex nature and is dependent upon

properties such as cloud particle size, cloud temperature, cloud phase, water vapor and aerosol

abundance, and surface reflectivity. Accurate detection of cloud phase is important because

water and ice clouds influence the surface energy balance differently. Water clouds reflect

shortwave irradiance, while ice clouds absorb and emit outgoing terrestrial radiation back to

the Earth’s surface. Cloud-phase determination can be regarded as the subsequent step to

cloud masking in retrieving cloud properties from satellite measurements.

During the past decades, several approaches to infer cloud phase from satellite imagery have

been developed. Based on the type of spectral information used, these methods can be divided

into three groups. The first group uses thermal infrared radiances, the second group utilizes

visible and near-infrared reflectances, whereas the third group uses a combination of visible,

near-infrared, and thermal infrared radiances.

The advantage of using only thermal infrared radiances is the capability of obtaining cloud-

phase information during both daytime and nighttime, which enables detection of the full

diurnal cycle of cloud phase. In contrast, visible and near-infrared methods can only be

applied during daytime. Because outgoing surface radiance significantly contributes to the

radiance measured by a satellite instrument, thermally based cloud-phase retrievals are sen-

sitive to errors in case of optically thin and broken clouds. In addition, brightness temperature

thresholding affects the cloud-phase retrieval by assuming a sudden transition from water to

ice clouds below a certain temperature threshold, whereas in reality this transition depends

on e.g. cloud dynamics and the cloud condensation nuclei concentration. Arking and Childs

(1985) obtained information on cloud thermodynamic phase based primarily on 3.7- and 10.8-

µm channel radiances measured by the Advanced Very High Resolution Radiometer (AVHRR)

onboard the National Oceanographic and Atmospheric Administration (NOAA) satellites. Stra-

bala et al. (1994) developed a trispectral method to determine cloud phase using 8.5-, 11- and

12-µm radiances observed by the Moderate-Resolution Imaging Spectroradiometer (MODIS),

which was adopted for operational use within the MODIS scientific cloud datasets (Platnick

et al. 2003). Rossow and Schiffer (1999) defined a threshold for the cloud-top temperature

derived from 10.8-µm brightness temperature to discriminate water from ice clouds within

the International Satellite Cloud Climatology Project (ISCCP).

The methods of the second group are based on visible and near-infrared reflectances, which

directly depend on the optical properties of liquid and solid cloud particles. At visible

wavelengths, reflectance is primarily a function of cloud optical thickness, whereas at longer

wavelengths (such as the cloud particle absorption bands around 1.6 µm) reflectance is dom-

inated by particle size (Nakajima and King 1990). Hansen and Pollack (1970) used the diffe-

rences between visible and near-infrared reflectances to derive cloud particle phase and size.

Pilewskie and Twomey (1987) performed ground-based reflectance measurements between

0.63 and 1.9 µm to derive the cloud phase of convective clouds. Knap et al. (2002) developed a
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method using 1.64- and 1.70-µm reflectances from the Airborne Visible and Infrared Imaging

Spectrometer (AVIRIS) to obtain accurate cloud-phase retrievals over ocean surfaces.

The methods of the third group utilize combinations of visible, near-infrared, and thermal

infrared radiances. The strength of combining visible with thermal infrared information is

that the quality of the retrievals can be improved through the combination of different tests,

while a disadvantage is still the limitation to daytime cloud scenes due to the usage of visible

and near-infrared data. Baum et al. (2000) improved the trispectral thermal infrared method

of Strabala et al. (1994) by adding 0.63-, 1.63- and 1.90-µm reflectances to increase the cloud-

phase retrieval accuracy for thin cirrus clouds. The cloud-phase determination method used

within the Satellite Application Facility on Climate Monitoring (CM-SAF) of the European

Organization for the Exploitation of Meteorological Satellites (EUMETSAT) combines 0.6- and

1.6-µm reflectance with an additional cloud-top temperature check for the retrieval of ice

clouds.

Although good progress in the theoretical understanding of retrieving cloud-phase information

from passive imagers has been made, most validation efforts have been performed on a small

number of cases. Little is known about the accuracy of the various cloud-phase determination

methods when applied to long-term datasets, which form the basis for climate monitoring

applications, such as obtained by ISCCP, CM-SAF, and the MODIS Atmosphere group. Al-

though several ground-based measurement campaigns focusing on the radiative importance

of supercooled water or mixed-phase clouds from ground-based measurements have been

performed (Hogan et al. 2003; Turner 2005; Turner et al. 2003), little research has been done to

explore the quality of satellite water and ice phase retrievals. In this Chapter, we investigate the

suitability of three widely used satellite cloud-phase retrieval methods for climate monitoring

purposes in a mid-latitude coastal climate, using data from the Spinning Enhanced Visible and

Infrared Imager (SEVIRI) onboard the first Meteosat Second Generation satellite (Meteosat-8).

The methods investigated are: (i) a MODIS-like method using the brightness temperature

difference 8.7-10.8 µm combined with the 10.8-µm brightness temperature, (ii) an ISCCP-like

method using a 260 K cloud-top temperature threshold, and (iii) a combined 0.6/1.6 µm

reflectance method with an additional cloud-top temperature check, which is used within the

CM-SAF.

The accuracy of the satellite water and ice phase retrievals is assessed by comparing retrie-

vals to ground-based cloud phase obtained from cloud radar and lidar using an algorithm

described by Illingworth et al. (2007). First, the accuracy of the three methods is assessed for

homogeneous water or ice cloud cases. Subsequently, it is investigated whether the methods

are able to reproduce both the annual cycle and the daytime diurnal cycle in liquid water and

ice cloud occurrence frequency as observed from the surface.

The paper is organized as follows. Section 3.2 describes the satellite cloud-phase determination

methods evaluated, as well as the method for retrieving cloud phase from ground-based

lidar and cloud radar measurements. In section 3.3, satellite and surface data processing is

presented. Validation results for the different satellite cloud-phase determination methods

are shown in section 3.4 and conclusions are drawn in section 3.5.
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3.2 Cloud-phase determination algorithms

3.2.1 Satellite algorithms

MODIS thermal infrared cloud-phase determination algorithm

The MODIS bispectral infrared cloud-phase retrieval algorithm is part of the MODIS Atmos-

phere Science Dataset (SDS Collection 5, see http://modis.gsfc.nasa.gov). It uses the combina-

tion of 8.5-11.0 µm brightness temperature difference (hereafter referenced as BTD8.5-11) and

11.0-µm brightness temperature to determine cloud phase (Platnick et al. 2003). The method

relies on the fact that for water and ice the absorption efficiency coefficients are nearly equal

in the water vapor absorption region around 8 µm, while around 11 µm ice is a more efficient

absorber than water and thus has a lower brightness temperature (see Figure 3.1).

Strabala et al. (1994) showed that BTD8.5-11 values around zero can be expected for clear

sky scenes, whereas BTD8.5-11 is positive and negative for ice and water clouds, respectively.

Because SEVIRI has a spectral channel centered at 8.7 µm instead of 8.5 µm, the spectral

difference between the two channels affects the brightness temperature difference. Due to

less water vapor absorption in the SEVIRI 8.7 µm spectral band, the SEVIRI 8.7-µm brightness

temperature is higher than the MODIS 8.5-µm brightness temperature. To account for this

effect, all BTD8.5-11 thresholds used by the MODIS group were adjusted for use on SEVIRI

data (see Table 3.1). Furthermore, errors in the SEVIRI thermal infrared radiance to brightness

temperature conversion (EUMETSAT 2007) necessitated an additional correction to both the

8.7- and 10.8-µm brightness temperatures.

The MODIS cloud-phase determination method classifies cloud-flagged pixels into four cat-

egories: water, ice, mixed phase, and undefined. As this paper focuses on the quality of water

and ice detection, undefined classifications were discarded from the dataset, while mixed

phase classifications (∼8% of all cloud phase retrievals) were added to the ice category, because

visual image inspection of one month of MODIS images over Europe revealed that mixed phase

is mainly retrieved from the (optically thin) edges of ice clouds.

Table 3.1 Thresholds for the MODIS thermal infrared cloud-phase determination method using MODIS
(left column) and SEVIRI data (right column). ∆T refers to the brightness temperature difference 8.5-11.0
µm and 8.7-10.8 µm for MODIS and SEVIRI, respectively.

MODIS SEVIRI
water (T > 238 K and ∆T < -1.0) or (T ≥ 285 K and ∆T ≤ -0.5 K) (T > 238 K and ∆T < -0.5) or (T ≥ 285 K and ∆T ≤ 0.0 K)

ice (T ≤238 K) and (∆T > 1.0 K) (T ≤ 238 K) and (∆T > 1.5 K)

mixed (238 K < T < 268 K) and (-0.25 K ≤∆T <0.5 K) (238 K < T < 268 K) and (0.25 K ≤∆T <1.0 K)

undefined (238 K < T < 268 K) and (-1.0 K <∆T < -0.25 K) (238 K < T < 268 K) and (-0.5 K <∆T < 0.25 K)

ISCPP-like cloud-phase determination algorithm

A widely used way to infer cloud-phase information is by thresholding thermal infrared bright-

ness temperatures. That is, a cloud-flagged pixel having a brightness temperature lower than
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Figure 3.1 Imaginary index of refraction for water (solid) and ice (dashed) between 8 and 13 µm. Water
indices are from Downing and Williams (1975), ice indices are from Warren (1984).

a certain threshold value is attributed to the ice phase. The water vapor saturation pressure

difference in clouds between water and ice reaches its maximum near 261 K (Pruppacher and

Klett 1997), which implies that below these temperatures ice particles are more easily formed

than water particles. For opaque clouds, the measured 10.8-µm brightness temperature can be

regarded as the thermodynamic temperature from the uppermost part of the cloud, because

the cloud emissivity, ε, approaches unity. Furthermore, absorption by water vapor in the

atmospheric column above the cloud is negligible in the 10.8 µm spectral channel.

For semi-transparent or broken cloud cases, the thermal infrared radiation emitted by the

cloud is approximated as follows:

Bm = ελ,cl Bcl + (1−ελ,sur )Bsur , (3.1)

with Bm , Bcl , and Bsur the measured, cloud, and surface Planck radiation measured at 10.8

µm, with the latter to be estimated from the near-surface temperature. ελ,cl and ελ,sur are the

cloud emissivity at wavelength λ for the cloud and surface, respectively. From Equation (3.1)

it follows that for semi-transparent and broken clouds the brightness temperature obtained

from the measured 10.8-µm radiance is not representative for the real cloud temperature, due

to the contribution of the surface radiance.

In order to account for ελ,cl <1, the 10.8-µm radiance is corrected. The correction uses the

cloud absorption optical thickness at 10.8 µm, τ10.8, which is related to the cloud scattering

optical thickness at 0.6 µm, τ0.6, obtained directly from visible reflectance measurements:
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τ10.8 = τ0.6
Q10.8

Q0.6
, (3.2)

with Q10.8 and Q0.6 the extinction efficiency coefficients at 10.8 µm and 0.6µm, respectively.

Generally, τ10.8 ≈0.5τ0.6. When neglecting thermal infrared scattering, the cloud emissivity at

10.8 µm, ε10.8, can be calculated using τ10.8 (Minnis et al. 1998):

ε10.8 = 1−exp(
−τ10.8

µ
), (3.3)

with µ the cosine of the satellite viewing zenith angle. A consequence of using τ0.6 is that this

correction can only be applied during daytime.

A similar approach is utilized by the ISCCP method to obtain cloud phase for low and midlevel

clouds, using 260 K as threshold temperature (Rossow and Schiffer 1999). Riédi et al. (2001)

found a sharp transition from pure water to pure ice clouds at 240 K when they compared

Polarization and Directionality of the Earth’s reflectances (POLDER) cloud-phase retrievals to

lidar and radar cloud-top retrievals at the Atmospheric Radiation Measurement (ARM) site

at Oklahoma (USA). It was suggested to change the temperature threshold used in ISCCP

accordingly. These results were contradicted by Hogan et al. (2003), who found a more gradual

decrease in (supercooled) water occurrence at temperatures from 268 K down to 238 K using

ground-based lidar measurements at Chilbolton (United Kingdom).

CM-SAF cloud-phase determination method

The CM-SAF cloud-phase determination method was developed at the Royal Netherlands

Meteorological Insitute (KNMI) as part of the Cloud Physical Properties algorithm (Jolivet

and Feijt 2005; Roebeling et al. 2006a) within the framework of the CM-SAF. The method uses

differences in the water and ice absorption characteristics to discern water from ice clouds. At

near-infrared wavelengths, ice particles absorb sunlight more efficiently than water particles

and will thus have a lower reflectance. The retrieval of cloud phase is done iteratively by

comparing observed satellite reflectances at 0.6 µm and 1.6 µm to lookup tables (LUTs) of

Radiative Transfer Model (RTM) simulated reflectances. Water and ice are assigned to those

cloudy pixels for which the measured 0.6- and 1.6-µm SEVIRI reflectances correspond to the

respective simulated LUT reflectance. Cloud-flagged pixels initially assigned to ’ice’ are labeled

as ’water’ if the emissivity-corrected cloud-top temperature exceeds 265 K.

The LUT reflectances are modeled using the Doubling Adding KNMI (DAK) RTM (De Haan

et al. 1987; Stammes 2001), which calculates shortwave reflectance at top-of-atmosphere as-

suming plane-parallel homogeneous clouds above a Lambertian surface. The phase function

of water droplets is calculated using Mie theory for spherical particles assuming a Gamma

size distribution (Hansen and Travis 1974) with an effective variance, veff, of 0.15 and effective

radii ranging from 1–24µm. Ray tracing is used to calculate the ice particle phase function for

imperfect hexagonal crystals of type C0 (reff=6µm), C1 (reff=12µm), C2 (reff=26µm), and C3

(reff=51µm) of the Cirrus Optical Properties (COP) ice crystal library (Hess et al. 1998). Surface

albedo information is obtained from the MODIS white sky surface albedo product (Platnick
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et al. 2003).

A cross section of the DAK ice and water LUTs is shown in Figure 3.2. Solar zenith angle, θ◦,

viewing zenith angle, θ, and azimuth difference angle, ϕ-ϕ◦, were chosen at 30◦, 20◦, and

100◦, respectively. The upper part of Figure 3.2 represents cloud reflectances modeled for

water particles with effective radii of 3–24 µm, whereas cloud reflectances for ice crystals

of type C0, C1, C2, and C3 are displayed in the lower part. Cloud optical thickness for the

SEVIRI 0.6-µm spectral channel, hereinafter referenced as cloud optical thickness, τ0.6, and

reff can be retrieved independently for τ0.6 > 4, because their LUT contours intersect (nearly)

orthogonally. Further, the plots show that the 0.6- and 1.6-µm reflectances of small ice crystals

and large water droplets overlap for τ0.6 >∼4. For these cases, the emissivity-corrected cloud-

top temperature with threshold value 265 K is used as a cloud-phase indicator.

Figure 3.2 Modeled 0.6- and 1.6-µm reflectances for θ◦=30◦, θ=20◦, and φ-φ◦=100◦. Cloud optical
thickness is denoted by the vertically oriented lines, effective radius by horizontally oriented lines. Water
particles are represented in the upper part of the graph, ice particles in the lower part.

3.2.2 Cloud-phase determination from ground-based measurements

A method to determine cloud phase from lidar and cloud radar measurements described by

Illingworth et al. (2007) is applied to measurements of the CloudNET site of Cabauw (The

Netherlands, 51.97◦N, 4.93◦E). The algorithm simultaneously uses cloud radar vertical Dop-

pler velocity, lidar attenuated backscatter profiles, and Numerical Weather Prediction (NWP)

model temperature profiles.

Cloud radar measures both the reflectivity of (cloud) particles and the convolution of particle

velocity and vertical air motion. The wavelength of cloud radar instruments is such that in
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most cases the size of cloud particles is much smaller than the wavelength of the incident

beam, which means that the Rayleigh scattering regime applies. Within this regime, radar

reflectivity (Z ) is proportional to the second moment of particle mass. The cloud radar at

Cabauw is operated at a frequency of 35 GHz (λ=8.6 mm) with a beamwidth of 0.36◦ and a

vertical resolution of about 90 m. Due to its proportionality to particle mass, the cloud radar

reflectivity signal is dominated by large cloud particles. Optically thin layers consisting of large

ice crystals may show up as geometrically very thick layers in the cloud radar reflectivity signal.

Furthermore, in case of heavy rain the signal becomes saturated due to the large reflectivity

from rain droplets, which implies that no cloud property information can be derived from

higher cloud levels.

Figure 3.3 Location of the Cabauw measurement site.

Lidar instruments are mostly used to identify the cloud base of liquid water clouds. For cloud

optical thickness values lower than about 4 also the cloud top height can be detected with an

accuracy of tens to hundreds of meters (Chepfer et al. 2000). The backscatter coefficient, β, is

the amount of emitted photons scattered back to the lidar instrument by atmospheric particles,

such as cloud droplets or aerosols. The attenuated backscatter coefficient, β′, which is usually

reported, is the backscatter coefficient corrected for gaseous absorption. The majority of the

lidar instruments operate from ultraviolet up to near-infrared wavelengths. At Cabauw, a 0.905

µm lidar with a vertical resolution of ∼30 m is operated.

Determination of cloud phase is performed in three steps. First, the algorithm estimates

the cloud melting layer height, taking the level where the NWP model wet-bulb temperature

(Tw) equals 0◦ C. Subsequently, this estimate is refined using the cloud radar vertical Doppler

velocity profile, as in general a large and sharp increase in the fall speed of cloud particles can

be detected below the melting layer. It is noted here that the Doppler vertical velocity is only
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searched when the model wet-bulb temperature is between -5◦ C and +5◦ C. If the melting

layer is outside this temperature region the altitude of the melting layer height is assumed at

level Tw=0◦ (R. Hogan, personal communication, 2007). The probability of the model wet-

bulb temperatures being outside this region is very small. Mittermaier and Illingworth (2003)

showed that for the Met Office Unified mesoscale model (UM) the obtained 0◦ C wet-bulb

temperature level has a bias of +15 m compared to radar-obtained values for the t+0h to t+5h

forecast, with an rms error of 147 m. Finally, if available, the attenuated lidar backscatter

coefficient is evaluated to determine the presence of thin supercooled water layers within

ice clouds. The method described above enables cloud-phase determination for the vertical

profile up to ∼12 km with a vertical resolution of ∼90 m.

The following output categories from the ground-based algorithm are considered: “cloud li-

quid droplets”, “drizzle/rain & cloud droplets”, “ice”, “ice & supercooled droplets”, “melting ice”,

and “melting ice & cloud droplets”. For the comparison of satellite cloud-phase retrievals with

ground-observed cloud phase, the above categories were binned into three new categories for

each sampling period: the “cloud droplets” and “drizzle/rain & cloud droplets” categories were

labeled as water, the “ice” and “melting ice” categories were labeled as ice, and “ice & super-

cooled droplets” and the “melting ice & cloud droplets” categories were labeled as mixed phase.

Note that simultaneously using active cloud radar and lidar provides information on the

vertical geometrical extent of a cloud and its properties, while passive satellite radiometers

are mainly sensitive to the optical thickness of a cloud. In particular, the sensitivity of cloud

radar reflectivity to large cloud particles requires attention. If an ice cloud contains large

particles, radar reflectivity is high due to the proportionality with particle mass. However, if the

ice water content of the cloud is low, the extinction and hence the cloud optical thickness is low.

Due to this low extinction, SEVIRI may not be capable of detecting ice clouds with relatively

low ice water contents, which increases the likelihood of cloud-phase misclassification when

such a cloud overlays a water cloud. Moreover, it should be noted that the quality of the

ground-based cloud-phase observations is best when both cloud radar and lidar data are

available. That is, when the lidar is unavailable or attenuated due to thick low level water

clouds, higher levels cannot be searched for supercooled water. Therefore these ground-based

retrievals should be carefully interpreted when used for evaluation of satellite-derived cloud

phase.

3.3 Data and methods

3.3.1 Satellite data analysis

All satellite algorithms were tested using one year (May 2004–April 2005) of data from SEVIRI.

The SEVIRI instrument contains 12 spectral channels: one visible, three near-infrared, seven

thermal infrared, and one high-resolution visible channel. For this study, the 0.6-, 1.6-, 8.7-,

and 10.8-µm spectral channels were used. SEVIRI daytime data was archived at a 15-minute
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resolution. The SEVIRI 0.6- and 1.6-µm reflectances were cross-calibrated with the correspon-

ding reflectances from MODIS-Terra, which carries in-flight absolute calibration instruments

with an expected uncertainty of about 2% for the visible channels (Doelling et al. 2004; Roebe-

ling et al. 2006a).

The algorithm to separate cloud-free from cloud-contaminated and cloud-filled pixels is based

on the MODIS cloud detection algorithm (Platnick et al. 2003). This algorithm has been sim-

plified and modified to make it applicable for SEVIRI (http://www-loa.univ-lille1.fr/∼riedi/).

The input to the SEVIRI cloud detection algorithm consists of normalized reflectances from

the visible (0.6 µm and 0.8 µm) and near-infrared (1.6 µm) channels, whereas brightness

temperatures are used from the thermal infrared channels (3.8, 8.7, 10.8 and 12.0 µm). In

addition, the algorithm uses ancillary data on solar and viewing geometry and a land/sea map.

There are spectral threshold and spatial coherence cloud detection tests that are different for

land and ocean surfaces. The SEVIRI thresholds differ slightly from the MODIS thresholds

because of differences in instrument calibration, channel characteristics and spatial resolution

between the instruments.

Cloud phase was determined for individual pixels using the methods introduced in Section

3.2.1. For the ISCCP-like method, a temperature threshold of 260 K was used. Rsur (see Equa-

tion 3.1) was calculated by applying the Planck function, weighted for the SEVIRI 10.8-µm

spectral band, to European Center for Medium-Range Weather Forecasts (ECMWF) 10-meter

temperatures. The 10-meter temperature was chosen because in cloudy situations the diffe-

rence between 10-meter and surface skin temperature is small. Values for Q10.8 and Q0.6,

used to convert τ0.6 into τ10.8, were obtained using a polynomial fit through values from Mie

calculations for effective radii between 1 and 24µm.

Subsequently, the cloud-top temperature was obtained using Equations 3.1 and 3.3. For

the CM-SAF method, retrievals were limited to θ◦ ≤72◦. Although not consistent with the

recommendation of Loeb and Coakley (1998) to only use 1D simulated cloud reflectance for

θ◦ <∼60◦, it was chosen to exceed this limit to also include winter observations in the dataset.

Furthermore, cases in which the MODIS-like method retrieval was undefined were discarded

for all methods.

3.3.2 Ground-based data analysis

Ground-based cloud-phase observations were recorded at a 15-second time resolution at

Cabauw, The Netherlands. To account for the difference in observation techniques between

satellite and ground-based instruments, the ground-based observations were collected over

a 30-minute time window centered at the SEVIRI scanning time for Cabauw, being about 12

minutes past the SEVIRI slot time. Furthermore, to minimize broken cloud field effects or

mismatch in cloud detection between satellite and ground-based instruments, only cases with

cloud cover >90% within the 30-minute time window were included.
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From the ground-based observations, cloud phase at both a high temporal resolution and for

an entire cloud profile rather than only for the cloud top was derived. In addition, water clouds

with a geometrical thickness of a few hundred meters are mostly optically thick, whereas

ice clouds often have low optical thickness even when their geometrical thickness is large.

Therefore criteria were developed to interpret each 30-minute time window into a single cloud

phase value.

It was shown in section 3.2.2 that for each sampling period the six cloud phase categories as

obtained from the algorithm of Illingworth et al. (2007) were binned into a water, ice, and

mixed-phase category. For each of these three categories the thickness per sampling period

(15 s) was calculated. Subsequently, the average thickness of the three categories within the

30-minute time window period was calculated. Finally, threshold values were set for the

average ice, water, and mixed-phase cloud thickness to attribute the time window period to

a unique cloud phase. Table 3.2 presents the criteria that are used to interpret 30-minute

averaged water, ice, and mixed phase cloud thickness (∆hw , ∆hi , and ∆hm , respectively) in

terms of a single cloud phase for the considered period. Cloud systems with ∆hi <600 m and

(∆hw /∆hm )>4 were labeled as water cloud. Clouds with ∆hi > 2500 m were labeled as ice,

whereas for ∆hi <2500 m and (∆hw /∆hm )<4 mixed phase was assigned.

Table 3.2 Criteria applied to 30-minute averages of ground-based observed water, ice, and mixed cloud
layer thickness for calculation of monthly averaged cloud phase occurrence. ∆hi refers to ice layer thickness,
∆hw to water layer thickness, and ∆hm to mixed layer thickness.

cloud phase criterion
ice ∆hi > 2500 m
water ∆hi < 600 m & (∆hw / ∆hm ) > 4
mixed phase 0 m < ∆hi < 2500 m & (∆hw / ∆hm ) < 4

3.3.3 Comparison of satellite to ground-based cloud-phase observations

The comparison of the satellite retrievals to ground-observed cloud phase was divided into

three parts: (i) instantaneous water and ice cloud retrievals, (ii) monthly averages of water

and ice cloud occurrence frequency using a three-month moving window, and (iii) daytime

diurnal cycle of cloud phase. The latter was performed for May-August 2004 only, because the

daytime diurnal cycle of water and ice occurrence frequency can be distinguished best when

convection prevails, which is mostly the case during the Western European summer months.

Instantaneous water and ice cloud retrievals

A first quality indication of the satellite cloud-phase determination methods was achieved by

comparing instantaneous water and ice retrievals to collocated retrievals from the ground-

based algorithm. Hereinafter, the word ‘collocated’ is used to indicate both the spatial collo-

cation and the synchronization of two measurements. To quantify the detection accuracy of
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satellite cloud-phase retrievals for different ground-observed cloud thicknesses, the ground

ice cloud dataset was sorted into groups of cloud cases with the 30-minute averaged ice cloud

thickness from >200 m to >5000 m. The water cloud cases were grouped into classes with

≤200 m to ≤2500 m of ice cloud overhead. For these instantaneous water and ice cases the

bias in the satellite-retrieved cloud phase was determined.

Satellite data were obtained from the two pixels nearest to the Cabauw geolocation. Roebeling

et al. (2006b) showed that the difference between simulated SEVIRI and ground-based LWP

values has a minimum at a ground tracklength of ∼4 km. Taking into account the westerly

airflow, which dominates the Western European climate, and the SEVIRI pixel size of 4×7 km

at the Cabauw geolocation, the validation area comprises the Cabauw pixel and the pixel west

of Cabauw.

From the one-year dataset, collocated cases (both spatially and temporally) with a ground-

based cloud cover >90% and labeled as either water or ice by both satellite and ground-based

observations were selected. Subsequently, the collocated cases were compared. For both water

and ice, the number of cases with satellite cloud-phase retrievals being different from the

ground-observed value divided by the total number of collocated water (ice) cases indicates

the bias for instantaneous water (ice) retrievals.

Monthly liquid water and ice cloud occurrence frequency

To examine the accuracy of the various methods with respect to climate monitoring purposes,

the monthly averaged water and ice cloud occurrence frequency, ϕw
m and ϕi

m , defined as

the ratio of clouds labeled as water or ice to the total observed clouds, was calculated. The

superscript p is hereinafter used to generically denote water and ice. Using the criteria from

Table 3.2, the daily water and ice cloud occurrence frequency were calculated first:

ϕd =
n

p
d

Nd
, (3.4)

with n
p
d and Nd the number of observed water or ice clouds and total number of clouds at a

day, respectively.

The monthly averaged occurrence frequency was calculated using a three-month moving

window. Because the number of available collocated time slots changed significantly for each

day, a weighting factor, wd , was defined:

wd = nd∑n
d=0 nd

, (3.5)

with nd the number of collocated time slots at day d having a ground-based derived cloud

cover >90% and at least one satellite validation pixel cloud flagged. For both the SEVIRI and

ground-based data, the monthly averaged water and ice cloud occurrence frequency, ϕ
p
m , was

calculated as follows:

ϕ
p
m = n

p
m

Nm
, (3.6)

38



3.3 Data and methods

with n
p
m being the number of observed water or ice clouds and Nm being the total observed

clouds within the three-month moving window.

The main accuracy indicator is the monthly bias in water and ice cloud occurrence frequency,

B
p
m :

B
p
m =ϕp

m,sat −ϕ
p
m,sur , (3.7)

with suffixes m, sat and m, sur referring to the monthly satellite and surface derived water

and ice cloud occurrence frequency, respectively.

The weighted unbiased root-mean-square error, U RMSE , is used as a precision measure and

indicates the spread in the differences between daily satellite and ground-observed water or

ice cloud occurrence frequency after removing the monthly bias:

U RMSE =
√√√√ n∑

d=0
wd

[
ϕ

p
d ,sat −B

p
m −ϕp

d ,sur

]2
. (3.8)

A second precision indicator of the satellite-retrieved daily measurements is the linear cor-

relation coefficient. To account for the different weights given to each day, the correlation

coefficient was calculated using the product of wd and ϕ
p
d . The correlation coefficient for the

water and ice cloud occurrence frequency is calculated as follows:

r =
cov

[
(ϕ

p
d wd )sat , (ϕ

p
d wd )sur

]
σ

p
surσ

p
sat

(3.9)

A high correlation between the satellite and surface water or ice cloud occurrence frequency

indicates a good skill of the satellite method.

Daytime diurnal cycle of cloud phase

To assess the methods’ ability for detecting the daytime diurnal cycle of cloud phase, a four-

month period during the summer season (May-August 2004) was investigated. This period was

chosen because in the western European coastal climate region, in which Cabauw is located,

cloud formation during summer is mostly induced by convection and to a lesser degree by

synoptic-scale systems. Therefore it is expected that as a result of enhanced convection during

the afternoon, the ice cloud occurrence frequency increases accordingly.

All cases with ground-based observed cloud cover >90% were collected and binned into

15-minute observation time categories for the period 6:12-18:12 UTC (8:12-20:12 Central

European Summer Time). For each bin the average water and ice cloud occurrence frequency

was calculated. Subsequently, the correlation coefficient between satellite and surface me-

thods was calculated. The error in the obtained correlation coefficient was calculated using a

bootstrap technique. This technique uses the actual dataset to construct synthetic datasets by

randomly drawing values from the original data (Efron and Tibshirani 1993).
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3.4 Results

3.4.1 Instantaneous cloud-phase retrievals

The satellite-based cloud-phase retrieval is expected to perform better with increasing (optical)

thickness of the observed cloud layer. In order to test this hypothesis, the accuracies of the

satellite-based ice phase retrievals are determined for ground-based observed ice clouds with

a geometrical thickness increasing from 200 m to 5000 m. It is likely that the bias for the

satellite ice cloud retrievals will decrease with increasing ice cloud geometrical thickness over

the ground-based sites. The SEVIRI cloud-phase retrievals are insensitive to geometrically

thin (subvisual) ice clouds (τ0.6 . 1), for which the SEVIRI cloud-phase retrievals are rather

influenced by the water cloud or surface underneath. This may result in the incorrect retrieval

of the water phase. Likewise, the accuracy of the satellite water phase retrievals is determined

for ground-observed water clouds with an increasing ice cloud thickness overhead. For the

validation of water clouds, an increasing ice thickness implies that more ice over water is

allowed before the ground-based observed cloud phase is switched from water to the mixed

phase category. It is therefore expected that with an increasing ice over water cloud thickness

the number of satellite ice cloud retrievals will increase, hence increasing the bias with the

ground-observed cloud phase.

Figure 3.4 presents results for the instantaneous satellite cloud phase retrievals for May 2004–

April 2005. Results are obtained for ground-based ice clouds with an increasing geometrical

thickness and for water clouds with an increasing ice geometrical thickness overhead. The

results for water clouds are plotted in gray, while the results for ice clouds are plotted in black.

Values on the x-axis indicate the maximum and minimum ice cloud thickness for ground-

observed water and ice clouds, respectively. Please note that the datasets are not equal in

size, as the water cloud dataset comprises ground observed water clouds with ice clouds aloft

and the ice cloud dataset contains ground observed ice clouds, which do not necessarily have

water clouds below.

From Figure 3.4 it can be seen that the satellite cloud phase-retrieval methods show small bias

when almost pure water clouds (with ≤200 m ice overhead) are observed from the surface, with

values of 4%, 7%, and 10% for the CM-SAF, MODIS-like, and ISCCP-like methods, respectively.

The relatively high value for the ISCCP-like method is probably connected to the usage of 260

K as threshold, which fails to detect water clouds that exist at lower temperatures. Hogan

et al. (2003) showed that the supercooled water occurrence frequency decreases from 27%

towards 0% at temperatures between 268 K and 238 K, using ground-based lidar observations

at Chilbolton (United Kingdom). As the ground-observed ice cloud thickness over water clouds

increases, the bias increases for all methods. This increase indicates that the satellite methods

tend to retrieve ice more often with increasing ground observed ice cloud thickness over water

clouds. The MODIS- and ISCCP-like methods are slightly more sensitive to an increase in

ice thickness than the CM-SAF method, which is seen from the larger increase in bias than

CM-SAF between >500 m and >1500 m ice cloud thickness. Once the ground-observed ice

cloud thickness exceeds 1500 m, all methods show a similar increase in bias.
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Figure 3.4 Bias between instantaneous satellite and ground-based cloud-phase retrievals for water
(gray) and ice (black). The x-axis values indicate the maximum and minimum ice layer thickness for
ground-based observed water and ice clouds, respectively. The CM-SAF method is plotted solid, the ISCCP-
like method dotted, and the MODIS-like method dashed. The histograms indicate the number of collocated
observations with scaling on the right-hand axis.

The ice cloud retrieval results show an opposite behavior when ground-observed ice thickness

increases. If ground-observed clouds with an average ice thickness >200 m are labeled as ice,

the bias for the satellite methods is 50-55%, due to the SEVIRI spectral channels not being able

to detect very thin ice clouds. However, at increasing minimum ice thickness the bias decreases

sharply; for clouds with ice thickness >3500 m, the bias for the three methods diminishes to

within 5%. Above results indicate that all methods have good skill for instantaneous retrievals

if only thick, homogeneous water and ice clouds are considered.

3.4.2 Monthly liquid water and ice cloud occurrence frequency

The monthly averaged liquid water and ice cloud occurrence frequency is used to monitor

the annual variations in cloud phase. Figure 3.5 shows the monthly averaged distribution

between water, ice, and mixed phase clouds as derived from ground-based measurements

using a three-month moving window. Water clouds overlaid by <600 m ice are still considered

water; clouds with ice thickness >2500 m are labeled ice (see also Table 3.2). The remaining

cases are labeled mixed phase.

The ice cloud occurrence frequency peaks during the late summer, which could be related to

convective activity mostly taking place in the Western European climate in these months. The

maximum water cloud occurrence frequency is observed in November 2004, which is probably

connected to more synoptical weather systems moving over the Cabauw site. The mixed phase

cloud occurrence frequency gradually increases towards the winter months from 30% to ∼60%,

which is likely due to more supercooled water clouds within the synoptic-scale systems. It was
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Figure 3.5 Monthly averages of ground-based derived liquid water (dotted), ice (dashed), and mixed
phase (solid) clouds using a three-month moving window. Clouds are labeled as ice for 30-minute average
thickness >2500 m, water clouds contain <600 m of ice overhead (see also Table 3.2). The gray histogram
indicates the number of valid observations for each three-month period.

shown by Rauber and Tokay (1991) that supercooled water layers are most likely to occur in

non-convective clouds. Corresponding results were reported by Naud et al. (2006), who found

that glaciation in mid-latitude storms occurs at lower temperatures for shallow clouds outside

the frontal regions. Note that the number of observations, indicated by the gray histogram,

is strongly skewed towards the summer months, which implies that occurrence frequencies

obtained for the winter months are significantly less reliable.

The monthly water and ice cloud occurrence frequency for the satellite methods and the

ground-based reference dataset are given in Figures 3.6a and 3.6d. The water and ice cloud

occurrence frequency are shown in the left and right panel, respectively. Further, the monthly

URMSE (see Equation 3.8) is presented in Figures 3.6b and 3.6e. It is mentioned that due

to the limited visible channel information the number of observations is low for November

2004–January 2005 (see also Figure 3.5). The ground-observed water occurrence frequency

decreases during the summer months, having a minimum in September 2004. The decline

(increase) in water (ice) occurrence frequency is likely related to summer convection. Water

occurrence frequency increases towards the (boreal) winter months, which may be connected

to dominating synoptic-scale weather systems in the Western European climate region.

All methods show very small bias (<5%) throughout the summer months. Towards autumn and

winter, both the ISCCP- and MODIS-like methods predict a lower water occurrence frequency

than the ground-based observed value. For the ISCCP-like method, this underestimation could
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Figure 3.6 (a,d) Monthly averaged liquid water and ice cloud occurrence frequency for the SEVIRI me-
thods and ground-based method; (b,e) unbiased root-mean-square error (URMSE) for the SEVIRI methods;
(c,f) liquid water and ice cloud occurrence frequency for the SEVIRI methods and ground-based method
normalized by the respective yearly average. Liquid water cloud and ice cloud results are shown in the left
and right panels, respectively. Results were obtained using a three-month moving window.

be related to differences in cloud dynamics between summer and winter (convectively versus

synoptically induced clouds) and thus more water clouds existing at temperatures lower than

the 260 K threshold (Hogan et al. 2003; Rauber and Tokay 1991). The CM-SAF method has a

continuous positive bias of ∼8% for almost the entire year. URMSE is small for all methods,

with a slight increase towards the winter months. For the CM-SAF and ISCCP-like methods

this could be related to unfavorable viewing geometries (large solar and viewing zenith angles),

which affect the accuracy of simulated 0.6- and 1.6-µm reflectances and hence the precision

of the cloud-phase retrieval. The MODIS-like method mostly has a smaller URMSE (higher

precision) than the CM-SAF and ISCCP-like methods.

The derived ice cloud occurrence frequency shows a similar pattern for the summer months.

Towards winter, all methods have a decrease in both accuracy and precision, as seen by the
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increase in bias and URMSE. In December 2004, all methods overestimate the ground-based

derived ice cloud occurrence frequency by ∼15%, together with an increase in URMSE from

∼2% in September to 16% in December 2004.

The increase in URMSE indicates a larger spread of the differences between daily satellite and

ground-based derived ice cloud occurrence frequency, which is partly related to substantially

less collocated observations compared to the summer months. The precision of the CM-SAF

method significantly improves after December 2004, as the URMSE drops from 16% to ∼3%.

This indicates that the precision of cloud-phase determination using visible and near-infrared

reflectance is largely influenced by the viewing geometry. For the ISCCP-like method, the

overestimation of ice clouds during the winter coincides with an underestimation of water

clouds, which suggests that 260 K is a too high temperature threshold to accurately estimate

the monthly average of cloud phase during winter in a mid-latitude climate. Except for the

large positive bias from October–December 2004, the CM-SAF method is best capable of

detecting the ground-based observed ice cloud occurrence frequency.

To assess the methods’ ability for reproducing the ground-based observed annual cycle in

cloud phase, Figures 3.6c and 3.6f show the monthly averaged water and ice cloud occurrence

frequency normalized by its yearly average in the left and right panel, respectively. For water

clouds, the CM-SAF method almost perfectly detects the monthly variability in occurrence

frequency as observed by the ground-based algorithm, probably linked to the usage of 0.6- and

1.6-µm reflectance which enables a more direct cloud-phase observation than temperature

thresholding methods. During autumn and winter, the ISCCP-like method reproduces the

annual cycle in water cloud occurrence frequency less clearly, which can be seen in Figure

3.6c from November 2004 onwards. For ice clouds, all methods reproduce the monthly variabi-

lity well during summer. In the winter months, this ability decreases, although the CM-SAF

method approaches the ground-observed ice cloud occurrence frequency again from January

2005 onwards.

Weighted correlation coefficients for the retrieved daily water and ice cloud occurrence fre-

quencies are presented in Figure 3.7. All methods have a high correlation (>0.8) for the summer

months and show a decrease during the winter months for both water and ice. Further, the

correlation between satellite methods and ground-based observations is higher for ice cloud

than for water cloud occurrence frequency, with almost similar correlation coefficients for

all methods. Correlation coefficients are very high (>0.9) until December 2004, followed by a

decrease to ∼0.75 during the winter. For the water cloud occurrence frequency, the ISCCP-like

method shows a sharper drop in correlation than the CM-SAF and MODIS-like methods. Note

that from December 2004 to January 2005 the number of observations is very low, which makes

the correlations more susceptible to outliers. Table 3.3 presents the weighted correlation coef-

ficients for the entire dataset together with values obtained from a bootstrap technique (Efron

and Tibshirani 1993), which gives information on the reliability of the obtained correlations.
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Figure 3.7 Monthly weighted correlation coefficients based on daily averaged water (left panel) and ice
(right panel) occurrence frequency using a three-month moving window for CM-SAF (dotted), ISCCP-like
(dashed), and MODIS-like (dashed-dotted) methods.

Table 3.3 Weighted correlation coefficients (r0) and median bootstrap correlation (rb) with standard
deviation between satellite and ground-based derived water and ice cloud occurrence frequency for May
2004–April 2005.

method r0,water rb,water r0,ice rb,ice
CM-SAF 0.94 0.93±0.02 0.98 0.93±0.02
ISCCP-like 0.92 0.91±0.03 0.97 0.91±0.03
MODIS-like 0.92 0.91±0.03 0.97 0.91±0.03

3.4.3 Daytime diurnal cycle of cloud phase

Figure 3.8 shows the ground-based and satellite derived daytime diurnal cycle of water (left

panel) and ice occurrence frequency (right panel) for May-August 2004. Results are shown for

one-hour binned observations, while calculations of the correlation between satellite- and

ground-observed water and ice cloud occurrence frequency were performed using 15-minute

binned data. The gray histogram denotes the number of collected observations for each hour

from 6:12-18:12 UTC (8:12-20:12 Central European Summer Time, CEST).

During the morning and early afternoon, the ground-based observed water occurrence fre-

quency is approximately constant (∼40%), while the ice cloud occurrence frequency shows a

small increase. The water cloud occurrence frequency derived by the CM-SAF and ISCPP-like

methods shows a strong peak from 11:12 to 12:12 UTC. This could be due to a backscatter

geometry effect; azimuth difference angles in this period are 160◦–180◦. Because the LUT

reflectances are less accurate for these unfavorable backscatter viewing geometries, for the

CM-SAF method the increased 0.6- and 1.6-µm reflectance may lead to more water retrievals.

For the ISCCP-like method, increased 0.6-µm reflectance leads to a smaller cloud emissivity

correction (see Equations 3.2 and 3.3), which in turn leads to a higher cloud-top temperature.

After local noon (varying from 13:37-13:47 CEST), water (ice) occurrence gradually decreases
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Figure 3.8 Daytime diurnal cycle of water (left panel) and ice (right panel) cloud occurrence frequency
for SEVIRI methods versus ground-based observed values (solid line) for May-August 2004. Values are
obtained from measurements binned over 1-hour periods from 6:12-18:12 UTC (8:12-20:12 CEST). The
number of observations in each bin is denoted by the gray histogram, with scaling on the right-hand axis.

(increases). This change in water and ice cloud occurrence frequency over the day is repro-

duced well by all methods, although some bias remains (∼10%), mainly for the water cloud

occurrence frequency. Further, the increase in ice cloud occurrence frequency after 13:12 CEST

is reproduced with a small lag by the satellite methods, this could be due to the difference in

spatial resolution between ground- and satellite-based measurements.

The correlation coefficients as obtained from the 15-minute binned observations are presented

in Table 3.4. Correlation is significant for all methods for both the water and ice cloud occur-

rence frequency. As the original dataset was small (n=48), a bootstrap technique was used to

assess the reliability of the obtained correlations. The standard deviation of the bootstrapped

correlations is assumed to indicate the error of the original correlation r0. For the 15-minute

data, all r0 values are within one standard deviation, which means that the correlation is

reliable. For both the daytime diurnal cycle of water and ice cloud occurrence frequency, the

MODIS-like method shows best performance with correlations of 0.89 and 0.86 for water and

ice, respectively. The ISCCP-like and CM-SAF method have values between 0.67 and 0.76. The

above values show significant skill for the number of data points used.

3.5 Conclusions

In this Chapter, three cloud-phase determination methods have been evaluated for their use

in climate monitoring applications in mid-latitude coastal climate. The methods investigated

are a MODIS-like thermal infrared method, an ISCCP-like method, and a method developed

within the framework of the CM-SAF. Using one year of SEVIRI data (May 2004–April 2005),

retrievals of the methods were compared to collocated ground-based cloud-phase retrievals

from cloud radar and lidar data at Cabauw, The Netherlands. Three quality aspects of the

satellite retrievals were evaluated:
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Table 3.4 Correlation coefficients between the satellite and ground-based derived daytime diurnal
cycle of water and ice cloud occurrence frequency for May–August 2004. r0 represents the correlation using
15-minute binning of the original dataset (n=48), rb denotes the median bootstrap correlation with the
standard deviation.

r0,water rb,water r0,ice rb,ice
CM-SAF 0.73 0.74±0.06 0.67 0.67±0.09
ISCCP-like 0.76 0.76±0.07 0.70 0.70±0.07
MODIS-like 0.89 0.89±0.03 0.86 0.87±0.04

1) instantaneous cloud-phase retrievals, 2) monthly averaged water and ice cloud occurrence

frequency, and 3) daytime diurnal cycle of cloud phase for May–August 2004.

The ground-based algorithm (Illingworth et al. 2007) used in this research retrieves cloud-

phase information at a very high temporal resolution with a vertical range of ∼12 km. This in

contrast to satellite imagery, which mostly derives cloud-phase information from the upper-

most part of a cloud. To account for these differences, ground-based cloud-phase retrievals

were collected over 30-minute time windows. Furthermore, in order to obtain a straightfor-

ward comparison of satellite to ground-based derived cloud phase retrievals, the 30-minute

averaged thickness of water, ice, and mixed phase layers was taken into account to label each

time window period with a unique cloud phase.

Using the ground-based cloud phase dataset, it was shown that ice cloud occurrence frequency

has a maximum during summer (∼40%), probably due to convection, and a minimum during

winter (∼15%). The ground-based water cloud occurrence frequency peaks in November 2004

(∼30%). The fraction of mixed-phase clouds gradually increases from 30% to ∼60% towards

the winter season, which could be related to synoptic-scale weather systems dominating

the western European climate during winter. These systems contain substantial amounts of

supercooled water clouds (Naud et al. 2006; Rauber and Tokay 1991).

All methods show small instantaneous bias for thick water and ice clouds with values within

5%. The ISCCP-like method has a larger bias for pure water clouds (∼10%), which is likely due

to the 260 K threshold leading to misdetection of water clouds existing at lower temperatures.

Hogan et al. (2003) found that ∼25% of ground-based lidar observed clouds at Chilbolton

(United Kingdom) with temperatures lower than 258 K contain supercooled water layers.

For the dataset investigated, all methods show high precision in retrieving the water and

ice cloud occurrence frequency during summer, with URMSE values mostly within 5%, and

decreases during the winter months to 10-15%. The CM-SAF method is best capable of re-

producing the annual cycle, mainly for the water cloud occurrence frequency, for which an

almost constant positive bias of ∼8% was found. This is largely coupled to the more direct

observation of cloud phase due to the usage of visible and near-infrared reflectance. However,

because this method can only be used during daytime, additional thermal infrared channel

radiances are still required to obtain full-day coverage. The ISCCP- and MODIS-like methods

reproduce the annual cycle accurately during the summer, but less clearly during the winter

months.
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For the ISCCP-like method this is probably connected to the indirect relation of cloud phase to

cloud-top temperature. Especially during the winter months when clouds are more stratiform

and are more likely to contain supercooled liquid water at temperatures <260 K, a considerable

amount of water clouds may be misclassified. The usage of dynamical temperature thresholds

depending on e.g. the cloud dynamics can improve the accuracy for detection of the monthly

variability of cloud phase.

For May–August 2004, all methods are well capable of reproducing the daytime diurnal cycle

of water and ice cloud occurrence. It was found that the MODIS-like method reproduces

this cycle best, with correlations of 0.86 and 0.89 for the daytime diurnal water and ice cloud

occurrence frequency, respectively. The CM-SAF and ISCCP-like methods have lower (∼0.7),

but still significant, correlation coefficients. The lower correlations compared to the MODIS-

like method are likely linked to a lower signal-to-noise ratio and the usage of a temperature

threshold for the CM-SAF and ISCCP-like method, respectively.

It is stressed that the very promising results were obtained over a mid-latitude coastal climate

area using only one year of data. In order to obtain a high-quality global cloud-phase climato-

logy and to evaluate the interannual variability of cloud phase, more research on cloud-phase

determination using SEVIRI data over different climate regions and longer time periods is

required. Furthermore, the accuracy of cloud-phase determination needs also to be assessed

for nighttime scenes. Finally, the development and evaluation of mixed phase cloud categori-

zation will be required as these clouds make up a significant part of all clouds.
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Chapter 4

Broken and inhomogeneous cloud impact on satellite cloud
property retrievals

The impact of sensor resolution on satellite-derived cloud particle effective radius (re ) and cloud phase

(CPH) for broken and overcast inhomogeneous clouds is investigated for the CPP retrieval algorithm

used by the Climate Monitoring Satellite Application Facility (CM-SAF). First, synthetic datasets of

high-resolution (1×1 km2) and low-resolution (3×3 km2) radiances are used to illustrate the effect on

the re and Cloud Top Temperature (Tc ) retrieval, the cloud properties that are used for the CPH retrieval.

It is shown that low-resolution re can be overestimated by up to 12 µm and Tc by up to 20 K for thick

broken and inhomogeneous overcast water clouds over ocean and land surfaces. The overestimation of

re may cause erroneous assignments of ‘ice’ to ‘water’ clouds. Second, two months of CPP retrievals

on Moderate-Resolution Imaging Spectroradiometer (MODIS) radiances are used to quantify the effect

on re and CPH over the Atlantic Ocean and Central Europe. Over both areas, the low-resolution re is

overestimated by up to 5 µm for broken and up to 2 µm for inhomogeneous overcast clouds. At low

resolution, the fraction of water clouds is underestimated by 2.3% over the Atlantic Ocean and 0.6% over

Central Europe. The increase of Tc partly compensates for the increase in re in the CPH retrievals at low

resolution. If no Tc information were used, the underestimation of the water cloud fraction would be

3.5% and 2.2% for the Atlantic Ocean and Central Europe, respectively. For inhomogeneous overcast

clouds integrated over all inhomogeneity classes, the difference is -1.3% and -2.3% for Central Europe

and Atlantic Ocean, respectively. Our results indicate that the retrieval of re in the CPP algorithm is

sensitive to satellite sensor resolution in case of broken clouds and inhomogeneous overcast clouds and

that despite the large re sensitivity the CPH retrieval is much less sensitive to sensor resolution.

Based on: Wolters, E.L.A., H.M. Deneke, B.J.J.M. van den Hurk, J.F. Meirink, and R.A. Roebeling, 2010: Broken and inhomogeneous cloud

impact on satellite cloud particle effective radius and cloud-phase retrievals, J. Geophys. Res., 115, D10214, doi:10.1029/2009JD012205.
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4.1 Introduction

Clouds strongly affect the Earth’s surface energy budget by reflection and absorption of solar

and thermal radiation. The way this budget is modulated depends among others on the

particle size distribution, height, and thermodynamic phase of clouds. Water and ice clouds

have different radiative properties. For water clouds, the dominant effect is the reflection

of incoming shortwave radiation and hence a cooling of the atmosphere, whereas for ice

clouds absorption and emission of outgoing terrestrial radiation is dominant, which causes

a net warming (Arking 1991; Hansen et al. 1997). In spite of clouds’ great importance, cloud

representation in climate models is fairly simplified, owing to both lacking knowledge of the

spatiotemporal variation of the various cloud properties and computational constraints.

One of the basic properties necessary for the development of accurate cloud parameterizations

is the global distribution of cloud thermodynamic phase, i.e., whether a cloud is composed

of either ice or water particles or a combination of both. As noted by Naud et al. (2006) in a

large-scale assessment of cloud phase and its relationship to atmospheric circulation on clima-

tological time scales, the meteorological conditions in which supercooled liquid water droplets

change into ice particles vary widely. A better understanding of cloud phase in both stratiform

and cumuliform clouds is necessary for understanding the cloud phase–temperature relation-

ship in the context of diagnosed microphysical processes (Del Genio et al. 1996). Roebeling

and van Meijgaard (2009) evaluated the parameterization of cloud amount, condensed water

path (CWP), and cloud phase (CPH) in the Regional Atmospheric Climate Model version 2,

[RACMO2, Lenderink et al. (2003)] with corresponding datasets obtained from the Spinning

Enhanced Visible and Infrared Radiometer Instrument (SEVIRI) onboard the Meteosat-8 and

-9 satellites. It was found that, in general, RACMO2 overestimates the amount of ice clouds by

about 20%. Weidle and Wernli (2008) compared spatial and temporal cloud-phase patterns

of the European Center for Midrange Weather Forecasts (ECMWF) 40-yr Reanalysis (ERA-40)

data over Europe against cloud-phase observations from the POLarization and Directionality

of the Earth’s Reflectances 1 (POLDER-1) satellite instrument. It was concluded that agree-

ment between the two datasets is good for water and ice clouds, however, the ERA-40 dataset

contains too many ice clouds for clouds labeled ‘mixed phase’ by POLDER-1.

During the last decades, several cloud-phase retrieval methods from passive imagery data have

been proposed using multispectral measurements at solar and infrared wavelengths. Some

methods are based on the principle that at near-infrared wavelengths ice particles absorb

solar radiation more effectively than water droplets (Key and Intrieri 2000; Knap et al. 2002;

Pilewskie and Twomey 1987; Platnick et al. 2003), while other approaches employ thermal

infrared-only wavelengths (Baum et al. 2003; 2000; Strabala et al. 1994; Turner et al. 2003). The

global distribution of cloud thermodynamic phase can among others be obtained using data

from the Moderate-Resolution Imaging Spectroradiometer (MODIS) onboard the National

Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Terra and Aqua

satellites.

To discriminate water from ice clouds within the Climate Monitoring Satellite Application

Facility [CM-SAF, Schulz et al. (2009a)] of the European Organization for the Exploitation of
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Meteorological Satellites (EUMETSAT), a technique was developed using data from visible (0.6

µm), near-infrared (1.6 µm), and thermal infrared (10.8 µm) spectral channels (Roebeling et al.

2006a). The CM-SAF cloud-phase determination algorithm has been compared to a one-year

dataset of cloud phase obtained from ground-based cloud radar and lidar observations at the

Cabauw CloudNET station, The Netherlands [see Illingworth et al. (2007) for more information

on CloudNET]. Resulting accuracy (bias) and precision (standard deviation) of the method

were established to be <10% and <5%, respectively (Schulz et al. 2009b; Wolters et al. 2008).

Passive satellite cloud property retrieval techniques rely on the assumption that the observed

radiance originates from plane-parallel clouds covering the entire pixel. As a result, when

clouds only partly cover a pixel, the observed radiances are a weighted average of the cloudy

and cloud-free parts. The contribution of the cloudy part to the total observed radiance

depends among others on the fractional cloud coverage, cloud thickness, and albedo of the

underlying surface. For broken clouds overlaying a dark surface, the observed radiance at

visible and near-infrared wavelengths is reduced due to the clear-sky contribution. As a

result, the obtained cloud optical thickness (from the visible) is underestimated and cloud

particle effective radius (re , from the near-infrared) is overestimated [see e.g. Barker and Liu

(1995),Oreopoulos and Davies (1998), and Coakley et al. (2005)].

In recent years, mainly the 3D effects of cloud property retrievals have been investigated [see

for example Marshak et al. (2006) and Iwabuchi and Hayasaka (2002) for an evaluation of

3D radiative effects on re and τ retrievals, respectively]. However, the effects of 3D radiative

transfer are currently not accounted for in operational cloud property retrievals, both due to

computational constraints and due to the fundamental under-determinedness of the inversion

process (Stephens and Kummerow 2007).

At present, a considerable amount of cloud physical property climatologies are derived from

geostationary satellite instruments, such as SEVIRI and the Geostationary Operational Envi-

ronmental Satellite (GOES), as well as polar-orbiting satellite imagers such as the Advanced

Very High Resolution Radiometer (AVHRR) and MODIS. These platforms differ in sensor re-

solution, with values of 3×3–5×5 km2 and 1×1 km2 for the former and latter, respectively. As

about 20% of the clouds are broken clouds as observed at geostationary satellite resolution

(Deneke et al. 2009), and because these clouds have small-scale variability resulting from e.g.

convective updrafts, it can be questioned to what extent the obtained re and cloud phase

climatologies at geostationary resolution are influenced by broken cloud fields and inhomo-

geneous clouds compared to climatologies obtained at polar satellite resolution (with a typical

nadir sampling resolution of 1×1 km2). The quantification of the difference between low- and

high-resolution cloud physical properties retrievals over various surfaces and for various cloud

fractions could serve as a baseline for correcting the low-resolution cloud climatologies. In

addition, the difference between low- and high-resolution cloud-phase retrievals can have

significant impact on the calculation of the cloud radiative forcing (Oreopoulos et al. 2009).

In this Chapter the impact of broken clouds and overcast inhomogeneous clouds on the

retrievals of cloud particle effective radius (re ) and cloud phase from low-resolution satellite

radiances is investigated. The impact of sensor resolution on low-resolution (3×3 km2 at nadir,

but typically 4×7 km2 at ∼50◦N) satellite-derived cloud particle effective radius (re ) and cloud
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phase (CPH) for broken and overcast inhomogeneous clouds is investigated for the Cloud

Physical Properties (CPP) retrieval algorithm used by the CM-SAF. The results presented are

limited to a description of differences in retrieved cloud physical properties at two resolutions.

The physical causes of these differences are outside the scope of this research and are subject to

future investigations. Other retrieval algorithms exist that may reveal different sensitivities to

resolution degradation, but the selected application illustrates the various relevant processes

playing a role.

First, the impact of broken cloudiness and cloud inhomogeneity on the cloud particle re

retrieval is scrutinized using synthetic datasets. Both the cloud-phase and re retrieval of the

CPP algorithm rely on an estimate of the particle absorption, which is affected by unresolved

variability. Second, for May and August 2007 low- and high-resolution retrievals are obtained

from MODIS in two climate regions (subtropical ocean and mid-latitude land). These retrievals

are interpreted in the context of the synthetic datasets and the effects on re and cloud-phase

retrievals are quantified.

The outline of the paper is as follows. Section 4.2 describes the various MODIS datasets, the

CPP algorithm, and the experimental setup of the simulations and retrievals from MODIS

radiances. In section 4.3, the synthetically obtained datasets as well as the comparison of

MODIS high- and low-resolution retrievals against these synthetic datasets are shown. Finally,

a discussion and conclusions are provided in section 4.4.

4.2 Data and methods

4.2.1 MODIS data

MODIS is an imager onboard the polar orbiting Terra (equatorial overpass at 10:30 local time)

and Aqua (equatorial overpass at 13:30 local time) satellites. It has 36 onboard calibrated

spectral channels with central wavelengths at 0.42–14.4 µm; spatial resolutions are 250×250

m2 for bands 1 and 2 (0.65 µm and 0.86 µm), 500×500 m2 for bands 3–7 (0.47–2.13 µm), and

1× km2 for bands 8–36 (4.12–14.4 µm). The data used in this study are the 1 km Level-1B

reflectance and radiance data (MOD021KM and MYD021KM for Terra and Aqua, respectively)

from bands 1 (0.65 µm), 6 (1.64 µm), and 31 (11.0 µm).

Over land, surface albedo information was obtained from 16-day MODIS white-sky albedo

maps (the bihemispherical reflectance under conditions of isotropic illumination, MCD43B3

Collection 5 data files). Although we realized that for certain broken cloud cases the usage

of a white sky albedo might be less appropriate, these maps were used for both overcast and

broken cloud cases.

Over ocean, an albedo of 0.05 was assumed for both the 0.65-µm and 1.64-µm channel, inde-

pendent on solar zenith angle. It was shown from Scanning Imaging Absorption Spectrometer

for Atmospheric Cartography (SCIAMACHY) spectra that ocean surfaces have a similar re-

flectance at both visible and near-infrared spectral channels [see Figure 2 in Roebeling et al.
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(2006a)]. Collected data were limited to viewing and solar zenith angles (θ and θ◦, respectively)

within 60◦, because the accuracy and precision of retrieved cloud physical properties decrease

for very large θ and θ◦ (Loeb and Coakley 1998; Roebeling et al. 2008; Wolters et al. 2008).

4.2.2 CPP retrieval algorithm

In this paper, the CPP algorithm of the CM-SAF is used to retrieve re and cloud thermody-

namic phase (Roebeling et al. 2006a) from visible, near-infrared, and infrared radiances. The

algorithm is operationally applied to radiances observed from SEVIRI onboard Meteosat-8 and -

9 and AVHRR onboard the National Oceanic and Atmospheric Administration (NOAA) satellites.

Recent developments enable application of the CPP algorithm to the (nearly) corresponding

visible, near-infrared, and infrared spectral channels of MODIS (Deneke et al. 2009).

Cloud masking procedure

In order to clearly focus on the effects of resolution degradation, we applied a simple, but

equivalent cloud mask for both the high- and low- resolution retrievals. This cloud mask

is based on the comparison between pixel and clear sky surface (MODIS white-sky albedo)

reflectance. Pixels were flagged ‘cloudy’ if the observed 0.6- and 1.6-µm reflectance exceeded

the clear-sky value by a predefined threshold value i.e., R0.6 > (W S0.6+ threshold) and R1.6 >
(W S1.6+threshold), with R and W S referring to the observed reflectance and white-sky albedo,

respectively.

Retrieval of τ and re

The CPP algorithm relies on the principle that reflectances in the non-absorbing visible spec-

tral channels (0.6 µm or 0.8 µm) are largely determined by cloud optical thickness. In contrast,

reflectances in the absorbing near-infrared spectral channels (e.g. 1.6 µm, 2.2 µm, and 3.8 µm)

are also sensitive to the single scattering albedo of cloud particles, which in turn is a function

of cloud particle size and the imaginary part of the refractive index of the cloud particles

(Nakajima and King 1990; Platnick et al. 2003).

Cloud optical thickness and cloud particle effective radius are retrieved simultaneously

through an iterative comparison of the observed 0.6-µm and 1.6-µm reflectances with Lookup

Tables (LUTs) of simulated Radiative Transfer Model (RTM) reflectances for given cloud optical

thickness, particle effective radius, and surface albedos for water and ice clouds (Roebeling

et al. 2006a). To retrieve τ and re , the iteration scheme first searches the LUT for ice clouds,

and if no convergence is found, the LUT for water clouds is searched. It is noted that some

overlap between large water droplets and small ice crystals causes ambiguities in the phase

assignment. In this case, the retrieved τ and re values for ice clouds are chosen for pixels when

the Cloud Top Temperature (Tc ) is smaller than 265 K, while the τ and re values for water

clouds are chosen for the remaining pixels. In the default CPP algorithm, effective radius values

for water (ice) clouds with τ< 8 are relaxed to a climatological value of 8 µm (26 µm), because

the re retrieval can become ambiguous for such clouds when using a two-channel algorithm
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Figure 4.1 Flowchart of the cloud-phase retrieval algorithm.

(Nakajima and King 1990). In this paper the relaxation of re values to climatological values

has been switched off to properly study the effect of broken clouds on the low-resolution re

retrieval, as otherwise for optically thin clouds re values close to the relaxation value of 8 µm

would be retrieved.

Retrieval of cloud phase

The retrieval of cloud phase is embedded in the τ and re iteration scheme of the CPP algorithm.

The logical flow of the cloud-phase retrieval algorithm is presented in Figure 4.1. The phases

‘water’ and ‘ice’ are assigned to pixels for which the measured 0.6-µm and 1.6-µm reflectances

correspond to the respective simulated LUT reflectances. In other words, if the τ and re re-

trieval converges for ice clouds, phase ‘ice’ is assigned, while phase ‘water’ is assigned to the

remaining cloudy pixels. Further, a Tc check is included. The assignment of phase ‘ice’ is only

allowed for Tc < 265 K. In about 5% of the cases the re retrievals do not converge for either

water or ice clouds.

In these cases, phase ‘ice’ is assigned to a pixel with a 1.6-µm reflectance lower than the

reflectance of an ice cloud with the largest ice crystals and a Tc lower than 265 K, while phase

‘water’ is assigned to the remaining cloudy pixels. Note that the retrieved cloud phase is not

representative for the entire vertical extent of a cloud, but mostly for the cloud top.
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The Tc is obtained by correcting the measured 10.8-µm (or 11.0-µm in case of MODIS data)

brightness temperature for cloud emissivities (εc ) less than unity, using the ratio of visible to

thermal infrared cloud optical thickness and neglecting thermal infrared scattering (Minnis

et al. 1998). The emissivity correction is not entirely independent of the cloud phase, as the

retrieved cloud optical thickness depends on the cloud phase initially retrieved from the LUT

search. Because ice crystals have a lower asymmetry parameter (less forward scattering of

incident radiation) than water droplets, a larger optical thickness is retrieved for ice clouds

than for water clouds having the same reflectance.

To quantify the differences in Tc due to using emissivity corrections for water or ice clouds,

we applied the correction twice for about 15,000 cloud-flagged pixels. First, all clouds were

assumed ‘water’, the second time they were assumed ‘ice’. For clouds having τ< 4 (correspon-

ding to εc < 0.86) the average and maximum difference between the two Tc datasets was

0.3 K and 0.7 K, respectively. Thus, it can be concluded that only a marginal dependency

of the Tc calculation on the initially retrieved cloud phase exists. Further, in order to avoid

too low cloud-top temperatures being retrieved at low emissivity values, a maximum tempe-

rature difference of 10 K between the measured brightness temperature and the obtained

cloud-top temperature is imposed. Cloud-flagged pixels initially assigned to the phase ‘ice’

are labeled ‘water’ if the cloud-top temperature is warmer than 265 K. Again, we note that in

the cloud-phase retrieval re is not relaxed to the climatological value.

Radiative Transfer Model (RTM) simulations

The LUT reflectances are simulated with the Doubling Adding KNMI [DAK, De Haan et al.

(1987); Stammes (2001)] RTM. This model calculates the monochromatic top-of-atmosphere

reflectance in the ultra violet, visible, and near infrared, assuming plane-parallel homogeneous

clouds over a Lambertian surface. The phase function of water droplets is calculated using Mie

theory for spherical particles assuming a Gamma size distribution (Hansen and Travis 1974)

with effective radii of 1–24 µm, while ray tracing is used to calculate the phase function for

four types of imperfect hexagonal crystals (with volume equivalent effective radii of 6, 12, 26,

and 51 µm) of the Cirrus Optical Properties ice crystal library (Hess et al. 1998). Subsequently,

the monochromatic DAK reflectances are converted into spectral band reflectances using

measured SCIAMACHY spectra (Roebeling et al. 2006a).

4.2.3 Synthetic datasets

Synthetic cloud datasets at high (1×1 km2 nominal, MODIS-like) and low (3×3 km2 nominal,

SEVIRI-like) resolution were constructed to simulate the effects of a) broken clouds and b)

overcast clouds with an inhomogeneous optical thickness on the retrievals of re , Tc and CPH.

For clarity, ‘broken clouds’ are defined here as partly cloudy pixels with a constant τ and re ,

while the term ‘inhomogeneous’ is used for overcast clouds with varying τ.

The CPP algorithm is used for the cloud property retrievals. Because this algorithm is based

on the independent pixel approximation (IPA), 3-dimensional cloud radiative effects, such as
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Figure 4.2 Schematic presentation of the (left) HRES and (right) LRES CPP simulation (indi-
cated by the dashed lines) and retrieval (indicated by the solid lines) schemes. The CPP retrieval
algorithm derives τ, re , and CPH. The captions “1×1 km2" and “3×3 km2" refer to the MODIS
and SEVIRI nadir spatial resolutions, respectively. Nc denotes the number of cloudy pixels.

horizontal photon transport, are not taken into account. The validity of IPA-based methods

for these types of studies is discussed in more detail by e.g. Cahalan et al. (1994), Chambers

et al. (1997b), and Chambers et al. (1997a). Hereafter, we refer to SEVIRI-like as low resolution

and MODIS-like as high resolution, respectively. Further, we define the high-resolution cloud

property retrievals averaged to low resolution as HRES and low-resolution retrievals based on

radiances averaged to low resolution as LRES.

Figure 4.2 schematically presents the simulation and retrieval scheme for HRES and LRES,

respectively. Solid lines denote the scheme for the retrievals from MODIS data, whereas the

dashed lines indicate the flow for the synthetic simulations. For the broken and inhomo-

geneous cloud field simulations, the LUTs of the CPP algorithm were used to calculate the 0.6-

and 1.6-µm reflectances (denoted R0.6,i and R1.6,i in Figure 4.2, respectively) for predefined

high-resolution cloud optical thickness (τi ) and effective radius (re,i ) values. τHRES and re,HRES

were computed by averaging τi and re,i over a low-resolution (SEVIRI-like) pixel (see the

lower middle box in Figure 4.2). τLRES and re,LRES were retrieved from simulated SEVIRI-like

reflectances (right arrow in Figure 4.2), which were calculated by averaging the 1×1-km MODIS

reflectances to SEVIRI-like resolution (uppermost arrows in Figure 4.2).

56



4.2 Data and methods

Broken cloud simulations

Cloudy pixels were assigned τi =8, re,i =12 µm to represent thin clouds and τi =20, re,i =12 µm

for thick clouds. These values were chosen based on observed frequency distributions of

τHRES and re,HRES, shown later in Figure 4.5. Cloud-free pixels were assigned τi =0. Because we

assumed that broken clouds are homogeneous, τHRES=τi and re,HRES=re,i .

Two surface types were considered, an ocean surface with surface albedo α0.6=α1.6=0.05 and a

mid-latitude land surface with α0.6=0.10 and α1.6=0.20, with the latter values based on visual

inspection of the MODIS white-sky albedo data. Once the low-resolution 0.6- and 1.6-µm

reflectances were obtained, the CPP algorithm was used to retrieve τLRES and re,LRES. The

simulations were performed for θ=θ◦=10◦ and azimuth difference angle ϕ-ϕ◦=100◦. To assess

the sensitivity of the simulations to surface albedo heterogeneity, the τ and re simulations

were repeated for a +/- 0.03 change in surface albedo at 0.6 µm and 1.6 µm, respectively. The

Tc,LRES was simulated assuming a Tc,i of 270 K and surface temperatures of 280 K and 300

K over ocean and land surface, respectively. Cloudy and cloud-free brightness temperatures

were averaged to simulate the brightness temperature at low resolution. Subsequently, τLRES

was used to calculate the cloud emissivity εc , after which the Tc,LRES was computed.

Inhomogeneous overcast cloud simulations

The synthetic inhomogeneous cloud fields were prepared for completely overcast pixels. As for

the synthetic broken cloud field data, the simulations were performed for an ensemble of thin

and thick water cloud pixels. For thin clouds, τi was lognormally distributed around a median

value (τmed ) of 8 and re,i was fixed at 12 µm, while for thick clouds τmed =15 and re,i =16 µm.

The degree of inhomogeneity within a low-resolution pixel was varied by changing the spread

around τmed , using the normalized interquartile range of τi , hereafter referred to as N IQRτ:

N IQRτ = τ75 −τ25

τ50
, (4.1)

with τ25, τ50, and τ75 denoting the 25-, 50- and 75-percentile value of the τ distribution,

respectively. In case of homogeneous overcast clouds (N IQRτ=0), all τi and re,i values were

equal. For N IQRτ > 0, τi values were randomly drawn around the median values τmed =8

and τmed =15, respectively. The τi values to be drawn were constrained to match the desired

N IQRτ within a low-resolution pixel, spanning the range between 0.25 and 1.25. Because the

τi values were randomly chosen, a large (500) number of pixels were generated. We chose to

vary only τi (and not also re,i ) because, as will be shown later in section 4.3.1, the observed

variability in τ largely exceeds the observed variability in re .

To explain the impact of linearly averaging 0.6- and 1.6-µm reflectances on the LRES re retrieval,

Figure 4.3 shows the well-known Nakajima-King (Nakajima and King 1990) type plot for these

spectral channel reflectances. The solid line denotes an arbitrary re curve and the dotted line

indicates a curve for a larger re . The diamond symbols represent two arbitrary 0.6- and 1.6-µm

reflectance values for fixed re and varying τ. The linear averaging of the pixel reflectance

values is indicated by the dashed line. Obviously, linear averaging of the 0.6- and 1.6-µm

reflectances causes an overestimation of the cloud absorption at the low resolution, and thus
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Figure 4.3 Conceptual plot of the effect of averaging reflectances on the low-resolution re
retrieval for varying τ and constant re . The solid line indicates an arbitrary re curve. The
diamonds denote the reflectance pairs [R0.6,R1.6] at τ1 and τ2. The cross shows the mean
[R0.6,av ,R1.6,av ] value; the deviation from the solid line is obvious and leads to a larger low-
resolution-retrieved re (indicated by the dotted line).

causes an overestimation of re . The deviation between low- and high-resolution-retrieved re

is among others dependent on the curvature of the re curve.

4.2.4 Aggregation of MODIS observations

The cloud physical property datasets were retrieved for the areas shown in Figure 4.4 for May

and August 2007 from MODIS Level-1 and -2 data with a version of the CPP algorithm that was

adapted for using MODIS reflectances. τHRES, τLRES, re,HRES, re,LRES, CPHHRES, and CPHLRES were

obtained following the procedure described in Figure 4.2. As indicated in section 4.2.1, we

applied a rather simple cloud masking technique based on the observed clear-sky reflectances

at 0.6 µm and 1.6 µm. The HRES CPP retrievals were computed by averaging the 1×1-km2 τi

and re,i over a SEVIRI pixel.

LRES retrievals were obtained from MODIS 1×1-km2 radiances and surface albedos, which

were averaged to the SEVIRI resolution. It is noted that the 1×1-km MODIS radiances were

averaged to the real SEVIRI resolution, rather than to a fixed 3×3- or 5×5-pixel grid. By doing

so, a SEVIRI image of the investigated area was reproduced. The number of 1×1-km pixels to

be aggregated within a SEVIRI pixel was 5–35, dependent on the MODIS viewing angle and

the SEVIRI pixel size at the geolocation of observation. Using the MODIS land/sea mask, only

pixels over ocean and land were selected for the ATL and EUR area, respectively. Additional
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Figure 4.4 The two areas of investigation: Eastern Atlantic Ocean (ATL) and Central Europe
(EUR).

statistics on cloud fraction, the fraction of water and ice clouds, and variability in cloud optical

thickness were also calculated for SEVIRI pixels having at least 10 MODIS pixels.

4.3 Results

4.3.1 Description of observed cloud-type occurrence over ATL and EUR

Table 4.1 shows the HRES and LRES distribution of water, ice, and mixed phase clouds for the

classes cloud free, broken cloud, and overcast. The mixed-phase categorization represents

HRES pixels with varying phases within the domain. All percentages are relative to the total

number of observations for the ATL and EUR area, being about 269,000 and 154,000, respec-

tively. About 20% of the clouds are broken clouds, which is consistent with the findings of

Deneke et al. (2009). It follows from Table 4.1 that over the EUR area clouds contain consi-

derably more ice than over the ATL area, especially for the fully overcast cases. This probably

relates to deep convection, which dominates cloud formation over the European continent

Table 4.1 Water and ice cloud occurrence frequencies based on HRES and LRES retrievals for
May and August 2007. Only clouds with τHRES>1.0 were included in the dataset.

class phase ATL (%) EUR (%)
HRES LRES HRES LRES

cloud free 42.3 42.4 28.1 28.0

broken clouds water 6.0 8.3 2.1 7.3
ice 0.6 1.5 5.6 11.1
mixed 3.2 - 10.7 -

overcast water 29.1 29.5 14.0 16.6
ice 15.2 18.3 33.0 37.0
mixed 3.6 - 6.4 -
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during the summer season.

Over the ATL area, cloud vertical extent is limited due to both less convection and subsidence

within a quasi-persistent high-pressure area. Figure 4.5 shows contour plots of retrieved τ and

re for broken clouds over the EUR and ATL areas. Only pixels labeled as ‘water’ at HRES are

included. The figure shows that for both the ATL and EUR area at LRES τ is lower than at HRES

and that re increases from HRES to LRES. The increase of re with increasing τ is conform

findings of Szczodrak et al. (2001).

Because the low-resolution re retrieval could be influenced by variability in both the high-

resolution τ and re , we have performed calculations on the variability in τ and re within the

LRES pixels over both the ATL and EUR area. These two quantities are shown in Figure 4.6.

For consistency reasons, both the τ and re variability have been calculated using the N IQR as

defined by Equation 4.1. From Figure 4.6 it is obvious that the variability in τ largely exceeds

the variability of re . The median N IQR values are 0.451 and 0.147 for τ and re , respectively.

Figure 4.5 Contour plots of (left) HRES-retrieved and (right) LRES-retrieved τ vs re for broken
water clouds over the (top) EUR and (bottom) ATL areas for May and August 2007.
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Figure 4.6 Frequency distribution of the variability in (solid line) τ and (dashed line) re ,
both expressed as normalized interquartile range (see Equation (4.1) for its definition). Data
were selected over both areas for May and August 2007; within each LRES pixel the interquartile
range and median re and τ of the HRES retrievals were computed.

4.3.2 Simulations with synthetic data

Broken clouds

Figure 4.7 shows the simulated τLRES, re,LRES, and Tc,LRES for water clouds over an underlying

dark and bright surface. The error bars in panels c) and d) denote the variability in retrieved

re resulting from a +/- 0.03 change in 1.6-µm surface albedo. τLRES increases nearly linearly

with cloud fraction for both the thin and thick clouds (Figures 4.7a and 4.7b), independent

of the underlying surface. For thin clouds (Figure 4.7c), re,LRES is larger than re,HRES for all

cloud fractions. Further,re,LRES is larger over a (dark) ocean than over a (brighter) land surface.

Because effective radius increases with decreasing 1.6-µm reflectance, the resulting increase

in re,LRES is larger over a dark than over a bright surface.

Figure 4.7d shows that also for thick clouds (τHRES=20, re,HRES=12 µm), re,LRES is larger than

re,HRES, with the largest overestimation again occurring over the ocean surface. re,LRES ap-

proaches 24 µm, the maximum value for water clouds in the LUT, over the dark surface for

cloud fraction ≤ 0.4. In this case, the inversion of 0.6-µm and 1.6-µm reflectances in the

CPP algorithm results in the retrieval of an ice particle effective radius and in principle the

assignment of cloud phase ‘ice’. The cloud-top temperature as function of cloud fraction is

shown in Figure 4.7e and 4.7f. It can be seen that Tc,LRES quickly converges to the real cloud-top

temperature (270 K) as a result of the cloud emissivity correction.

61



Broken and inhomogeneous cloud impact on satellite cloud property retrievals

Figure 4.7 Simulation results for broken clouds: (a,b) Simulated τLRES, (c,d) re,LRES, (e,f ) and
Tc,LRES as function of cloud fraction for a thin water cloud with τ=8, re =12 µm (a, c, e) and a
thick water cloud with τ=20, re =12 µm (b, d, f). Calculations were performed for a dark (ocean,
α0.6=α1.6=0.05, solid line) and bright (mid-latitude land, α0.6=0.10, α1.6=0.20, dashed line)
surface. Vertical bars denote the spread in retrieved τ and re when assuming an error in the
0.6 µm (for τ) or 1.6 µm (for re ) surface albedo of +/- 0.03. The dotted lines indicate τHRES (a
and b) and re,HRES (c and d). Solar (θ◦) and viewing (θ) zenith angles are 10◦, the azimuth
difference angle (ϕ-ϕ◦) is 100◦. Tc,LRES was calculated assuming a real cloud-top temperature of
270 K and surface temperatures of 280 K and 300 K for the ocean and mid-latitude land surface,
respectively.
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From Figure 4.7f it also follows that εc,LRES approaches unity at lower cloud fractions in case of

optically thick clouds at high resolution, hence the real cloud-top temperature is more rapidly

converging. It is recalled that due to the underestimation of τLRES, εc,LRES is also underesti-

mated, hence Tc,LRES is overestimated. Because broken cloudiness mostly occurs for cumulus

(water) clouds, the overestimation in Tc due to an underestimation of εc provides a partly

compensating factor for the overestimation due to broken clouds in re .

Inhomogeneous overcast clouds

Figure 4.8 presents the simulated difference (∆re ) between re,HRES and re,LRES for overcast

inhomogeneous clouds with τmed =8 and τmed =15. Because re,HRES was fixed at 12 µm and 16

µm in Figures 4.8a and 4.8b, respectively, the variation in re,LRES is solely caused by a variation

in τi .

re,LRES becomes larger than re,HRES with increasing inhomogeneity for both cloud types, with

the largest differences occurring over a dark surface, due to the larger contrast between cloud

and surface compared to a bright surface. For larger re,HRES (Figure 4.8b) the effect of inhomo-

geneous clouds on re,LRES is larger, which is related to the steeper curvature of the re vs τ

function for larger cloud particles. As a result, linearly averaging of reflectances leads to a

larger deviation from re,HRES (see Figure 4.3).

Figure 4.8 Difference between simulated re,LRES and re,HRES (∆re ) for overcast water clouds as
function of cloud inhomogeneity, expressed as Normalized Interquartile Range of τ (N IQRτ, see
text for its definition). Results are shown for a (solid line) dark and (dashed line) bright surface
at 1.6 µm for (a) thin clouds with HRES τmed =8, re =12 µm and (b) thick clouds with τmed =15,
re =16 µm.

Figure 4.9 shows ∆re as function of τmed at N IQRτ=1.25 for overcast water clouds over an

ocean surface having large (re =16 µm) and small (re =12 µm) droplets. The effect of the steeper

curvature at re =16 µm can clearly be seen. At low τmed , the difference between thick and

thin water clouds becomes larger. This is because of a larger sensitivity to a change in 1.6-

µm reflectance for larger re values. For example, at τ=4 the sensitivity to a 1% change in

1.6-µm reflectance is about 1.5 µm larger within the range 16–24 µm than within the range
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Figure 4.9 Simulated ∆re at N IQRτ=1.25 over a dark surface (α0.6=α1.6=0.05) as function
of τmed for overcast water clouds having small (re =12 µm, solid line) and large (re =16 µm,
dashed line) droplets. The values at N IQRτ=1.25 over a dark surface shown in Figure 4.8a and
4.8b are denoted by the diamond symbols.

12–16 µm. The simulations for inhomogeneous overcast clouds show that at larger degrees of

inhomogeneity and for clouds with large droplet sizes (generally present in thicker clouds) the

re,LRES is considerably overestimated, which may lead to erroneous CPHLRES retrievals.

4.3.3 MODIS observations

The evaluation of simulated CPP retrievals in the previous section demonstrated that for

broken clouds the largest effect on the low-resolution re and CPH retrieval occurs for thick

clouds, whereas for inhomogeneous overcast clouds the low-resolution re and CPH retrievals

are most affected for thin clouds having large particles. Both the broken and inhomogeneous

cloud effects are most prominent over dark surfaces, although the Tc check may have a

compensating contribution. To quantify the effects of broken and inhomogeneous clouds

in true observations, the CPP algorithm is used to compare HRES and LRES retrievals from

MODIS radiances. First, the effect of broken and inhomogeneous clouds on the retrieval of re

is quantified for the ocean (ATL) and mid-latitude land (EUR) area. Second, the effect on the

retrieval of cloud phase is assessed.

Broken clouds

It follows from Table 4.1 that about 20% of the clouds are broken. In order to exemplify where

differences between HRES- and LRES-retrieved re occur, Figure 4.10 shows the HRES- and

LRES-obtained re for an area southeast of the Azorean archipelago. This area is frequently

covered with stratocumulus fields within a quasi-persistent high-pressure area. It is obvious
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Figure 4.10 (left) HRES-retrieved and (right) LRES-retrieved re (µm) over a 1◦×2◦-area
southeast of the Azores. Clouds with re < 3 µm are not shown. Contouring is done for each 3-µm
interval.

from the figure that the largest overestimations at LRES occur at the stratocumulus edges.

Figure 4.11 presents the mean re,HRES and re,LRES versus cloud fraction for the EUR and ATL

area for water clouds. Cloud-free pixels and pixels with τHRES<1 were discarded to ensure

that only clouds were investigated, rather than also thick aerosol layers. Over the EUR area,

the largest difference between re,LRES and re,HRES occur at the lowest cloud fractions (+4 µm

at cloud fractions 0.02–0.2), which is conform the simulations shown in Figure 4.7. However,

differences are smaller than in the synthetic data. The use of a fixed re and viewing geometry

in the simulations is probably responsible for this. The difference re,LRES–re,HRES gradually

decreases towards +0.5 µm at cloud fraction 1.0.

Figure 4.11 Mean retrieved re,HRES (black line) and re,LRES (dashed gray line) for water clouds
(at both HRES and LRES) retrieved from MODIS radiances as function of cloud fraction for
the EUR (left panel) and ATL (right panel) areas. The vertical bars indicate +/- one standard
deviation within the respective cloud fraction bins (centered at 0.1, 0.3, 0.5, 0.7, 0.9, and for
cloud fraction=1.0). For clarity of presentation, the vertical bars of re,LRES are slightly shifted to
the right. Only clouds with τHRES>1 were included.
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Similar to the EUR area, over the ATL area the largest differences re,LRES-re,HRES are found at

low cloud fractions. The difference between re,LRES and re,HRES for broken clouds is of the same

order (5 µm at the lowest cloud fraction bin) as found by Coakley et al. (2005), despite that

in their study spectral channels less sensitive to the underlying surface, and hence a smaller

penetration depth inside the cloud (Rosenfeld et al. 2004), were used for retrieving re .

The HRES- and LRES-retrieved water cloud occurrence frequency for clouds with τHRES>1

(hereafter referenced as CPHHRES and CPHLRES, respectively) versus cloud fraction is shown in

Figure 4.12 for the EUR and ATL areas. Over the EUR area, CPHLRES–CPHHRES is about +10% at

low cloud fractions, but decreases and changes sign to -2% at cloud fraction > 0.9. Integrated

over all cloud fractions the difference CPHLRES–CPHHRES is -0.6%.

Without Tc check the difference CPHLRES–CPHHRES would be -2.2%, which demonstrates the ad-

ded value of this check to the cloud-phase retrieval. Over the ATL area, the difference CPHLRES–

CPHHRES is small over all cloud fractions, ranging from +1% at cloud fraction 0.1 towards -3%

for fully overcast clouds. Integrated over all cloud fractions, the difference CPHLRES–CPHHRES is

-2.3%. If no Tc check would be included in the cloud-phase retrieval algorithm, the integrated

difference would be -3.5%.

Figure 4.12 HRES-retrieved (solid line) and LRES-retrieved (dashed gray line) CPH expressed
as water cloud occurrence frequency versus cloud fraction for clouds with τHRES>1 over the (left)
EUR and (right) ATL areas. Vertical bars denote the standard deviations of the HRES obtained
water cloud occurrence frequency. The number of observations for each cloud fraction bin is
indicated by the dotted gray line, with scaling on the right-hand axis. The CPH was retrieved
using both the 0.6- and 1.6-µm reflectances and the Tc correction (see section 4.2.2 for more
details).
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Inhomogeneous overcast clouds

For the entire dataset of both areas, within each SEVIRI pixel the 25th, 50th, and 75th percentile

of τi were calculated, from which the N IQRτ within the respective LRES pixel was obtained.

Subsequently, SEVIRI pixels were collected within N IQRτ bins of 0.0–0.05 (representing virtu-

ally homogeneous clouds), 0.05–0.5, 0.5–1.0, and 1.0–1.5. For each bin the mean and standard

deviation of ∆re were computed.

Figure 4.13 presents the observed mean difference between re,LRES and re,HRES (∆re ) for HRES-

retrieved water clouds with τHRES>1. For reference, also the differences found in the synthetic

dataset with fixed values of re =12 µm and τmed =8 (Figure 4.8a) are shown. Figure 4.13 demon-

strates that for both the EUR and ATL area the observed ∆re follows a similar trend with

increasing cloud inhomogeneity as the ∆re from the synthetic data, although the retrieved

values are substantially lower than the synthetic values. Differences between synthetic and

observed ∆re can be attributed to differences between the τ distributions; in the synthetic

datasets a lognormal distribution was used, whereas the τ distributions in the retrievals may

deviate from this. Also, the assumed fixed value of re,i and viewing geometry in the synthetic

datasets contrasts with the MODIS observations.

Figure 4.13 Comparison between MODIS-observed (solid line) and simulated (dashed line)
∆re for overcast inhomogeneous HRES-retrieved water clouds with τHRES>1 as function of
N IQRτ for (left) EUR and (right) ATL. The triangle symbols for the observed values are plotted
at the N IQRτ bin center, vertical bars denote the observed standard deviation of ∆re within
each bin.

CPHHRES and CPHLRES are plotted versus cloud inhomogeneity for EUR and ATL in Figure

4.14. Over the EUR area, CPHLRES and CPHHRES gradually diverge with increasing inhomoge-

neity reaching a difference of 10% more ’ice’ than ’water’ retrieved at LRES than at HRES

for N IQRτ=1.25. Integrated over all inhomogeneity bins, the difference CPHLRES–CPHHRES

is -1.3%. Over the ATL area, CPHLRES<CPHHRES within the entire range of inhomogeneities,

which is most likely linked to the increase in re,LRES with increasing cloud inhomogeneity, as

seen from both the simulations and observations (see Figures 4.8 and 4.13). The difference
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Figure 4.14 Water cloud occurrence frequency as function of cloud inhomogeneity (N IQRτ)
obtained from HRES (solid line) and LRES (dashed line) retrievals for overcast clouds with
τHRES>1. The dotted gray line indicates the number of observations per N IQRτ bin, with scaling
on the right-hand axis. The CPH was retrieved using both the 0.6- and 1.6-µm reflectances and
the Tc correction (see section 4.2.2 for more details).

CPHLRES–CPHHRES reaches a value of -6% at N IQRτ=0.75 and N IQRτ=1.25, resulting in an

integrated difference of -2.5%.

4.4 Discussion and conclusions

In this paper we investigated the influence of broken cloudiness and cloud inhomogeneity

on satellite-retrieved re and cloud phase of the CPP retrieval algorithm, and quantified the

difference between low- (geostationary satellite) and high- (polar satellite) resolution derived

values. We have identified an overestimate of cloud particle absorption caused by the non-

linear relation of reflectances at absorbing and non-absorbing wavelengths as underlying

physical mechanism. For the sake of simplicity, the inhomogeneity effect was only investigated

for overcast cloud cases. Using synthetic datasets, it was shown that for thick broken clouds at

high resolution (1×1 km2 nominal) the low-resolution (3×3 km2 nominal) CPH retrieval can

become erroneous due to a too high retrieved re (by up to 12 µm). This effect is strongest over

dark surfaces (ocean), as the high-resolution cloud-free reflectances significantly contribute

to the low-resolution 0.6- and 1.6-µm reflectance. For inhomogeneous overcast clouds, re,LRES

can be overestimated by 3–4 µm for both clouds with re,HRES=12 µm and clouds with re,HRES=16

µm, depending on the degree of inhomogeneity and underlying surface. The overestimation

of re,LRES is larger than the findings of Zinner and Mayer (2006), who found about 5% overes-

timation in low-resolution re for inhomogeneous overcast clouds. However, their analysis

included both inhomogeneity and 3D effects, while the latter was not accounted for in our 1D

simulations.

Retrievals for broken cloud fields from MODIS radiances for May and August 2007 reveal that

over both the ATL and EUR area re,LRES is up to 5 µm larger than re,HRES. The overestimation
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of re,LRES is conform the simulations for broken cloud re,LRES, although the magnitude of the

observed difference is smaller than the simulated difference, due to the use of a fixed re,HRES

and viewing geometry in the simulations. For cloud phase, at cloud fractions smaller than

0.5 the difference CPHLRES–CPHHRES is up to +10% over the EUR area, while this difference

becomes -2% at larger cloud fractions. Integrated over all cloud fractions, 0.6% less water

clouds are retrieved at LRES than at HRES. If no Tc check is applied, 2.2% less water clouds

would be retrieved at LRES. Over the ATL area, CPHLRES–CPHHRES gradually decreases from

+1% to -3% with increasing cloud fraction. Due to the number of observations being strongly

skewed towards overcast clouds, the overall difference is -2.3%. If no Tc check is applied, this

difference would be -3.5%.

For inhomogeneous overcast clouds, the difference re,LRES–re,HRES(∆re ) gradually increases

with increasing inhomogeneity, but more pronounced in the synthetic data than from the

MODIS retrievals. Maximum observed ∆re values are +1 µm and +2 µm over the EUR and

ATL area, respectively. It is argued that the difference between synthetic data and retrievals is

caused by differences in the τ distributions and the variability in re,i and viewing geometries

in the retrievals. The difference CPHLRES–CPHHRES integrated over all inhomogeneity classes is

-1.3% and -2.5% over the EUR and ATL area, respectively.

The broken cloudiness problem is not constrained to using visible/near-infrared data only;

other re and cloud-phase retrieval methods likely will have different values at low and high

resolution. However, the sensitivity to surface albedo or surface emissivity (in case of a thermal

infrared retrieval method) will depend on the spectral channels used. For example, use of the

2.2 µm or 3.9 µm channel for retrieving re will be less sensitive to the underlying surface than

the 1.6-µm channel used here, because cloud particles absorb radiation more efficiently at the

former wavelengths and thus decrease the amount of radiation penetrating through a cloud.

For example, the stronger absorption of the AVHRR 3.7-µm channel compared to the 1.6-µm

channel enabled Platnick et al. (2001) to improve re retrievals over snow-covered areas in the

Arctic region.

The upcoming generation of geostationary satellite imagers will carry one or more high spatial

resolution channels in addition to the suite of spectral channels that observe at the operational

resolution. These high-resolution channels may allow for correcting the low-resolution re and

CPH climatologies (as well as other cloud physical properties) by using the fractional coverage

and/or horizontal inhomogeneity of cloud fields obtained at high resolution. For the SEVIRI

instrument, attempts are ongoing to retrieve high-resolution (1×1 km2 at nadir) τ from the

High-Resolution Visible (HRV) channel, which spans the wavelength range of ∼0.4–1.1 µm

(Deneke and Roebeling 2010). Despite this channel having different spectral characteristics

than the low-resolution 0.6-µm channel, an estimate of the high-resolution τ is made by

using the correlation between HRV reflectance averaged over a low-resolution pixel and the

corresponding low-resolution 0.6-µm reflectance. Further, an estimate of cloud fraction using

a simple HRV reflectance threshold can be obtained to correct the low-resolution 0.6- and

1.6-µm reflectance for cloud fraction before the low-resolution CPP retrieval is performed. In

order to develop a robust correction method, differences between the HRV reflectance and

0.6-µm reflectance need to be investigated over various areas and for various cloud types.
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For cloud inhomogeneity, alternatives to the N IQR diagnostic used to obtain cloud variability

information exist in, for example, the variance in measured visible radiances or the variance

in Tc . It is expected that different cloud inhomogeneity indicators likely give slightly different

results than presented here. However, the general pattern seen for re,LRES and CPHLRES with

increasing cloud inhomogeneity will dominate. The above results, including our ongoing

research on the correlation between high- and low-resolution reflectance, will be an important

improvement to the low-resolution derived cloud physical property climatologies. Future work

will focus on the implementation of bias correction factors to the cloud property climatologies

derived at geostationary resolution.
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Chapter 5

SEVIRI precipitation retrieval evaluation over West Africa
using TRMM-PR and CMORPH

This Chapter presents the evaluation of the CPP-PP algorithm over West Africa. The algorithm combines

CWP, cloud phase, re , and Tc retrievals from visible, near-infrared, and thermal infrared observations

of SEVIRI to estimate precipitation occurrence frequency and precipitation intensity. It is investigated

whether the CPP-PP algorithm is capable of retrieving these precipitation properties over West Africa

with sufficient accuracy, using TRMM-PR observations as reference. Further, it is assessed whether CPP-

PP is capable of monitoring the seasonal and daytime evolution of precipitation during the monsoon,

using Climate Prediction Center Morphing Technique (CMORPH) precipitation observations. The

SEVIRI-detected precipitation area agrees well with TRMM-PR, with the areal extent of precipitation

by CPP-PP being ∼10% larger than from TRMM-PR. The mean retrieved precipitation intensity from

CPP-PP is about 8% higher than from TRMM-PR. Examination of the TRMM-PR and CPP-PP cumulative

frequency distributions revealed that differences between CPP-PP and TRMM-PR are generally within

+/-10%. Relative to rain gauge observations, CPP-PP shows very good agreement up to 5 mm h−1.

However, at higher precipitation intensities (5–16 mm h−1) CPP-PP overestimates compared to the rain

gauges. Further, it was shown that both the accumulated precipitation and the seasonal progression of

precipitation throughout the monsoon is in good agreement with CMORPH, although CPP-PP retrieves

higher amounts in the coastal region. Using latitudinal Hovmöller diagrams, a fair correspondence

between CPP-PP and CMORPH was found, which is reflected by high correlation coefficients (≈0.7)

for both precipitation intensity and precipitation occurrence frequency. The daytime diurnal cycle

of precipitation from CPP-PP shows different patterns for three regions in West Africa throughout the

monsoon, with a decrease in dynamical range of precipitation near the major monsoon rains. The

dynamical range as retrieved from CPP-PP is larger than that from CMORPH. This might result from both

the better spatio-temporal resolution of SEVIRI, as well as from thermal infrared radiances being partly

used by CMORPH, which smooth the daytime precipitation signal. The promising results show that the

CPP-PP algorithm, taking advantage of the high spatio-temporal resolution of SEVIRI, is of added value

for monitoring daytime precipitation patterns in tropical areas.

Based on: Wolters, E.L.A., B.J.J.M. van den Hurk, and R.A. Roebeling, 2011: Evaluation of precipitation retrievals from SEVIRI reflectances

over West Africa using TRMM-PR and CMORPH, Hydrol. Earth Syst. Sci., 15, 437–451, doi:10.5194/hess-15-437-2011.
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5.1 Introduction

Precipitation can be considered the most crucial link between the atmosphere and the sur-

face in weather and climate processes. Quantitative precipitation estimates at high spatial

and temporal resolution are of increasing importance for water resource management, for

improving the precipitation prediction scores in numerical weather prediction (NWP) models,

and for monitoring seasonal to interannual climate variability. A dense and high-temporal

resolution ground-based measurement network is required to achieve accurate precipitation

observations. However, in several regions, especially over some tropical land areas and over the

oceans, the coverage by rain gauges and/or ground-based radars is insufficient. For example,

over certain regions in West Africa only a few rain gauges per 1000 km2 are available (Ali et al.

2005). In addition, most operational rain gauges are recorded at daily time scales or larger.

Satellite instruments, especially those onboard geostationary satellites, have the potential to

provide additional insights in the spatio-temporal precipitation characteristics at sub-daily

time scales. These insights are particularly useful for those regions where rain gauges are

sparse.

Local economy, hydrology, and ecology in West Africa heavily depend on the availability of

the monsoon rains. Especially in a region northward of ∼15◦ N, less monsoon rain during

subsequent years may intensify desertification, although no significant trend has been found

throughout the 1980s and 90s (Nicholson et al. 1998). Less precipitation during the monsoon

season also results in an increased surface albedo (because of decreased soil moisture content),

increased dust generation, and less agricultural yield. Therefore continuous precipitation

monitoring is of great importance.

The West-African monsoon (WAM) is the northward movement of the Inter Tropical Con-

vergence Zone (ITCZ) during boreal summer and is manifested by the convergence of moist

southwesterly air from the Atlantic Ocean with dry northeasterly air from the Sahara. The start

of the monsoon season is often determined by a change in sign of the zonal wind component

(u), i.e., a change from easterly to westerly winds. With the start of the monsoon season, first

some sporadic convective activity due to the advection of moist oceanic air is triggered. This

usually occurs from mid-April to mid-May and is followed by a relatively dry spell of about

one month. Subsequently, the full onset of the WAM sets in around the end of June. Sultan

and Janicot (2003) found that this onset date is 24 June ±8 days for the period 1968–1990. After

this onset, a band with westward moving mesoscale convective systems (MCSs) traverses

northward over the West African continent. These MCSs partly originate in the vicinity of

African Easterly Wave (AEW) troughs. AEWs are dynamical disturbances within the African

Easterly Jet (AEJ), which in turn exists due to the temperature gradient between the Gulf of

Guinea and the Sahara (Cook 1999). Fink and Reiner (2003) found that about 40% of MCSs over

West Africa are forced through AEWs, with the percentage increasing from east to west. Further,

mature large convective systems influence the AEJ through generation of a rear-to-front flow

in the lower part of the system and by accelerating the AEJ behind the system (Diongue et al.

2002).
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The initiation of MCSs is not only dynamically driven, but is also dependent on e.g. soil wet-

ness, with convection being suppressed over soils that are too wet (Taylor and Ellis 2006; Taylor

et al. 2007).

Often a sudden shift from ∼5◦ N to ∼10◦ N of the most heavy rains is seen after the onset date.

Several mechanisms explaining this monsoon jump have been proposed. For example, Sultan

and Janicot (2003) suggested that due to persistent heating of the land surface near 15◦ N

a thermal low develops, which is gradually strengthened by upper-air divergence caused by

the Tropical Easterly Jet (TEJ). Hagos and Cook (2007) extended this view by showing through

model simulations that a shallow southerly flow pattern from the Gulf of Guinea during the

premonsoon phase is very important for the moisture supply into the continent. Ramel et al.

(2006) debated the mechanism proposed by Sultan and Janicot (2003), as they posed that

in the region near 15◦ N no sufficient low-level moisture is available to initiate large-scale

wet convection. With the passage of the heavy monsoon rains, maximum convective activity

occurs late in the afternoon, possibly as a result of gravity waves from morning convection

over the West African ocean propagating northward (Sultan et al. 2007). However, Basu (2007)

noted a shift of the main convective activity during the monsoon towards the late night/early

morning, especially when dynamical factors and/or orography are involved.

The retrieval of precipitation intensity and precipitation amount from passive satellite imagery

is closely related to the detection of convective cloud cells. Until now, many convection de-

tection retrieval techniques have been developed (see e.g., Mecikalsi and Bedka 2006; Zinner

et al. 2008). Most precipitation schemes from passive visible (VIS) and infrared (IR) imagery

are based on the assumption that clouds start to precipitate if the thermal infrared brightness

temperature (BT) becomes lower than a certain threshold value. The rationale behind this is

that precipitation is more likely to occur if ice crystals are abundant in the cloud top (Prup-

pacher and Klett 1997) and is generally referred to as Cold Cloud Duration technique (CCD).

However, the relation between BT and precipitation intensity is indirect, as e.g. thick cirrus

clouds have low temperatures, but generally do not produce any (surface-observed) rain. The

overestimation due to attributing precipitation intensities to non-precipitating cirrus is partly

compensated for by an underestimation of precipitation intensities from shallow convection.

Despite these drawbacks, various precipitation retrieval techniques have been based on

thermal infrared (TIR) temperatures only (mostly using the 10–12µm atmospheric window

spectrum), assuming that the amount of non-precipitating cirrus clouds is only minor (Adler

and Negri 1988; Arkin and Meisner 1987; Ba and Gruber 2001; Negri and Adler 1993; Negri

et al. 1984). An advantage of TIR data is the availability during both day and night. Although

the performance of TIR-based precipitation retrieval algorithms is quite poor in estimating

instantaneous precipitation intensities, a good correlation between cloud-top temperature

and precipitation is found when accumulated over large areas and sufficiently long time peri-

ods (Kidd 2001), although Arkin and Xie (1994) pointed out that for stratiform rain TIR-based

precipitation retrievals are less accurate. Most CCD techniques are calibrated locally or region-

ally with rain gauge and/or passive microwave (PMW) data to obtain an optimum accuracy.

See for example Huffman et al. (2001) for a detailed description of the Global Precipitation

Climatology Project One-Degree Daily (GPCP-1DD) product.
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More direct ways to estimate precipitation intensity are performed by using passive microwave

(PMW) data and infrared radiances. During the last decade, the development of precipitation

retrieval algorithms has more focused on incorporating multiple sensors. For example, the

TRMM Multi-Satellite Precipitation Algorithm [TMPA, Huffman et al. (2007)] combines data

from PMW imaging, sounding instruments, and geostationary-observed IR radiances to ob-

tain a single precipitation product. In the Climate Prediction Center Morphing Techinque

[CMORPH, Joyce et al. (2004)], IR radiances are used to advect/morph cloud systems between

two consecutive PMW instrument overpasses to obtain intermediate precipitation intensity

estimates. A complete overview of the present-day status of the various precipitation retrieval

algorithms can be found in Kidd and Levizzani (2011).

This Chapter presents an approach to estimate precipitation intensity using retrieved cloud-

top properties from visible and near-infrared reflectances observed by the Spinning Enhanced

Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellites.

The KNMI Cloud Physical Properties – Precipitation Properties algorithm (CPP-PP) differs

from most state-of-the-art satellite precipitation retrieval algorithms in that it is independent

of satellite data merging and calibration to rain gauge observations.

First, this research assesses whether CPP-PP is suitable to accurately estimate precipitation

over West Africa in terms of mean precipitation area and median precipitation intensity. Earlier

work already showed good performance of CPP-PP precipitation retrievals over the Nether-

lands in comparison with ground-based radar. The areal extent of precipitation as detected by

CPP-PP from SEVIRI data correlates well (corr∼0.9), with the retrieved precipitation intensities

having an accuracy (defined as the difference in median precipitation intensity between SEVIRI

and rain radar) of about 10% (Roebeling and Holleman 2009). In this paper, precipitation

retrievals from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM-PR)

and the CMORPH product are used as reference datasets. The CMORPH product is chosen

because it is generally considered being of high quality [see e.g. Ebert et al. (2007)]. Although its

quality is limited for convective precipitation over continental areas [Sapiano and Arkin (2009),

Jobard et al. (2010), Tian et al. (2010)], the usage of almost entirely different satellite instrument

data (PMW and TIR) than CPP-PP makes it a suitable alternative dataset for evaluating CPP-PP.

Other factors that justify using CMORPH data are the 3-hourly temporal resolution and its

independency on rain gauge calibration, which enables a consistent evaluation of CPP-PP

over both ocean and land surfaces. Second, the capability of CPP-PP to monitor the progres-

sion of the monsoon rains into the West African continent and the evolution of the daytime

precipitation cycle throughout the monsoon season (May–September) for three regions over

the West African continent is investigated for 2005 and 2006 and compared to results obtained

with CMORPH.

This Chapter is organized as follows. Section 5.2 presents the methodology and various

datasets used. Section 5.3 contains the results and discussion, after which conclusions are

drawn in Section 5.4.
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5.2 Data and methods

5.2.1 CPP-PP precipitation retrieval technique

SEVIRI, onboard the geostationary Meteosat-8 and Meteosat-9 satellites of the European Or-

ganization for the Exploitation of Meteorological Satellites (EUMETSAT), is a passive imager

with 11 operational narrowband channels in the spectral range 0.6–13.4 µm. Three spectral

channels cover the visible and near infrared, the remaining eight cover the thermal infrared

spectral region. The sampling resolution is 3×3 km2 at nadir. SEVIRI scans the Earth every

15 min from southeast to northwest.

The precipitation retrieval algorithm used here was introduced by Roebeling and Holleman

(2009). It has been adapted from a method originally developed for use on the Special Sensor

Microwave/Imager (SSM/I) by Wentz and Spencer (1998) to make it suitable for use on SEVIRI

data. The original algorithm is only applicable to water clouds, because microwave radiation

is only to a minor extent scattered by ice crystals. Therefore Roebeling and Holleman (2009)

have extended the applicability to ice clouds by considering the Condensed Water Path (CWP).

In other words, the CPP-PP algorithm is capable of retrieving precipitation intensity for both

stratiform and convective precipitation. It estimates precipitation intensity using condensed

water path (CWP), cloud particle effective radius (re ), cloud geometric height (∆H ), and cloud

thermodynamic phase (CPH) as retrieved using the Cloud Physical Properties retrieval al-

gorithm (CPP, Roebeling et al. 2006a). The algorithm is operationally applied to reflectances

and radiances observed by SEVIRI.

The CPP algorithm retrieves cloud optical thickness (τ), re , and CPH in an iterative way by

comparing observed SEVIRI reflectances to pre-calculated lookup table (LUT) reflectances

obtained from the Doubling Adding KNMI (DAK, De Haan et al. 1987; Stammes 2001) radiative

transfer model (RTM). CWP is proportional to the product of the retrieved τ and re values.

The thermodynamic phase ‘water’ or ‘ice’ is assigned to those cloud-flagged pixels for which

the observed 0.6- and 1.6-µm reflectances match the corresponding water or ice cloud LUT

reflectances. If phase ‘ice’ is assigned, an additional Tc check (obtained from the 10.8-µm

brightness temperature) is applied to ascertain the cloud-phase assignment. For Tc > 265 K,

phase ‘ice’ is changed into ‘water’ (Wolters et al. 2008). It is noted that at low cloud fraction,

τ and re can be significantly under- and overestimated, respectively (Wolters et al. 2010b).

To minimize retrieval artifacts resulting from low solar elevations, CPP retrievals were only

performed from 7:30–16:30 UTC and limited to solar zenith angles (θ◦) < 50◦.

The separation of precipitating from non-precipitating clouds is the first step in the retrieval of

precipitation intensities. Precipitating clouds are detected from CWP, re , and CPH information.

Water cloud pixels with CWP values larger than 150 g m−2 and re values larger than 16µm

are flagged ‘precipitating’, while for ice clouds all pixels with CWP larger than 150 g m−2 are

flagged ‘precipitating’. For the pixels that are flagged ‘precipitating’, the precipitation intensity

(P , in mm h−1) is calculated using the following equation (Roebeling and Holleman 2009):
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P = c

∆H

[
CWPa −CWPo

CWPo

]1.6
(5.1)

with CWPa the actual condensed water path. CWPo is an offset CWP value that is set at

125 g m−2, the constant factor c has a value of 1 and is of unity mm h−1 km, and ∆H is the

thickness of the rain column (in km), which is defined as:

∆H = Tc,m −Tc,a

γ
+d H , (5.2)

in which Tc,a and Tc,m denote the Tc of the actual pixel and the maximum Tc in a 100×100 pixel

area around the actual pixel, respectively. The pixel with maximum Tc is assumed to represent

a low, thin cloud and thus gives an estimate of the cloud base.

The denominator γ represents the mean adiabatic lapse rate of 6.0 K km−1 and d H represents

the minimum rain column thickness in km, which is currently set at 600 m. At the nominal

SEVIRI resolution, the minimum precipitation intensity to be retrieved is dependent on ∆H ,

but is generally in the order of 0.05 mm h−1. The maximum precipitation intensity is currently

set at 40 mm h−1.

5.2.2 Precipitation retrieval from TRMM-PR

TRMM is a Low-Earth Orbiting (LEO) satellite that flies at an altitude of about 400 km and

covers the latitudinal range between ∼37◦ S and ∼37◦ N. The onboard Precipitation Radar (PR)

is the first dedicated active precipitation measuring instrument launched into space. The PR

obtains information on precipitation at a vertical and horizontal (nadir) resolution of 250 m

and 4.3 km, respectively. More details on the TRMM satellite and its instrument configuration

can be found in Kummerow et al. (1998).

Because the PR suffers from considerable attenuation by large rain droplets, a correction

algorithm has been developed and applied to the measured radar echo intensities (Z ). Sub-

sequently, the corrected radar echo intensities are converted into precipitation rates using

separate droplet size distributions for stratiform and convective precipitation, which are com-

posed of Z−P relations measured during aircraft campaigns at various locations around the

world (Iguchi et al. 2000). In this research, the near-surface observed precipitation from the

TRMM PR 2A25 (version 6) product is used. The 2A25 product has been validated over West

Africa using rain gauge measurements for the 1998 monsoon season (Nicholson et al. 2003) and

over Florida using ground-based rain radar (Liao and Meneghini 2009). In the former study, it

was found that the seasonally averaged bias of TRMM-PR is +0.3 mm d−1 (+7% relative), with

an RMSE of 1.9 mm d−1. In the latter study, a TRMM-PR overestimate for stratiform rain by 9%

was revealed, whereas convective precipitation is underestimated by 19%.

5.2.3 CMORPH precipitation retrieval technique

CMORPH is one of the recently developed precipitation retrieval techniques that synergize

LEO-observed PMW data with geostationary-observed TIR data. At present, the PMW precipi-
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tation intensities are obtained from the Advanced Microwave Sounder Unit-B (AMSU-B),

SSM/I, and the TRMM Microwave Imager (TMI). For the three PMW sensors, separate precipi-

tation retrieval algorithms are used. However, to account for the different channel character-

istics of AMSU-B its precipitation retrievals are normalized to those of SSM/I and TMI using a

histogram matching technique. See Joyce et al. (2004) and references therein for more details

on the PMW channel characteristics and normalization procedure.

Thermal infrared radiances from five geostationary satellites [the two Geostationary Ope-

rational Environmental Satellites (GOES), Meteosat-9, Meteosat-7, and the Geostationary

Meteorological Satellite 5 (GMS-5)] are parallax-corrected and mapped to a 4-km grid at a

temporal resolution of 30 minutes. Subsequently, these TIR data are used to calculate cloud

motion vectors. For the observational gaps between two PMW instrument overpasses, the

observed raining systems are propagated both forward and backward in time using the motion

vectors. Finally, the forward and backward propagated precipitation is inversely weighted with

the respective temporal distance from the initial and subsequent PMW instrument observa-

tions to obtain a change in intensity and shape of the precipitation systems. In this study, the

3-hourly 0.25◦×0.25◦ product is used.

5.2.4 Evaluation of SEVIRI precipitation intensities

Comparison with TRMM-PR and CMORPH

As mentioned earlier, this paper first presents an evaluation of the CPP-PP precipitation ob-

servations over West Africa through a comparison with TRMM-PR using the observed areal

precipitation and instantaneous precipitation intensities of SEVIRI and TRMM-PR, and the

SEVIRI- and TRMM-PR-observed frequency distributions of precipitation intensity. Both

comparisons have been performed for the region 0◦–20◦ N, 10◦ W–10◦ E for May–September

2005 and 2006.

For the instantaneous comparison, initially 150 TRMM-PR overpasses were selected and col-

located with the SEVIRI precipitation retrievals. Both SEVIRI and TRMM-PR retrievals were

reprojected to a 0.1◦×0.1◦ grid. In accordance with the TRMM-PR detection threshold of

0.5 mm h−1 (Liao and Meneghini 2009), SEVIRI precipitation intensity retrievals below this

threshold were considered as non-precipitating. For each TRMM-PR overpass, the SEVIRI

image closest in time was selected, which gives a maximum time difference of ∼7 min. An

example of a collocated TRMM-PR overpass with SEVIRI is shown in Figure 5.1. In order to

avoid possible spatial collocation mismatches, we refrained from comparing pixel-by-pixel val-

ues. Instead, the mean precipitation area and median precipitation intensity were calculated.

The TRMM-PR and CPP-PP areal precipitation has been calculated by dividing the number

of grid boxes for which the TRMM-PR-observed rain rate exceeded the 0.5 mm h−1 detection

threshold to the total number of grid boxes in a TRMM-PR overpass. In 23 overpasses, no rain

was detected, so 127 TRMM-PR overpasses were included in the comparison dataset.
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Figure 5.1 Example of a collocated SEVIRI image with a TRMM-PR overpass over the West African
coastal area at 16 May 2006, 11:15 UTC. SEVIRI precipitation intensities are in color-filled contours, while
TRMM-PR precipitation intensities are indicated by open black contours. Contour intervals are drawn at
0.1, 0.5, 1, 5, and 10 mm h−1. The red lines indicate the edges of the TRMM-PR swath.

Additional to the comparison of SEVIRI- and TRMM-PR-derived precipitation intensities per

overpass, the relative and cumulative frequency distributions were computed for daytime

TRMM-PR and SEVIRI rain retrievals at 0.1◦ × 0.1◦ with precipitation intensity exceeding 0.5

mm h−1. Subsequently, a bootstrapping technique was applied to obtain an indication on

the uncertainty of the obtained cumulative distribution functions. Using this bootstrapping

technique, from the original single cumulative frequency distribution consisting of about

14,000 retrievals 10,000 new cumulative frequency distributions were computed by randomly

drawing values from the original observations.

Comparison with rain gauge observations

Rain gauge observations from 110 stations operated within the framework of the African

Monsoon Multidisciplinary Analysis project (AMMA, Redelsperger et al. 2006) were used

as a third evaluation dataset. As satellite and ground-based precipitation observations are

difficult to compare in terms of time series or on a pixel-by-pixel basis (areal averages observed

from satellite versus point measurements from rain gauges), the rain gauge observations were

only included in the comparison of the relative and cumulative frequency distributions. The

stations were selected from the Gourma, Kori de Dantiandou, Niamey, and Ouémé mesoscale

sites. Figure 5.2 shows the locations of the rain gauges. The majority of the rain gauge stations

were operated during the monsoon seasons of 2005 and 2006.
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Figure 5.2 Locations of the 110 selected AMMA rain gauges, which were used for the validation of the
CPP-PP rain retrievals, and the three regions (designated ‘rain forest’, ‘savannah’, and ‘semi-arid’) used for
calculating the CPP-PP and CMORPH daytime diurnal cycle.

Precipitation at these stations is recorded at a 5-min resolution. Note that different parts

of clouds are sampled by rain gauges and satellites. Satellite instruments observe an area-

averaged precipitation intensity of an instantaneous observation, while rain gauges sample

precipitation intensity over a period of time at one location. It is assumed that rain gauge

observations taken over a period of time represent a transect through a cloud system. To

minimize the sampling and collocation uncertainties one needs to apply a correction proced-

ure. Here we assumed that a cloud system remains constant over the time period between

two consecutive SEVIRI images and that the averaging period of the surface observations to

match the satellite pixel size is mostly a function of wind speed and wind direction. Correction

procedures and their underlying assumptions to allow a proper comparison between satellite

retrievals and ground-based observations are described by Greuell and Roebeling (2009) and

Schutgens and Roebeling (2009) for Liquid Water Path (LWP).

However, it is noted that precipitation is of a more intermittent nature than LWP, hence the

above described correction procedure would necessitate various corrections. Therefore it

was chosen to simply aggregate over 15 minutes centered at the SEVIRI observation times to

approximate the 0.1◦×0.1◦ satellite grid boxes that were used to construct the frequency distri-

butions. In order to preserve as closely as possible the same precipitation characteristics as

observed by the satellite precipitation retrieval techniques, only daytime rain gauge measure-

ments were included (07:30–16:30 UTC). The relative and cumulative frequency distributions

were constructed by collecting all 15-minute observations having precipitation intensities

>0.5 mm h−1 into 0.01 mm h−1 wide bins.

5.2.5 Evaluation of the monsoon progression over West Africa

In addition to the verification of the CPP-PP precipitation intensity accuracy, the detection of

the WAM precipitation progression on seasonal and sub-daily scales is of interest.
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To investigate the ability of CPP-PP to monitor the seasonal monsoon scale, latitudinal Hov-

möller diagrams were constructed for rain occurrence frequency and precipitation intensity

for the monsoon seasons of 2005 and 2006. In these periods, three data gaps in our SEVIRI data

archive occurred (1–8 August 2005, 1–7 August 2006, and 24–30 September 2006), but still about

90% of the total number of daytime observations were available. The latitudinal Hovmöller

diagrams were constructed from the 0.25◦×0.25◦ SEVIRI and CMORPH observations.

First, all SEVIRI images were aggregated to a 0.25◦×0.25◦ grid. Subsequently, for each SEVIRI

image and each 0.25◦ latitude grid box all retrievals with solar zenith angles less than 50◦ and

precipitation intensity larger than 0.05 mm h−1 were averaged over 10◦W–10◦E, thus yielding

at maximum 80 values per image for 0◦–20◦ N. Subsequently, all values per latitude grid box

were averaged with the number of images per day. The same was done using CMORPH data

collected at 09:00, 12:00, and 15:00 UTC.

The daytime diurnal cycle of precipitation was investigated for three areas. The latitudinal

bands were chosen analogously to Mohr (2004), and are primarily based on vegetation type:

7◦–10◦ N (rain forest), 10◦–15◦ N (savannah), and 15◦–20◦ N (semi-desert). For clarity, these

areas are indicated in Figure 5.2. Within these areas, for May–September of 2005 and 2006 all

15-min regridded CPP-PP retrievals having P> 0.05 mm h−1 were collected into hourly bins

(centered at 08:00, 09:00, . . . , 15:00, 16:00 UTC). The solar zenith angle limit was set at 50◦ to

minimize retrieval artefacts contaminating the daytime precipitation signal. Subsequently, for

each hour the 25th, 50th, and 75th percentiles of precipitation intensity were calculated.

5.3 Results

5.3.1 Validation of SEVIRI precipitation retrievals with TRMM-PR

Figure 5.3 presents the obtained precipitation area and median precipitation intensity per

TRMM-PR overpass from SEVIRI and TRMM-PR data. The left panel in Figure 5.3 shows that

the TRMM-PR and CPP-PP precipitation area agree well (corr=0.86). However, the precipi-

tation area retrieved by CPP-PP is about 10% larger than the area observed by TRMM-PR.

This difference might be a result from differences in the precipitation observation techniques

of TRMM-PR and SEVIRI, or the threshold settings used to separate precipitating from non-

precipitating pixels.

The scatter plot of median precipitation intensity per TRMM-PR overpass (Figure 5.3, right

panel) reveals that the correlation between TRMM-PR and SEVIRI is weaker than for precipi-

tation area. Also, the dynamic range of 0–3 mm h−1 for TRMM-PR is smaller than for SEVIRI

(0–5 mm h−1). As noted earlier, Liao and Meneghini (2009) found that TRMM-PR retrieves

lower precipitation intensities from convective systems as compared to ground-based radar

observations. Part of the differences between both datasets are caused by errors due to diffe-

rences in the spatial and temporal sampling.
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Figure 5.3 (Left) detected precipitation area (in % per TRMM-PR overpass) for retrievals with
P>0.5 mm h−1 and (right) the corresponding median precipitation intensities per overpass as observed by
TRMM-PR and SEVIRI. Solid lines indicate the 1:1 relation, dashed lines denote linear regressions.

Roca et al. (2010) presented a method that corrects for such types of errors, and found that the

correlation coefficient generally increases when these errors are accounted for in both datasets.

The cumulative and relative frequency distributions are presented in Figure 5.4. The dotted

lines indicate the respective standard deviations of the cumulative frequency per precipitation

intensity bin, which were calculated using the bootstrapping technique.

Figure 5.4 (Left) Cumulative frequency distribution of precipitation intensity derived from (black)
TRMM-PR, (green) SEVIRI using CPP-PP, and (red) daytime (07:30–16:30 UTC) rain gauge observations from
the selected stations shown in Figure 5.2. Note the logarithmic scaling on the x-axis. The accompanying
dotted lines for TRMM-PR and SEVIRI denote the standard deviation at each precipitation intensity bin,
which was obtained from a bootstrapping technique using 10,000 draws. (Right) corresponding relative
frequency distribution for TRMM-PR, SEVIRI, and rain gauge with logarithmic scaling on the y-axis. Results
were obtained for 10◦ W–10◦ E, 0◦–20◦ N.
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From Figure 5.4, left panel, it follows that the precipitation intensities from TRMM-PR are

higher than from CPP-PP up to the 60th percentile, with relative differences being below

10%. Between the 60th and 90th percentile, CPP-PP has higher precipitation intensities than

TRMM-PR by 0.5–1.0 mm h−1 (5–15% relative difference), although this overestimation dimi-

nishes beyond the 75th percentile. With respect to the AMMA rain gauge observations, both

TRMM-PR and CPP-PP tend to overestimate precipitation intensities.

The relative frequency distributions (Figure 5.4, right panel) show that CPP-PP and TRMM-PR

have a lower occurrence frequency than the rain gauges for P < 1 mm h−1. Further, CPP-PP is

higher than both TRMM-PR and the rain gauges for precipitation intensities between 5 and

∼16 mm h−1, but retrieves lower occurrence frequencies again for P >20 mm h−1. The latter

could be the result of an underestimation of re . In large convective systems, strong updrafts

transport smaller and lighter ice crystals to the cloud top. Because for thick convective clouds

the retrieved re is only representative of the first optical thickness units (i.e., only the first

few hundreds of meters) and no information on the ice crystal size at lower altitudes can be

obtained, the column integrated condensed water path and hence precipitation intensity

could be underestimated for these types of cloud.

5.3.2 Monitoring of the monsoon progression

Both the 2005 and 2006 monsoon seasons were characterized by a near-normal precipitation

amount relative to the 1951–2000 mean [based on Global Precipitation Climatology Center

(GPCC) data, Rudolf (1993)], although their development was different in terms of convection.

First, the location of the ITCZ in 2005 was about 2◦ in latitude north of its climatological mean

throughout almost the entire monsoon season. In addition, the 2005 monsoon onset date

was earlier than the average onset date, while the 2006 monsoon contrasted with an onset

due by about 10 days. Finally, colder Sea Surface Temperature (SST) in 2005 compared to

2006 occurred in the Gulf of Guinea, which for the latter year resulted in a slower monsoon

development due to a smaller temperature gradient between ocean and continent (Janicot

and Coauthors 2008).

To demonstrate the ability of CPP-PP to monitor the precipitation dynamics, Figure 5.5 shows

the mean daytime precipitation amount for May–September 2005 for 0◦–20◦N, 10◦W–10◦E.

Because CMORPH data is only available at a 3-hr resolution and due to CPP-PP retrievals being

limited to daytime data, for both datasets only observations at 09:00, 12:00, and 15:00 UTC

were included. For each month, precipitation retrievals were accumulated and converted to a

mean daily precipitation, assuming a uniform distribution of precipitation throughout the

day.

Figure 5.5 reveals that both CPP-PP and CMORPH capture the monthly shift of the monsoon

rain patterns over the West African continent. In May 2005, the major rain bands are along the

coastline (∼5◦N), with also some sporadic convection in a band near 10◦N.
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Figure 5.5 Mean accumulated daily precipitation (expressed in mm d−1) for May–September 2005
from (left) CPP-PP and (right) CMORPH. For both datasets observations at 09:00, 12:00, and 15:00 UTC
were included. See text for further details.
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The eastward part of this band as well as some parts of the coastal rain band are observed

somewhat more prominently by CPP-PP than by CMORPH.

In June 2005, CPP-PP retrieves higher precipitation intensities along the West African coast

than CMORPH. This is particularly evident in the western part, where CMORPH partly has

a mean daytime precipitation of <3 mm d−1, while CPP-PP retrieves values of 3–6 mm d−1.

Furthermore, the precipitation over the continent west of 0◦ is observed as smaller scale

convection by CPP-PP. This is likely the result of the coarser resolution of CMORPH. Despite

the usage of geostationary IR radiances at 4×4 km, the CMORPH data resolution is limited by

the relatively large PMW instrument sampling resolution [∼10-15 km, Joyce et al. (2004)]. The

rapid movement of the major rain systems between June and July 2005 is seen by both CPP-PP

and CMORPH, with both the location and intensity largely in agreement. As for May and

June, CPP-PP observes more intense rains along the eastern West African coast than CMORPH,

which seems to be more in agreement with the GPCC observations (not shown).

In August, the monsoon rains have reached their northernmost position and daytime rain

totals are less than 3 mm d−1 along the coast. Most rain is observed in the western part of

West Africa (with several areas having 6-9 mm d−1), which may be due to initiation and/or

(re)activation of MCSs/squall lines over the Aïr mountains (Mohr 2004). In September, the

monsoon rains have retreated southward and in general their intensity has decreased.

Figure 5.6 shows latitudinal Hovmöller plots from CPP-PP and CMORPH daytime precipi-

tation retrievals for May–September 2005 and 2006. As for Figure 5.5, the general features and

seasonal march of the monsoon of CMORPH and CPP-PP agree fairly well, with the correla-

tion coefficient of non-zero precipitation intensities being 0.64 and 0.76 for 2005 and 2006,

respectively. For both datasets and both years, the southward retreat of the monsoon rains is

more pronounced than the northward movement during May–July. It is suggested that the

northward displacement of the monsoon rains occurs at different speeds along the longitudes

investigated (10◦W–10◦E). Some evidence of this can be seen in Figure 5.5 for June and July

2005; the monsoon rains west of 0◦E have reached as far as ∼13–15◦N, while east of 0◦E the

monsoon rains are located roughly 3◦ more southward. The slower movement east of 0◦E

is possibly due to blocking and forced convection on the windward side of the Cameroon

Highlands (near 7◦N, 9◦E).

For 2005 (Figures 5.6a and 5.6c), CPP-PP retrieves higher precipitation intensities (up to 1.3

mm h−1, but mostly 0.2–0.4 mm h−1, not shown) than CMORPH along the coastline during

June and July, a feature which is also visible in Figure 5.5. The higher precipitation intensities

than CMORPH are compensated for by several lower precipitation intensities (mainly over the

continent, e.g. 10◦–15◦N during the first part of June), which is reflected by a mean difference

between CPP-PP–CMORPH of 0.0±0.16 mm h−1. In both datasets the monsoon rains reach

their northernmost position at ∼15◦ N during late July and early August. Finally, from late

August onwards the monsoon rains retreat southward, which is well visible in both CPP-PP

and CMORPH.
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The seasonal signature of the 2006 WAM (Figures 5.6b and 5.6d) is different than that of 2005.

In both CMORPH and CPP-PP a larger latitudinal extent of the oceanic/coastal rains (∼2-6◦N)

during the early monsoon (May and June) is seen. In addition, during late June and early July a

decrease in the latitudinal extent of these rain bands is observed, a feature also recognizable

when precipitation is averaged over multiple years (Hagos and Cook 2007). As for 2005, CPP-

PP retrieves higher precipitation intensities in the coastal area (up to 7◦N) than CMORPH,

but the difference is larger than for 2005, with differences occasionally > 0.5 mm h−1. The

mean difference is +0.05±0.21 mm h−1. CPP-PP retrieves higher precipitation intensities than

CMORPH until around mid-July, after which the maximum precipitation shifts towards ∼12◦N.

In CMORPH, the monsoon jump is observed around the same date and at approximately the

same location.

Figure 5.6 Hovmöller plots of (left) 2005 and (right) 2006 daytime conditional precipitation intensity
(P>0.05 mm h−1) for 0◦–20◦ N; (top) CPP-PP and (bottom) CMORPH. Both datasets are at 0.25◦×0.25◦
resolution. Values have been averaged over 10◦ W–10◦ E. The thick horizontal line denotes the approximate
location of the coastline. The white bands in the CPP-PP plots indicate data archive gaps.

The fair agreement between the CPP-PP and CMORPH Hovmöller plots is emphasized in

Figure 5.7, which shows latitudinal cross sections of the monthly mean precipitation intensity

from CPP-PP and CMORPH for May–September 2005 and 2006.
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Figure 5.7 Latitudinal cross section of monthly mean daytime conditional precipitation intensity
(P>0.05 mm h−1) from CMORPH (solid line) and CPP-PP (dashed line) for (left) May–September 2005 and
(right) May–September 2006. Both datasets are at 0.25◦×0.25◦ resolution.
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Over the continent (>∼5◦N), the differences between CPP-PP and CMORPH are generally

small, although CMORPH has larger values than CPP-PP in 2006. In both years, CPP-PP has lar-

ger precipitation intensities than CMORPH over the coastal areas. It was noted by Sapiano and

Arkin (2009) that CMORPH likely overestimated convective precipitation over land. Further,

we again refer to CPP-PP having a better agreement in the coastal areas with GPCC-observed

precipitation amounts than CMORPH.

Figure 5.8 presents the 2005 and 2006 Hovmöller plots of CPP-PP- and CMORPH-retrieved

precipitation occurrence frequency. Similar to the precipitation intensity plots, correlation

between the two datasets is high (0.70 and 0.76 for 2005 and 2006, respectively). In addition,

as for precipitation intensity, CPP-PP retrieves a higher precipitation occurrence frequency in

the coastal area, with overestimations up to 28%. The mean difference CPP-PP–CMORPH is

-0.1±6.6% and +4.2±9.8% for 2005 and 2006, respectively.

Figure 5.8 As in Figure 5.6, but for precipitation ocurrence frequency.

87



SEVIRI precipitation retrieval evaluation over West Africa using TRMM-PR and CMORPH

5.3.3 Daytime diurnal cycle of precipitation

Figure 5.9 shows the daytime diurnal cycle of precipitation intensity and precipitation occur-

rence frequency for CMORPH and CPP-PP over three regions (see also Figure 5.2), averaged

over May–September 2005 and 2006: 7◦–10◦ N, 10◦–15◦ N, and 15◦–20◦ N, with all areas having

longitudinal extents 10◦ W–10◦ E. Note that both datasets are at 0.25◦ × 0.25◦ grid. For con-

venience, the regions are designated as ‘rain forest’, ‘savannah’, and ‘semi-desert’, respectively,

consistent with the analysis of Mohr (2004). To reduce noise in the results, only precipitation

intensities larger than 0.05 mm h−1 were included.

Over the rain forest region (7◦–10◦ N), the median precipitation intensity shows a small decline

during morning and early afternoon and slowly increases during the afternoon in May. The

region is close to the monsoon rains, which probably causes the reduced dynamical range

(see also the 75th percentile), as more dynamically driven convection occurs. The agreement

with CMORPH is good, with a small underestimation of ≈0.1 mm h−1 by CPP-PP for all three

percentiles shown. Note that the CPP-PP plots are at an hourly resolution averaged from the

15-minute observations, whereas those for CMORPH are given per 3 hours.

During June and July, the dynamics in daytime precipitation cycle as retrieved from CPP-PP

increase as the ITCZ has passed the region; the median (75th percentile) precipitation intensity

decreases from 0.35 (1.6) mm h−1 at 08:00 UTC to 0.2 (0.6) mm h−1 around noon, after which

the precipitation intensities increase towards the end of the CPP-PP observation period (the

bin centered at 16:00 UTC). Compared to CPP-PP, CMORPH has a much smaller daytime

precipitation cycle. This may be due to several factors, among others the use of TIR data to

interpolate and morph precipitation intensities between PMW instrument overpasses, which

smooths the daytime precipitation signal. In August and September, the dynamical range in

daytime precipitation as retrieved by CPP-PP decreases again slightly, as the ITCZ retreats

southward and the daytime cycle of precipitation is less dominated by differential heating.

This is possibly due to the occurrence of MCSs, which can be maintained throughout the night

due to dynamical forcing and cloud-top radiative cooling (Dai 2001; Yang and Smith 2006).

Similar to the rain forest region, over the savannah and semi-desert region the dynamical

range of precipitation during daytime decreases when the monsoon rain bands pass (see for

example the difference between May and July for the savannah region, Figure 5.9, middle

column). In addition, as for the rain forest region, for almost all months CPP-PP has lower

absolute precipitation intensity values compared to CMORPH. In addition, the dynamical

range of the daytime precipitation cycle is larger from CPP-PP than from CMORPH. Finally,

the higher percentiles of CPP-PP have a larger amplitude than those from CMORPH. With

respect to the lower precipitation intensity values of CPP-PP relative to CMORPH over the

continent, it is mentioned that CMORPH tends to overestimate the precipitation over these

areas (Sapiano and Arkin 2009). Furthermore, Tian et al. (2010) found this overestimation

particularly occurring during the summer season, i.e., when convective processes dominate

precipitation formation.
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Figure 5.9 (Black) CMORPH and (red) CPP-PP daytime diurnal cycle of precipitation intensity (for
values with P > 0.05 mm h−1) from May–September (averaged over 2005 and 2006) for (left column) 7◦–
10◦ N, (middle column) 10◦–15◦ N, and (right column) 15◦–20◦ N. Values were averaged over 10◦W–10◦E,
CPP-PP precipitation retrievals were collected in hourly bins. The 25th (dotted), 50th (solid), and 75th
(dashed) percentiles are shown.
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5.4 Summary and conclusions

This Chapter presented the evaluation of the CPP-PP precipitation retrieval algorithm on

SEVIRI visible and near-infrared reflectances over West Africa for May through September of

2005 and 2006. The algorithm combines retrieved cloud particle effective radius, cloud phase,

and cloud-top temperature information to estimate precipitation intensity. Instantaneous

precipitation retrievals were compared against TRMM-PR and rain gauge observations. CPP-

PP is well able to capture the precipitation characteristics observed by TRMM-PR; the areal

precipitation retrieved by CPP-PP of 2.5% is higher than the corresponding value from TRMM-

PR of 2.0%, which is a satisfactory agreement given the different measurement techniques.

Further, it was shown that the mean retrieved precipitation intensity from CPP-PP is ≈8%

higher than from TRMM-PR. Examination of the TRMM-PR and CPP-PP cumulative frequency

distributions revealed that differences between CPP-PP and TRMM-PR are generally within

+/-10%. Relative to the AMMA rain gauge observations, CPP-PP shows very good agreement up

to 5 mm h−1, however, at higher precipitation intensities (5–16 mm h−1) CPP-PP overestimates

compared to the rain gauges.

A second goal of this paper was to demonstrate to which extent the CPP-PP precipitation

retrievals can be used to monitor the seasonal progression of the WAM and the precipitation

characteristics at sub-daily time scale. It was shown that both the accumulated precipitation

and the seasonal progression of precipitation throughout the WAM have good agreement with

CMORPH, although CPP-PP retrieves higher precipitation amounts over the coastal region

of West Africa. Using latitudinal Hovmöller diagrams, again a fair correspondence between

CPP-PP and CMORPH was found, which is reflected by high correlation coefficients (≈0.7) for

both precipitation intensity and precipitation occurrence frequency.

The daytime diurnal cycle of precipitation from CPP-PP shows distinctly different patterns

for three different regions throughout the WAM, with a decrease in dynamical range in the

vicinity of the ITCZ, a feature which is attributed to the occurrence of dynamically driven

convective systems being dominant over convection forced through differential heating of the

land surface. The dynamical range of the daytime precipitation cycle as retrieved from CPP-PP

is larger than that from CMORPH.

We speculate this to be both resulting from the better spatio-temporal resolution of the SEVIRI

instrument, as well as from thermal infrared radiances being partly used in CMORPH, which

likely smooth the daytime precipitation signal, especially when cold anvils from convective sys-

tems are present. Another feature emerging from the comparison of the CPP-PP and CMORPH

daytime cycles is that although CPP-PP has a larger dynamical range of daytime precipitation

than CMORPH, the absolute value of the separate percentiles is lower. On the other hand, it

was pointed out that the absolute value of CMORPH daytime precipitation dynamical range is

likely too high, due to the tendency of CMORPH to overestimate precipitation of convective

systems over continental areas.

The unprecedented 15-min temporal resolution in combination with the 3×3 km2 spatial

sampling of SEVIRI makes it a well-suited instrument to monitor precipitation features, both
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at sub-daily and at seasonal scale. Over West Africa, about 40 precipitation retrievals per day

can be performed for a single location, which makes SEVIRI a suitable instrument to monitor

year-to-year changes in daytime precipitation patterns. In contrast, the TRMM satellite cap-

tures a full diurnal cycle once every 47 days, which necessitates at least several years of data to

obtain substantial statistics.

Without neglecting the differences between CPP-PP–TRMM-PR and CPP-PP–CMORPH, the

overall results show that the CPP-PP algorithm has a promising accuracy in retrieving precipi-

tation intensity and precipitation occurrence over tropical areas. As already pointed out by

Ebert et al. (2007) and Sapiano and Arkin (2009), it is difficult to assess a "best" precipitation

retrieval algorithm, as each algorithm has its strengths and weaknesses, which are for the

largest part imposed by instrumental constraints. For example, PMW precipitation observa-

tions relying on the emission of hydrometeors have problems over land surfaces, as both the

intensity and heterogeneity of the surface background emission reduces the signal-to-noise

ratio.

For the CPP-PP algorithm, its strengths exist in the use of retrieved cloud-top properties from

SEVIRI to estimate precipitation intensity, which is more physically based than e.g. the widely

used Cold Cloud Duration techniques developed in the 1970s and 1980s. In addition, the

retrieved cloud-top properties are observed by the same instrument, which excludes the us-

age of merging and normalization procedures, such as in CMORPH. On the other hand, the

availability of CPP-PP precipitation retrievals is currently limited to daytime only, due to its

dependency on VIS/NIR reflectances. During nighttime, SEVIRI only provides observations

from the water vapor (6.2 µm and 7.3 µm) and thermal infrared (8.7 µm–13.4 µm) spectral

channels. These channels might be useful to continue our present daytime precipitation

retrievals during the night. For example, Behrangi et al. (2009) showed that using all channels

from 6.2 µm–13.4 µm improves the precipitation retrieval evaluation statistics compared to

those for the 10.8 µm channel only.

Second, because precipitation occurs generally in thick clouds and the usage of passively ob-

served reflectances implies that precipitation intensity is estimated from cloud-top properties,

no information from lower atmospheric layers is available. Especially in the tropics, a too high

precipitation intensity may be retrieved, due to a considerable amount of the precipitation

at cloud base being evaporated before reaching the surface. This below-cloud evaporation

fraction may add up to 40%, depending on cloud base height, precipitation intensity at cloud

base, and the below-cloud relative humidity (Rosenfeld and Mintz 1988). Implementation of

a correction for below-cloud evaporation [e.g. Petty (2001)] is planned to be incorporated in

future versions of CPP-PP.

Being operational since 2004, SEVIRI enables obtaining a substantial statistical dataset to study

the interaction between cloud-top properties, precipitation and for example the large-scale

dynamics or land surface characteristics (soil moisture, vegetation, etc.). These process studies

are useful to evaluate among others the cloud, precipitation, and land surface–atmosphere

interaction predictions of regional climate models [see e.g. the work of Greuell et al. (2011)

and Roebeling and van Meijgaard (2009)].
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Chapter 6

A soil moisture–precipitation feedback study over West Africa

This Chapter describes a study on the relation between soil moisture and convective precipitation over

West Africa, using soil moisture retrievals from Advanced Microwave Scanning Radiometer EOS (AMSR-E)

brightness temperatures and daytime (7:30–16:15 UTC) precipitation retrievals obtained from Scanning

Enhanced Visible and Infrared Imager (SEVIRI) visible and near-infrared reflectances. For the 2005 and

2006 monsoon seasons, soil moisture anomalies from the AMSR-E dataset were calculated in 2◦×2◦

blocks. Using the lowest and highest 10% of the soil moisture anomalies distribution to represent dry and

wet land surfaces, respectively, the SEVIRI-based precipitation occurrence frequency and intensity over

these surfaces at the following day were calculated. The increase in precipitation occurrence frequency

after 13:00 UTC was observed over the entire domain, but was especially strong over dry surfaces. No

significant difference in precipitation intensity was observed between wet and dry surfaces. This research

has demonstrated the potential of satellite-based soil moisture and precipitation datasets for improving

the understanding of the soil moisture–precipitation interactions.

Wolters, E.L.A., B.J.J.M. van den Hurk, and R.A. Roebeling, 2011: A soil moisture–precipitation feedback study over West Africa using SEVIRI

and AMSR-E observations, in revision for J. Hydrometeorol.

6.1 Introduction

Land–atmosphere interactions occur at various spatial and temporal scales. One of these

land–atmosphere surface processes taking place is the interplay between soil moisture and

precipitation in certain areas of the world. In models, anomalies in soil moisture are found

to have an impact on precipitation (Koster et al. 2004). While the effect of precipitation on

soil moisture is a trivial positive feedback mechanism, i.e., that precipitation increases soil

moisture, the effect of soil moisture on the initiation of convection and hence precipitation

is less straightforward and has therefore been subject of a considerable amount of research

efforts [see for example Dirmeyer et al. (2006) and Ferguson and Wood (2011)].

In this interaction mechanism, a trade-off exists between increased moist static energy and

net radiation on one hand and suppressed sensible heat leading to boundary layer growth on
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the other hand. Model experiments performed by Alonge et al. (2007) demonstrated that both

the net radiation (due to a lower surface albedo) and moist static energy are larger over wet

surfaces than over dry surfaces. Findell and Eltahir (1997) showed from soil moisture and rain

gauge precipitation observations for the state of Illinois that especially during summer wet

surfaces are positively correlated with subsequent precipitation, which is caused by a larger

evaporation and hence atmospheric water vapor supply over these surfaces (Findell et al. 2011).

In a more detailed case study over West Africa, which is also the area of interest here, Taylor

et al. (2010) demonstrated that although mesoscale convective systems hardly initiate over wet

surfaces, precipitation initiated upstream is strengthened over these surfaces. It was suggested

that among others the downdraft on the leading edge of the convective system could force

moist convection over wet surfaces. They also noted that the gradients in soil moisture are of

higher importance to convective initiation than the absolute soil moisture values. This latter

suggestion was confirmed by Taylor et al. (2011), who found that the probability of convective

initation doubles over strong soil moisture gradients at distances of 10–40 km compared to over

surfaces which have a more homogeneous horizontal soil moisture distribution. Taylor and

Ellis (2006) demonstrated from satellite observations that precipitation during the afternoon

is inhibited if surfaces are too wet. Soil wetness was also found to affect both the horizontal

movement and intensity of large tropical convective systems (Wolters et al. 2010a).

Over dry surfaces, water from the surface that can be converted into clouds is limited, while the

surface sensible heat flux can trigger deep convection if atmospheric stability and water vapor

content permit (Findell and Eltahir 2003a;b; Hohenegger et al. 2009). Favorable conditions for

convection for example occur when moist air is advected over dry surfaces. In addition, model

simulations by Garcia-Carreras et al. (2011) showed that convection may be favored over dry

surfaces close to dry-wet transitions. As a result of the differential heating between the wet and

dry soil patches, a surface-induced shallow airflow develops, which can cause convergence

and hence forces the air to ascent when opposing the large-scale wind. The existence of such

dry soil–precipitation interaction was confirmed through satellite observations by Taylor et al.

(2011).

One of the regions identified in the model study by Koster et al. (2004) to have a potential strong

dependency of precipitation on soil moisture anomalies is the West African Monsoon (WAM)

region. Taylor et al. (2002) pointed out that anthropogenically induced land use changes in

this region could cause a delayed wet season onset due to a decreased vegetational coverage

and hence a limited efficiency of the surface to recycle water. Further, van den Hurk and van

Meijgaard (2010) found that the interaction between soil moisture and subsequent precipi-

tation in the Sahel zone is strongly constrained by atmospheric quantities such as available

convective energy and atmospheric moisture.

Most of the research efforts on the soil moisture–precipitation coupling have been performed

through the use of (regional) climate or numerical weather prediction models and to a lesser

degree from direct observations. One of the reasons for the small amount of observational in-

vestigations is that in situ soil moisture observations are rather sparse and are not always taken

on a routine basis. In addition, soil moisture has a large spatial variability, which necessitates

a large amount of in situ observations to obtain a representative picture of soil moisture at the
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mesoscale (de Rosnay et al. 2009). However, using satellite-observed microwave brightness

temperatures enables soil moisture observations over large areas and at a sufficient spatial

resolution to study land–atmosphere interactions at the mesoscale (∼50–100 km). For ex-

ample, the studies of Taylor and Ellis (2006) and Taylor et al. (2010) use soil moisture obtained

from Tropical Rainfall Measurement Mission Microwave Imager (TRMM-TMI) and AMSR-E

brightness temperatures, respectively.

Soil moisture retrievals from space have been available since 1978 from passive microwave

brightness temperature observations. More recently, also soil moisture retrievals using scat-

terometer data have become available. For example, Wagner et al. (1999) and Bartalis et al.

(2007) use measured radar backscattering coefficients observed by the scatterometer onboard

the European Remote Sensing Satellite-2 (ERS-2) and the Advanced Scatterometer (ASCAT)

onboard the Meteorological Operational Satellite (MetOp) for retrieving soil moisture with a

spatial resolution of ∼50 km.

In this study, a soil moisture dataset derived from microwave brightness temperatures ob-

served by the Advanced Microwave Scanning Radiometer onboard the Earth Observing System

(EOS) Aqua satellite (AMSR-E) is used. We investigate the relation with subsequent precipi-

tation as retrieved using the Cloud Physical Properties–Precipitation Properties (CPP-PP) from

Spinning Enhanced Visible and Infrared Imager (SEVIRI) reflectances onboard Meteosat-8

and -9. This research provides a first-order estimate of the interaction between soil moisture

anomalies and convective precipitation by solely using satellite retrievals. In addition, the

possibilities of using satellite-retrieved soil moisture and precipitation datasets in hydrological

applications are demonstrated.

Mesoscale convective systems contribute considerably to the total precipitation in West Africa

(Laing et al. 1999; Mathon et al. 2002), and although most of these systems are dynamically

forced, they can be influenced by the underlying land surface characteristics. Therefore the re-

search question we address in this study is whether the precipitation occurrence and intensity

of these convective systems that are initiated during daytime is significantly different over wet

surfaces than over dry surfaces.

The research is outlined as follows. The principles to retrieve precipitation information from

SEVIRI reflectances and soil moisture information from AMSR-E microwave brightness tem-

peratures, as well as data analysis methods are explained in Section 6.2. Results of the soil

moisture–precipitation interaction study are presented in Section 6.3, after which these are

discussed and conclusions are drawn in Section 6.4.

6.2 Soil moisture and precipitation datasets

6.2.1 CPP-PP retrieval algorithm

The Cloud Physical Properties - Precipitation Properties [CPP-PP, Roebeling and Holleman

(2009)] retrieval algorithm derives precipitation occurrence and intensity using cloud-top
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Figure 6.1 Depiction of the study area. The soil moisture–precipitation relation is studied within the
solid-lined area.

properties that are retrieved from visible and near-infrared reflectances observed by SEVIRI,

which observes at a nominal resolution of 3×3 km2 over the area of interest. This implies that

only daytime values can be retrieved (07:30–16:15 UTC). The discrimination between precipit-

ating and non-precipitating clouds is done using thresholds for cloud particle effective radius

(re ) and condensed water path (CWP). For water clouds, clouds are labeled as ‘precipitating’

if re is larger than 16 µm and CWP exceeds 150 g m−2, whereas for ice clouds only the latter

criterion needs to be fulfilled, because the precipitation formation process is more efficient

when ice crystals are present in the cloud top. Precipitation intensity is calculated from a

scaling of CWP with the precipitation column thickness, which in turn is estimated from the

difference between the thermal infrared-based cloud-top temperature and the warmest pixel

(lowest cloud) found in a 100×100 pixel region, which corresponds to ∼300×300 km2 over

West Africa. See for more details on the CPP-PP algorithm Roebeling and Holleman (2009) and

Wolters et al. (2011).

6.2.2 AMSR-E soil moisture retrieval algorithm

The AMSR-E instrument flies onboard the polar orbiting EOS Aqua satellite, which has a local

overpass time of 1:30 and 13:30 for the descending and ascending nodes, respectively, and has

been operating from 2002 until October 2011. AMSR-E measured brightness temperatures

at frequencies ranging from 6.9–89 GHz at horizontal and vertical polarizations. The spatial

resolution ranged from 56×56 km2 to 5×5 km2 between 6.9 and 89 GHz, respectively.

The physical principle to derive soil moisture information from passive microwave obser-

vations is a relation between soil moisture and the surface emissivity. While the microwave

surface emissivity over bare dry surfaces is about 0.95, over bare wet surfaces it decreases

to about 0.6. As a consequence, the microwave brightness temperature measured over wet
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surfaces is lower than over dry surfaces. The retrieved soil moisture, which is obtained from

the AMSR-E 6.9 and 10.65 GHz channels, represents the soil water content in the upper 1-1.5

cm of the soil (Owe et al. 2008). The soil moisture retrieval is hampered over dense vegetation

(Njoku et al. 2005), where the emitted microwave radiance is dominated by plant leaves and

hence insufficient information on soil moisture can be retrieved. The soil moisture retrievals

from AMSR-E used in this study were obtained from an algorithm that was developed in a joint

effort by the National Aeronautics and Space Administration (NASA) and the Free University

of Amsterdam and is part of a historical soil moisture climatology that was constructed from

various microwave instruments dating back to 1978 (Owe et al. 2008). It uses a Land Parameter

Retrieval Model (LPRM) that incorporates the 6.9-GHz and 10.65 GHz vertical and horizontal

polarized brightness temperatures to obtain information on the relative permittivity of the

canopy and soil to microwave radiation. AMSR-E soil moisture retrievals have been evaluated

using various in situ soil moisture measurements over midlatitude and tropical areas [see

for example the studies of Gruhier et al. (2010; 2008) and McCabe et al. (2005)]. Generally,

the AMSR-E soil moisture retrievals have a reasonable to good performance; Gruhier et al.

(2010) found an annual bias of 5.9% between the AMSR-E soil moisture retrievals and in situ

observations over four ground sites in Mali.

6.2.3 Data analysis

Figure 6.1 indicates the studied region (10◦W–10◦E, 8◦–15◦N). The southern edge of this

region contains rain forest, while to the north the vegetation changes into savannah and

even desert-like. Some elevated terrain is located to the east of the region, which could affect

convective initiation in the dominant easterly flow of the African Easterly Jet (Dinku et al. 2007).

AMSR-E soil moisture retrievals were made available through the Atmospheric Data Access for

the Geospatial User Community (ADAGUC) web portal of the Free University of Amsterdam.

Here we use the 0.25◦× 0.25◦ daily soil moisture data for May–September of 2005 and 2006.

Because West Africa is sampled only twice per day (around 1:30 and 13:30 LT), it is possible

that wet soil moisture anomalies are sampled that are resulting from precipitation a few hours

before. As we are only interested in the influence of soil moisture on the initiation and occur-

rence of subsequent precipitation and not vice versa, the precipitation retrievals were matched

to soil moisture retrievals from the preceeding AMSR-E overpass of 1:30. This is motivated by

the fact that the Planetary Boundary Layer generally develops at a daily scale (Betts 2004).

CPP-PP precipitation retrievals were obtained from 7:30–16:15 UTC. This implies a time diffe-

rence of 6–15 hours between the nighttime soil moisture observations and the first daytime

precipitation retrievals. It is implicitly assumed that the observed soil moisture anomaly

patterns remain constant throughout this period. In order to support this assumption, we

filtered out influences from convective systems that persist throughout the night. The filtering

was applied by discarding grid points for which at 7:30 UTC rainfall was detected within a

radius of ∼250 km.
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Spatial soil moisture anomalies were obtained using 8×8 AMSR-E pixel areas (∼220×220

km2) from which the soil moisture difference (in m3 m−3) between the center 2×2 and the

surrounding pixels, ∆θ, was computed:

∆θ = θc −θs , (6.1)

with suffixes c and s referring to the center and surrounding AMSR-E pixels within the 8×8

pixel areas. The above equation defines ∆θ > 0 and ∆θ < 0 as wet and dry (spatial) anomalies,

respectively.

Subsequently, for each month all ∆θ values were aggregated into a cumulative frequency

distribution and the lowest and highest 10% were selected to be further investigated as dry

and wet anomaly datasets, respectively. It is noted that only the 2× 2 AMSR-E center pixels

and not the surrounding pixels were included as either dry or wet anomaly patches.
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Figure 6.2 (Top panels) AMSR-E soil moisture as observed from the 1:30 LT overpasses for (left panel)
May and (right panel) September averaged over the years 2005–2006. White areas indicate the absence of
soil moisture retrievals as a result of dense vegetation. (Bottom panels) Averaged daytime precipitation
(7:30–16:15 UTC) for (left panel) May and (right panel) September 2005–2006 as retrieved by CPP-PP. For
convenience, CPP-PP retrievals were regridded to the AMSR-E 0.25◦×0.25◦ resolution.

For the 2×2 AMSR-E center pixels that were flagged as dry or wet, the occurrence frequency

from the daytime-observed SEVIRI reflectances at the subsequent day were computed by

dividing the number of precipitation-flagged SEVIRI pixels by the total number of SEVIRI pixels

within the 2×2 AMSR-E pixel area (∼300 at nominal resolution). Precipitation intensities of
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the 10 investigated months (May–September of 2005 and 2006) were collected in a cumulative

histogram, from which the 17th, 50th, and 84th percentile were calculated. Q67 is defined as

the difference between the 84th and 17th percentile.

6.3 Results

Figure 6.2 shows the development of AMSR-E soil moisture (upper panels) and CPP-PP daytime

precipitation, both averaged over 2005 and 2006 at the beginning (May) and end (September)

of the WAM. During both months, soil moisture decreases from south to north. However, the

soil moisture gradient becomes less pronounced as a result of increased precipitation over the

dry areas throughout the monsoon, as can be seen from the smoother patterns for Septem-

ber than for May. In May, the median and Q67 soil moisture values within the study area are

0.15 and 0.26 m3 m−3, respectively, while for September these values are 0.27 and 0.23 m3 m−3.

The averaged daytime precipitation (7:30–16:15 UTC) shows the northward excursion of the

convective systems between the beginning and end of the monsoon. In May, the average

precipitation is < 1.5 mm d−1 over the entire study area, except for the enhanced precipitation

near the Jos Plateau (∼9◦N, 8◦E). In September, especially west of 5◦E daytime precipitation

amounts have increased to 2–3 mm d−1 relative to May.

The daytime diurnal cycle of precipitation occurrence and intensity sampled during May–

September 2005 and 2006 are shown in Figure 6.3 for dry, wet, and all surfaces. Over all

surfaces, the occurrence frequency is lower than 2% during the morning hours (07:30–12:00

UTC), after which the occurrence frequency increases from about 12:00 UTC onwards. The

increase over dry surfaces is significantly different from a statistical perspective than over wet

and all surfaces from 13:00 UTC onwards. At 16:00 UTC the precipitation occurrence frequency

over dry surfaces is about 3% higher than over wet surfaces.

The median precipitation intensity over wet surfaces shows a similar pattern as over all sur-

faces, with values of 0.13 mm h−1 until 11:00 UTC, followed by a steady increase to about

0.4 mm h−1 at 16:00 UTC. Over dry surfaces, precipitation intensity is slightly lower than

over wet surfaces during the morning hours (0.08–0.10 mm h−1), but increases more rapidly

(from 0.1 at 11:00 UTC to 0.52 mm h−1 at 16:00 UTC) during the afternoon. However, the

difference between dry and wet surface median precipitation intensity is not significant at the

0.05 significance level using a Kolmogorov-Smirnov test.

Figure 6.4 shows the cumulative distribution function (CDF) of the soil moisture anomalies

and the afternoon (at 16:00 UTC) precipitation occurrence frequency and intensity as function

of this CDF. More than half (60%) of the anomalies have values within +/-0.03 m3 m−3. As

already shown in Figure 6.3, convection is more frequent over dry than over wet surfaces.

In addition, precipitation occurrence frequency over surfaces with less sharp soil moisture

gradients (represented by the intermediate CDF deciles) in the 2◦×2◦ boxes is lower, a feature

that can also be deduced from Figure 6.3. However, the higher occurrence frequency does not

imply a larger precipitation intensity, as follows from the right panel of Figure 6.4; the median
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Figure 6.3 (Left panel) Daytime diurnal cycle of precipitation occurrence frequency for May–September
2005 and 2006 over dry (red line), wet (blue line), and all surfaces (black line). The dotted lines for dry
and wet surfaces denote the occurrence frequencies obtained using a soil moisture anomaly deviating +/-
5% from the standard 10% (for dry surfaces) and 90% (for wet surfaces). (Right panel) Median daytime
precipitation intensity over dry, wet, and all surfaces.

precipitation intensity decreases from 0.52 mm h−1 in the first decile to 0.35 mm h−1 in the

sixth decile, followed by a gradual increase to 0.41 mm h−1 in the last decile.

6.4 Discussion and conclusions

This Chapter aimed at answering the question if the precipitation occurrence frequency and

intensity over dry surfaces differ significantly from over wet surfaces. We have addressed this

question by investigating the relation between CPP-PP-retrieved precipitation occurrence and

intensity and preceeding (6–15 hours earlier) AMSR-E-observed soil moisture anomalies over

West Africa. Over both dry and wet surfaces, a distinct increase in occurrence frequency to-
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Figure 6.4 (Left panel) Cumulative distribution function of AMSR-E soil moisture anomalies for
May–Sep 2005–2006. See text for details on the anomaly calculations. (Center panel) Afternoon (16:00
UTC) precipitation occurrence frequency as function of the soil moisture anomaly cumulative distribution
function with error bars denoting the standard deviation within each decile. The thin solid line indicates a
linear regression. (Right panel) Afternoon precipitation intensity as function of the soil moisture anomaly
CDF, with error bars indicating the Q67 within each decile.
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wards the afternoon is seen. The occurrence frequency over dry surfaces becomes significantly

different from its wet surface counterpart after about 13:00 UTC. For precipitation intensity,

no significant difference between dry and wet surfaces has been found.

The results presented in this research are in line with those of Taylor and Ellis (2006) and

Taylor et al. (2011), who showed that the probability of convective initiation over the driest

anomalies is about one third larger than over the wettest anomalies. However, our results

contrast with those of Findell and Eltahir (1997) and Findell et al. (2011), which suggest that

wet surfaces are more favorable for the onset of convection. Part of these differences might

originate from the fact that the studies of Findell and Eltahir (1997) and Findell et al. (2011)

were performed in more humid climate zones (Southeastern and Midwest US), while this

study was carried out over a semi-arid climate region. In the latter study, it was pointed out

that afternoon convective triggering increases sharply when the evaporative fraction (the

ratio between latent and total heat flux) exceeds 0.7. However, this may only partly apply to

the investigated Western African area, because high evaporative fractions are generally only

found over the densely vegetated areas. The insignificant difference between dry and wet

soil moisture anomalies and subsequent precipitation intensity was also shown in a study

conducted in a midlatitude climate region by Alfieri et al. (2008). They demonstrated that both

convective and stratiform precipitation intensity is virtually uncorrelated with the preceeding

soil moisture.

Because our dataset comprises both beginning and mature convection, it is suggested that the

precipitation intensity of maturing convective cells becomes to a lesser extent influenced by

soil moisture and becomes more dependent on atmospheric constraints, such as stability, ver-

tical wind shear, and low-level moisture convergence. In addition, the soil moisture influence

on moving convective cells might be horizontally decoupled, so that precipitation intensity is

affected at a downwind location. However, this horizontal displacement might not be larger

than a few kilometres (Clark et al. 2003). Finally, it has been demonstrated that AMSR-E soil

moisture and SEVIRI precipitation observations are well-suited to extend the research on the

soil moisture–precipitation interaction on the mesoscale, which will contribute to a better

understanding of the complex interplay between land surface characteristics and convective

precipitation in the tropics.

The study presented does not provide the entire view on the influence of soil moisture on the oc-

currence and intensity of precipitation. First, no indication on the soil moisture–precipitation

relation during the evening and night can be given, because the CPP-PP retrievals are restricted

to daytime only. The studies of Taylor et al. (2011) and Taylor and Ellis (2006) provide addi-

tional overviews on the convective behavior related to soil moisture during the evening hours.

In addition, no distinction between convection that initiated over wet and dry surfaces and

mature convection initiated at upwind directions that moved over dry or wet surfaces has been

made. To do so, a sophisticated convective cell tracking algorithm would be required in order

to trace individual thunderstorms back to their point of origin [see for example the studies of

Mathon et al. (2002), Roca et al. (2010), and Taylor et al. (2011)]. Finally, care should be taken in

using the AMSR-E soil moisture retrievals. Although AMSR-E soil moisture retrievals compare

well against in situ observations and their horizontal sampling resolution is appropriate for
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investigating the soil moisture–precipitation relation at the mesoscale, the temporal sampling

is rather limited and necessitates the assumption of stationary soil moisture between consec-

utive overpasses. As a result, the calculated soil moisture differences might not only be affected

through precipitation in between overpasses, which was largely filtered out, but also through

the drying of wet surfaces. Recently, Pellarin et al. (2009) showed the possibility of interpolating

AMSR-E soil moisture retrievals to 30 minutes using a satellite-based precipitation product

and a microwave emission model.

A final note on the AMSR-E soil moisture retrievals is that their quality may decrease during

the course of the West African Monsoon. This may especially occur over the semi-arid region

in West Africa, because vegetation growth and hence the increase in vegetation optical depth

during the monsoon is large in this region (Zribi et al. 2009). Space-based observations of soil

moisture are continued by the dedicated Soil Moisture and Ocean Salinity [SMOS, Barre et al.

(2008); Kerr et al. (2001)] and the future Soil Moisture Active and Passive [SMAP, Entekhabi

et al. (2008)] missions.
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Chapter 7

Perspectives

This thesis has highlighted the retrieval, evaluation, and application of cloud physical pro-

perty datasets obtained from SEVIRI-observed visible and near-infrared reflectances. In this

Chapter, first the main findings of this thesis are summarized in short, followed by a survey of

possible and intended improvements to the CPP algorithm. Finally, some current and future

applications of the cloud physical properties and precipitation datasets are highlighted.

The research questions that were addressed in this thesis were as follows:

1) Is the CPP cloud-phase retrieval of sufficient accuracy and precision to construct reliable

long-term cloud-phase climatologies for midlatitude coastal climates (Chapter 3)?

2) What is the impact of different horizontal resolutions to the retrieval of cloud particle effec-

tive radius and cloud phase using CPP (Chapter 4)?

3) Is the accuracy of precipitation occurrence frequency and precipitation intensity as retrieved

from CPP sufficient to monitor the seasonal monsoon progression and the rainfall dynamics

at sub-daily scale over West Africa (Chapter 5)?

4) Is there a significant difference in the precipitation occurrence frequency and intensity over

wet and dry surfaces during the West African Monsoon (Chapter 6)?

Chapter 3 presented the evaluation of one year of cloud-phase retrievals with ground-based

cloud radar and lidar observations at Cabauw, The Netherlands. It was shown that the CPP

cloud-phase retrieval algorithm has sufficient accuracy (<5%) and precision (<10%) for cli-

mate monitoring purposes. During winter, the usage of 0.6-µm and 1.6-µm reflectances has

added value over cloud-phase determination using temperature thresholding, which tend to

misclassify supercooled water in stratiform clouds. During summer, the increase and decrease

in the amount of ice clouds resulting from convection between morning and late afternoon

can be well followed.
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In Chapter 4, the question to what extent varying horizontal resolutions affect the cloud par-

ticle effective radius and cloud-phase retrievals in case of broken clouds and inhomogeneous

overcast clouds was addressed. It was shown from CPP retrievals on MODIS reflectances that

at the lowest cloud fractions the low-resolution re over ocean surfaces is overestimated by

up to 5 µm compared to at high resolution, due to the relatively large contribution of the

underlying surface to the observed 1.6-µm reflectances. In about 4% of the cases, this leads to

a misclassification of ‘water’ clouds into ‘ice’. However, the additional cloud-top temperature

check in the cloud-phase retrieval algorithm reduces these misclassifications to 2%.

CPP-PP precipitation retrievals were evaluated over West Africa with TRMM-PR and CMORPH

observations in Chapter 5. The precipitation occurrence frequency from CPP-PP agrees well

with TRMM-PR-observed values, with a correlation coefficient of 0.86. CPP-PP-obtained

instantaneous precipitation intensities agree to a lesser extent (corr=0.50), but given the differ-

ent observation techniques (passive satellite imagery versus active radar observations) the

agreement is satisfactory. Investigation of the rainfall frequency distributions from CPP-PP

revealed good agreement with TRMM-PR and rain gauge observations, although in the range

5–16 mm h−1 CPP-PP overestimates relative to the rain gauges. Further, it was demonstrated

that CPP-PP is suitable to monitor both the seasonal and diurnal cycle during daytime of

precipitation throughout the West African Monsoon. Owing mainly to its high spatial and

temporal resolution, CPP-PP detects a larger dynamical range in the diurnal cycle during

daytime of precipitation intensity than CMORPH.

Chapter 6 presented a study on the relation between soil moisture and the precipitation

occurrence frequency and intensity during the West African Monsoon seasons of 2005 and

2006. Based on spatial soil moisture anomalies calculated from AMSR-E retrievals, dry soils

were discriminated from wet soils. It followed that the precipitation occurrence frequency

over dry soils becomes significantly higher than over wet soils during the afternoon, but that

precipitation intensity over dry soils is not significantly different. It was suggested that for

well-developed convective cells the soil moisture forcings become less important compared to

other (atmospheric) forcings. The study demonstrated that the combination of satellite-based

soil moisture and precipitation observations can be helpful in improving the understanding of

the land surface–precipitation interaction over tropical areas.

7.1 Algorithm improvements

This thesis showed that accurate cloud physical and precipitation properties can be retrieved

using the CPP algorithm. However, it was also indicated that under certain circumstances the

accuracy of the retrievals decreases. Therefore a number of improvements and extensions for

the retrieval of cloud phase, cloud particles effective radius, and precipitation properties are

proposed below.

Cloud phase

The cloud-phase retrieval algorithm currently uses the SEVIRI 0.6- and 1.6-µm channel reflec-

tances. As a consequence, the algorithm can only be applied during daytime.
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As was shown in Chapter 3, the cloud phase retrieved using CPP can be properly used to

study the daytime growth of convection. However, study on the entire diurnal cycle of cloud

phase requires usage of the thermal infrared channel brightness temperatures. One such

cloud-phase retrieval algorithm, which was adapted for use on SEVIRI data is the MODIS

infrared cloud-phase retrieval algorithm (Baum et al. 2000; Strabala et al. 1994). It applies a

similar physical principle (different absorption characteristics between water droplets and ice

crystals) as CPP to derive cloud phase and may be suitable to complement the CPP daytime

cloud-phase retrievals. In order to enable a smooth transition from the daytime visible/near-

infrared CPP to the nighttime MODIS infrared cloud-phase retrievals the differences between

retrievals from the two algorithms obtained during daytime will be investigated.

Cloud particle effective radius

The re retrieval may be improved by using spectral channels that are further located in the

near-infrared spectral region, where solar radiation is more efficiently absorbed by cloud

particles. As a result, the influence of the underlying surface to the measured reflectance in

case of semi-transparent clouds diminishes. Therefore retrievals for these cloud cases might

be carried out using the SEVIRI 3.9 µm spectral channel. However, for retrieving ice cloud re

the 3.9 µm spectral channel is less suitable, due to among others a limited sensitivity of re to

the 3.9-µm reflectance for large ice crystals. The Flexible Combined Imager (FCI) onboard the

Meteosat Third Generation (MTG) satellites (to be launched from 2017 onwards) will carry

a 2.2 µm spectral channel, which will enable re retrievals that are more representative for

the cloud top (Platnick et al. 2001). In addition, using the three near-infrared channels (1.6

µm, 2.2 µm, and 3.9 µm) research on the vertical re profile for optically thin clouds could be

performed (Chang 2003; Chang and Li 2002).

Another potential for improvement of the re retrieval will be the correction of 1.6-µm reflec-

tances with the observed High-Resolution Visible (HRV) channel reflectance in case of broken

or inhomogeneous clouds. Although the HRV spectral channel range is rather broad (0.4-1.1

µm), Deneke and Roebeling (2010) demonstrated for the 0.6-µm and 0.8-µm channels that

the observed reflectance at the operational resolution (3×3 km2 at nadir) can be downscaled

to the HRV resolution using the HRV-observed reflectance. This downscaling could also be

applied to other SEVIRI shortwave channels.

A final improvement of the re retrievals may be achieved by using optimal estimation tech-

niques. In optimal estimation, the basic principle is to maximize the probability of the retrieved

cloud properties conditional on the value of the measurement and any a priori information on

the observed clouds. It might be particularly useful to improve the re retrievals for optically

thin clouds, because the existing ambiguities in the retrieval will be solved for. Optimal es-

timation on SEVIRI data has been proven useful for surface reflectance and aerosol retrievals

(Govaerts et al. 2010), sea surface temperature (Merchant et al. 2009), and combined aerosol

and cloud retrievals (Thomas et al. 2007). A constraint of optimal estimation is the large calcu-

lation time that is required, which makes it less suitable to be implemented in a near-realtime

processing environment.
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Precipitation properties

As the precipitation properties are derived from cloud-phase and implicit re information

(through the CWP), the retrieved precipitation properties will benefit from the future im-

provements of the cloud-phase and re retrievals. Further, it is intended to add a below-cloud

evaporation correction to the current algorithm. To do so, information on the relative humidity

in the lowest 2 km of the atmosphere is required, because the cloud base is mostly located

below this level, as is the majority of the total atmospheric water vapor burden. Because the

below-cloud relative humidity can change rapidly in both time and space (for example due to

air mass changes within synoptical weather systems), the water vapor information needs to be

as actual as possible.

A water vapor dataset that could potentially be used has been developed within the Water

Cycle Multi Mission Observation Strategy project [WACMOS, Su et al. (2010)]. Water vapor

datasets for three layers (200–500 hPa, 500–850 hPa, and 850 hPa–surface) are produced from a

combination of water vapor observations from SEVIRI and the Infrared Atmospheric Sounding

Interferometer (IASI) onboard MetOp. The information is provided at a spatial and temporal

resolution of 0.25◦×0.25◦ and 3 h, respectively. As an alternative to satellite water vapor data-

sets, Numerical Weather Prediction (NWP) model analyses on temperature and humidity

might be incorporated. Although these data are available only 4 times per day, it provides

detailed information on the vertical profiles of temperature and humidity, which results in a

more accurate cloud base and below-cloud evaporation estimate.

The dependency of the precipitation properties retrievals to cloud physical properties retrievals

implies the restriction to daytime SEVIRI data only. Continuous precipitation information

enables profound research on the full diurnal cycle of precipitation mechanisms, but this

can only be achieved when using the thermal infrared and water vapor absorption channels.

For example, Thies et al. (2008) developed a rainfall retrieval algorithm that uses CWP and

cloud-phase information from the SEVIRI visible and near-infrared channels during daytime,

while cloud phase and CWP are retrieved from various brightness temperature differences

during nighttime.

7.2 Applications

The high temporal and spatial resolution of the SEVIRI-based cloud physical and precipi-

tation properties datasets opens various possibilities for their application in atmospheric

research. One possible application was already highlighted in Chapter 6. Additional to this

land surface–precipitation study, other potential applications of the cloud physical and precipi-

tation properties datasets are:

• Climate monitoring
Monitoring the atmosphere from space with respect to climate change has been recognized

by the Global Climate Observation System (GCOS) of the World Meteorological Organization

(WMO). In order to guarantee continuous and accurate observations, a list of Essential Climate
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Variables (ECVs), comprising among others atmospheric upper-air temperature, cloud cover,

cloud-top temperature, and precipitation was established. Prior to the generation of sustained

long-term and reprocessed Thematic Climate Data Records (TCDRs), the radiances measured

by the various satellite instruments need to be intercalibrated to the highest possible accuracy

to avoid artificial trends resulting from orbital drifts or degrading calibration performance.

This calibration effort is coordinated by the Global Space-based Inter-Calibration System

[GSICS, Goldberg et al. (2011)]. Recently, within the Climate Monitoring Satellite Application

Facility (CM-SAF) the first reprocessed cloud physical property datasets based on recalibrated

AVHRR data from 1981 onwards have been completed and a similar reprocessing effort will be

carried out for the Meteosat First and Second Generation satellites (1981–present).

• Weather forecasting
The potential of SEVIRI is to track and follow developing convective cells using its very high

spatial and temporal resolution (Carbajal Henken et al. 2011; Zinner et al. 2008). Precipi-

tation retrievals can be a useful tool for meteorologists to get an indication on the intensity

of approaching precipitation as an augment to rain radar information. In addition, SEVIRI

precipitation datasets in combination with satellite soil moisture datasets might serve as input

for a surface runoff system, although satellite precipitation retrieval algorithms tend to over-

estimate precipitation intensities compared to ground-based observations and hence would

overestimate the surface runoff (Tian et al. 2007). These potential nowcasting applications can

be further exploited with the launch of the FCI onboard the MTG satellites, which will enable

monitoring of convective cells every 10 minutes (for Europe and Africa) and even every 2.5

minutes when in Rapid Scan Service (Europe only).

In addition to nowcasting applications, measured SEVIRI thermal infrared radiances are in-

creasingly assimilated as additional observations into global or regional NWP models [see

for example Andersson et al. (2005), Szyndel et al. (2005), Stengel et al. (2009), and Bauer

et al. (2011)] using four-dimensional variational analysis (4D-Var) schemes. Also the derived

and validated cloud physical property and precipitation datasets from SEVIRI might be of

added value for improving the NWP predictions, taking advantage of SEVIRI’s high spatial and

temporal sampling resolution.

• Feedback studies
Beside the study on the soil moisture–precipitation relation presented in Chapter 6, cloud

property and precipitation datasets may be applied for other process studies, such as water

cycle closure. From the retrieved cloud optical thickness and auxilary water vapor and aerosol

datasets the transmission and hence the surface solar irradiance is calculated with an accuracy

of about 3 W m−2 (Deneke et al. 2008). The surface solar irradiance can in turn be used as

input for surface energy balance models [such as the Surface Energy Balance System (SEBS),

Su (2002)]. The synergistic use of observations from different satellite platforms to obtain

an accurate estimate of the various water cycle components is investigated in the WACMOS

project. In order to obtain reliable estimates of water cycle closure, it is required that internal

consistency between the separate water cycle components is conserved. For example, soil

moisture observations should show an increase after a precipitation event, which in turn

should lead into an increase in model-predicted evaporation.
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• Climate model evaluation
As a result of the rather large intermodel spread in climate model predictions of the tempe-

rature increase, which is partly caused by uncertainties in cloud feedback [Randall et al. in

Solomon et al. (2007)], satellite-derived cloud property datasets are a useful tool for the evalu-

ation of cloud parameterizations of these models. The cloud physical properties derived from

SEVIRI-observed reflectances are especially beneficial for evaluating the physical processes

that occur at sub-daily scales, such as the growth and decline of convection. Evaluations of

the Regional Atmospheric Climate Model (RACMO) cloud scheme using CPP-derived cloud

properties (CWP, precipitation, cloud phase, and cloud height) have been performed for West

Africa (Greuell et al. 2011) and Europe (Roebeling and van Meijgaard 2009) and provided

valuable information for the climate model community. Other climate model cloud scheme

evaluations have been carried out using CALIPSO (Chepfer et al. 2008) and ISCCP cloud data-

sets (Lin and Zhang 2004). It is expected that the increment of the SEVIRI cloud datasets

combined with the intended CPP algorithm improvements will extend the possibilities for the

climate model community to evaluate their models. It is noted that special attention should

be paid to adequately match the horizontal resolutions of the climate model and the cloud

physical and precipitation properties datasets, as well as to correct for the different vertical

representation of clouds between the model and the satellite observation datasets.
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Summary

Clouds play an important role in the Earth’s radiation and hydrological balance. In the short-

wave spectrum, incident sunlight is primarily reflected by clouds, thereby resulting in a cooling

effect, while in the longwave spectrum outgoing radiation from the Earth’s surface is absorbed

and re-emitted, which results in a warming effect. Further, clouds redistribute water and

latent heat at both the horizontal and vertical scale. In order to accurately assess whether the

properties of clouds and precipitation change in a changing climate, accurate measurements

at high resolutions in space and time are required. However, large parts of the world remain

undersampled with respect to ground-based observations of these properties. The current ge-

neration of geostationary weather satellites is well-suited to monitor clouds and precipitation,

and retrieve their properties accurately. Further, accurate cloud and precipitation datasets

can be used for evaluating cloud and precipitation parameterizations in weather and climate

models, to investigate land–atmosphere interactions, and to detect changes in the diurnal

cycle of clouds and precipitation.

This thesis describes research performed to retrieve and validate cloud thermodynamic phase,

cloud particle effective radius, and precipitation occurrence and precipitation intensity. Fur-

ther, an application of these retrievals to evaluate the feedback mechanism between precipi-

tation and soil moisture is presented. The properties of clouds and precipitation are retrieved

by the Cloud Physical Properties (CPP) algorithm that uses visible (0.6 µm) and near-infrared

(1.6 µm) reflectances observed by the Spinning Enhanced Visible and Infrared Imager (SEVIRI)

on the Meteosat Second Generation (MSG) satellites. These reflectances are measured at a

temporal resolution of 15 minutes and a spatial resolution that varies between 3×3 km2 over

Central Africa and 4×7 km2 over Western Europe. Such a high temporal and spatial resolution

enables e.g. research on diurnal developments of cloud and precipitation properties.

In Chapter 1, a general introduction on climate change and the influence clouds have on the

climate is given. Several feedback mechanisms in the climate system, such as the impact of

a temperature increase on clouds and atmospheric water vapor are explained. Further, the

importance of clouds to the hydrological cycle is highlighted. Finally, the research questions

that are answered in this thesis are addressed.
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In Chapter 2, the theoretical basis for the research performed in thesis, as well as the me-

thodologies that are used, are presented. First, the theory of radiative transfer, applied to the

the Earth’s atmosphere and clouds, is explained, followed by a short survey on some radiative

transfer models. Further, the various satellite instruments from which data are used in this

thesis are highlighted, after which the Chapter concludes with a detailed explanation of the

CPP algorithm, that is used to obtain the cloud and precipitation properties from the measured

reflectances observed by SEVIRI.

In Chapter 3, three cloud phase retrieval algorithms are evaluated to assess their applicabi-

lity for climate monitoring purposes in mid-latitude coastal climate zones i.e., the CM-SAF

method, the MODIS-like method and the ISCCP-like method. Using one year of data from

SEVIRI on Meteosat-8, retrievals of the methods are compared to collocated and synchronized

ground-based cloud-phase retrievals obtained from cloud radar and lidar observations at

Cabauw, the Netherlands. Three aspects of the satellite retrievals are evaluated: 1) Instanta-

neous cloud-phase retrievals, 2) monthly averaged water and ice cloud occurrence frequency,

and 3) daytime diurnal cycle of cloud phase. The results reveal for the instantaneous cases,

that all methods show a very small bias for thick water and ice cloud retrievals (∼5%). The

ISCCP-like method has a larger bias for pure water clouds (∼10%), which is likely due to the

260 K threshold leading to misdetection of water clouds existing at lower temperatures. For

the monthly averaged water and ice cloud occurrence, the CM-SAF method is best capable of

reproducing the annual cycle, mainly for the water cloud occurrence frequency, for which an

almost constant positive bias of ∼8% was found. The ISCCP- and MODIS-like methods are less

capable to detect the annual cycle, especially due to retrieval inaccuracies during the winter

months. The difference in annual cycle detection between the three methods is most probably

related to the use of visible/near-infrared reflectances, which enable a more physically based

observation of cloud phase than the MODIS-like and ISCCP-like methods that use infrared

radiances. The daytime diurnal cycle of cloud phase is well reproduced by all methods. The

MODIS-like method reproduces the daytime diurnal cycle best, with correlations of 0.89 and

0.86 for water and ice cloud occurrence frequency, respectively.

In Chapter 4, the impact of satellite sensor resolution on the retrievals of cloud particle effec-

tive radius (re ) and cloud phase is investigated for broken and overcast inhomogeneous clouds,

using the CPP retrieval algorithm. First, synthetic datasets of high-resolution (1×1 km2) and

low-resolution (3×3 km2) radiances are used to evaluate the effect of these clouds on the

retrieval of re and Cloud-Top Temperature (Tc ), the cloud properties that are used for cloud-

phase retrievals. It is shown that for thick broken and inhomogeneous overcast water clouds

over ocean and land surfaces low-resolution re retrievals can be up to 12 µm higher and Tc

retrievals up to 20 K higher than the corresponding high-resolution retrievals. The overestima-

tion of re may cause erroneous assignments of ‘ice’ to water clouds. Second, CPP retrievals on

Moderate-Resolution Imaging Spectroradiometer (MODIS) reflectances are used to quantify

the effect of broken and overcast inhomogeneous clouds on re and CPH retrievals over the

Atlantic Ocean and Central Europe. Over both areas, the low-resolution re is overestimated by

up to 5 µm for broken and up to 2 µm for inhomogeneous overcast clouds. At low resolution,

the fraction of water clouds is underestimated by 2.3% over the Atlantic Ocean and 0.6% over

Central Europe. The increase of Tc partly compensates for the increase in re , in the CPH
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retrievals at low resolution. If no Tc information were used, the underestimation of the water

cloud fraction would be 3.5% and 2.2% for the Atlantic Ocean and Central Europe, respectively.

For inhomogeneous overcast clouds integrated over all inhomogeneity classes, this difference

is -1.3% and -2.3% for Central Europe and Atlantic Ocean, respectively. The results indicate

that the retrieval of re in the CPP algorithm is sensitive to satellite sensor resolution in case of

broken clouds and inhomogeneous overcast clouds, but that despite the large re sensitivity

the CPH retrieval is much less sensitive to sensor resolution.

Chapter 5 presents the evaluation of the CPP-PP algorithm over West Africa. This algorithm

combines CWP, CPH, re , and Tc retrievals from visible, near-infrared and thermal infrared

observations of SEVIRI to retrieve precipitation occurrence frequency and precipitation inten-

sity. It is investigated whether the CPP-PP algorithm is capable to retrieve these precipitation

properties with sufficient accuracy over West Africa, using TRMM-PR observations as reference.

Further, it is assessed whether CPP-PP is capable of monitoring the seasonal evolution and

variations in the daytime cycle of precipitation during the monsoon, using the Climate Pre-

diction Center Morphing Technique (CMORPH) precipitation observations. The results show

that the SEVIRI-detected precipitation area agrees well with TRMM-PR, with the area detected

by CPP-PP being ∼10% larger than observed by TRMM-PR. The mean retrieved precipitation

intensity from CPP-PP is about 8% higher than from TRMM-PR. Examination of the TRMM-PR

and CPP-PP cumulative frequency distributions reveal that differences between CPP-PP and

TRMM-PR are generally within +/-10%. Relative to rain gauge observations, CPP-PP shows

very good agreement up to rain intensities of ∼5 mm h−1. However, at moderate precipitation

intensities (5–16 mm h−1) CPP-PP overestimates compared to the rain gauges. Further, it was

shown that both the accumulated precipitation and the seasonal progression of precipitation

throughout the monsoon is in good agreement with CMORPH, although CPP-PP retrieves

higher amounts in the coastal region. Using latitudinal Hovmöller diagrams, a fair corres-

pondence between CPP-PP and CMORPH was found, which is reflected by high correlation

coefficients (≈0.7) for both precipitation intensity and precipitation occurrence frequency.

The daytime cycle of precipitation from CPP-PP shows different patterns for three regions in

West Africa throughout the monsoon, with a decrease in dynamical range of precipitation near

the major monsoon rains. The dynamical range as retrieved from CPP-PP is larger than that

from CMORPH. This might result from both the better spatio-temporal resolution of SEVIRI,

as well as from thermal infrared radiances being partly used by CMORPH, which smooth the

daytime precipitation signal.

Chapter 6 describes a study on the relation between soil moisture and convective precipi-

tation over West Africa, using soil moisture retrievals from Advanced Microwave Scanning

Radiometer EOS (AMSR-E) brightness temperatures and daytime (7:30–16:15 UTC) precipi-

tation retrievals obtained from SEVIRI-observed visible and near-infrared reflectances. For

the 2005 and 2006 monsoon seasons, soil moisture anomalies from the AMSR-E dataset were

calculated in 2◦×2◦ blocks. Using the lowest and highest 10% of the soil moisture anomalies

distribution to represent dry and wet soils, respectively, the SEVIRI-based precipitation occur-

rence frequency and precipitation intensity over these soils at the following day were calculated.

It was found that over both dry and wet soils the precipitation occurrence frequency increases

during the afternoon, with a stronger increase over dry soils than over wet soils after 13:00
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UTC. For precipitation intensity no significant difference between the dry and wet soils could

be discerned, as the difference between wet-soil and dry-soil precipitation intensity is mostly

< 0.1 mm h−1. This research has demonstrated the potential of satellite-based soil moisture

and precipitation datasets for improving the understanding of the soil moisture–precipitation

interactions.

Finally, in Chapter 7 some potential improvements to the CPP algorithm as well as future

research applications of the retrieved satellite cloud and precipitation datasets are discussed.

The suggested improvements for the CPP algorithm comprise a nighttime algorithm for the

cloud-phase and precipitation properties, which would enable research on the entire diurnal

cycle of these quantities. Further, more research on correcting retrieved cloud physical pro-

perties for partly cloud-filled pixels is suggested using the SEVIRI High-Resolution Visible

spectral channel. Applications of the cloud and precipitation properties datasets exist in

among others climate monitoring, weather forecasting, water balance studies, land surface–

atmosphere interactions, and assimilation in weather and climate models. These applications

can take full advantage of the high spatial and temporal sampling of SEVIRI.
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Dankwoord

Toen ik eind 1999 een aanbod voor een functie in de ICT aanvaardde, leek op dat moment

een terugkeer naar de meteorologie ver weg, laat staan dat ik toen dacht aan een promotie.

Toch begon gaandeweg mijn werkzaamheden als programmeur het besef te groeien dat ik op

termijn zou terugkeren naar mijn vakgebied, hetgeen in 2002 dan ook geschiedde. Na een

tweetal jaren als meteoroloog in de Centrale Weerkamer van het KNMI maakte ik in april 2004

de overstap naar het klimaatonderzoek. Dit nadat ik werd getipt over een vrije positie bij de

toenmalige afdeling Atmosferisch Onderzoek. Na een verkennend gesprek met afdelingshoofd

Arnout Feijt over de inhoud van de werkzaamheden binnen de Climate Monitoring Satellite

Application Facility (CM-SAF) was mijn interesse gewekt. Ik sprak de ambitie uit om niet alleen

projectwerkzaamheden te doen, maar ook om aan een promotie te werken. Toen dit geregeld

was, sprak Arnout de profetische woorden: "Zo, jij mag ook die berg gaan beklimmen...".

Arnout, bedankt voor het bieden van deze mogelijkheid en de begeleiding bij de wankele

eerste stappen als onderzoeker.

De eerste jaren bestond het SEVIRI-wolkenonderzoeksgroepje uit twee personen: mijn co-

promotor Rob Roebeling en ondergetekende. Van Rob heb ik gaandeweg steeds meer kneepjes

van het onderzoeksvak geleerd, ondanks zijn vaak drukke werkzaamheden stond hij altijd

klaar om de nieuwe en niet altijd even begrijpelijke resultaten te bekijken, te becommen-

tariëren en suggesties voor nieuwe onderzoeksrichtingen te doen. Vooral op het gebied van

doel- en toepassingsgericht werken, dataverwerking en het helder en beknopt opschrijven

van resultaten heb ik een hoop van hem geleerd. Gedurende mijn verblijf bij de afdeling At-

mosferisch Onderzoek (later Regionaal Klimaat) en Aardobservatie Klimaat is de wolkengroep

flink gegroeid en heb ik verder prettig samengewerkt met Hartwig Deneke, Wouter Greuell, Jan

Fokke Meirink, Ping Wang, Paul de Valk, Bastiaan Jonkheid en Brent Maddux.

Het eerste jaar was formeel Bert Holtslag mijn promotor, eenvoudigweg omdat het ook Rob’s

promotor was. Bert was echter van mening dat het voor mij als beginnende promovendus

beter was wanneer ik een promotor had die zich zowel inhoudelijk als fysiek op kortere afstand

bevond. Bert, bedankt voor deze suggestie! Nadat ik Bart van den Hurk bereid had gevonden

mij onder zijn hoede te nemen, heeft deze een grote rol gespeeld in mijn ontwikkeling als

onderzoeker en dan vooral in het opstellen van een goede hypothese voordat ik aan een

onderzoek begon. Ik wil Bart bedanken voor het geduldig wachten op nieuwe of verbeterde
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teksten en resultaten, om deze vervolgens kritisch te beoordelen en mij te stimuleren om nog

een stapje extra te doen. Nooit heeft hij harde woorden laten vallen wanneer ik andermaal om

een paar dagen/weken uitstel vroeg omdat ik een onderzoek te optimistisch had benaderd en

het genereren van resultaten en/of het beschrijven ervan langer duurde dan gepland.

Iemand wiens bijdrage aan dit proefschrift alleen maar onderschat kan worden is die van

Piet Stammes. De beginselen van het stralingstransport werden geduldig en begrijpelijk door

Piet steeds weer uitgelegd en -getekend. Daarbij heeft hij ook een belangrijke rol gespeeld

als promovenduscoach. Zeker in het laatste jaar, toen er nog een theoretisch hoofdstuk, een

laatste inhoudelijke hoofdstuk én de perspectives geschreven moesten worden, heeft hij er

steeds voor gezorgd dat ik mijn focus bleef houden en had hij altijd een stimulerend woordje

paraat.

Het groeien tot een volwaardig onderzoeker is een pad vol oneffenheden, waarbij de eerste

paar jaar soms een harde leerschool zijn, omdat je je een weg moet zien te vinden in hoe

zinvolle resultaten te verkrijgen uit enorme hoeveelheden data. Mijn eerste kamergenoot,

Gerd-Jan van Zadelhoff, heeft ruim 3 jaar daarin een belangrijke rol gespeeld door me een

boel IDL-kennis bij te brengen, mee te denken en door een luisterend oor te bieden wanneer

het niet helemaal meezat c.q. tegenzat. Zijn goed gevoel voor (bij tijden cynische) humor

plaatste vaak alles in het juiste perspectief. Het jarenlange verblijf op de derde verdieping van

het B-gebouw werd tussen de bedrijven door verder veraangenaamd door de fijne collega’s

van Regionaal Klimaat: Wouter ("Gutenmorgen Herrschaften!") Knap (vooral voor het moeten

aanhoren van mijn flauwe woordgrappen), Dave, Martin, Janneke, Irene, Roeland, Bert, Roel,

Geert, Erik en Bastiaan. Ook de collega’s bij Aardobservatie Klimaat wil ik bedanken voor hun

steun, interesse en gezellige koffiepraatjes: onder andere Jos, Folkert, Gijs, Ronald, Bas, Tim,

Piet, Pieternel, Jacqueline en Maarten (de laatste vooral ook voor alle LaTeX tips and tricks),

bedankt!

Na Gerd-Jan was Jan Fokke mijn volgende kamergenoot. Hoewel er steevast hard werd gewerkt,

werd het begin van de maandagochtend, onder het genot van een bakje koffie of cappuccino

(dat mag tot 11 uur...), steevast ingeruimd voor een analyse van het afgelopen eredivisieweek-

end, waarbij soms de deskundige analisten Wouter en Folkert aanschoven en hun licht over de

wedstrijden lieten schijnen. Als er geen voetbal te analyseren viel, dan wel wielrennen, tennis,

schaatsen of een andere sport. Als nuchtere Friese kamergenoot heeft Jan Fokke vele versies

van mijn schrijfsels gecorrigeerd en heb ik zeer prettig het CM-SAF werk voortgezet.

For more than seven years I have worked on the CM-SAF. Karl-Göran, Joe, Abhay, Anke (all

SMHI), Martin, Maarit, Anke, Rainer, and Frank (all DWD), it has been a pleasure working

with you! I especially appreciate Karl-Göran attending my defense, I look forward sharing

some beers and some updates on the latest progressive rock developments! I also want to

acknowledge the project colleagues from WACMOS: Joris, Marcel, Christiaan, Bob (all ITC

Enschede), Wouter (TU Vienna), Richard, Robert (both VU Amsterdam), Jörg (then DWD, now

EUMETSAT), Marc, Katja (both DWD), and Diego (ESA). We achieved quite a lot in a rather

short period and I especially remember the good project meetings, which were followed by

good dinners and drinks.
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A big ‘thank you’ is certainly there for Bryan Baum, who invited me early 2008 to come to

Madison for a five-week visit to work on some MODIS stuff. It was really nice having you as

my supervisor during those weeks and I feel honored that you accepted to be a member of

the evaluation committee. Your slogan is ‘work hard, play hard’, which meant that the hard

work at the Space Science and Engineering Center was sometimes (or should I say regularly?)

interrupted to have a coffee at the Union South, a discussion about life, the universe, and

music, or biking to the Bratfest. Weatherwise, it was also a very good stay, with lots of severe

thunderstorms and nearby tornadoes during the last week, a very special experience! Also

the other colleagues, Andy, Mike, Bob, Dave, Sarah, and Pat, thank you for the stimulating

discussions, the beers, and the running (even up to 10 km during working time...). Iliana, thank

you for sharing your house and car for my weekend trips.

Muziek is voor mij altijd een goede uitlaatklep geweest en met plezier denk ik dan ook terug

aan de jamsessies met Remy in Haarlem/IJmuiden. Hoeveel materiaal staat er ondertussen wel

niet op disk? Ook op het KNMI heb ik zeer geregeld tijdens de lunchpauze muzikaal aan de weg

getimmerd in het Rockhok met Bert, Nico, Martin, en Siebren. Het hoogtepunt was toch wel

het nooit meer geëvenaarde optreden tijdens de kerstborrel van 2005. Ook mijn vrienden en

familie wil ik bedanken voor hun steun, relativerende woorden en interesse over de voortgang

van het promotietraject. Mijn neef Mark wil ik bedanken voor het bezoeken van rockconcerten,

lezingen en al het andere interessants dat op ons pad komt. Martijn, we hebben in dik 20 jaar

al aardig wat tennispotjes tegen elkaar gespeeld, waarbij de constante factor is dat we aan

het eind van de wedstrijd moeten constateren dat er aan ons twee tennistalenten verloren

zijn gegaan, iets wat steeds minder strookt met ons vertoonde spel. Kosta, je nuchtere en

humoristische kijk op de zaken hebben zeker haar uitwerking gehad gedurende deze periode.

We moeten binnenkort maar weer eens ouderwets Italiaans gaan tafelen “in de buurt” van

Bergamo. Ralph, het gezellige stappen in Maastricht hebben we al een aardige tijd ingeruild

voor bier/wijn en goede gesprekken in de huiselijke omgeving, maar de gezelligheid en droge

humor blijven. Inge, super dat je je broer bijstaat als paranimf, als zus ben je voor mij een

belangrijke steunpilaar geweest. Ook haar vriend Mark wil ik danken voor alle steun en

interesse. Verder dank aan andere familieleden: Hub, Marleen, Jo, Lenie, Hans, Antoinette,

Hub en Truus. Pap en mam, ut mènke det es kindj altied nao de lóch mos kieke en mit ut waer

bezig woor haet unne lange waeg bewanjeldj, maar haet ut noe eindelijk aaf. Christel, dank

voor het luisterend oor en begrip wanneer het eens niet meezat en er weer de nodige avonden

thuis moest worden doorgewerkt. Lars, kleine boef, je zult straks aardig onder de indruk zijn

van het hele gebeuren, ik ben benieuwd welk pad jij gaat bewandelen!
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Erwin Leonardus Antonius Wolters werd geboren op 1 februari 1976 in Roermond en groeide

op in het iets zuidelijker gelegen Linne. Na het doorlopen van de lagere school ging hij in

1988 naar het Bisschoppelijk College Schöndeln in Roermond, waar in 1994 het Atheneum-B

diploma werd behaald. Dit opende de weg voor een studie Bodem, Water en Atmosfeer aan de

toenmalige Landbouwuniversiteit in Wageningen. In 1999 studeerde hij af in de specialisatie

meteorologie met scripties in de grenslaagmeteorologie (low-level jet in de stabiele nachtelijke

grenslaag) en agrometeorologie (koppeling van een gewasklimaatsmodel aan een planten-

ziektenmodel bij DLV Meteo, het huidige Weeronline). Het vele programmeerwerk bij DLV

Meteo beviel goed en een uitstapje van 2 1/2 jaar naar de ICT-wereld volgde. Het bloed kruipt

echter waar het niet gaan kan en in mei 2002 keerde hij terug naar het vakgebied en werd hij

meteoroloog in de Centrale Weerkamer van het KNMI. In april 2004 volgde een overstap naar

de sector Klimaat en Seismologie van het KNMI als wetenschappelijk projectmedewerker. Hier

werkte hij tot en met 2011 voor de Climate Monitoring Satellite Application Facility (CM-SAF)

en tevens in 2009 en 2010 voor het Water Cycle Multi-Mission Observation Strategy (WAC-

MOS) project. Naast deze projectwerkzaamheden werd de gelegenheid geboden om aan een

promotie te werken, hetgeen in het voorgaande is beschreven. Sinds 1 februari 2012 werkt hij

bij de afdeling Klimaatdata en -Advies in het Generator of Rainfall and Discharge Extremes

(GRADE) project aan de extremenstatistiek van neerslag in de stroomgebieden van Rijn en

Maas.
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