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[1] The probabilities of the occurrence of extreme dry/wet years and seasons in Europe
are estimated by using two ways of the Standardized Precipitation Index (SPI and
SPI-GEV) and the Standardized Nonstationary Precipitation Index (SnsPI). The latter is
defined as the SPI by fitting precipitation data with a nonstationary Gamma distribution in
order to model the precipitation time dependence under climate change. Bias-corrected
daily precipitation outputs from five different regional climate models (RCMs) provided
by the ENSEMBLES project are used. The five RCMs are selected so as to represent the
main statistical properties of the whole ENSEMBLES set and the most extreme deviation
from the ensemble mean. All indicators are calculated for the ensemble of the five models
over the period 1971–2098. Results show that under global warming, climate in Europe
will significantly change from its current state with the probability of the occurrence of
extreme dry and wet years and seasons increasing, respectively, over southern dry and
northern wet regions. Comparing nonstationary and stationary indices, the SnsPI is found
to be more robust than the common SPI in the prediction of precipitation changes with
multimodel ensembles.
Citation: Russo, S., A. Dosio, A. Sterl, P. Barbosa, and J. Vogt (2013), Projection of occurrence of extreme dry-wet
years and seasons in Europe with stationary and nonstationary Standardized Precipitation Indices, J. Geophys. Res. Atmos.,
118, 7628–7639, doi:10.1002/jgrd.50571.

1. Introduction
[2] In the last few years, numerous extreme weather

events, which have caused major human suffering and eco-
nomic damage, have been recorded worldwide [Comou and
Rahmstorf, 2012]. As an example, in the United States dur-
ing the year 2011, new monthly heat records were broken for
Texas, Oklahoma, and Delaware, whereas several northeast-
ern states experienced the wettest winter on record [Comou
and Rahmstorf, 2012].

[3] In Europe during the period 2000–2011, many
wet and dry events were detected: For instance, autumn
2000 in England and Wales was the wettest since 1766
[Alexander and Jones, 2001], the largest daily rainfall
of the past 100 years was recorded in Germany in
2002 [Becker and Grünewald, 2003], the wettest sum-
mer on record since 1901 occurred in Netherlands and
Norway in 2011 [World Meteorological Organization
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(WMO), 2011], and the summer of 2003 in south-
ern Europe was the hottest of the last 500 years
[Luterbacher et al., 2004]. In particular, a very intense
heat wave occurred in Spain. It was characterized by the
persistence of very high temperatures, with 19 weather sta-
tions recording daily maximum temperatures equal to or
higher than 40ıC [Barriopedro et al., 2011]. The impact
of the heat wave in southern Europe was devastating: Mor-
tality increased, especially in southwestern Europe, and an
unusually large number of extensive forest fires occurred in
Portugal, Spain, and France [Díaz et al., 2005]. In 2007,
the hottest summer on record since 1891 was recorded in
Greece [Founda and Giannakopoulos, 2009], whereas in
2011, France experienced the hottest and driest spring since
1880 [WMO, 2011]. Many other extreme weather events
happened in Europe in the last decade, as documented by,
e.g., Comou and Rahmstorf [2012].

[4] All these events can be classified as “extremes.” An
extreme event is statistically defined as the occurrence of
a value of a weather or climate variable above (or below)
a threshold near the upper (or lower) end of the range
of observed values [Intergovernmental Panel on Climate
Change (IPCC), 2012]. Alternatively, a weather event can be
considered extreme according to the amplitude of its impact
on society and ecosystems [IPCC, 2012]. All the previous
listed meteorological events fulfill both these conditions;
they were rare and had a strong consequence on human
health and ecosystems.
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[5] With the projected increase in temperature due to cli-
mate change, the question arises if these events will continue
to be classified as “extremes” in the future. Many studies
have assessed potential future changes in climate extremes,
by showing that the 21st century will experience global
changes in temperature and precipitation extremes consis-
tent with a warming climate [Alexander et al., 2006; Kharin
and Zwiers, 2005; Kharin et al., 2007; Sterl et al., 2008;
Heinrich and Gobiet, 2011; Min et al., 2011; Russo and
Sterl, 2012; Avila et al., 2012; Comou and Rahmstorf, 2012;
Sillmann et al., 2013]. In these studies, different methods
(e.g., Extreme Values Theory or Climate Indicators) have
been used to project temperature and precipitation changes.
In particular, Heinrich and Gobiet [2011] have computed a
few drought indicators for diagnosing future drought occur-
rence in climate change scenarios. One of these indicators
was the Standardized Precipitation Index (SPI) which is
widely applied to characterize extreme dryness and wetness.

[6] In this study projections of dryness and wetness are
estimated by means of the SPI and other precipitation
indices, obtained as a modification of it. One of these indices
is the SPI-GEV which is defined as the SPI but by mod-
eling precipitation data with a generalized extreme value
(GEV) distribution instead of a Gamma distribution. A sec-
ond index is the Standardized Nonstationary Precipitation
Index (SnsPI) using a nonstationary Gamma distribution in
the modeling of the precipitation data. The SPI and SPI-GEV
are classified here as stationary indices, whereas the SnsPI
is classified as a nonstationary index. By computing the SPI,
SPI-GEV, and SnsPI for daily precipitation outputs from five
different regional climate models (RCMs) under the Special
Report on Emissions Scenarios (SRES) A1B emission sce-
nario provided by the ENSEMBLES project [van der Linden
and Mitchell, 2009], we test whether these indices show
any difference in the prediction of the probability of occur-
rence of extreme dry/wet years and seasons over Europe
and investigate how this probability will change in a future
changing climate.

2. Data
[7] In this work, we use outputs from high-resolution

climate change projections performed by state-of-the-art
global climate models (GCMs) and regional climate mod-
els (RCMs) in the framework of the Sixth Framework
Programme project ENSEMBLES [van der Linden and
Mitchell, 2009]. The aim of the ENSEMBLES project was to
run multiple RCM-GCM simulations in order to improve the
accuracy and reliability of climate models and to quantify
and reduce the uncertainty in the climate projections [van
der Linden and Mitchell, 2009]. The domain of the RCM
simulations encompasses the whole of Europe at a resolu-
tion of about 25 km. The simulations cover the period 1961
and 2100 under the SRES A1B emission scenario.

[8] Bias correction of ENSEMBLES daily series of tem-
perature and precipitation was performed by Dosio and
Paruolo [2011] and Dosio et al. [2012], following the
approach of Piani et al. [2010]. The bias correction was
based on the E-OBS data set [Haylock et al., 2008], a data set
of daily observations of temperature and precipitation cov-
ering Europe for the period 1950–2008. The E-OBS data set
has been evaluated and compared to other available data sets

Table 1. List of Bias-Corrected Model Runs Selected in This
Study

Institute RCM Driving GCM

METO-HC HadRM3Q0 HadCM3Q0
KNMI RACMO2 ECHAM5r3
C4I RCA3 HadCM3Q16
DMI HIRHAM5 ARPEGE
DMI HIRHAM5 ECHAM5

by, e.g., Hofstra et al. [2010]. As pointed out by Dosio et
al. [2012], there may be some potentially important limita-
tions to the data, such as inhomogeneities (both spatial and
temporal) and large absolute and relative differences over
regions where data sets developed with very dense station
networks exist (e.g., British Isles). However, Coppola et al.
[2010] claim that climate statistics for the E-OBS data set
are very similar to, e.g., the Climatic Research Unit data set
[New et al., 2002].

[9] Dosio and Paruolo [2011] showed that the bias cor-
rection improved significantly not only the present climate
mean statistics but also the time-dependent properties, such
as the number of consecutive dry days and the cumulative
amount of rainfall for consecutive heavy precipitation days.
The need for bias-correcting model projection is well known
[e.g., Christensen et al., 2008], and impact models may be
significantly dependent on the occurrence and frequency of
extreme events. For instance, Rojas et al. [2011] showed that
the bias-corrected data significantly improve the simulation
of river flood for the present climate.

[10] As process-based impact assessment models are
often too expensive on time and resources to be run by
using a large ensemble of climate runs as an input, Dosio
et al. [2012] suggested that it is possible to select a sub-
set of runs that represent both the main statistical properties
of the whole ensemble (e.g., climate change signal) and the
most extreme deviations from it, i.e., those that maximize
the variability. The five bias-corrected ENSEMBLES runs
selected for this study, shown in Table 1, have the following
characteristics:

[11] 1. The KNMI-RACMO2-ECHAM5 run is the closest
to the average of the whole ensembles.

[12] 2. The METO-HC HadRM3Q0-HadCM3Q0 shows
a very warm and dry signal in summer, for both northern
and southern Europe. In addition, it shows a warmer than
average signal in winter, although slightly wetter.

[13] 3. The C4I RCA3-HadCM3Q16 is not only the
warmest model in both winter and summer but also one of
the wettest.

[14] 4. The DMI HIRHAM5-ARPEGE is always colder
and drier than the average.

[15] 5. The DMI HIRHAM5-ECHAM5 shows a signal
that is always colder and wetter than the average.

[16] It must be noted, however, that this selection is some-
what subjective, and other criteria, depending, for instance,
on the indicator, study purpose, and area of interest, may
lead to different subsets. All models are driven by the same
emission scenario (SRES A1B), and thus, all runs represent
an equally probable projection of the future evolution of the
climate. However, the selected runs show a significant vari-
ability in the climate change signal for both temperature and
precipitation [see Dosio et al., 2012]. Specifically, the KNMI
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Table 2. SPI Classification Following McKee et al. [1995]

SPI Values Class Probability of Event (%)

SPI > 2.00 Extreme wet 2.3
1.50 < SPI � 2.00 Severe wet 4.4
1.00 < SPI � 1.50 Moderate wet 9.2
–1.00 < SPI � 1.00 Near normal 68.2
–1.50 < SPI � –1.00 Moderate dry 9.2
–2.00 < SPI � –1.50 Severe dry 4.4
SPI � –2.00 Extreme dry 2.3

RACMO2-ECHAM5 run is the closest to the median of the
five-model ensemble; the DMI HIRHAM5-ARPEGE shows
a signal that is usually drier than the median of the five-
model ensemble, whereas the DMI HIRHAM5-ECHAM5
predicts a wetter signal.

3. Precipitation Indices
3.1. The Standardized Precipitation Index

[17] The SPI is one of the most common and useful indi-
cators for monitoring meteorological dry and wet periods.
It is a precipitation-based index that was originally formu-
lated by McKee et al. [1993]. The SPI can be estimated for
different time scales by using precipitation amounts, from
monthly up to yearly or even longer accumulation periods.

[18] In the classical SPI definition, precipitation amount
records are fitted to a Gamma distribution. A Gamma-
distributed variable X is continuous and positive and has a
probability density function (PDF) defined by two parame-
ters as follows:

f(x) =
1

sa�(a)
xa–1e– x

s , for x � 0 and a, s > 0, (1)

where s and a are, respectively, the scale and shape
parameters and �(a) is the mathematical Gamma func-
tion. The Gamma distribution with parameters s and a is
denoted as Gamma(s, a). The expectation and variance of an
X � Gamma(s, a) variable are

E(X) = � = a � s; Var(X) = a � s2. (2)

[19] The fitted distribution is then used to transform time
series of annual or seasonal precipitation extremes into stan-
dard normal values. McKee et al. [1995] divided the standard
normal values assumed by the SPI into moderate, severe, and
extreme classes for both negative (dry) and positive (wet)
SPIs (Table 2).

[20] This procedure is illustrated in Figure 1 for two
points, one in southern Europe, close to Malaga, Spain
(4.4ıW, 36.86ıN), and a second one in northern Europe
near Stockholm, Sweden (15.84ıE, 59.30ıN). These two
points have been selected because they experience differ-
ent future changes, Malaga becoming drier and Stockholm
becoming wetter. The black curves represent the CDFs
fitted to the precipitation data of the reference period
(1971–2000). The blue and brown curves are the cor-
responding fits for the future period (2069–2098). They
will be discussed later. The CDF of the standard nor-
mal distribution is shown in green. A value of –2 for the
standard normal distribution (green square in Figure 1)
corresponds to a probability of 2.3% (y axis value �
100) that a year is extremely dry. By projecting this

value onto the black curve, the corresponding precipitation
amount is found (black square). For Malaga, this value is
230 mm/yr: There is a probability of 2.3% for any given year
to have less than 230 mm of precipitation.

[21] The SPI is very flexible. Since it is a normalized
measure relative to a specific location and period, it has the
advantage that its values are climatologically consistent for
any location. On the other hand, one of the disadvantages of
the SPI as formulated by McKee et al. [1993] is that it can-
not be used for a comparison between different time periods,
which is required to assess the impact of climate change.
In fact, since the SPI values are standardized (see Table 2)
by using the Gamma distribution, they are specific to the
period for which they are computed. Furthermore, as the SPI
is based on the stationary Gamma distribution, it is not able
to model time series longer than about 30 years; for longer
time series, the climate change signal is expected to be sig-
nificant; hence, the data cannot be treated as stationary and
cannot be modeled with a stationary distribution.

Figure 1. Relative SPI and SnsPI computation scheme.
This example refers to the annual precipitation at two
locations: one in southern Europe close to Malaga, Spain
(4.4ıW, 36.86ıN), and a second one in northern Europe
near Stockholm, Sweden (15.84ıE, 59.30ıN). The green
curve is the standard normal CDF. The black curves rep-
resent the Gamma CDFs fitted to the yearly precipitation
(gray filled circles) over the reference period (1971–2000)
for the two selected locations. The blue and brown curves are
the Gamma CDFs fitted to the precipitation data (light blue
and orange) for a future period (2069–2098) for Stockholm
and Malaga, respectively. The black filled circle (square) is
the point for the present climate CDF corresponding to the
SPI value 2 (green cross), which is the threshold of extreme
wet (–2 for extreme dry; see Table 2). The blue filled circle
(brown square) is the point representing the position of wet
extreme today over the CDF fitted to the precipitation data
for a future wetter (drier) period (2069–2098).
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[22] To overcome these limitations, we proceed here in
two different ways: first by using the SPI as a relative
drought index [Dubrovsky et al., 2009; Heinrich and Gobiet,
2011] (section 3.3) and then, as described in section 3.4,
by adopting a new index which we call the Standardized
Nonstationary Precipitation Index (SnsPI). By following the
SnsPI definition (section 3.4), precipitation records are fit-
ted by means of a nonstationary Gamma distribution. In this
way, the SnsPI has the ability to model nonstationary time
series, overcoming one of the limitations of the SPI, and
therefore, it is expected to be more robust than the SPI in
predicting precipitation changes.

3.2. The SPI-GEV Index
[23] There is some debate as to which parametric distri-

bution should be selected for the accuracy of the final SPI
values. McKee et al. [1995] have recommended the Gamma
distribution, and Lloyd-Hughes and Saunders [2002] suggest
that it is the most appropriate model for Europe. However,
Guttman [1999] suggests that the Pearson-III distribution is
the best universal model to adopt since its three parameters
give it more flexibility than the Gamma distribution.

[24] In this study we do not go into this discussion; we just
test if the SPI values are different if calculated with a three-
parameter distribution rather than the Gamma distribution.
Therefore, in addition to computing the SPI by means of
a Gamma distribution, we modeled precipitation data using
the generalized extreme values (GEV) distribution, defined
by three parameters.

[25] The corresponding index is called SPI-GEV. The
GEV distribution [Coles, 2001] is given by

G(x) = exp
�

–
h
1 + �

� x – �
�

�i–1/�
�

. (3)

The parameter � describes the location of the distribution,
the scale parameter � its width, and the shape parameter �
its asymmetry, determining the behavior of the tail. G(x) is
defined for {x : 1 + �

� x–�
�

�
> 0}, where the parameters

satisfy –1 < � < +1, � > 0, and –1 < � < +1. The
cases � = 0, � > 0, and � < 0 define, respectively, the widely
known Gumbel, Frechét, and Weibull distribution families.

3.3. The Relative SPI
[26] The relative SPI is defined with respect to a reference

period, in our case 1971–2000 (current climate). To com-
pute the relative SPI, the Gamma distribution is estimated
for the reference and for the future period. The two curves
are then used to calculate the probability difference between
future and present SPI values. As an example, the blue and
brown curves in Figure 1 are the CDFs fitted to the pre-
cipitation data of the future period (2069–2098), which is
wetter (right shifting and widening of the PDF) in Stock-
holm and drier (left shifting of the PDF) in Malaga. For
the present climate, we found a value of 230 mm/yr corre-
sponding to a standard normal value of –2 (extremely dry
according to Table 2) at Malaga. In the future climate (brown
line), this same amount of rain corresponds to a probabil-
ity of � 18% (brown square) or, equivalently, to a standard
normal value of � –1 (near normal). The probability of an
extreme dry year (according to present-day standards) has,
therefore, increased sixfold. A similar procedure holds for

the wet end of the distribution (circles in Figure 1). The rela-
tive SPI is computed in three different modes: with a Gamma
distribution, with a GEV distribution, and by means of a
GEV distribution with constant shape parameter for the ref-
erence and future periods. In the latter, the shape parameter
of the GEV for the future period is imposed to be equal to
the shape parameter of the GEV distribution fitted to the pre-
cipitation data over the reference period, and the resulting
index is called SPI-GEV(� = const).

[27] In this study precipitation amounts are not trans-
formed into standard normal values as in the classical SPI
formulation but to probabilities (percentages) as described
above and illustrated in Figure 1. The resulting probability
SPI, ranging from 0 to 100%, is independent of grid points
in different locations and climatic regions.

[28] A similar probability-based index was already intro-
duced by Min et al. [2011] by fitting about 50 years of annual
maxima of daily precipitation as well as 5 day consecu-
tive precipitation amounts to a GEV distribution. In fitting
the GEV distribution, Min et al. [2011] did not vary the
GEV parameters with time but assumed that the location (�),
scale (� ), and shape (�) parameters are constant. However,
in transient climate simulations, when the greenhouse forc-
ing gradually changes, the assumption of stationarity is not
necessarily valid [Nikulin et al., 2011], since, over a period
of 50 years, the climate change signal can be significant.
In our case, since we use a 138 year time series of model-
simulated annual and seasonal precipitation, the climate
change signal is expected to be relevant; hence, we cannot
treat the data as stationary. For a given grid point, the annual
and seasonal precipitation are fitted to the Gamma distribu-
tion by varying the distribution parameters with time. This
is done by computing the SnsPI, which is defined in the
following section.

3.4. The SnsPI
[29] The SnsPI is defined like the relative SPI but using a

nonstationary Gamma distribution to transform the precipi-
tation time series into corresponding time series of probabil-
ity values. The advantage of the SnsPI as compared to the
SPI is that it is able to model the entire time series without
splitting the data into shorter periods. Fitting precipitation
data to a nonstationary model is done by linearly varying the
scale parameter of the Gamma distribution with time. We
thus assume that Xt (the precipitation amount in a future year
t) can be modeled as

Xt � Gamma(st, a), (4)

with st = �t/a and E(Xt) = �t = b1 + b2t, where b1 and b2 are
constants.

[30] By doing so, variations through time are modeled by
means of a Gamma distribution with different means and
variances, but a common shape a. The rainfall data with a
linear trend in the scale parameter as defined above are fitted
by means of a regression model. A regression model for
Gamma-distributed data is a generalized linear model fitted
here by maximum likelihood [McCullagh and Nelder,
1989].

[31] The computation scheme is the same as that for the
relative SPI. For the SnsPI, the CDF over a future period
is obtained by means of the linear trend estimated in the
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location parameter. As done for the SPI, we convert time
series of seasonal and annual precipitation amounts into cor-
responding time series of probability values at each point
of the model grid. This is done for the 138 year time
series of each model and then for the ensemble of the
five models fitted together by means of a covariate matrix
[McCullagh and Nelder, 1989]. Comparison with SPI is
done by estimating SnsPI probability values at the center of
three selected 30 year periods (1971–2000, 2021–2050, and
2069–2098), which we denote as present, near future, and
future, respectively.

4. Goodness of Fit and Significant
Precipitation Changes

[32] Different goodness of fit tests are used depending on
the stationarity or not of the time series. In the case of sta-
tionary time series, a Kolmogorov-Smirnov test (KS test)
was carried out between precipitation data and the fitted
Gamma and GEV distribution functions, respectively. The
KS test is a popular goodness of fit statistic that measures
the distance between the empirical distribution function and
the specified distribution [Von Storch and Zwiers, 2003].

[33] In the case of the 138 year nonstationary time series
(SnsPI), a statistic which is helpful to measure the goodness
of fit of a given generalized linear model is the deviance
defined as

D(y, O�) = 2{l(y, y) – l( O�, y)}, (5)

where l(y, y) is the maximum likelihood achievable for an
exact fit in which the fitted values are equal to the observed
values and l( O�, y) is the log likelihood function calculated at
the estimated parameters b1, b2, and a (see equation (4)). A
small deviance implies a good fit. The null hypothesis has to
be rejected at the ˛ level of significance if D > c˛ , where c˛
is the (1 – ˛) quantile of the �2

k distribution [Dobson, 1990].
[34] The KS and deviance tests were also used to detect

those grid points at which precipitation changes are not sig-
nificant. In the case of stationary indices (SPI and SPI-GEV),
the KS test is used to test whether precipitation in a future
period is significantly different from that in the reference
period. At each grid point, we test whether present and future
amounts of rainfall are different, precisely, whether or not
they are drawn from the same distribution at a chosen level
of significance (5%).

[35] In order to detect grid points with nonsignificant pre-
cipitation changes according to the SnsPI, a log likelihood
ratio test is used. The log likelihood ratio test uses the
deviance (5) to verify if model Gamma(s, a) (M0) is a subset
of model Gamma(st, a) (M1) [McCullagh and Nelder, 1989;
Coles, 2001]. If l0(M0) and l1(M1) are, respectively, the max-
imized log likelihood for models M0 and M1, the deviance
statistic can be calculated as

D = 2{l1(M1) – l0(M0)}. (6)

A test of the validity of model M0 relative to M1 at the ˛
level of significance is to reject M0 in favor of M1 if D > c˛ ,
where c˛ is the (1 – ˛) quantile of the �2

k distribution.

5. Results
5.1. Empirical Evaluation of Model Outputs

[36] Figure 2 shows the differences between future cli-
mate (2069–2098) and current climate (1971–2000) of the
2nd (extreme dry) and the 98th (extreme wet) percentile of
the annual precipitation amounts. Results are shown for each
model output separately and for the set of five-model ensem-
ble simulations together; the latter is a set of 150 (5 models
� 30 years) precipitation events, defined as follows:

E5 =
5[

m=1

ymax[
y=ymin

Pm,y, (7)

with (ymin, ymax) = (1971, 2000) and (ymin, ymax) =
(2069, 2098), respectively, for current and future climate.
Here [ denotes the union of sets, m is the model of the
five ensemble members, and Pm,y is the total precipitation of
model m in year y.

[37] Generally, each model simulates a wetter future cli-
mate over northern Europe and a drier one over southern
Europe. However, differences exist between the models.
Between northern Europe, where the climate is becoming
wetter, and southern Europe, where it is becoming dryer,
there exists a zonal band for which projections of 21st cen-
tury precipitation change are very uncertain. Some models
predict a significantly wetter climate, whereas others predict
a drier one. This uncertainty may have a large impact when
the whole ensemble of model data is used. In fact, the cli-
mate change signal can vary with the type of estimator used
to make predictions. As an example, the 2nd and 98th per-
centiles of the five-member ensemble annual precipitation
have been estimated here for the current and future periods
in two different ways: as the percentiles of the set E5 (see
equation (7)) (Estim-1) and as the median of the five 2nd and
98th percentiles calculated for each single model (Estim-2).
Differences between future and current Estim-1 and Estim-2
values (Figure 2) show an opposite behavior in the transition
region between northern Europe and southern Europe. In the
band stretching from Great Britain via southern Germany
to the Carpathian Mountains, Estim-1 is negative, indicating
drying, while Estim-2 is positive, indicating wettening.

[38] In the first case, the dry signal is due to the fact that
the weighting given to each model is not equal. In fact, by
considering a set of data built by the totality of the five mod-
els, the upper and lower extreme precipitation values of the
sorted data are those of the wettest and driest models, respec-
tively. For example, although three models predict a wetter
climate in the future and two a drier one, the future-past
difference of Estim-1 may result in a negative number, indi-
cating that the future climate is becoming drier, even if we
have a larger number of models predicting a wetter climate.

[39] In the second case, by estimating first the 2nd and
98th percentiles for each single model and then computing
the median, the same weight is given to each model, mean-
ing that if three of the models are drier and two are wetter,
the future climate will be drier. This discrepancy will also be
evident when the SPI is compared to the SnsPI, as discussed
below. In the following section, by using SPI and SnsPI val-
ues expressed as probability (see section 3), it will be shown
that the SPI is more representative of Estim-1, whereas
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Figure 2. Differences between future climate (2069–2098) and current climate (1971–2000) of the 2nd
and the 98th percentile of the annual precipitation amounts for each model data (m1-d to m5-d and m1-w
to m5-w) and for the whole five-model ensemble by means of Estim-1 (Est1-1 and Est1-2) and Estim-2
(Est2-1 and Est2-2) as defined in section 5.1.

the SnsPI resembles Estim-2, giving equal weight to each
single model.

5.2. Description of the Results
5.2.1. General Considerations

[40] Figures 3–5 show near-future (Figures 3a1–3c1, 3a3–
3c3, 4a1–4c1, 4a3–4c3, 5a1–5c1, and 5a3–5c3) and future
(Figures 3a2–3d2, 3a4–3d4, 4a2–4d2, 4a4–4d4, 5a2–5d2,
and 5a4–5d4) changes of the occurrence of extreme dry/wet
years and seasons (December–February (DJF) and June–

August (JJA)), measured by means of the stationary and
nonstationary SPIs (expressed as probability), computed for
the whole ensemble of data as defined in equation (7). The
period 1971–2000 (present) is used as the reference to mea-
sure future probability changes of precipitation amounts.
The changes are calculated for two time windows of
30 years: 2021–2050 (near future) and 2069–2098 (future),
with respect to the reference period. The significance of the
probability differences between future and present periods
for nonstationary (SnsPI) and stationary (SPI and SPI-GEV)
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indices is evaluated, respectively, by means of a likelihood
ratio test and a KS test (see section 4). In Figures 3–5, areas
where, according to the used hypothesis tests at the chosen
significance level of 5%, future precipitation amounts are not
different from the present are masked out in white.

[41] The color scale ticks in Figures 3–5 are chosen
according to the probability values reported in Table 2 in
order to detect if, in the future, SPI probability values are
moving into a different SPI level than the present. For
instance, an SPI probability changing by more than 15.9%,
i.e., the sum of the extreme (2.3%), severe (4.4%), and mod-
erate (9.2%) SPI probability levels (see Table 2), means that
precipitation amounts that are extreme in the current climate
will be normal in the future.
5.2.2. Near-Future Extreme Year

[42] Near-future SPI and SPI-GEV extreme dry year
changes are found to be significant for only a small portion
of Europe (Figures 3b1 and 3c1), mainly in northern Spain,
Portugal, and the Mediterranean areas (southern Spain,
Greece, southern Italy, and southern Turkey), in agreement
with Heinrich and Gobiet [2011]. Both indicators predict
equal patterns and values of probability changes. The SnsPI
shows a larger area, covering central Spain and southwest-
ern France, with significant probability changes in the near
future (Figure 3a1).

[43] The SnsPI maximum probability changes are found
in southwestern France, with values exceeding 6.7%, mean-
ing that a present extreme dry year will be normally dry in
the near future.

[44] The probability of having an extreme wet year in
the period 2021–2050 is increasing almost everywhere over
northern Europe (Figures 3a3–3c3). All indicators (SPI, SPI-
GEV, and SnsPI) show approximately the same patterns with
equal probability difference values. The largest changes in
the occurrence of extreme wet years are found over Scan-
dinavia. In some parts of this region, a present extreme wet
year is expected to become a normal event according to the
SnsPI values. The probability is projected to increase by
more than 15.9%.
5.2.3. Future Extreme Year

[45] At the end of the century (Figures 3a2–3c2 and 3a4–
3c4), the area where significant SPI and SPI-GEV changes
are projected is more extended as compared to the period
2021–2050. The regions where probability changes of occur-
rence of an extreme year are statistically insignificant (white
area) are the same for both SnsPI and SPI. They form a
narrow band over central Europe, stretching from northern
France eastward to the northern coast of the Black Sea.

[46] This result is robust since two different statistical
methods (KS test and log likelihood ratio test, respectively,
for stationary and nonstationary indices) give the same result
for the significance of the precipitation changes. It has to be
noted, however, that the insignificance of the annual signal
may be due to opposing seasonal signals. For instance, wet-
ter winters and dryer summers in the future may result in an
insignificant annual change.

[47] From the analysis of Figures 3a2–3c2, we note a
zonal band between roughly 40ıN and 60ıN where the sta-
tionary (SPI and SPI-GEV) and nonstationary (SnsPI) indi-
cators give opposite results. This opposite behavior could
be associated with different values of the shape parameter
of the fitted distributions. When the nonstationary Gamma

distribution is used, the shape parameter does not vary with
time, while for the stationary Gamma and GEV model, the
shape parameter may differ between present climate and
future climate. To test if the shape parameter estimated for
annual rainfall has invariant properties with time and if a
constant future shape parameter will give different estimates
for the stationary indicators, we have introduced a new sta-
tionary index called SPI-GEV(xi=const). It is defined as the
SPI-GEV by imposing the same shape parameter for both
the present and future GEV distributions.

[48] Probability differences estimated with the SPI-
GEV(xi=const) index are shown in Figures 3d2 and 3d4. We
see that apart from some isolated locations, in the entire stud-
ied domain, the SPI-GEV(xi=const) values are reproducing
the same patterns as the SPI and SPI-GEV stationary indi-
cators. In particular, the SPI-GEV(xi=const) yields the same
future drier signal in the band between 40ıN and 60ıN as
the SPI, which is opposite to the SnsPI wetter trend in the
same region.

[49] This yields two important results: The first is that
for 12 month precipitation amounts, we can assume that
the shape parameter is not significantly changing under cli-
mate change. This is an addition to that by Wilson and
Toumi [2005], who have demonstrated that the shape param-
eter has invariant properties for daily rainfall. Furthermore,
the different behavior between stationary and nonstation-
ary indicators does not depend on shape but only on scale.
This observation justifies the choice to make only the scale
parameter time dependent in (4). We conclude that the SnsPI
is more robust than the SPI in the detection of extreme wet
and dry periods.

[50] While, over all parts of southern Europe, extreme
dry events are more common in the future, the probability
to have an extreme dry year in northern Europe is slightly
decreasing by values not exceeding 2.3%. All indicators
show the same pattern. In the south, a very dry pattern is
detected with many locations affected by very high changes
with values exceeding the level of normality by more than
15.9%. The current extreme events will become normal in
the future over many southern European regions.
5.2.4. Changes During Summer (JJA) and Winter
(DJF) Seasons

[51] Figures 4 and 5 show near-future (Figures 4a1–4c1,
4a3–4c3, 5a1–5c1, and 5a3–5c3) and future (Figures 4a2–
4d2, 4a4–4d4, 5a2–5d2, and 5a4–5d4) probability changes
of occurrence of extreme dry and wet seasons, estimated by
means of the stationary and nonstationary indicators.
5.2.4.1. Summer Season

[52] From Figure 4, we note that when using the SPI and
SPI-GEV (Figures 4b1 and 4c1), only a very small area
(less than 5% of Europe) is expected to become drier in
the middle of the 21st century. In contrast, the SnsPI values
(Figure 4a1) exhibit a different pattern. The probability of
extreme dry events increases over approximately 20% of the
European region.

[53] For the future period, the discrepancy between the
stationary and nonstationary indices in predicting extreme
dry precipitation changes is even more evident (Figures 4a2–
4d2). While both stationary and nonstationary indices pre-
dict the same patterns (dryer in the south and wetter in
the north), the predicted probability for the occurrence
of a future extreme dry summer is overestimated by the
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Figure 3. Probability changes over 50 and 100 years for extreme (a1–c1 and a2–d2) dry and (a3–c3 and
a4–d4) wet years. The white areas represent the points where precipitation changes are not statistically
significant at the 5% level according to the results of the log likelihood ratio test in Figures 3a1–3a4 or
the KS test in Figures 3b1–3b4, 3c1–3c4, 3d2, and 3d4.

stationary indices with respect to the SnsPI. This overes-
timation is particularly evident over central Europe, where
the SPI changes are in a higher probability class than the
SnsPI. For example, in Brittany (northwestern France), the
SPI-estimated probability changes are in the normal proba-
bility class (between 15.9% and 50%), while the SnsPI gives
values in the moderate class (between 6.7% and 15.9%).

[54] The results of the nonstationary index are found to be
more robust, as the SnsPI estimation is performed by using a
longer sample of data (138 years � 5 members) than the sta-
tionary indices (time period of 30 years � 5 members). The
SPI projections are obtained by taking only the first (1971–
2000) and the last 30 years (2069–2098) of the data sample

and ignoring the rest. For each of these periods, one value of
the distribution parameters is calculated, so that the calcu-
lated change is effectively based on the difference between
two periods, and any nonlinear dependence on time is dis-
regarded. The climate change signal is better represented by
the SnsPI, which takes all data into account.

[55] According to the SnsPI results (Figures 4a1 and 4a2),
southern Europe is getting drier, especially over northern
Portugal, Spain, France, and the Mediterranean region. This
is consistent with earlier results [e.g., Intergovernmental
Panel on Climate Change, 2007; Quesada et al., 2012].
In some areas of these regions, the probability of occur-
rence of an extreme dry summer increases by more than
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Figure 4. As in Figure 3 but for the summer season (JJA).

2.3% and 6.7% in the near future and future, respectively.
This indicates that what is currently an extreme dry sum-
mer will become a severely dry one in the middle of the
21st century and a moderate one at the end of the century.
In the latter period, the band with an increasing occurrence
of extreme dry summer seasons is zonally moving by about
10ı farther southward than for the whole year (Figure 3a2).
The dry European areas will become even drier in sum-
mer (JJA) and may also expand northward, including the
region of central Europe where no climate change signal was
detected on the annual scale. Probability decreases occur
mainly in the Scandinavian regions with SnsPI probability
difference values smaller than 2.3% (Figures 4a1 and 4a2),
meaning that the extreme dry summer season will become
wetter in the near future but still remain in the extreme dry
probability class.

[56] The probability of occurrence of an extreme wet
summer (Figures 4a3–4c3 and 4a4–4d4) shows the same
pattern as for the extreme dry summer: dryer in the
south and wetter in the north. However, in this case, the
wettening in the north is more intense than the drying
detected in the south. The wet signal exceeds the value
of 6.7% over many locations in Scandinavia, according
to all (stationary and nonstationary) indices. In the future,
an extreme wet summer will occur more frequently over
northern Europe.
5.2.4.2. Winter Season

[57] As shown in Figure 5, all indices used agree in the
projection of extreme dry and wet winters. For all indices,
the projections are the same in terms of estimated values and
regions where near-future and future winters are expected to
become dryer or wetter.

7636



RUSSO ET AL.: WETNESS AND DROUGHT IN EUROPE

Figure 5. As in Figure 3 but for the winter season (DJF).

[58] In most parts of central and northern Europe, extreme
dry winter seasons show a small wetting signal, with val-
ues not exceeding 2.3% (Figures 5a1–5c1 and 5a2–5d2) for
both the near-future and future periods. In southern Europe,
changes are mainly insignificant. The exceptions are some
Mediterranean regions such as Greece, southern Italy, and
Turkey, where the winter season is expected to be drier than
that in the present period. This could lead to severe con-
sequences for water management and, consequently, affect
agriculture [Hisdal et al., 2001]. Furthermore, in these
regions, also the probability of occurrence of an extreme wet
winter (Figures 5a3–5c3 and 5a4–5d4) slightly decreases.

[59] The probability of occurrence of an extreme wet win-
ter in the near future and future, according to all indices,
increases in central and northern Europe (Figures 5a3–
5c3 and 5a4–5d4). The area showing a wettening signal is
larger for the future than for the near-future period, and the

probability increases. The largest changes are found in Rus-
sia and Scandinavia, where the probability differences reach
values around 20% for all indices. As a consequence, present
wet-extreme winters will become normal in the future.

[60] As for the summer dry season, the SnsPI indicates
that the band with an increasing occurrence of extreme wet
winter seasons is zonally moving by about 10ı farther south-
ward than for the whole year (Figure 4a4). Wet European
areas will become even wetter in winter and expand south-
ward. This includes the central European region which is
becoming drier in summer and wetter in winter, but shows a
nonsignificant change for annual rainfall amounts.

6. Discussion and Conclusion
[61] In this study standardized stationary and nonstation-

ary precipitation indices (SPI, SPI-GEV, and SnsPI) have
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been used to estimate future changes of the probability of
occurrence of extreme dry/wet seasons and years in Europe.
The indices were calculated by using daily precipitation
data from a five-member model ensemble, under the A1B
emission scenario. The model outputs were bias corrected
according to Dosio and Paruolo [2011] and Dosio et al.
[2012], following the approach of Piani et al. [2010]. Precip-
itation, and especially heavy precipitation, is strongly depen-
dent on details of the climate models parametrization [e.g.,
Emori et al., 2005], and the use of a bias-corrected multi-
model ensemble gives more robust results in the prediction
of climate change.

[62] The SnsPI is found to be more robust in describing
precipitation changes as it uses data over the whole period
(here 1971–2098) rather than from two subperiods only, as
for the SPI.

[63] Summarizing our results, we find that under the
A1B climate change scenario, the probability of having
an extreme precipitation season is increasing over all of
Europe, with wet and dry regions becoming, respectively,
wetter and drier. The signal is more pronounced for sea-
sonal (winter and summer) than for annual values because of
compensating effects. Today’s extreme dry and wet seasons
will become, respectively, dryer and wetter within the next
100 years. From a statistical point of view, these changes are
mainly associated with the shifting and widening of the loca-
tion and scale parameters, while the shape parameter does
not change significantly neither for annual nor for seasonal
precipitation amounts.

[64] In all seasons, the probability to have an extreme
wet (dry) period is increasing northward (southward) and
decreasing southward (northward) of central Europe, where
changes are small. The position of the boundary between
areas becoming drier/wetter moves zonally by about 10ı
during the annual cycle.

[65] The magnitude of the probability changes for
extreme precipitation increases with time. Maximum wet
(dry) changes are found in winter (summer) in northern
(southern) Europe. Throughout the simulation period, the
spatial patterns of change are the same with dry areas
becoming drier and wet areas becoming wetter.
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