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a  b  s  t  r  a  c  t

Mapping  of  vegetation  in mountain  areas  based  on remote  sensing  is  obstructed  by  atmospheric  and  topo-
graphic  distortions.  A  variety  of  atmospheric  and topographic  correction  methods  has  been  proposed  to
minimize  atmospheric  and  topographic  effects  and  should  in principle  lead  to a better  land  cover  classi-
fication.  Only  a  limited  number  of atmospheric  and  topographic  combinations  has  been  tested  and  the
effect  on  class  accuracy  and  on different  illumination  conditions  is  not  yet  researched  extensively.  The
purpose  of  this  study  was to evaluate  the  effect  of coupled  correction  methods  on  land  cover  classifica-
tion  accuracy.  Therefore,  all  combinations  of three  atmospheric  (no  atmospheric  correction,  dark  object
subtraction and  correction  based  on transmittance  functions)  and  five  topographic  corrections  (no  topo-
graphic  correction,  band  ratioing,  cosine  correction,  pixel-based  Minnaert  and  pixel-based  C-correction)
were  applied  on two  acquisitions  (2009  and  2010)  of  a  Landsat  image  in  the  Romanian  Carpathian  moun-
tains.  The  accuracies  of  the  fifteen  resulting  land  cover  maps  were  evaluated  statistically  based  on two
validation  sets:  a  random  validation  set  and  a validation  subset  containing  pixels  present  in  the  dif-
ference  area  between  the  uncorrected  classification  and  one  of  the  fourteen  corrected  classifications.
New  insights  into  the  differences  in classification  accuracy  were  obtained.  First,  results  showed  that  all
corrected  images  resulted  in  higher  overall  classification  accuracies  than  the  uncorrected  images.  The
highest  accuracy  for the  full  validation  set was  achieved  after  combination  of an  atmospheric  correction
based  on  transmittance  functions  and  a  pixel-based  Minnaert  topographic  correction.  Secondly,  class
accuracies  of  especially  the  coniferous  and  mixed  forest  classes  were  enhanced  after  correction.  There
was only  a minor  improvement  for the  other  land  cover  classes  (broadleaved  forest,  bare  soil,  grass  and
water).  This  was  explained  by  the  position  of  different  land  cover  types  in the  landscape.  Finally,  coupled
correction  methods  showed  most  efficient  on weakly  illuminated  slopes.  After  correction,  accuracies  in

the low  illumination  zone  (cos  ˇ  ≤  0.65)  were  improved  more  than  in the moderate  and  high  illumination
zones.  Considering  all results,  best  overall  classification  results  were  achieved  after  combination  of  the
transmittance  function  correction  with  pixel-based  Minnaert  or pixel-based  C-topographic  correction.
Furthermore,  results  of this  bi-temporal  study  indicated  that the  topographic  component  had  a higher
influence  on  classification  accuracy  than  the atmospheric  component  and  that  it  is worthwhile  to  invest
in both  atmospheric  and  topographic  corrections  in  a multi-temporal  study.
. Introduction

Assessing the rate and spatial pattern of land cover changes

s challenging given the ruggedness and inaccessibility of

ountain areas (Lambin and Geist, 2006). Remote sensing tech-
iques are privileged monitoring tools and yet suffer from

Abbreviations: AC, atmospheric correction; TC, topographic correction; TF,
ransmittance functions; PBM, pixel-based Minnaert correction; PBC, pixel-based
-correction.
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methodological challenges that need to be resolved by correction
methods (Balthazar et al., 2012; Lhermitte et al., 2011). A typi-
cal image preprocessing includes sensor calibration, atmospheric
and topographic correction and relative radiometric normaliza-
tion (Vicente-Serrano et al., 2008). Remote sensing-based land
cover mapping in mountain areas is especially affected by atmo-
spheric and topographic effects on recorded sensor signals (Soenen
et al., 2008). Topographic effects are caused by differences in
illumination due to solar position at the moment of image acquisi-

tion and result in a variation in reflectance response for similar
terrain features (Veraverbeke et al., 2010). During the past 10
years, several atmospheric correction (AC) and topographic cor-
rection (TC) methods have been evaluated individually. Table 1
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Table 1
Type, correction, reference and abbreviation of AC, TC and integrated (int.) or coupled methods.

Type Correction Reference Abbreviation

AC DOS Chavez (1996) DOS is the dark object subtraction method
Empirical line Smith and Milton (1999)
LOWTRAN-7 Kneizys et al. (1988) LOWTRAN is low resolution atmospheric transmission
ATCOR2 Richter (1996) ATCOR2 is an acronym for atmospheric correction (AC)
6S  Sriwongsitanon et al. (2011),  Vermote et al. (1997) and

Zhao et al. (2000)
6S is second simulation of a satellite signal in the solar spectrum

Inverse technique Gilabert et al. (1994)
SMAC Rahman and Dedieu (1994) SMAC is a simplified method for AC
MODTRAN Berk et al. (1998) MODTRAN is moderate resolution atmospheric transmission
AC  with look-up tables Liang et al. (2001) and Liang and Fang (2004)
Transmittance functions (TF) Kobayashi and Sanga-Ngoie (2008) This method is the AC part of the integrated radiometric correction

(IRC)
RTC’s,  image-based procedures and DOS Moran et al. (1992) RTCs are radiative transfer codes

TC Band ratios Colby (1991) and Ono et al. (2007)
Minnaert Bishop and Colby (2002), Lu et al. (2008), Minnaert (1941)

and Smith et al. (1980)
Cosine Teillet et al. (1982)
C Bishop et al. (2003), Jensen (1996), Meyer et al. (1993) and

Teillet et al. (1982)
Modified C-correction Veraverbeke et al. (2011)
Two stage topographic normalization Civco (1989)
Minnaert with changing constant and correction
based on empirical function

Ekstrand (1996)

SCS Gu and Gillespie (1998) SCS is the sun-canopy-sensor topographic correction (TC)
C-Huang Wei Huang et al. (2008)
Band ratio, Minnaert, aspect partitioning and
combinations of these corrections

Hale and Rock (2003)

PBC and PBM Kobayashi and Sanga-Ngoie (2008) PBC and PBM are pixel-based Minnaert and pixel-based C-correction
Empirical line, cosine, C, Minnaert,
statistical-empirical, SCS, b, SCS + C and MFM-TOPO

Soenen et al. (2008) MFM-TOPO is canopy reflectance model-based TC

Empirical, cosine, C and Minnaert Wu  et al. (2008)
Cosine, SCS, b and VECA Gao and Zhang (2009) VECA is the variable empirical coefficient algorithm
C,  modified Minnaert and Gamma Richter et al. (2009)
Simplified normalization Cuo et al. (2010)
Cosine, C, Minnaert, modified Minnaert and
empiric–statistic correction

Hantson and Chuvieco (2011)

Cosine, C, smooth C, SCS + C, C-Huang Wei  and
slope matching

Singh et al. (2011)

Three-factor + C Zhang and Gao (2011)
Cosine, Minnaert, C, SCS, two stage topo
normalization and slope matching

Zhang et al. (2011)

Int.  or coupled Inverse technique + band ratios Conese et al. (1993)
ATCOR2 + DEM [ATCOR3] Richter (1997) and Richter and Schläpfer (2002, 2011)
6S  + DEM Sandmeier and Itten (1997)
DOS  + Minnaert, C and variation of C Riaño et al. (2003)
DOS + cosine and SCS Vincini and Frazzi (2003)
ATCOR2 + Minnaert Mitri and Gitas (2004)
LOWTRAN-7 + Minnaert Gitas and Devereux (2006)
MODTRAN + SCS Huang et al. (2008)
TF  + PBC [IRC] Kobayashi and Sanga-Ngoie (2008) IRC is the integrated radiometric correction
DTA  and 6S + cosine and C Vicente-Serrano et al. (2008) DTA is the dark target approach
MODTRAN-4 + AMARTIS and SIERRA Lenot et al. (2009) AMARTIS is advanced modeling of atmospheric radiative transfer for

inhomogeneous surfaces; SIERRA is spectral reflectance image
extraction from radiance with relief and AC

DOS  + Minnaert and SCS Gao and Zhang (2009)
Parameterized BRDF’s Wen  et al. (2009) BRDF stands for bidirectional reflectance distribution function
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Table  2
Reference, study area and land cover, classification method, AC and TC, and improvement in accuracy after correction.

Reference Study area and land
cover (LC)

Classification method AC and TC Improvement in accuracy after
correction

Conese et al. (1993) Italy, all LCs Supervised (MLa) Inverse
technique + topographic
normalization

Kappa increase from 0.56 to 0.62

Meyer et al. (1993) Switzerland, (non)-forest Not specified No AC + statistical,
Minnaert and C

Overall accuracy (OA) increase with
10–30%

Sandmeier and Itten (1997) Switzerland, all LCs Supervised (ML) 6S + DEM OA increase between 1 and 7%
Coburn and Roberts (2004) Canada, all LCs Supervised (ML) No AC + different statistical

texture measures
Not specified

Hale  and Rock (2003) USA, all LCs Supervised (ML) No AC + band ratios,
Minnaert, aspect
partitioning and
combinations of these
corrections

OA increase with 4–13%

Mitri  and Gitas (2004) Greece, all LCs Fuzzy classification ATCOR2 + multi-resolution
segmentation

OA of 98.85%

Blesius and Weirich (2005) USA, all LCs Supervised No AC + Minnaert No improvement
Gitas and Devereux (2006) Greece, all LCs Supervised (ML) DOS + Minnaert OA increase of maximum 40%
Huang  et al. (2008) USA, all LCs Unsupervised (SVMb) MODTRAN + SCS and a

revised correction
OA increase from 85.5% to 89.1%

Soenen  et al. (2008) Canada, all LCs Supervised (ML) Empirical line + cosine, C,
Minnaert,
statistical-empirical, SCS, b,
SCS + C and MFM-TOPO

Class accuracy increase between 13
and 62%

Gao  and Zhang (2009) China, all LCs Supervised (ML) DOS + Minnaert and SCS OA increase from 88.1% to 89.7%
Cuo  et al. (2010) Thailand, all LCs Supervised Simplified normalization OA from 55% to 85% and 51% to 91%
Zhang  et al. (2011) China, all LCs Unsupervised (artificial

neural networks)
No AC + cosine, Minnaert,
C, SCS, two stage
normalization and slope
matching

No improvement

a ML is the maximum likelihood classification algorithm.
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b SVM is the support vector machine method.

ummarizes the most commonly used correction methods. Some
uthors (Kobayashi and Sanga-Ngoie, 2008; Richter, 1996, 1998)
ave evaluated the influence of an integrated AC and TC correc-
ion. The integrated methods that have been developed include a
pecific combination of an atmospheric and a topographic correc-
ion. In literature, though, only a limited number of coupled AC
nd TC corrections has been tested and described so far (Table 1).
evertheless, at present, a systematic comparison of the perfor-
ance of different coupled corrections on classification accuracy is

acking.
Several authors examined the influence of atmospheric and/or

opographic corrections on land cover classification in mountain
egions. In Table 2, an overview of recent studies about the influ-
nce of different correction methods on classification accuracy is
resented. Depending on the correction methods used, there was
o improvement in classification accuracy (Blesius and Weirich,
005; Zhang et al., 2011) or an increase in the overall classification
ccuracy (OA) up to 40% (Gitas and Devereux, 2006). Although, it is
ifficult to compare the studies since the input files and parameters
re different: study areas, vegetation types, sensors, DEMs, AC and
C corrections.

In order to allow a good comparison between the existing AC
nd TC methods, a systematical analysis is essential. The overall
esearch question of this paper is the evaluation of the impact
f fifteen coupled AC and TC corrections on the accuracy of bi-
emporal land cover classifications in mountain areas. A land cover
lassification analysis is performed on the image outputs after
mplementation of fifteen AC and TC combinations. The selected
tmospheric and topographic correction methods are commonly

sed and have a different degree of complexity. They differ from
elatively straightforward to methods that require a large amount
f data and computations. The study area is a Landsat-5 Thematic
apper (TM) image in the Romanian Carpathians. Four aspects
of the overall research question are examined for two validation
sets:

- Which AC and TC combinations result in the best overall classifi-
cation accuracy?

- What is the influence of different AC and TC combinations on class
accuracies?

- Does the influence of coupled corrections on overall classification
accuracy vary under different illumination conditions?

- Does the influence of coupled corrections on classification accu-
racy vary under different atmospheric conditions?

These four aspects help us to conclude what the individual effect
of the different AC and TC components is on classification accuracy.

2. Materials and methods

2.1. Study area and data acquisition

2.1.1. Study area
In order to address the research questions described above,

a mountain study area of 915 km2 in the Romanian Carpathian
mountains was  selected (Fig. 1(a) and (b)). The study area con-
sists of rugged terrain with an elevation varying between 690
and 2540 m above mean sea level. It includes the Făgăraş moun-
tains at the intersection between the counties Braş ov, Sibiu and
Argeş .

The dominant lithology of the Făgăraş mountains is crystalline
rock with occasional occurrence of limestone. Major soils include

Podzols in the mountain zone and Cambisols in the foothill zone
(FAO/UNESCO, 1988). Three natural vegetation zones are present:
a foothill zone with mixed and broadleaved forests between
250 and 1500 m with Betula pendula, Carpinus betulus and Fagus
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Fig. 1. (a) Location of the study area in Romania: the white-outlined rectangle delineates the Landsat image, the solid white rectangle is the study area. (b) True color
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omposite image (RGB: bands 3, 2 and 1) of the study area: the dots indicate the regi
he  reader is referred to the web  version of the article.)

ilvatica (Fig. 2(a)); a mountain zone (1500–2200 m;  Fig. 2(b)
nd (c)) with coniferous forests (e.g. Abies alba, Picea abies, Pinus
ugo); and an alpine zone (>2200 m;  Fig. 2(d)) above the tree

ine dominated by Carex curvula, Festuca supine and Juncus tri-
dus (Enescu, 1996; Kuemmerle et al., 2008; Mihai et al., 2007).
he majority of the land cover comprises forests as forestry has
raditionally been an important component of the regional econ-
my  and a major source of rural income (Ioras and Abrudan,
006). Forests provide important ecosystem services and they are
eing threatened by natural and human induced threats: bark-

eetle infestations (Knorn et al., 2012), wind-throws (Anfodillo
t al., 2008), extensive salvage logging after wind-throws (Macovei,
009) and land restitutions (Kuemmerle et al., 2008).

ig. 2. (a) Foothill zone (1020 m) with mixed and broadleaved forests. (b) Mountain zone (
d)  Alpine zone (2360 m)  above the tree line with grasses.
 reference points. (For interpretation of the references to color in this figure legend,

2.1.2. Satellite and elevation data
The recent opening of the global Landsat archive by the

United States Geological Survey (USGS) provides new oppor-
tunities to advanced land cover studies. The released archive
of Landsat imagery is temporally and spatially extensive and
freely available for download (Knudby et al., 2010). For this
study, Landsat-5 TM images (path 183/row 28) with acquisi-
tion days July 24, 2009 and August 12, 2010 were selected
(see white-outlined rectangle in Fig. 1(a)). In this paper, all
analyses were performed on the six non-thermal bands: three vis-

ible (0.45–0.52 �m,  0.52–0.60 �m and 0.63–0.69 �m)  and three
infrared bands (0.76–0.90 �m,  1.55–1.75 �m and 2.08–2.35 �m).
The images were orthorectified with precision terrain correction

1640 m)  with coniferous forests. (c) Mountain zone (2050 m)  with small vegetation.
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S. Vanonckelen et al. / International Journal of Applie

evel L1T by the USGS. Clouds and cloud shadows were ignored
ince cloud coverage in the study area was below 1%. The solar
levation angle at image capture was respectively 57.8◦ and 53.8◦

or the 2009 and 2010 images. This implies that southeast fac-
ng slopes receive a maximum in solar radiation. The difference
etween the atmospheric parameters of both images is explained in
he methodology. The co-registered digital elevation model (DEM)
sed in this study is the space shuttle radar topography mis-
ion (SRTM; Slater et al., 2006) from CGIARCSI/NASA. The SRTM
rovides a high-quality DEM at resolution levels of 1 arc sec
30 m × 30 m)  in the U.S.A. or 3 arc sec (90 m × 90 m)  worldwide
Rabus et al., 2003). For this study, the SRTM version 4.1 was
esampled to a pixel size of 30 m × 30 m by means of a bicubic
pline interpolation to match the geo-reference of the Landsat
ataset. This resampling approach was preferred over the use of
he ASTER GDEM, which is originally characterized by a world-
ide ∼30 m × 30 m resolution, but is more subject to artifacts

uch as stripes or cloud anomalies (Hirt et al., 2010; Van Ede,
004).

.1.3. Ground control points (GCPs)
GCPs for land cover training and validation were gathered

hrough field visits and the analysis of high-resolution satellite
magery. Training data were gathered systematically over the
otal image in order to collect the spectral range of the differ-
nt classes. Pixels were chosen not too close together in order
o avoid spatial autocorrelation (Campbell, 1981; Labovitz and

asuoka, 1984). First, eighty-three usable GCPs were recorded
hrough transect walks in the study area during field visits in

ay  2010 and July 2011 (Fig. 1(b)). The dominant vegetation
ype and topographic information, such as slope and elevation,
as recorded for each point. Secondly, since the number of
eld-registered points was insufficient to serve as training and
alidation data for image classification, extra land cover data
ere derived by a visual interpretation based on high-resolution
atellite imagery (WorldView-2, 8 bands, 46 cm resolution, acqui-
ition date October 13, 2010). On the basis of the WorldView-2
mage and field expertise, 322 extra reference points were
dentified. In order to check whether the land cover types

Fig. 3. Overview of the methodology: data acquisition, preprocessing steps, l
th Observation and Geoinformation 24 (2013) 9–21 13

for the selected reference points in 2010–2011 were equal in
2009, two  Landsat images from the same season and acquired
around identical dates (July 24, 2009 and August 12, 2010) we
selected. Furthermore, the consistency of the land cover types
throughout the years 2009–2011 was checked based on Google
Earth.

2.2. Methodology

Fig. 3 presents an overview of the applied methodology. After
data acquisition, the input images are corrected by applying the
fifteen combinations of AC and TC corrections (including scenar-
ios without atmospheric and/or topographic correction). Secondly,
each corrected image is classified. Thirdly, the land cover maps
are evaluated by comparing overall classification accuracies, class
accuracies and overall accuracies for three illumination conditions.

2.2.1. Preprocessing steps
The digital numbers (DN) of each spectral band were calibrated

to at-satellite radiances (Ls,�, in W/m2 sr �m; Eq. (1)) based on gain
and offset values obtained from the calibration file in the meta-
data (where Ls refers to the at-satellite radiances and � to the band
wavelength):

Ls,� = DN × gain + offset (1)

The calibrated radiance values were atmospherically corrected
by means of 3 different AC methods (including no AC) as shown
in Table 3. The AC methods used in this study are the following:
(i) no AC; (ii) dark object subtraction (DOS) correction and (iii)
correction based on transmittance functions (TF correction). The
methods were selected based on their application and model-
ing complexity. DOS correction is a widely used and a relative
straightforward atmospheric correction method. The approach
calculates a minimum radiance value (Lp, in W/m2 sr �m) for
each band as the 1st percentile radiance value over the image.

Lp accounts for the atmospheric effect and is subtracted from
all pixels (Chavez, 1996; Eq. (3) in Table 3). The Lp values (in
W/m2 sr �m)  per band for the 2009 and 2010 images are respec-
tively: [37.50, 26.12, 14.50, 36.16, 2.76, 0.44] and [40.60, 27.57,

and cover classification and evaluation of the land cover classification.
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Table 3
Overview of the three AC and five TC correction methods that were applied in this study (with equations and references).

Type Correction Equation Reference

AC No AC – –

DOS Lt,� = Ls,� − Lp (3) Chavez (1996)

TF  Lt,� = Ls,� − Lp

0.5(1 + Tr,�)Tr,�T2
w,�

(4) Kobayashi and Sanga-Ngoie (2008)

with

Tr,� = exp

[
− P

P0
M

1
115.6406�4 − 1.335�2

]
(5)

Tw,� = exp

[
− 0.2385awWM

(1 + 20.07awWM)0.45

]
(6)

TC No TC – –

Band ratio �(i)
H,�

=
�(i)

T,�

(1/N)
∑N

j=1
�(j)

T,�

(7) Ono et al. (2007)

Cosine �H,� = �T,�
cos �s

cos ˇ
(8) Teillet et al. (1982)

PBM  �H,� = �T,�
cos �n

(cos �n cos ˇ)k�
(9) Lu et al. (2008)

PBC  �H,� =
cos �s + C�h−1

0

cos  ̌ + C�h−1
0 h

(10) Kobayashi and Sanga-Ngoie (2008)

Lt,� is the corrected radiance value of the image, Ls,� is the uncorrected radiance value of the image and Lp represents the minimum radiance of the uncorrected radiance
values of the image. Tr,� is the Rayleigh scattering transmittance function and is function of sea-level atmospheric pressure (P0; in mbar), ambient atmospheric pressure (P; in
mbar)  and wavelength. The sea-level atmospheric pressure is 1013 mbar. The relative air mass M is calculated with the equation in the paper of Kobayashi and Sanga-Ngoie
(2008)  and implements the solar zenith angle. Tw,� is the water-vapor transmittance function and is calculated based on following parameters: precipitable water vapor
(W;  in cm), relative air mass (M)  and water vapor absorption coefficients (aw) given as a function of wavelength (Bird and Riordan, 1986). The value of W is also obtained
based  on the acquisition date of the image and the geographic coordinates of the central point in the image. �H,� stands for the normalized reflectance of a horizontal surface
for  a specific spectral band number (N) and �T,� for the observed reflectance on an inclined terrain.  ̌ is the incident solar angle and cos  ̌ is the illumination parameter
calculated by cos  ̌ = cos �s cos �n + sin �s sin �n cos(�t − �a), where �n , �t and �a denote the slope angle of the terrain, the aspect angle of the terrain and the solar azimuth
angle,  respectively. k� is the slope of the regression between x = log(cos �n cos ˇ) and y = log(�T,� cos �n) and is conducted for each slope group in order to develop the k
value  for each band corresponding to each slope group. Parameter C� is the quotient of intercept (b�) and slope (m�) of the regression line between x and y, the h-factor
represents a topographic parameter deduced from the SRTM [h = (1 − � )/�] and the h0-factor is an empirical parameter derived from the regression line between reflectance
a

1
i
2
(
(
a
t
v
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p
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f
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c
t
a

p

w
L
d
(
(
e
I
(

n

nd  cos ˇ[h0 = (� + 2�s)/2�].

6.58, 44.92, 3.60, 0.57]. The ambient atmospheric pressure (P,
n mbar) is respectively 995 and 925 mbar for the 2009 and
010 image. P is obtained from daily mean surface pressures
ascending; in mbar) in NASA’s atmospheric Giovanni portal
http://disc.sci.gsfc.nasa.gov/giovanni/overview/index.html, last
ccessed on January 8, 2013). The value of P is obtained for the cen-
ral point in the image and at acquisition time. Precipitable water
apor values (W)  are respectively 1.39 and 2.99 cm and obtained
rom the moderate-resolution imaging spectroradiometer (MODIS)
n the Aqua satellite, as available on NASA’s atmospheric Giovanni
ortal. The TF correction extends the DOS method with a denom-

nator containing normalized and band specific transmittance
unctions of water-vapor absorption and Rayleigh scattering as
escribed in Eqs. (4)–(6),  and in the subscript of Table 3. After AC
orrection, the path radiance (Lt,�, in W/m2 sr �m)  was converted
o at-surface reflectance (�T,�) using Eq. (2) described by Markham
nd Barker (1986).

T,� = �Lt,�d2

ESUN� cos �s
(2)

here �T,� = observed surface reflectance on an inclined surface (%);
t,� = path radiance after atmospheric correction (W/m2 sr �m);

 = earth–sun distance (astronomical units); �s = solar zenith angle
degrees) and ESUN� = mean exo-atmospheric solar irradiance

W/m2 �m)  according to the Landsat 5 sensor values of Chander
t al. (2009) (ESUN = [1983, 1796, 1536, 1031, 220, 83 W/m2 �m]).
n a final step, the normalized reflectance of a horizontal surface
�H,�) was calculated using five topographic corrections described
in Table 3 and including the case of no TC. The five selected TC
methods were the following: (i) no TC, (ii) band ratioing, (iii) cosine
correction, (iv) pixel-based Minnaert correction (PBM) and (v)
pixel-based C-correction (PBC). These TC methods were chosen to
test different techniques that are commonly used and that have an
increasing requirement of input parameters. Band ratioing is based
on the assumption that reflectance values vary proportionally in all
bands. The method divides the observed reflectance by the arith-
metic mean of observed reflectances over all spectral bands (Eq. (7),
Table 3). The cosine correction reconstructs the differential illumi-
nation on the basis of the incident solar angle  ̌ that is the angle
between the ground surface and the solar zenith direction (Eq.
(8), Table 3). An alternative DEM-based approach that accounts for
non-Lambertian behavior of reflectance by means of an empirical
Minnaert constant k is the Minnaert correction. Different proce-
dures for the calibration of the k-value have been proposed and in
this study the method of Lu et al. (2008) is implemented (Eq. (9),
Table 3). The pixel-based C-correction (Eq. (10), Table 3) consists
of the topographic part of the integrated radiometric correction of
Kobayashi and Sanga-Ngoie (2008).  This method implements an
additional factor C� to the cosine correction to account for dif-
fuse sky irradiance. In general, the three AC and five TC methods
– including no AC and no TC – were coupled to fifteen differ-
ent combinations of AC and TC methods. The combination of no

topographic and no atmospheric correction was considered as the
baseline scenario. The most complex coupled correction (TF–PBM)
simulated the total radiance pathway through the atmosphere and
implemented the path radiance, solar direct irradiance, sky diffuse

http://disc.sci.gsfc.nasa.gov/giovanni/overview/index.html
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Table  4
Land cover classes, code and dominant species in the study area.

Land cover classes Code Dominant species

Broadleaved forest BL Carpinus betulus, Fagus sylvatica,
Quercus petraea, and Quercus robur

Bare soil BS –
Coniferous forest CF Abies alba, Picea abies, Pinus mugo,

and Pinus sylestris
Grassland GRASS
Mixed foresta MX Betula pendula, Juglans sp., Prunus

avium,  Robinia pseudoacacia, Salix
sp., Sorbus sp., and Tillia cordata

Water surface WT –
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[cos  ̌ ≥ 0.85]. The spatial distribution of each zone is illustrated
in Fig. 4. An equal area subdivision of one-third of the total area
is approximated with these class boundaries. Finally, based on all
accuracy criteria, the individual effect of the two components (AC
a Mixed forests are stands where neither broadleaved nor coniferous trees
ccount for more than 75% of the tree crown area (UN-ECE/FAO, 2000).

rradiance and adjacent terrain reflectance. Finally, the uncorrected
mages and the fourteen corrected images provide the input for the
lassification protocol described below.

.2.2. Land cover classification
In order to obtain classification accuracies, an appropriate clas-

ification algorithm is required. When detailed information of the
tudy area exists and good training data are available, a supervised
lassification is preferable (Kuemmerle et al., 2006). The super-
ised maximum likelihood (ML) classifier based on the Gaussian
istribution of the elements in the coherent scattering matrix is
sed in this study (Foody, 2002). The maximum likelihood decision
ule is relatively convenient to implement when sufficient GCPs are
vailable. It is at present still the most widely applied classification
echnique because of its relative simplicity and robustness (Gao
nd Zhang, 2009). Furthermore, the classifier utilizes means, vari-
nces and covariances of training site statistics, where most other
ecision rules are based on simpler statistics (Chen et al., 2004).
able 2 shows moreover that ML  classification is still being most
ommonly implemented in recent studies on land cover accuracy
ssessment (e.g. Gao and Zhang, 2009; Soenen et al., 2008). The clas-
ification procedure is based on a 10-fold cross validation (Kohavi,
995) where the image is repeatedly trained with two-thirds of
he reference points and validation is based on 10-fold cross vali-
ation with the remaining one-third of reference points. Thereby,
he 405 reference points are repeatedly and randomly subdivided
n training and validation datasets. First, the classification is per-
ormed on the uncorrected and corrected images of 2010. Secondly,
he endmembers of the 2009 image are collected based on the
CPs of the 2010 image and applied on the 2009 image. The land
over classes used for image classification are described in Table 4.
n total, six classes are discerned, including two non-vegetation
lasses (bare soil and water surface). Average reflectance values
er wavelength and land cover type for the uncorrected images
nd the most advanced method (TF–PBM) of 2009 (solid line) and
010 (dashed line) are also analyzed to understand the differences

n accuracy.

.2.3. Evaluation of land cover classification
The performance of land cover classification maps for each of the

orrection methods is examined based on three statistical analyses:

1) Overall classification accuracy to determine the best combina-
tion of AC and TC;

2) Land cover class accuracies to understand the effect on each
class;

3) Classification accuracies to examine the effect of different illu-

mination conditions.

One of the most popular measures of classification accuracy
erived from the confusion matrix is the percentage of cases
th Observation and Geoinformation 24 (2013) 9–21 15

correctly allocated (Foody, 2002). A problem is that some cases
are allocated to the correct class purely by chance (Congalton,
1991; Pontius, 2000; Rosenfield and Fitzpatrick-Lins, 1986; Turk,
1979). To accommodate for the effects of chance agreement,
Cohen’s kappa coefficient has often been used and some commen-
tators argue that it should, in some circumstances, be adopted
as a standard measure of classification accuracy (Cohen, 1960;
Congalton et al., 1983; Foody, 2002; Smits et al., 1999). In this study,
average kappa coefficients of the 2009 and 2010 images are derived
as a measure of classification accuracy. The range of classification
accuracies between both dates is shown through the whiskers on
the bars and illustrates the difference in accuracy between the two
dates. In this context, two  validation datasets are used: a set con-
taining all validation pixels and a so-called difference subset. This
subset includes the validation pixels that are classified differently
between the classification of one of the coupled corrections and
the classification of the uncorrected image. At class level, differ-
ences of average 2009–2010 kappa values (ıkappa) for each class
are calculated using the following equation (Zhang et al., 2011):

ıkappai = kappai,corrected − kappai,uncorrected (11)

where kappai,corrected is the kappa value of class i based on a cor-
rected image classification; and kappai,uncorrected is the kappa value
of class i derived from the uncorrected image classification. In this
section, the global ıkappa over all fourteen correction methods
is also calculated to provide a general perspective on the perfor-
mance of all coupled corrections. In general, topographic correction
has a lower impact on the classification accuracy on flatter terrain.
Therefore, the effect of AC/TC methods on classification accuracy
is evaluated for three different levels of illumination separately.
Therefore, both validation sets are divided in three illumination
zones based on the illumination parameter cos  ̌ that is calculated
using Eq. (12) and varies between −1 and +1 (maximum illumina-
tion) (Civco, 1989):

cos ˇ = cos �s cos �n + sin �s sin �n cos(�t − �a) (12)

The three illumination zones are: low illumination [cos  ̌ ≤ 0.65],
moderate illumination [0.65 < cos  ̌ < 0.85], and high illumination
Fig. 4. The study area divided in three illumination zones: black is the low illumina-
tion zone [cos  ̌ ≤ 0.65], gray is moderate illumination [0.65 < cos  ̌ < 0.85] and the
high illumination zone is indicated in white [cos  ̌ ≥ 0.85].
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and PBC combination). Fig. 7(a)–(c) shows the resulting true color
composites and classified images. The difference in illumination is
clearly visible for points 1 and 2 in the composite without correction
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ig. 5. (a) Average reflectance values per wavelength (band) and land cover type fo
or  the most advanced method (TF–PBM) of 2009 (solid line) and 2010 (dashed line

nd TC) within a coupled correction is evaluated and the influence
f coupled corrections under different atmospheric conditions is
xamined.

. Results

.1. Class reflectance

Fig. 5 shows average reflectance values per wavelength and land
over type for (a) the uncorrected images and (b) after TF–PBM cor-
ection of 2009 (solid line) and 2010 (dashed line). The spectra for
ll land cover types of both dates before correction are overlapping
Fig. 5(a)). Therefore, it is difficult to differentiate land cover classes
n all bands before correction. On the contrary, the different land
over spectra of all bands show less overlap after TF–PBM correc-
ion. In bands 1–3 and 7, the reflectance values per land cover class
re less corresponding and the overlap between land cover classes
lso diminishes for bands 4 and 5. Especially the reflectance values
f the GRASS, BL and WT  classes are easily to differentiate after cor-
ection because of a strong overlap between the reflectance values
f both dates. There is also an improvement between the differen-
iation of the three other land cover classes: the reflectance values
etween both dates are more similar or the values between the
ifferent land cover types are less corresponding.

.2. Overall accuracy

Fig. 6 presents average 2009–2010 kappa values of the uncor-
ected and corrected classifications using the full validation set
black) and the difference subset (white). For the full validation set,
verage kappa coefficients are generally high, varying between 0.87
no AC and no TC; range 0.017) and 0.94 (TF–PBM; range 0.023). In
his study, all coupled corrections result in higher average kappa
alues. The land cover maps of methods that combine an atmo-
pheric correction (DOS or TF) with a PBC or PBM topographic
ethod are performing best. For these combinations, average

appa values are 0.94 (Fig. 6; range respectively 0.006 and 0.007).
pplication of an atmospheric correction (DOS or TF) without TC
orrection increased average value with respectively 0.03 and 0.04
or the full validation set. Implementation of topographic cor-
ections without AC correction resulted in higher average kappa
alues: +0.008 for band ratio, +0.015 for cosine, +0.027 for PBC and
0.022 for PBM correction. The range of classification accuracies
rovides information of the difference in classification accuracy

etween the 2009 and 2010 classification. For the coupled cor-
ections without AC, the average range of classification accuracy
etween both dates is larger (∼0.017) than for the DOS (∼0.015)
nd TF (∼0.007) corrections respectively. This implies that the
uncorrected images of 2009 (solid line) and 2010 (dashed line). (b) Average values

difference in classification accuracy between different dates is
larger when no AC is applied, whereas it is smallest for TF correc-
tions with the TF–PBC method performing best (range 0.006).

A new approach in this study was  the analog analysis that was
carried out on the difference pixels. The implementation of a so-
called ‘difference subset of pixels’ had the major advantage that
differences in accuracies and ranges were more pronounced. The
white bars in Fig. 6 show average kappa values in the difference
area. The average kappa value of the uncorrected image in the dif-
ference area (0.22; range 0.025) is lower than the value of the entire
image (0.87; range 0.017). Increases in average kappa value after
application of topographic corrections without AC correction were
the following: 0.10 for band ratio, 0.19 for cosine, and 0.23 for PBC
and PBM correction. Implementation of DOS and TF without TC cor-
rection led to average kappa increases of respectively 0.13 and 0.20
for the difference subset. The highest average kappa values in the
difference area with lowest range are achieved after implementa-
tion of TF–PBC correction (average 0.77; range 0.012) and TF–PBM
correction (average 0.76; range 0.023).

To illustrate the effect of the different combinations, outputs
of three representative techniques are shown for the 2009 land
cover maps in Fig. 7: the baseline scenario (i.e., the uncorrected
image), a combination with a low classification accuracy (i.e., a TF
and cosine combination) and a scenario with high accuracy (i.e., a TF
Fig. 6. Average kappa coefficients between the 2009 and 2010 images using the full
validation set (black) or difference subset (white) of the 15 combinations of correc-
tions. The range of classification accuracies between both dates is shown through
the  whiskers on the bars.
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Fig. 7. True color composite (RGB: bands 3, 2 and 1) and ML  classification of the 2009 image with a linear stretching: (a) no AC or TC with implementation of the GCPs; (b)
TF  with cosine correction and (c) TF with PBC correction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the
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rticle.)

Fig. 7(a)) and combination of TF and cosine correction causes over-
orrection in the visible bands (Fig. 7(b)). The TF–PBC correction
Fig. 7(c)) reduces the differential illumination effects: the same
and cover types have comparable spectral values for similar ter-
ain features on opposite facing slopes. As a result, illumination
ifferences between points 1 and 2 in Fig. 7(c) on opposite facing
lopes have disappeared. The classification results show no clear
ifferences between land cover maps resulting from the uncor-
ected (Fig. 7(a)) and the TF–cosine corrected image (Fig. 7(b)).

able 5 shows the percentages of 2009 LC classes for the three com-
inations of correction methods and confirms this finding. There is
nly a minor difference of ±3% in the broadleaved and mixed forest

able 5
ercentage of the six land cover classes present in 3 combinations of 2009 AC and
C  correction methods (%).

No AC–no TC TF–cosine TF–PBC

Broadleaved forest 26 29 19
Bare soil 19 19 16
Coniferous forest 12 11 20
Grassland 15 16 29
Mixed forest 27 24 15
Water surface 1 1 1
class that is hardly to distinguish on the indicated points 3 and 4 in
Fig. 7(a) and (b). Compared to these two maps, the LC map  result-
ing from TF–PBC correction shows less BL and MX forest (Fig. 7(c)).
This is confirmed by the data in Table 5: the decrease in the BL and
MX  classes after TF–PBC correction and compared to the baseline
scenario is respectively 7% and 12%. The BS class is decreasing with
3% and in contrast, the CF and GRASS classes are increasing with
respectively 8% and 14%. The difference is also shown by compar-
ison between points 3 and 4 on the LC maps. For point 3, the MX
forest type in Fig. 7(a) and (b) has disappeared and is replaced by CF
forest in Fig. 7(c). The dominant BL forest type in point 4 is replaced
by grasslands and bare soil in Fig. 7(c).

3.3. Class accuracy

Fig. 8 shows average 2009–2010 ıkappa values per class
between uncorrected and corrected image using the full validation
set for the 14 combinations of corrections and a global value
per class over the 14 combinations of corrections. The results

are included in a bubble chart whereby the size of the bubble
represents the average 2009–2010 ıkappa value. A red color repre-
sents a negative ıkappa value and a blue color a positive ıkappa
value. Positive average ıkappa values indicate a more accurate
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Fig. 8. Average 2009–2010 ıkappa values per class between uncorrected and cor-
rected image using the full validation set for the 14 combinations of corrections and a
global value per class over the 14 combinations of corrections. The size of the bubble
represents the average 2009–2010 ıkappa value. A red color represents a negative
ıkappa value and a blue color a positive ıkappa value. BS = bare soil; BL = broadleaved
forest; CF = coniferous forest; MF  = mixed forest; GRASS = grassland; WT  = water.
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Fig. 10. Average kappa coefficients between the 2009 and 2010 images using the 15
combinations of corrections for three different illumination characteristics (black
represents the low illumination zone, gray stands for the moderate illumination
For interpretation of the references to color in this figure legend, the reader is
eferred to the web  version of the article.)

lassification of a specific land cover class compared to the baseline
cenario. The results show positive average ıkappa values for the
F and MX  classes which implies that coupled corrections improve
lassification accuracy for these LC categories. The combination of
F–PBM correction produces the best results: increases in average
appa values of respectively 0.17 and 0.18 for the CF and MX forest
ypes. The global ıkappa values over all fourteen correction meth-
ds are also shown in Fig. 8. The global value increases with 0.09 for
he CF and MX  forest types and with 0.01 for the GRASS class. For

he three other LC types (BS, BL and WT), general mapping accuracy
s not increasing after correction: difference values of the WT  and

ig. 9. Average 2009–2010 ıkappa values per class between uncorrected and cor-
ected image using the validation subset for the 14 combinations of corrections and a
lobal value per class over the 14 combinations of corrections. The size of the bubble
epresents the average 2009–2010 ıkappa value. A red color represents a negative
kappa value and a blue color a positive ıkappa value. BS = bare soil; BL = broadleaved
orest; CF = coniferous forest; MF  = mixed forest; GRASS = grassland; WT  = water.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web  version of the article.)
zone and white is the high illumination zone). The range of classification accuracies
between both dates is shown through the whiskers on the bars.

BL class have not been changed and there is even a small negative
global ıkappa value (−0.03) for the BS class.

The average 2009–2010 accuracy of the six classes is also eval-
uated within the difference area (Fig. 9). Average ıkappa values of
the CF and MX forest types are especially improving after correc-
tion. The trend for the CF and MX  forest class is similar as the trend
for the full validation set but almost all average ıkappa values have
increased. The maximum average ıkappa value for the CF class is
0.30 (TF–PBC combination), compared to the maximum average
value of 0.17 for the CF class using the full validation set. The MX
forest class has a maximum average ıkappa value of 0.20 (TF–PBM
combination), an increase with 0.02 compared to the maximum
average value of 0.18 for the full validation set. Trends for the other
classes are not uniform. The global ıkappa values (Fig. 9) over all
fourteen correction methods per LC class are pinpointing to gen-
eral increases of respectively 0.19 and 0.10 for the CF and MX  forest
types. For the four other LC types (BS, BL, GRASS and WT), global
ıkappa values are not increasing or even slightly decreasing in the
difference zone. Compared to the full validation set, BS and GRASS
classes are performing slightly worse in the difference zone (global
ıkappa of −0.01). The global class accuracy of WT  is slightly pos-
itive (0.01) and the BL class is performing equal before and after
correction.

3.4. Illumination conditions

Fig. 10 shows that the average 2009–2010 accuracy of the uncor-
rected image is small in the low illumination zone (kappa value
of 0.23; range 0.018). After correction the accuracy is improving,
especially for the combination of TF–PBC or TF–PBM. For those two
combinations, average kappa values are increasing from 0.23 (range
0.018) to 0.72 (range respectively 0.011 and 0.012). The range of
classification accuracies between both dates is smallest after imple-
mentation of the TF with a topographic correction method: 0.013
(band ratioing), 0.014 (DOS), 0.011 (PBC) and 0.012 (PBM). Results
in the difference area of the low illumination zone show again that
highest average kappa values with lowest range are achieved after
implementation of TF–PBC (average 0.72; range 0.011) and TF–PBM
correction (average 0.72; range 0.012). The same trends are visible
in the moderate and high illumination zone. Here, the accuracies
are also improving, although the increases are smaller (respectively
+0.45 and +0.42 between no AC/TC and TF–PBM) than in the low
illumination zone (+0.49 between no AC/TC and TF–PBM). In the
moderate zone, the largest improvement in accuracy is an increase
in average kappa from 0.33 (baseline scenario; range 0.015) to 0.84

(TF–PBM; range 0.007). Overall, the accuracy is largest in the high
illumination zone with average kappa value of 0.85 for the TF–PBM
combination (range 0.007).
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. Discussion

This study provided new insights on the impact of fourteen
ombinations of atmospheric and topographic correction methods
n the accuracy of land cover classification. Adding and comparing
he effect of AC/TC correction in combination with different classifi-
ation algorithms would generate so many data and to some extent
ide the single effect of AC/TC correction. Therefore, the maximum

ikelihood decision rule was applied since it is still the most widely
pplied classification technique and accurate when sufficient GCPs
re available. The GCPs were recorded through transect walks
uring field visits in May  2010 and July 2011 and applied on both
ates. Optimally, GCPs of 2009 were also available. The land cover
lassification under the baseline scenario (no topographic and no
tmospheric corrections) was relatively high because of the high
uality of the Landsat image and the availability of a large number
f land cover calibration data that were collected during fieldwork.

Differentiation between land cover classes was relatively dif-
cult before correction: there was an overlap between average
eflectance values of both dates per land cover type and band and
he differences between average class reflectance values was small
Fig. 5(a)). Average reflectance values per wavelength and land
over type before and after correction showed that the differentia-
ion between land cover classes simplified after coupled correction.
onsidering overall accuracies of the full validation set, average
appa values were generally high. The overall high accuracies were
chieved through the implementation of a high-quality image and

 high number of reference data sampled on the ground by means
f fieldwork.

The results indicated that average land cover classification accu-
acy increased more after coupled AC/TC correction than when
n individual AC or TC correction is applied. The average kappa
oefficients varied between 0.87 for the baseline scenario and 0.94
or TF–PBM correction. Compared to other studies performed by
ale and Rock (2003),  Gitas and Devereux (2006) and Cuo et al.

2010),  overall accuracies were high and the increases in accu-
acy were therefore lower. Comparable results were achieved by

 study of Huang et al. (2008).  There, overall accuracy increased
rom 85.5% to 89.7% after a combination of a MODTRAN and SCS
orrection. Gao and Zhang (2009) described an OA increase from
1% to 91% after a simplified normalization. The characteristics
f the study area (steep slopes, no intensive human influence,
ew roads and low population) were favorable to discourage large
hanges in land cover between both dates. Although, a small vari-
ty in accuracy range between both dates was expected since there
ere changes between the on ground land cover types of 2009

nd 2010. The range in classification accuracy between both dates
as larger when no AC was applied (0.017), whereas the range
as smallest for TF corrections (0.007). The ranges for the accu-

acies after DOS (∼0.015) and no AC were comparable (∼0.017),
ut a larger variability in range for DOS correction was normally
xpected since the overall accuracies were higher after DOS cor-
ection. A large range in accuracies of land cover maps without AC
orrection was found since the atmospheric parameters between
oth images were different. After AC and TC correction, there was

 smaller range in accuracies because the effect of diverse atmo-
pheres and illumination was removed. Therefore, an identical and
ptimal classification was performed after coupled AC/TC correc-
ion. In general, the TF–PBC method was performing best with a
ange of only 0.006.

The composite without correction (Fig. 7(a)) showed differences
n illumination on opposite slopes. Combination of TF and cosine

orrection (Fig. 7(b)) caused an overcorrection in the visible bands.
his was explained by the ignorance of the diffuse sky irradiance,
esulting in an overestimation of the output radiance data (Teillet
t al., 1982). Combination of the TF–PBC and TF–PBM correction
th Observation and Geoinformation 24 (2013) 9–21 19

(Fig. 7(c)) reduced the differential illumination effects on opposite
facing slopes and solved the problem of overcorrection. The natural
catena from broadleaved forest on the footslopes over mixed and
coniferous forest to grasslands at the highest altitudes (as described
in the study area section) was  best depicted on the TF–PBC map.
This result was explained by the location of the different land
cover types in the landscape: the forest classes (BL, MX  and CF)
covered the steepest slopes dominated by differences in illumina-
tion (Fig. 1(a)–(c)). On the contrary, the other land cover types (BS,
GRASS and WT)  were located on the mountain ridge where illumi-
nation was  high. As a consequence, it was harder to improve the
differentiation between these three land cover classes since the
class accuracy before correction was already high. In less moun-
tainous areas and when atmospheric variables between the dates
are larger, atmospheric corrections have a larger impact on classi-
fication accuracy. Therefore, it is recommended to invest in AC and
TC methods for multi-temporal studies. A balance must be found
between the benefits of AC/TC correction in terms of increased
classification accuracy and decreased automation potential. Such
balance depends on: the size of the study area, the number of
footprints, the number and the location of the available GCPs, the
location and the spectral signatures of the land cover types that
need to be mapped.

The results of the class accuracies showed positive average
ıkappa values for CF and MX classes and no real classification
improvements for the other land cover classes (BS, BL, GRASS and
WT). The study of Zhang et al. (2011) at class level showed that
ıkappa values of pine forests on sunny and shaded slopes increased
by a maximum of about 0.12 using topographically corrected
images. On the contrary, ıkappa values of oak and mixed forests
on sunny and shaded slopes decreased up to 0.7 after correction.
The MFM-TOPO correction of Soenen et al. (2008) increased pine
class accuracy by 62% over shaded slopes and spruce class accu-
racy by 13% over moderate slopes. Finally, classification accuracies
were evaluated for three illumination conditions separately. Here,
new insights were obtained on the effect of different illumination
zones within the difference area. Average accuracy of the uncor-
rected image was smallest in the low illumination zone and largest
in the high illumination zone. The largest improvements in accu-
racy were achieved in the low illumination zone, where the average
kappa value increased from 0.23 (baseline scenario; range 0.018) to
0.73 (TF–PBM; range 0.012). This comparison showed that the cor-
rection methods performed best on steep slopes in mountain areas.

Considering the overall results, the study showed that the most
complex coupled corrections (TF–PBC and TF–PBM) performed
best because they simulate the radiance pathway through the
atmosphere in the most accurate way. In general, results indi-
cated that the topographic component had a higher influence on
classification accuracy than the atmospheric component. This is
shown by the difference in overall classification accuracies in Fig. 6
for the full and difference subset. The accuracy differences are
explained by relative large differences in elevation (690–2540 m
above mean sea level) and solar elevation angles (respectively 57.8◦

and 53.8◦) between both dates. There are relative small differences
in atmospheric parameters (minimum radiance, ambient atmo-
spheric pressure and precipitable water vapor) as described in the
preprocessing steps section. In a multi-temporal study with more
pronounced variations in atmospheric parameters, the impact AC
methods becomes more important.

5. Conclusions
A wide range of atmospheric and topographic correction
methodologies is available in literature. The application of
coupled corrections is labor and data intensive, especially for the
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ost advanced techniques. It is therefore important to examine the
dded value of these corrections on land cover classification. In this
aper, the added value of fifteen coupled corrections (including the
cenarios without atmospheric and/or topographic correction) was
valuated on a bi-temporal dataset and based on 3 criteria: over-
ll classification accuracy, class accuracy and illumination specific
ccuracy. The statistical analysis was performed for two validation
ets: a set containing all validation pixels and a subset containing
he difference pixels between the classified, uncorrected image and
ne of the classified, corrected images.

Analysis of average reflectance values per wavelength and land
over type between the uncorrected and corrected images of 2009
nd 2010 show that differentiation between all land cover classes
mproves after coupled correction. The accuracy results show that
verall classification accuracies of all corrected land cover maps
ncrease after coupled correction. Average kappa coefficients for
he full validation sets differ between 0.87 for the scenario without
orrections (range 0.017) and 0.94 for the atmospheric correction
ased on transmittance functions (TF) coupled with the pixel-based
innaert (PBM) correction (range 0.023). Higher increases in aver-

ge kappa values are present for all coupled corrections when the
ifference validation subset is used. The results also indicate that
verage land cover classification accuracy increases more after cou-
led AC/TC correction than after an individual AC or TC correction.
fter coupled AC/TC correction, the differences in range between
oth dates and images are removed and an identical and optimal
lassification is performed. Results of the class accuracies show pos-
tive average ıkappa values for coniferous and mixed classes and
o real classification improvements for the four other land cover
lasses. In this study, the impact of coupled AC/TC corrections is
specially effective to increase the mapping accuracy of the differ-
nt forest types. AC/TC corrections are less effective in increasing
apping accuracies of land cover types above the tree line since

hese area’s are well illuminated. Considering the analysis in the
ifferent illumination zones, coupled correction methods perform
est in the low illuminated areas.

In this bi-temporal study, results indicate that the influence of
he topographic component on classification accuracy is higher
han the atmospheric component. This is explained by relative
mall variations in atmospheric parameters and relative large dif-
erences in topographic parameters between both dates. Although
he topographic component influences the accuracy more than the
tmospheric component, it is worthwhile to invest in both atmo-
pheric and topographic corrections in a multi-temporal study. For
ach application a balance must be found between the benefits of
C and TC corrections in terms of increased classification accuracy
nd decreased automation potential of the preprocessing proce-
ure. Furthermore, application of a coupled correction based on a
omplex TC component (PBC or PBM) and a TF atmospheric compo-
ent is justified in this study. Best overall classification results are
chieved after TF–PBM or TF–PBC because the pathway through
he atmosphere is simulated in the most accurate way. Drawback
f these advanced methods is, however, their data requirements
hat do not allow a fully automated application and integration in
mage preprocessing chains. Further research should focus on the
pplication of the coupled corrections to other study sites and larger
emporal series.
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