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Preface 
 

This report is written as part of the internship of Dorien Lugt at the Royal Netherlands Meteorological 

Institute (KNMI) at the department of Weather Research. The internship was under supervision of 

Maurice Schmeits and Kees Kok (KNMI) and took place between May 1 and July 12, 2013. At the 

time of this internship Dorien Lugt was an Applied Mathematics undergraduate student at Delft 

University of Technology. The aim of the project was to investigate whether the GLAMEPS wind 

speed forecasts could be improved by statistical postprocessing.  
 

Abstract  
 

The Grand Limited Area Model Ensemble Prediction System (GLAMEPS) is a short range multi-

model ensemble system, a combination of the subensembles from the ALADIN, HIRLAM STRACO 

and Kain-Fritsch and ECMWF models. In this report it is shown that the (gridbox average) 

GLAMEPS 10 meter wind speed forecasts can be improved significantly by statistical postprocessing 

when verified against station observations. Results show that both reliability and resolution can be 

improved for wind speeds up to 16 m/s. Special attention has been paid to the improvement for higher 

wind speeds. Furthermore, experiments indicated that use of the mean of the control runs of the four 

models instead of the ensemble mean do not result in losses in Brier skill scores for forecasts 18, 30 

and 42 hours ahead. Postprocessing of the complete ensemble performed better than postprocessing 

each of the four subensembles separately. These conclusions were derived from data from November 

and December 2011 for stations all over Europe and need to be confirmed for datasets of longer 

periods and outputs of the current GLAMEPS version.   
 

1. Introduction  
 

Weather forecasts are derived from the output of numerical weather prediction (NWP) models that 

describe the processes in the atmosphere. The output of NWP models is deterministic, whereas 

probabilistic predictions are preferred for several reasons. Because of the complexity of the processes 

in the atmosphere, NWP models do not describe the atmospheric processes completely and perfectly. 

Furthermore, the estimated initial state of the model differs from the real state of the atmosphere. This 

can lead to incorrect deterministic forecasts even when predicting only a few days ahead. Additional 

information about the uncertainty of a deterministic prediction, as given by a probabilistic prediction, 

is desirable.  

The state-of-the-art method of producing probabilistic weather predictions is the use of ensembles. An 

ensemble of initial states reflecting the uncertainty of the initial state is created and each member is 

used as the initial state for integration with the NWP model. This results in an ensemble of 

deterministic predictions, which can be combined into a probabilistic prediction.  

Statistical postprocessing of the ensemble output is used to correct for systematic errors in the 

forecasts and to include the effect of local conditions that are absent because of the scale of the grid of 

the numerical models. Statistical postprocessing is performed on a dataset containing both the model 

output and the observations. Using regression - in this study extended logistic regression (ELR) and 

logistic regression (LR) - it can be determined which combination of the model output parameters 

appear to have the highest predictive value; these parameters can be used for future forecasts.  

The ensemble system used in this project is GLAMEPS, Grand Limited Area Model Ensemble 

Prediction System. GLAMEPS is a system for short range probabilistic numerical weather predictions 

on European scale. GLAMEPS is part of the cooperation between two European short-range model 

consortia: Aire Limitée Adaption dynamique Developpement International (ALADIN) and High 

Resolution Limited Area Modeling (HIRLAM). It consists of four subensembles, ALADIN, HIRLAM 

STRACO, HIRLAM Kain-Fritsch and ECMWF, each having 13 members (Iversen et al., 2011). In the 

two HIRLAM subensembles different convection schemes have been used: STRACO (Sass, 2002) and 

Kain-Fritsch (Kain and Fritsch, 1990). GLAMEPS has been running since 2010. 

The aim of this study is to improve the forecast probability distribution of (high) wind speeds. 

Different predictors for the regression have been investigated as well as other aspects such as the 

training area and the use of subsamples of the total number of ensemble members. Also, logistic 
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regression has been compared to extended logistic regression. In section 2 of this report the dataset 

and the regression method are described. In section 3 the results are shown. Conclusions, discussion 

and recommendations for future research can be found in section 4 of this report.  

 

2. Data and Method 

 

In this section two regression methods (LR and ELR) and a number of verification metrics are 

described.  

For this project part of the GLAMEPS output parameters from July until December 2011 were 

available. Because in the winter months wind speeds are higher, it was decided to use the month 

November for training and the month December for verification. This is a short period, which was 

partly compensated for by using 2249 European stations with observations available for the same 

period.  

The predictand in this study was the wind speed at a height of 10 meters. The only GLAMEPS output 

parameters available in the dataset were the 10 meter wind speed, the 2 meter temperature and the 12 

hours accumulated precipitation. The 10 meter wind speed and the latitude, longitude and altitude of 

the stations are useful predictors for wind speed forecasts. Observed wind speeds of more than 50 m/s 

are considered to be unlikely high and were therefore not used in the regression and verification. 

Unless mentioned otherwise, experiments were performed for 18 hours lead time. 

 

2.1 Logistic regression and extended logistic regression  

 

Since the predictand is binary, i.e. the wind speed is lower than a certain threshold or not
1
, a natural 

choice for the regression method is logistic regression, which has the form 
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Here f(x) is a linear function of predictors (Wilks, 2006). Using logistic regression the coefficients 

have to be derived for each threshold separately. Wilks (2009) described an extension of logistic 

regression, referred to as extended logistic regression (ELR) from here on, that overcomes this 

problem. Using extended logistic regression the full forecast probability distribution is obtained so that 

forecasts can be derived for thresholds that were not used in the training. Another advantage of 

extended logistic regression is the consistency among the resulting probabilities for different 

thresholds. Extended logistic regression takes the form  
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(2) 

 

where f(x) is defined as in the logistic regression and  q is the threshold. So: 

 

 qwindspeedqp  Pr)(  (3) 

  

Wilks (2009) empirically determined that the function qbqg )(  performed better than 

bqqg )( , with b a logistic regression coefficient to be determined together with the coefficients of 

f(x). Even though Wilks focused on precipitation instead of wind speed in his article, it was decided to 

set qbqg )( in this study as well, without further investigations of other nondecreasing functions 

g(q). 

 

1) Note that we have taken probabilities less than the threshold instead of exceedence probabilities. 

This choice does not affect the results. 
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2.2 Brier Scores and Brier Skill Scores 

 

For the verification several performance measures are known. The measures used in this project are 

the Brier score (BS) with its decomposition and the Brier skill score (BSS) (Wilks, 2006). The BS is 

the mean of the squared difference between the forecast probabilities and the observations:  
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(4) 

In this equation ky  are the forecast probabilities, between 0 and 1, and ko  are the observations, having 

value 0 or 1. The BS has a value between zero and one, for perfect forecasts the BS is zero and a 

worse forecast gets a higher BS. A decomposition of the BS can be made so that three factors that play 

a role in the performance of a probabilistic forecast system are separated, namely the reliability, the 

resolution and the uncertainty: 
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(5) 

     = “Reliability”     - “Resolution”    + “Uncertainty 

 

Here I is the number of allowable (or binned) forecast values.  

The reliability is a measure for how close the binned forecast probabilities are to the observed 

conditional relative frequencies. For perfectly reliable forecasts the forecasted probabilities ( iy ) are 

exactly equal to the conditional relative frequencies ( io ), thus the difference is zero and so is the 

reliability score. A higher reliability score implies less reliability. Resolution reflects how much the 

conditional observed frequencies ( io ) differ from the sample climatological average ( o ). A resolution 

of zero means that the forecasts are exactly the climatological average; the highest possible resolution 

is equal to the uncertainty score. The uncertainty score reflects the inherent uncertainty of the event, 

i.e. zero for low uncertainty and ¼ for maximum uncertainty. Reliability and resolution may be 

improved by statistical postprocessing, but the uncertainty cannot be influenced.    

The Brier skill score (BSS) can be used to compare the BS of two models, for example the 

postprocessed GLAMEPS and a reference forecast model:   

 

refBS

BS
BSS 1  

 

(6) 

The BSS is the relative improvement of, e.g., the new statistical model over the reference model: if the 

BSS is zero the new model has the same BS as the reference model, if it is negative the BS of the new 

model is worse. If the BSS is between zero and one, the new method has a better BS than the reference 

method. The maximum value of the BSS is 1, or 100% when expressed as a percentage.  

 

3. Results 

 

Several possibilities for improvement of the GLAMEPS forecast probability distribution of wind 

speed using statistical postprocessing have been investigated. First different potential predictors have 

been compared. Next the sensitivity of the performance of the postprocessing for the thresholds used 

for training was investigated. The model configuration derived this way was also verified on a limited 

area and compared with a model that was both trained and verified on a limited area. Also, logistic 

regression has been compared to extended logistic regression. Finally, the use of the mean of the 

control runs of the four subensembles (instead of the ensemble mean) and the use of the mean per 

subensemble (instead of the ensemble mean) have been tested. In all experiments November 2011 was 

used as the training month and December 2011 as the verification month, so independent data were 

used for the verification. In this section the results of these experiments are discussed. Unless 

mentioned otherwise, about 100000 training cases varying in station, time and threshold were used, 

which is about half of the total number of cases.  
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3.1 The BSS of the raw GLAMEPS forecasts 

 

All BSSs in this report were computed using the BS of the GLAMEPS forecasts before 

postprocessing, i.e. raw GLAMEPS forecasts, as a reference. However, Figure 1 shows the BSSs per 

threshold of the raw GLAMEPS forecasts with the climatological probabilities as a reference. The 

BSSs of the raw GLAMEPS probabilities and the climatological average were averaged over all 

stations and not calculated per station. Only thresholds up to and including 16 m/s were included in the 

results, because the number of higher observed wind speeds in the dataset was too low to guarantee 

sufficient significance of the results.  
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Figure 1. BSS of the raw GLAMEPS forecasts with respect to the climatological probabilities 

 

In Figure 1 the BSSs of the raw GLAMEPS forecasts are positive for thresholds of 2-14 m/s and are 

almost equal for three different lead times (18 hours, 30 hours and 42 hours). This may be due to the 

averaging of the climatological probabilities over all stations. It is expected that the BSSs decrease for 

longer lead times when calculated per station.    

 

3.2 Tests with different predictors 

 

As mentioned before, the dataset available for this study was limited in the sense that not all 

GLAMEPS output parameters were available. Therefore, other potential predictors than those that 

were tested exist. The GLAMEPS wind speed at 10 meter height was available and the ensemble mean 

of this parameter turned out to be a good predictor. Since wind speeds are not normally distributed, 

better results were obtained when using the mean of the square root of each ensemble member’s wind 

speed output instead of the mean of those wind speeds itself. From here on this will be referred to as 

the ensemble mean predictor. Also, the longitude, latitude and the altitude of the meteorological 

stations appeared to be good predictors and their performance could be further improved by using a 

smoothing spline. In this project the thin plate regression spline as described in Wood (2003) was 

used. The standard deviation of the ensemble did not have added value over the ensemble mean 

predictor.  

Another potential predictor in the dataset was the difference between the altitude of the stations and 

the altitude of the common model grid. The NWP models are grid-based, so that if a station is not 

exactly located on the grid, its altitude is estimated by averaging over the nearest grid points. 

Especially in regions with higher topography, the estimated altitude can differ significantly from the 
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real elevation level of the stations. Experiments with the difference between the real and the common 

model altitude of the stations as a predictor have been performed in order to investigate whether this 

would reduce any systematic errors in the forecasts. It turned out that this predictor resulted in higher 

BSS than the station altitude for lower thresholds, but lower BSS for higher thresholds. Since in this 

study the focus lies on improvement of the forecasts for higher wind speeds, it was decided not to 

include this predictor in the postprocessing.  

Concluding, from the parameters available in the dataset the ensemble mean predictor and the spline 

function of the longitude, latitude and altitude of a station turned out the be good predictors and were 

included in the regression model, together with the square root of the thresholds for ELR.  

 

3.3 The sensitivity for the thresholds used for training 

 

It was suggested by Wilks (2009) that improvements on the performance of extended logistic 

regression could be obtained by tuning the thresholds and the number of thresholds on which the 

regression model is being trained. Using the square root of the thresholds, the ensemble mean 

predictor and the spline function of the longitude, latitude and the elevation as predictors, the 

performance for different combinations of training thresholds has been compared. For every selected 

combination of thresholds in the training set the BSS was calculated on the independent data for all 

even thresholds from 0 m/s until 16 m/s. It turned out that the scores for higher wind speeds were, not 

surprisingly, better for combinations of higher thresholds and likewise for lower wind speeds.  

Of all the tested combinations the best performing combinations are displayed in Figure 2. In addition 

to these combinations the combination 0, 1, 5, 10 and 15 m/s is added to the figure for comparison.  
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Figure 2. BSS for ELR models using different sets of training thresholds 

 

The choice for the best combination is somewhat subjective. It was decided to use the combination of 

8, 12 and 16 m/s, since this combination performed best for the higher thresholds. For the lower 

thresholds the BSSs were lower than for the other combinations but improvement with respect to the 

raw GLAMEPS was still high, up to 25% for lower thresholds.  
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3.4 Improvement in terms of Reliability and Resolution  

 

(a) 

(b) 

(c) 
Figure 3. Reliability diagram for the raw GLAMEPS forecasts (left) and after postprocessing (right), a) 

for a threshold of 4 m/s, b) for a threshold of 8 m/s and c) for a threshold of 14 m/s. The frequencies of the 

forecasted probabilities are given for each circle on the red line. 
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It has been shown that significant improvements in terms of the BS can be realized by statistical 

postprocessing. In section 2.2 the decomposition of the BS was described. Reliability diagrams 

(Wilks, 2006) give insight in the improvement in terms of reliability and resolution. In Figure 3 the 

reliability diagrams for the raw GLAMEPS forecasts (left panels) and  for the postprocessed model 

(right panels) are shown for thresholds of 4, 8 and 14 m/s (Figs a, b and c respectively) .  

As explained before, reliability is a measure for the difference between the forecasted probabilities and 

the conditional observed relative frequencies. A reliability score of zero means that the forecasted 

probabilities are equal to the observed relative frequencies, so the forecasts are perfectly reliable. In 

the reliability diagram this means that the red line lies exactly on the diagonal.  

For the 4 m/s threshold (Figure 3a)  the postprocessing of GLAMEPS clearly has improved the 

reliability, which is also represented by the decrease in reliability score from 0.0232 to 0.0007. The 

resolution, as explained before, is a measure of the difference between the conditional observed 

frequencies and the sample climatological average. It is clear that the frequencies of the forecast 

probabilities close to 0 and close to 1 have increased, so the resolution of the postprocessed 

GLAMEPS was higher than that of the raw GLAMEPS. This is also represented by an increase in the 

resolution score from 0.0917 to 0.1059. So, for the prediction of the threshold of 4 m/s both reliability 

and resolution have improved.  

Figure 3b shows the reliability diagrams of both methods for the prediction threshold of 8 m/s. Here an 

improvement in both reliability (from 0.0054 to 0.0011) and resolution (from 0.0371 to 0.0044) is 

apparent as well.  

For the more extreme threshold of 14 m/s (Figure 3c) the resolution score improved from 0.0049 to 

0.0061. The figure shows clearly that the reliability has improved, as the red line lies closer to the 

diagonal for almost all forecasted probabilities. However, this is not represented by the reliability 

score that has increased from 0.0019 to 0.002, suggesting that the reliability for the raw GLAMEPS 

was higher. This is because for more than 95% of the forecasts the forecasted probability was in the 

highest bin and this point lies slightly further from the diagonal for the postprocessed GLAMEPS 

(right panel, Figure 3c) than for the raw GLAMEPS (left panel, Figure 3c). However, even though the 

reliability score has not improved, the reliability over the whole range of forecasted probabilities has 

improved. 

Similar results were obtained for all other thresholds between 0 m/s and 16 m/s. It can thus be 

concluded that statistical postprocessing does not only improve the raw GLAMEPS forecasts in terms 

of BSS, but also in terms of both reliability and resolution. These results were obtained for training 

and verification on stations all over Europe; experiments on a limited domain have been performed 

and are described in section 3.6.   

 

3.5 Logistic Regression versus Extended Logistic Regression 

 

In section 2.1 the differences between logistic regression and extended logistic regression are 

described. Extended logistic regression has the advantage that the complete probability density 

function can be derived at once so that there are no inconsistencies in forecasts between the thresholds 

as can occur when using logistic regression. In this paragraph the performance of logistic regression 

and extended logistic regression is compared. First, for the logistic regression the raw GLAMEPS 

probabilities, i.e. the percentage of ensemble members that did not exceed the threshold, have been 

tested as a predictor. It turned out that this predictor had no added value over the ensemble mean 

predictor and the spline function. Therefore it was not included in the model for logistic regression. 

The ELR model as used before has been compared to the logistic regression model with the same 

predictors, except for the square root of the thresholds that is an extra predictor for extended logistic 

regression. The results are shown in Figure 4. This figure shows that for thresholds above 6 m/s there 

was (almost) no difference in BSS and that for lower thresholds the logistic regression model 

performed better than the extended logistic regression model. This can probably be explained by the 

fact that the ELR model was trained on higher thresholds. Since the focus is on higher wind speeds in 

this study and taking the advantages of the ELR method into account, it was decided to continue 

working with ELR.  
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Figure 4. BSS of regression models using logistic regression compared with an ELR model 

 

3.6 Training and Verification on a Limited Domain 

 

The results derived in earlier sections were derived for stations all over Europe. In this section the 

performance on a limited domain (Figure 5) is described. The domain contains all 284 stations with 

longitude between 2° and 15°E, latitude between 49° and 55°N, and an altitude less than 500 meters 

above sea level. 

 

 
Figure 5. Map showing the limited domain with longitude between 2° and 15°E and latitude between 49° 

and 55°N 

 

Figure 6 shows the BSSs of the regression model that was trained on stations from all over Europe and 

verified on the limited domain, but also the model that was both trained and verified on the limited 

domain. Since the dataset was limited in time, the limited domain could not be chosen too small, since 

the number of training cases would be reduced too much. In this case the number of training cases was 

reduced from 100000 to 25000. In order to make a fair comparison, a model that was trained on 

stations all over Europe but using only 25000 randomly chosen training cases is included in the figure 

as well. It is clear that training on a limited domain yielded better BSSs for higher  thresholds than the 

models that were derived from stations all over Europe. The model trained and verified on the limited 

domain but without the spline function of the longitude, latitude and the altitude of the stations 

performed better for thresholds up to 12 m/s.  
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Figure 6. BSS for ELR models verified on a limited area 

  

It can be concluded that significant improvements can be realized by training on a limited domain. The 

experiments described in section 3.7 however are all executed on the initially chosen domain.   

 

3.7 Controls’ mean or subensemble mean instead of ensemble mean 

 

The use of the ensemble mean predictor has been compared to the use of the mean of the control runs 

of the four subensembles as a predictor. In figure 7 it is shown that the BSSs for these two 

configurations were (almost) equal for lead times of +18, +30 and +42 hours (Figs 7a, b and c 

respectively). The results for only one control run as a predictor are shown for all four model 

configurations as well. It is clear that the use of  the mean of the four control runs instead of only one 

gave better results. This implies that the multi-model character of the GLAMEPS ensemble has 

advantages over a single model forecast for wind speed, but that for the predictors used in this 

regression the 48 extra ensemble members did not seem to have much added value over the mean of 

the four control runs. 
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(c) 
Figure 7. BSS of ELR models with the ensemble mean predictor, the controls' mean, the ALADIN control 

run, the HIRLAM K control run, the HIRLAM S control run and the ECMWF control run as predictors 

for a lead time of a) 18 hours, b) 30 hours and c) 42 hours.  



 

 

13 

In figure 8 the use of the mean of each subensemble as a predictor has been compared with the use of 

the ensemble mean predictor. It is shown that the ensemble mean predictor clearly performed better 

than each subensemble mean separately. When comparing the four subensembles, the ensemble of 

ALADIN performed best in this experiment. This was also concluded by Iversen et al. (2011, fig. 

10b). Similar results were obtained for lead times of 30 hours and 42 hours (not shown).  
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Figure 8. BSS of ELR models with the ensemble mean predictor, the mean of the ALADIN ensemble, the 

mean of the HIRLAM K ensemble, the mean of the HIRLAM S ensemble and the mean of the ECMWF 

ensemble 

 

4. Conclusions and discussion 

 

In this report, it has been shown that in deriving local probabilistic wind speed forecasts significant 

improvements in both the reliability and resolution can be obtained by statistical postprocessing of the 

raw, i.e. gridbox average, GLAMEPS output for thresholds up to and including 16 m/s. Best predictors 

from the available dataset were the ensemble mean of the GLAMEPS 10 meter wind speed and a 

spline function of the longitude, latitude and the altitude of the stations. The ensemble standard 

deviation and the difference between the real altitude and the model altitude of the stations appeared to 

have no added value given the other two predictors. Other parameters from the output of GLAMEPS 

might be worth studying, but they were not available for this project.  

The fact that the spline function appeared to be a good predictor suggests that statistically 

postprocessing GLAMEPS might succesfully be applied also at locations where no observations are 

available. In a study by De Rooy and Kok (2004) it was shown that the applicability of statistical 

postprocessing is indeed not limited by the absence of local observations. This was demonstrated on 

wind speed forecasts using a combination of statistical and physical postprocessing techniques. 

Splines were not used in that study.  

Training the regression model on a limited domain can further improve results for that domain, 

especially for higher thresholds. On a limited domain, consisting of about 20 percent of all available 

stations, the postprocessing performed better without the use of the spline of the longitude, latitude 

and altitude as predictors.   

The use of higher thresholds in the training dataset did improve verification results for higher 

thresholds. For those thresholds the performance of extended logistic regression was approximately 

equal to the performance of logistic regression, although for lower thresholds logistic regression 

performed better.  

Remarkably, performance of the postprocessed mean of the four control runs was almost equal to the 

performance of the ensemble mean predictor. Apparently a lot of the probabilitistic information is 

already contained in the deterministic model. A similar result was found by Kok and Vogelezang 
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(1999), in which probabilistic temperature forecasts derived from postprocessing the operational 

deterministic ECMWF model performed better than the “raw” EPS probabilties for much of the 10 

day forecast range. 

Postprocessing on the GLAMEPS ensemble mean performed  better than the use of only one control 

run or the mean of each subensemble separately. The mean of the ALADIN subensemble performed 

best of all four subensembles for the prediction of wind speed for lead times of 18, 30 and 42 hours. 

These results were obtained for data from November and December 2011. The results need to be 

confirmed for larger datasets and the current GLAMEPS version.  
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