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Abstract. In this paper, a new neural network (NN) algo-
rithm to retrieve the tropospheric ozone column from Ozone
Monitoring Instrument (OMI) Level 1b data is presented.
Such an algorithm further develops previous studies in order
to improve the following: (i) the geographical coverage of
the NN, by extending its training set to ozonesonde data from
midlatitudes, tropics and poles; (ii) the definition of the out-
put product, by using tropopause pressure information from
reanalysis data; and (iii) the retrieval accuracy, by using an-
cillary data (NCEP tropopause pressure and temperature pro-
file, monthly mean tropospheric ozone column from a satel-
lite climatology) to better constrain the tropospheric ozone
retrievals from OMI radiances. The results indicate that the
algorithm is able to retrieve the tropospheric ozone column
with a root mean square error (RMSE) of about 5–6 DU in
all the latitude bands. The design of the new NN algorithm is
extensively discussed, validation results against independent
ozone soundings and chemistry/transport model (CTM) sim-
ulations are shown, and other characteristics of the algorithm
– i.e., its capability to detect non-climatological tropospheric
ozone situations and its sensitivity to the tropopause pressure
– are discussed.

1 Introduction

Ozone is one of the most important trace gases in the Earth’s
atmosphere. Ozone is most abundant in the stratosphere,
where it shields the troposphere from harmful ultraviolet ra-
diation. In the troposphere, ozone acts as a precursor of the
hydroxyl (OH) radical, which is able to remove pollutants
from the troposphere via oxidation reactions (Jacob, 1999).
Furthermore, tropospheric ozone is a pollutant itself, since it
is harmful for the biosphere when it reaches high concentra-
tions near the Earth’s surface (Heck et al., 1982; Lippmann,
1989). Finally, tropospheric ozone acts as a greenhouse gas
(Shindell et al., 2006).

Tropospheric ozone variations may occur over relatively
small spatial scales. Concentrations of tropospheric ozone
are affected by several factors. First, they depend on the
concentrations of its precursors – namely, nitrogen oxides
(NOx), carbon monoxide (CO) and volatile organic com-
pounds (VOCs) – which are either emitted as a consequence
of human activities or due to natural causes (e.g., light-
ning, which produces NOx). Since tropospheric ozone is
produced from its precursors via photochemical reactions
(Chameides and Walker, 1973), the intensity of the solar ra-
diation reaching the troposphere is another important fac-
tor. A further source of tropospheric ozone is the downward
transport of air rich in ozone from the stratosphere, dur-
ing the so called stratosphere–troposphere exchange (STE)
(Holton et al., 1995). This process is particularly significant
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at midlatitudes (see, e.g.,Shapiro, 1980). Long-range trans-
port of tropospheric ozone and its precursors also affects its
spatial distribution (Carmichael et al., 1998; Creilson et al.,
2003).

Monitoring tropospheric ozone using satellite instruments
is important in order to obtain a global picture of its distri-
bution. However, several difficulties are encountered in in-
ferring tropospheric ozone concentrations from satellite ob-
servations. First, the contribution of tropospheric ozone to
the measured radiances is much weaker than the contribution
coming from stratospheric ozone. Second, current ultravio-
let or thermal infrared measurements have usually a reduced
sensitivity to lower tropospheric ozone (Natraj et al., 2011,
and references therein).

The first attempts to derive information on tropospheric
ozone from satellite observations date back to the 1980s.
Fishman et al.(1986, 1987) first suggested that total ozone
measurements made from the Total Ozone Mapping Spec-
trometer (TOMS) could contain information on cases of en-
hanced tropospheric ozone. In the first algorithms for quan-
titative tropospheric ozone retrievals, the information on tro-
pospheric ozone was obtained by subtracting a stratospheric
ozone column measurement from a colocated total ozone
measurement. The stratospheric ozone column was estimated
from limb observations (Fishman and Larsen, 1987; Fish-
man, 2000, and references therein) or from ozone column
measurements above high convective clouds (Ziemke et al.,
1998, 2001; Ahn et al., 2003; Newchurch et al., 2003) or
high mountains (Jiang and Yung, 1996; Kim and Newchurch,
1996; Newchurch et al., 2001). An alternative approach,
specifically designed for TOMS observations, was to directly
infer tropospheric ozone information based on the depen-
dence of TOMS total ozone columns on the scan angle of
the instrument (Kim et al., 1996, 2001, 2004).

More recently, after the development of new satellite in-
struments, with hyperspectral measurement capabilities, the
direct determination of tropospheric ozone from the UV/VIS
part of the spectrum has become feasible (Munro et al., 1998;
Liu et al., 2005, 2006, 2010). Nevertheless, residual tech-
niques similar to those described above for TOMS have been
also applied to hyperspectral data. For instance,Valks et al.
(2003) developed a cloud-slicing algorithm for the Global
Ozone Monitoring Experiment (GOME), whereas nadir-limb
residual techniques have been used byZiemke et al.(2006),
Schoeberl et al.(2007), andYang et al.(2007) to estimate
tropospheric ozone column by subtracting Microwave Limb
Sounder (MLS) limb stratospheric ozone columns from
Ozone Monitoring Instrument (OMI) total ozone columns.

Another possibility to directly retrieve tropospheric ozone
from satellite hyperspectral observations is the applica-
tion of neural networks (NNs). NN algorithms for tropo-
spheric ozone retrievals from OMI and the Scanning Imag-
ing Absorption Spectrometer for Atmospheric Chartography
(SCIAMACHY) have been recently developed (Sellitto et al.,
2011, 2012, respectively). In particular,Sellitto et al.(2011)

developed an algorithm to retrieve tropospheric ozone from
OMI data at northern midlatitudes, named the OMI-TOC
NN. The algorithm yields daily estimates of the tropospheric
ozone column from the surface to 200 hPa at the northern
midlatitudes by using OMI reflectance spectra, solar zenith
angle (SZA) at 19 wavelengths, and the total ozone column
from the OMI-TOMS total ozone (OMTO3) Level 2 prod-
uct (Bhartia and Wellemeyer, 2002). The performances of
the OMI-TOC NN algorithm were shown to be compara-
ble with those of the physics-based algorithms ofSchoe-
berl et al.(2007) andLiu et al. (2010) by means of a vali-
dation exercise with ozonesonde measurements at northern
midlatitudes, with root mean square (RMS) errors around
8 DU and correlation coefficients around 0.60 between the
actual and the retrieved tropospheric ozone columns (Sellitto
et al., 2011). Di Noia et al.(2013) further validated the OMI-
TOC NN over a number of European ozonesonde stations,
finding similar results, and pointing out the possible pres-
ence of a negative bias in the OMI-TOC NN in cases of low
tropopauses (tropopause pressures larger than approximately
250 hPa).

The main limitations of the OMI-TOC NN algorithm are
its coverage, which is limited at the northern midlatitudes,
and the choice to use the 200 hPa level as the upper inte-
gration limit for the retrieved ozone columns, regardless of
the actual tropopause conditions. In particular, this latter fea-
ture raises the question of whether it is legitimate to say that
the retrieved ozone columns are “tropospheric” since even at
midlatitudes the actual tropopause pressure can be very dif-
ferent from 200 hPa (Hoinka, 1998). In order to overcome
this problem, a preprocessed tropopause height can be used
as upper integration limit for the retrieved ozone columns.
By doing so, it is possible to produce estimates that represent
the actual “tropospheric” ozone column more realistically.
For this study the thermal tropopause given by the National
Center for Environmental Prediction (NCEP)/National Cen-
ter for Atmospheric Research (NCAR) Reanalysis (Kalnay
et al., 1996) has been used.

In this paper the results of an improved NN algorithm
for tropospheric ozone retrieval are presented. The improve-
ments can be summarized as follows: (i) the geographical
coverage of the algorithm is extended to the entire globe,
whereas the OMI-TOC NN was limited to the northern mid-
latitudes; (ii) an estimate of the ozone column from the sur-
face to the NCEP/NCAR tropopause is produced; (iii) a num-
ber of ancillary data are used as additional inputs for the algo-
rithm in order to better constrain the retrieval problem; (iv)
the observation geometry is better parameterized in the in-
put vector by including the viewing zenith angle (VZA) and
the terrain height; (v) the TOMS total ozone column is not
used anymore in the input vector so as to make the new al-
gorithm independent from other ozone products. The main
differences between the two algorithms are summarized in
Table1.
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Table 1.Differences between the OMITROPO3-NN and the OMI-TOC NN algorithms. The OMI UV1 channel covers the range 270–310 nm,
the OMI UV2 channel covers the range 310–345 nm. Acronyms: SZA (solar zenith angle), VZA (viewing zenith angle), PC (principal
component), TCO (tropospheric column ozone).

OMI-TOC NN OMITROPO3-NN

Output product O3 column from surface to 200 hPa O3 column from surface to NCEP tropopause
Input data UV1/UV2 reflectances, SZA, total O3 UV2 reflectance PCs, SZA, VZA, terrain height,

profile, cloud fraction, NCEP tropopause pressure &
temperature monthly mean TCO from climatology

Coverage Northern midlatitudes Global
Nadir nominal resol. 13× 48 km2 13× 24 km2

Besides these three key points, a number of additional
technical issues are addressed in the preprocessing of OMI
radiance and irradiance spectra (namely, several refinements
were introduced in the data quality control and filtering rou-
tines). Furthermore a different input dimensionality reduc-
tion strategy is adopted, with a simple linear principal com-
ponent analysis (PCA) used instead of the extended prun-
ing (EP) technique. The new algorithm will be henceforth
referred to as OMITROPO3-NN.

The paper is organized as follows. In Sect.2 a general de-
scription of NNs is given, with a particular focus on their
use in the context of inverse problems; in Sect.3 the gen-
eration of the OMITROPO3-NN dataset is described and all
the preprocessing steps are discussed; in Sect.4 the choices
made in the NN training are explained; general validation
results are shown in Sect.5; in Sect.6 global tropospheric
ozone fields retrieved on two dates during August 2006 are
used as examples in order to give further insight into some of
the characteristics of the OMITROPO3-NN; Sect.7 presents
conclusions and hypotheses for future work.

2 Neural networks in satellite retrievals

2.1 Basic concepts and terminology

NNs can be considered as algorithms for nonlinear regres-
sion and function approximation. Although several types of
NNs can be devised, they share a number of common charac-
teristics: (i) the computation is distributed among elementary
units (called neurons), and (ii) the relationship to be approx-
imated is learned by the NN from a training dataset.

Mathematically, it can be said that an NN can be used to
approximate an unknown relationship between two quanti-
tiesx ∈ Rn andy ∈ Rm through a nonlinear model8W such
that

y = 8W(x), (1)

whereW is a set of free parameters to be adjusted from a
training dataset. In the case of supervised training, which
is the only relevant case for the purposes of this work, the
training dataset is made of pairs(xi,yi) of instances of the

relationship to be approximated. The adjustment of the free
parameters is made according to a learning algorithm, which
basically consists of an iterative minimization of an error cost
function of the kind

C = f (‖yi − 8W(xi)‖), (2)

with respect toW. According to the exact definition of the
cost function and to the choice of the iterative method cho-
sen for its minimization, several learning algorithms can be
defined. The reader can refer toBishop (1995) or Haykin
(1999) for more detailed information.

2.2 Multilayer perceptrons

The multilayer perceptron (MLP) network (Werbos, 1974) is
one of the most widespread NN architectures. Each neuron
of an MLP realizes the input–output relationship

y = ϕ(wT x + b), (3)

wherew andb are the weight vector and the bias of the neu-
ron, respectively, and are its free parameters to be adjusted,
and the functionϕ, chosen in advance, is the activation func-
tion of the neuron.

The neurons of an MLP are organized in layers: (i) an input
layer, which simply contains the input vector of the MLP; (ii)
at least one hidden layer, containing neurons with nonlinear
activation functions; and (iii) an output layer, whose neurons
can either have linear or nonlinear activation functions and
yield the output of the MLP. The output of each layer is the
input for the next layer.

One reason for the popularity of MLPs among supervised
NN techniques is their universal approximation capability:
several studies have independently shown that, under rather
general conditions, every continuous function on a compact
set can be approximated to whatever accuracy by a MLP hav-
ing only one hidden layer (Cybenko, 1989; Funahashi, 1989;
Hornik et al., 1989). However, it must be pointed out that
the universal approximation theorems only prescribe the ex-
istence of an approximating NN, but they do not indicate how
such NN can be found in practice.

www.atmos-meas-tech.net/6/895/2013/ Atmos. Meas. Tech., 6, 895–915, 2013
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Since the MLP is the only relevant architecture in the con-
text of this work, the terms MLP and NN will be used without
distinction from here onwards.

The approximation properties of NNs makes them useful
in remote sensing applications, where either forward or in-
verse problems have to be solved. In particular, NNs have
been successfully used in various applications of satellite at-
mospheric remote sensing, such as temperature and humidity
profile retrievals from microwave and infrared observations
(Aires et al., 2001; Blackwell, 2005), ozone retrievals from
UV/VIS radiances (Del Frate et al., 2002, 2005a,b; Müller
et al., 2002, 2003; Iapaolo et al., 2007; Sellitto et al., 2011,
2012) and radiative transfer calculations (Chevallier et al.,
1998, 2000; Schwander et al., 2001; Göttsche and Olesen,
2002; Krasnopolsky and Schiller, 2003; Krasnopolsky and
Chevallier, 2003).

2.3 Neural networks in retrieval problems

In the context of atmospheric remote sensing, a retrieval
problem essentially consists of recovering the value of an at-
mospheric quantity (state)x from a set of radiometric mea-
surementsy. Such problems are usually ill posed, i.e., they
cannot be solved by simply inverting a physical model of the
measurements because the relationship betweenx andy is
not bijective (Twomey, 1977; Tikhonov and Arsenin, 1977).
In other words, simply solving with respect tox an equation
of the kind

y = F(x,b), (4)

where the functionF represents the physics of the measure-
ment process andb is a fixed vector of model parameters (i.e.,
quantities different fromx which affecty), would not lead to
an unique solution forx, even in the case of noise-free mea-
surements. Instead, a space of possible solutions forx would
be compatible with a single measurement vectory. This hap-
pens because of two concurrent reasons: (i) the elements of
the measurement vectory are not mutually independent; (ii)
the existence of measurement errors usually leads to unstable
solutions of the retrieval problem.

Therefore, the aim of a retrieval algorithm is to select,
among a set of possible solutions for the statex, an “opti-
mal” solution that is used as an estimator for the true statex.
Two widespread approaches to address this issue are regular-
ization and optimal estimation (OE) methods.

Regularization consists in a least mean square estimate,
where the difference between actual measurementsy and
predicted measurementsF(x,b) is minimized with respect
to x with an arbitrary constraintq(x) measuring the degree
of “smoothness” of the solution. Several choices can be made
for q(x) – see, e.g.,Doicu et al.(2010) – and the cost func-
tion to be minimized has the form

Creg = ‖y − F(x,b)‖2
+ γ q(x), (5)

whereγ is a multiplicative term that weights the importance
of the constraint with respect to the difference between actual
and predicted observations. Of course, settingγ = 0 would
mean not to use any constraint, and settingγ → ∞ would
be equivalent to ignoring the measurements. One popular
form of the regularization constraint isxT Hx, whereH is
a smoothing matrix.

In the OE approach (Rodgers, 2000), assumptions are
made about the statistical properties of the statex to be re-
trieved and the measurement errorε. It is often assumed that
both quantities follow Gaussian statistics, with mean values
xa and0, and covariance matricesSa andSε , respectively.
A model of the measurement processF is used to transform
the probability density function (PDF) ofx into the condi-
tional PDFPy|x(y|x). Then, an a posteriori PDFPx|y(x|y)

is obtained according to the classical Bayesian theory, and it
is maximized with respect tox to yield a parametric estima-
tor for x, the term “parametric” being used to indicate that a
specific form for the PDFs and their parameters is assumed
for the optimality condition to hold. The general form for the
OE cost function to be minimized, under the assumption of
Gaussian statistics, is (Rodgers, 2000)

COE = −2lnPx|y(x|y)

= [y − F(x,b)]T S−1
ε [y − F(x,b)]

+(x − xa)
T Sa(x − xa). (6)

The subscriptsy|x andx|y are used here to distinguish be-
tween the functional forms of the two PDFs. Given thatF
is a nonlinear function in most of the practical cases, its
minimization is usually performed through iterative methods,
such as Gauss–Newton or Levenberg–Marquardt.

NN retrievals can be regarded as a non-parametric alterna-
tive to OE. The training set for a NN to be used in a retrieval
algorithm consists of pairs(y′

i;xi), where the vectory′

i in-
cludes the measurementsyi and any other parameter that is
used as an input for the algorithm (e.g., geometrical parame-
ters, ancillary data), and thexi includes the quantities to be
retrieved. The training set can be seen as a set of samples
drawn from the PDFP(x|y′). These samples are used to ad-
just the parameters of a model of the same kind as Eq. (1),
minimizing a cost function similar to Eq. (2). Once the train-
ing is complete, a global retrieval model

x̂ = 8W∗(y′), (7)

is constructed, whereW∗ is the value ofW determined at the
end of the training process. This retrieval model yields a non-
parametric estimator forx – here denoted bŷx – meaning
that no assumptions about the statistical distribution ofx are
made to specify the model. The “global” adjective refers to
the fact that, once the training phase is complete, the resulting
function8W∗ can be applied to every observation in order to
obtain the retrieval. This is a difference between NNs and the
aforementioned retrieval techniques, where the cost function
has to be minimized for each observation.

Atmos. Meas. Tech., 6, 895–915, 2013 www.atmos-meas-tech.net/6/895/2013/
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NN retrieval algorithms have a number of advantages over
other methods: (i) when the training set consists of real data,
the absence of explicit modeling makes the retrieval insensi-
tive to an incomplete knowledge of the measurement physics;
(ii) the absence of assumptions about the statistical distribu-
tion of the quantity to be retrieved makes NNs robust to non-
Gaussianity of the modeled processes (Blackwell and Chen,
2009); and (iii) NN retrieval schemes are fast and relatively
easy to implement. However, NNs have also some disadvan-
tages: (i) when they are trained on real data, the quality of
such data is critical for the learning process; (ii) they are
good interpolators, but may yield unpredictable results when
forced to extrapolate (Krasnopolsky and Schiller, 2003); and
(iii) NNs are not optimal estimators – the training process
depends on random initialization of the NN parameters and
may be trapped in local minima of the cost function to be
minimized. Nevertheless, these shortcomings can often be
handled with proper design and data quality control proce-
dures. A more subtle shortcoming is that, since the NN train-
ing requires the minimization of a global cost function, it is
possible that the cost function associated with a single ob-
servation could be better minimized with the conventional
retrieval techniques.

A debated issue regarding the application of NNs to re-
trieval problems is the error propagation. A general review
of the predictive uncertainty estimation methods for NNs is
given byDybowski and Roberts(2009). Aires et al.(2004a,b)
suggest a method to define an error budget for NN retrievals
that resembles that developed byRodgers(1990) for the clas-
sical retrieval techniques. Specifically,Aires et al.(2004a)
express the error covariance matrix of the retrieval as the sum
of a “neural inversion” term, accounting for the effect of the
suboptimalities in the NN architecture, the learning process
and the training dataset, and an “intrinsic noise” term, ac-
counting for all the other possible sources of error. However,
this formulation makes it difficult to isolate sources like the
null space error, which is important in order to assess the ver-
tical resolution of a retrieval algorithm.

2.4 Neural network design principles

NN models have a relatively large number of free parame-
ters. Some of these parameters – i.e., weights and biases –
are determined during the training process, others – i.e., the
activation functions, the number of hidden layers and neu-
rons, and the learning algorithm and its internal parameters
– must be chosen by the designer. While it would be impos-
sible to discuss every aspect of the design of an NN within
this paper (the interested reader is again referred toBishop,
1995, or Haykin, 1999, for a comprehensive discussion of
the heuristics that can be followed), it might be worthwhile
to discuss some of the most important design aspects as this
should clarify the reasons for some of the choices that were
made during the development of the tropospheric ozone re-
trieval algorithm that is the main subject of this work.

The most critical design issues to be addressed during the
development of a NN are the choice number of hidden layers
and neurons to be used, and the choice of when to stop the
training process.

As for the number of hidden layers and units, there are no
universally valid rules, but heuristic methods must be used.
Such methods basically consist of comparing different NN
architectures on a common reference dataset, and selecting
the architecture that achieves the best score in terms of some
performance metric. The most elementary metric that may be
used is simply the mean squared error (MSE) over the refer-
ence set. Other metrics, like the Akaike information criterion
(AIC) (Akaike, 1973), combine the MSE with penalty terms
for an excessive number of hidden neurons.

One or two hidden layers are often enough for a good NN
model (Kecman, 2001). A rule of thumb that can be kept in
mind in the selection of the number of hidden units is the
“bias-variance dilemma” (Geman et al., 1992). According
to this rule, NNs with too few hidden nodes tend to have
poor approximation capabilities (large bias, or underfitting),
whereas NNs with too many hidden nodes are prone to bad
generalization, i.e., poor performances on data which were
not seen during the training process (large variance, or over-
fitting). Therefore, the right choice for the number of hid-
den units must result from a trade-off between these two ex-
tremes.

Another crucial point is to decide when to stop the train-
ing of a NN. Although common sense criteria can be easily
formulated to decide whether a learning algorithm has con-
verged on a given training set (a typical approach is to fix a
certain threshold on the decrease in MSE between two suc-
cessive iterations of the algorithm, and to decide that the al-
gorithm has converged if such decrease remains below the
threshold for a certain number of iterations), it is often not
advisable to continue the training process until a convergence
criterion is met. In fact, as long as the training proceeds,
there is the danger that the NN ends up memorizing the train-
ing data, reaching extremely low values of the MSE on the
training data, but producing very poor results over data that
are not included in the training set. This condition is named
“overtraining”, or “overfitting”. In order to prevent this, the
performances of the NN over an independent set should al-
ways be monitored during the training process, and the train-
ing should be stopped when a significant degradation in the
NN performances over this set is observed. This method is
called “early stopping cross-validation” (Haykin, 1999).

3 Preparation of the OMITROPO3-NN dataset

3.1 Definition of the input vector

The list of the input quantities used in the design of the
OMITROPO3-NN is shown in Table1. The OMITROPO3-
NN retrieves tropospheric ozone columns from reflectance

www.atmos-meas-tech.net/6/895/2013/ Atmos. Meas. Tech., 6, 895–915, 2013
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spectra measured in the range 310–345 nm, covered by the
OMI UV-2 channel (Levelt et al., 2006). Wavelengths longer
than about 335 nm are outside the ozone absorption bands,
but have been included because they contain information
about aerosols and surface albedo (Kleipool et al., 2008).
Furthermore, the observation geometry was taken into ac-
count by including the SZA, the VZA and the terrain height
in the input vector. The relative azimuth angle (RAA) was
not used in the final specification of the algorithm because
preliminary experimental work showed that its use does not
seem to improve the retrieval performances.

Since the ozone absorption cross sections in the considered
spectral range – which covers the ozone Huggins bands –
are temperature dependent, the temperature profile from the
NCEP/NCAR Reanalysis was used as an additional input. An
additional advantage associated with the use of temperature
as an input is the possibility of exploiting the correlations
between ozone and temperature (Müller et al., 2003).

The tropopause pressure from the NCEP/NCAR Reanal-
ysis was also included in the input vector in order to signal
the upper integration limit for the ozone column to be re-
trieved. Furthermore, the significant positive correlation be-
tween tropopause height and the tropospheric ozone column
outside the tropics (de Laat et al., 2005) can be exploited
in order to regularize the retrieval. The radiative cloud frac-
tion from the OMI rotational Raman scattering (OMCLDRR)
product (Joiner and Vasilkov, 2006) was used to account for
the enhanced UV radiances that are measured at the longer
wavelengths of the considered spectral interval because of
the presence of clouds around the field of view (FOV) of the
instrument. Using the cloud pressure in the input vector did
not improve the retrieval performances; therefore, it was left
outside the input vector in the final version of the algorithm.

The choice of using a tropospheric ozone climatological
value as an input for the algorithm is worth discussion. The
retrieval of tropospheric ozone from UV satellite measure-
ments is strongly ill posed because it is difficult to sepa-
rate variations in the measured UV spectra caused by ozone
variations in the troposphere from variations that are related
to changes in stratospheric ozone. Therefore, the informa-
tion content of radiometric measurements and parameters of
the forward problem (i.e., observation geometry, temperature
profile, etc.) may be not enough to perform the retrieval. Ill-
posed problems are usually addressed by complementing the
satellite measurements with ancillary data, a priori informa-
tion about the retrieved state and/or regularization constraints
(Twomey, 1977; Rodgers, 2000; Doicu et al., 2010). These
quantities are used in retrieval algorithms in order to discard
solutions of the inverse problem that are extremely unlikely
and/or unphysical. As any other retrieval technique, even a
neural algorithm can benefit from this kind of information,
when available. In the context of neural algorithms, this role
is partly played by the target outputs given in the training
set as they allow an implicit regularization of the inverse

problem by “teaching” the NN to map the radiometric ob-
servations into physically meaningful solutions.

However, using this constraint alone may not be enough to
account for the local and seasonal variability of the retrieved
quantity. This issue can be addressed either by training dif-
ferent NNs – one for each season and/or wide geographical
area (e.g., latitude band) – or by introducing an input quan-
tity that gives the NN relevant climatological information.
The latter approach was preferred in this work because it
leads to a global NN model flexible enough to perform rea-
sonably well in a broad set of situations. Instead, the former
approach would have led to specialized NNs, each trained
with a reduced number of examples. This would have been
especially true for tropics and southern midlatitudes, where
the spatial coverage provided by the ozonesonde networks is
much sparser than for northern midlatitudes and poles.

In the literature about the NN-based algorithms for satel-
lite retrievals, several ways to include a priori or first-guess
information in the input vector have been proposed. For in-
stance,Aires et al.(2001) proposed the use of a first guess
in NNs for atmospheric retrievals from microwave observa-
tions, whileMüller et al.(2003) simply used the latitude as a
climatological indicator in their Neural Network Ozone Pro-
file Retrieval System (NNORSY) applied to GOME data. In
the present work, the monthly mean tropospheric ozone col-
umn – taken from theZiemke et al.(2011) OMI-MLS tro-
pospheric ozone climatology – was used as additional input
for the retrieval algorithm. This climatology was preferred to
other climatologies – such asFortuin and Kelder(1998) or
Logan(1998) – because it represents the tropospheric ozone
variations with longitude in a finer detail. The horizontal res-
olution of theZiemke et al.(2011) climatology is 5◦ in lati-
tude and longitude.

When a priori information is used in a retrieval algorithm,
the risk of biasing the retrievals towards the a priori should
be monitored. This issue is discussed in Sect.5.3.

3.2 Geographical coverage and colocation procedure

A comprehensive dataset of colocations between OMI data
and ozone soundings was created in order to train the NN
and to assess its performances.

The dataset covers the time period from 2004 to 2011,
and consists of ozone soundings taken from several sources;
the archives of the World Ozone and Ultraviolet Radiation
Data Centre (WOUDC), Southern Hemisphere Additional
Ozonesondes (SHADOZ) network (Thompson et al., 2003)
and the Network for the Detection of Atmospheric Com-
position Change (NDACC), data from the Intercontinental
Chemical Transport Experiment-B (INTEX-B) Ozonesonde
Network Study 2006 (IONS06) and the Arctic Intensive
Ozonesonde Network Study (ARCIONS) campaigns, per-
formed during 2006 and 2008, respectively (Tarasick et al.,
2010), and data from ozone soundings performed over Italy,
provided by the Center for Integration of remote sensing
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techniques and numerical modeling for the prediction of se-
vere weather (CETEMPS) of L’Aquila University, the Insti-
tute of Atmospheric Sciences and Climate (ISAC) of the Ital-
ian National Research Council (CNR), and the Italian Air
Force Center of Aeronautical Meteorological Experimenta-
tion (ReSMA).

The geographical distribution of the ozonesonde stations
whose data were used to create the dataset is shown in Fig.1.

The ozone soundings were colocated with OML1BRUG
data according to the overpass info provided by the Aura Val-
idation Data Center (AVDC) for the OMTO3 Level 2 prod-
uct. The following procedure was followed in performing the
colocations:

1. For each ozone sounding, the OML1BRUG files corre-
sponding to the overpass orbits indicated in the AVDC
info were selected.

2. For each OML1BRUG file, the OMI pixel having its
center closest to the ozonesonde station was selected as
a candidate for the colocation.

3. The candidate pixel was discarded if its center and the
station coordinates were more than 1◦ apart in latitude
or longitude or separated by more than 6 h in time.

Such colocation criteria were adopted in order to be rea-
sonably sure that the tropospheric air volumes sampled by
OMI were representative of the volume actually covered by
the corresponding ozone soundings.

3.3 Preprocessing of OMI spectral measurements

The OML1BRUG radiance spectra were converted in top-
of-atmosphere (TOA) reflectance spectra by normalization to
OML1BIRR irradiance spectra and cosine of the SZA. A nat-
ural logarithm was then applied to the computed reflectances.
The following preprocessing steps were applied in order to
compute the TOA reflectance spectra:

1. The quality of each radiance and irradiance spectral
pixel was checked with respect to the OMI L1B quality
flags, according to the guidelines given invan den Oord
and Veefkind(2002). The spectral pixels that failed the
quality test were discarded from the subsequent compu-
tations.

2. The spectra whose number of discarded wavelengths
exceeded the 5 % of the total were discarded, and were
not used in the colocation procedure.

3. The radiance and irradiance spectra that survived this
screening procedure were linearly interpolated on a
0.1 nm wide common spectral grid. The linear interpola-
tion has been chosen over more sophisticated techniques
(e.g., cubic spline interpolation) because it is computa-
tionally less demanding.

Fig. 1. Spatial distribution of the ozonesonde stations used to con-
struct the dataset to train and test the NN.

4. The TOA reflectance spectra were computed using the
interpolated radiance and irradiance spectra, and the
natural logarithm of the resulting values was computed.

As for the quality-flag-based filtering, particular care was
taken in order to exclude pixels affected by row anomaly
from the dataset. According to the information available
from the Royal Dutch Meteorological Institute (KNMI), the
row anomaly started to appear on 25 June 2007, affect-
ing the rows 53–54 (0 based) in the OMI across-track di-
rection. After about one year, it expanded to the rows 37–
44, and began to assume an erratic behavior after 24 Jan-
uary 2009, randomly affecting subsets of the rows 24–59.
Additional information about the row anomaly effect in OMI
can be found at the webpagewww.knmi.nl/omi/research/
product/rowanomaly-background.php. According to this in-
formation, the flagging of row anomaly events in the OMI
Level 1B products was not complete until 1 February 2010.
Therefore, it was decided to exclude from the dataset all
the OMI measurements over the rows 24–59 starting from
24 January 2009 in order to be reasonably sure that the test
statistics did not contain contaminated pixels.

Apart from the filtering based on the quality flags, other
screening actions were performed in order to strengthen the
quality of the dataset. Specifically, pixels having cloud frac-
tions larger than 0.3 were discarded. The choice of 0.3 as a
threshold for the cloud fraction was made to establish a trade-
off between the need of excluding pixels that are excessively
affected by clouds and the need of ensuring an adequate num-
ber of samples to train the NN and assess its performance in
a wide range of situations.

The spectral interpolation procedure led to log-
reflectances computed at 351 wavelengths. As pointed
out by several studies, the spectral features of UV radiances
or reflectances usually exhibit a considerable correlation,
and a spectral resolution of 0.1 nm is more than necessary for
ozone retrievals (Chance et al., 1997; Richter and Wagner,
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2011). Therefore, the information content of the computed
log-reflectance spectra can be considerably compressed
through a data dimensionality reduction technique. In this
work a simple linear PCA was used. In order to choose an
appropriate value for the number of principal components
(PCs) to retain after the PCA procedure, the error in the
reconstruction of the log-reflectance spectra from the com-
pressed spectra was monitored as a function of the number
of retained PCs. This procedure led to retainment of 20 PCs
since adding further PCs did not improve the reconstruction
significantly (reflectance reconstruction RMS error of about
0.01 %).

4 Design of the neural network

4.1 Training, validation, and test subsets

The colocation procedure described in the previous section
has led to the generation of 10 017 input–output pairs. Such
pairs were used to train the NN algorithm and assess its per-
formance with data not used during the training phase. The
network was trained using only colocations that cover the pe-
riod from 2004 to 2008. This choice was made in order to set
aside enough data to test the NN behavior outside the training
period. The dataset was split into four subsets:

i. 5489 pairs were used to train the NN;

ii. 1737 pairs were used to determine when to stop the
training process via early stopping cross-validation (see
Sect.2.4);

iii. 2071 pairs were used to evaluate the generalization of
the trained NN during the training period;

iv. 720 pairs were used to evaluate the trained NN general-
ization outside the training period.

From now on these four datasets will be referred to asDtrain,
Dvalid, Dtest1 and Dtest2, respectively. The union between
Dtest1andDtest2will be indicated asDtest.

In order to ensure the independence between the datasets,
without affecting their comprehensiveness, the data were as-
signed to each set based on the ozonesonde station they re-
ferred to. Stations used in the training dataset were not used
for the test and validation datasets. A significant number of
colocations pertaining to the different latitudinal bands were
present in each subset.

4.2 Input preprocessing

The input vector of the OMITROPO3-NN consists of 43 in-
puts: 20 PCs of the reflectance spectra, SZA, VZA, terrain
height, NCEP/NCAR temperature profiles at 17 pressure lev-
els, NCEP/NCAR tropopause pressure, radiative cloud frac-
tion, and monthly mean TCO. A logistic activation function
was chosen for the hidden and the output layers of the NN.

Fig. 2.Overall validation results, obtained both during and after the
time period covered by the training set.

Before proceeding with the NN training, a further prepro-
cessing step was applied to the input and target data in order
to make them compatible with the mathematical properties
of the logistic function. Specifically, since the output of the
logistic function lies between 0 and 1, a linear scaling be-
tween these values was applied to the TCO data. Similarly,
all the input data were linearly scaled between−1 and 1 in
order to avoid the saturation of the hidden neurons after the
initialization of the NN weights.

4.3 Training and architecture selection

The NN was trained using the scaled conjugate gradient
(SCG) learning algorithm (Møller, 1993). A heuristic pro-
cedure, as described in Sect.2.4, was adopted to select the
number of hidden layers and neurons. The selected NN ar-
chitecture has one hidden layer with 5 neurons inside. For
this architecture, the training was stopped after about 1000
cycles, using early stopping cross-validation.

5 Results

The results obtained over the wholeDtest set are shown in
Fig. 2, where the performances of the algorithm are sum-
marized through the mean bias, the root mean square error
(RMSE) and the Pearson correlation coefficient between the
reference values of TCO and those retrieved by the NN. More
detailed insight into the error distribution is given in Fig.3,
where the histograms of the absolute and the relative differ-
ences between the retrieved and the “true” TCOs, respec-
tively, are shown, together with some of the relevant statisti-
cal parameter. It can be seen that the retrievals have a small
bias (0.31 DU), and that the error histograms are fairly sym-
metrical (skewness of−0.41 for the absolute differences and
1.38 for the relative differences).
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Fig. 3. Histograms of the absolute (top) and relative (bottom) dif-
ferences between the retrieved and the target tropospheric ozone
columns.

5.1 Generalization during and after the training period

It is important to understand whether there are any differ-
ences in the performances of the algorithm between the years
covered by the training set and those not covered by it as
this may provide an indication on the degree of robustness of
the NN with respect to changes of the instrumental response.
Separate error statistics were computed for theDtest1, con-
taining examples pertaining to the period between 2004 and
2008 and theDtest2sets, consisting of examples acquired af-
ter 2008. The results are summarized in Table2.

The statistics of the comparison between the NN re-
sults and the sonde observations are similar to the re-
sults for the training period (bias smaller than 1 DU,
RMSE smaller than 6 DU, correlation coefficient larger than
0.8). These results indicate that applying the NN to OMI
data acquired after the period covered by the training set
should not result in a significant performance degradation
of the algorithm. This is consistent with the very good

Table 2.Retrieval results during and after the period covered by the
training set. The training set covers the period from 2004 to 2008.

Mean RMSE Pearson
Period bias (DU) (DU) coeff. N. data

2004–2008 0.08 5.26 0.82 2071
2009–2011 0.96 5.93 0.86 720

Table 3.Retrieval results on the test set, stratified by latitude band.

Mean RMSE Pearson
Latitude band bias (DU) (DU) coeff. N. data

90◦ S–60◦ S 1.99 5.63 0.86 271
60◦ S–30◦ S 1.45 5.22 0.76 181
30◦ S–30◦ N 0.59 5.65 0.80 611
30◦ N–60◦ N 0.52 5.28 0.82 1357
60◦ N–90◦ N −2.69 5.66 0.54 371

radiometric stability displayed by OMI throughout its op-
erational lifetime. Details about the OMI calibration status
can be found at the webpagewww.knmi.nl/omi/research/
calibration/instrument_status_v3/perf_plots/index.html.

5.2 Geographical features in the retrieval algorithm

The performances of the algorithm were evaluated after strat-
ifying theDtestset by latitude zone. Five zones were defined:
Antarctica (latitude between 90◦ S and 60◦ S), southern mid-
latitudes (60◦ S to 30◦ S), tropics (30◦ S to 30◦ N), north-
ern midlatitudes (30◦ N to 60◦ N) and the Arctic (60◦ N to
90◦ N).

Maps of mean biases, Pearson correlation coefficients, and
RMSEs found over the ozonesonde stations having at least
35 measurements included in the test dataset are shown in
Fig. 4.

The performances of the algorithm, in terms of mean bias,
RMSE and Pearson coefficient, are comparable for four of
the five zones. Only for the Arctic region the bias was larger.
The causes of this bias are currently under study. A possible
reason might lie in artifacts related to the occasionally diffi-
cult definition of the tropopause in this region.The results are
summarized in Table3.

Table4 presents a summary of the comparison statistics
for each of the stations with at least 20 measurements in-
cluded in theDtest set. The stations are sorted in order of
increasing latitude. For most stations the NN results agree
quite well with the sonde observations (correlations between
0.72 and 0.88, biases between−3 and 2 DU). The last 5
entries in Table4 are the Arctic stations. It can be noticed
that the OMITROPO3-NN has a negative bias over all these
stations. Such bias is particularly significant at Sodankyla
(−3.68 DU).
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Fig. 4. Mean bias (top), Pearson correlation coefficient (middle),
and RMS difference (bottom) between ozonesonde measurements
and retrievals for all the measurement stations having at least 35
measurements in the test dataset.

Scatter plots and time series of the “true” and retrieved
TCO as a function of the day of year (DOY) for the sta-
tions Broadmeadows (Australia) and Goose Bay (Canada)
are shown in Figs.5 and 6 as examples. Similar plots for
other stations can be found in the supplementary informa-
tion.

5.3 Non-climatological features

An important question is to what extent is the algorithm ca-
pable of recognizing anomalous events, i.e., cases of large
departures of the actual TCO from its climatological value
used as an a priori for the retrieval. In order to investigate
this aspect, a TCO relative anomaly was defined as the per-
cent difference between the actual TCO and its climatologi-
cal value taken from the Ziemke climatology, and the differ-
ence between the retrieved and the actual TCO anomalies

Fig. 5. Scatter plot (top) and time series (bottom) of retrieved and
ozonesonde TCO at Broadmeadows (Australia).

were analyzed. The results on theDtest set are plotted in
Fig. 7. The correlation coefficient between the actual and
the retrieved TCO anomalies is smaller than the correlation
found between the TCO absolute values. Nevertheless, there
still exists reasonable agreement between the actual and the
retrieved anomalies, as correlations decreased only from 0.83
to 0.72, indicating that the algorithm uses information other
than the a priori in order to perform its retrievals. Such in-
formation comes from the satellite measurements as well as
from the reanalysis data provided as inputs for the NN. An at-
tempt to investigate the relative contribution of satellite mea-
surements and satellite data to the retrieved TCOs is made in
the next subsection.

The geographical dependence of the algorithm perfor-
mances with TCO anomalies is shown in Fig.8, where a map
of the Pearson correlation coefficient between actual and re-
trieved TCO anomalies, over the ozonesonde stations having
at least 35 measurements included in the test set, is shown.
The map indicates that the anomaly detection capability of
the NN at the tropics is worse than at mid- and polar latitudes.
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Table 4. Retrieval validation results divided by station, sorted by increasing latitude. Only stations with at least 20 measurements included
in theDtestset were considered.

Bias RMSE
Station name Lat. Lon. (DU) (DU) Pearson N. data

Amundsen (South Pole) −89.98 0.00 0.48 2.24 0.94 26
Syowa −69.00 39.58 −0.28 5.35 0.90 41
Davis −68.58 77.97 1.93 5.16 0.87 169
Broadmeadows −37.69 144.95 1.30 4.96 0.75 154
La Réunion −21.08 55.48 −2.66 6.71 0.80 64
Suva (Fiji) −18.13 178.32 0.70 4.98 0.59 28
Ascension Island −7.98 −14.42 0.86 5.54 0.72 144
Watukosek (Java) −7.57 112.65 1.09 4.58 0.74 37
Maxaranguape (Natal) −5.45 −35.33 0.66 5.37 0.74 121
Nairobi −1.27 36.80 2.30 4.17 0.76 23
San Cristobal −0.92 −89.60 1.79 4.82 0.73 44
Barbados 13.16 −59.43 1.77 5.81 0.38 21
Hong Kong Observatory 22.31 114.16 0.94 6.29 0.67 21
Naha 26.20 127.68 1.00 6.06 0.75 28
Huntsville 34.72 −86.64 −2.69 6.07 0.83 143
Tateno-Tsukuba 36.06 140.10 0.59 7.36 0.88 24
Madrid (Barajas) 40.46 −3.65 2.09 5.46 0.80 33
L’Aquila 42.38 13.31 0.94 5.30 0.81 35
Sapporo 42.56 141.33 2.21 5.94 0.87 130
Haute Provence 43.93 5.70 1.66 6.70 0.73 146
Egbert 44.23 −79.78 0.50 4.89 0.83 136
Payerne 46.49 6.57 −0.66 5.42 0.71 60
Hohenpeissenberg 47.80 11.02 2.12 4.79 0.71 52
Regina (Bratt’s Lake) 50.21 −104.71 0.86 4.24 0.78 212
Valentia Observatory 51.93 −10.25 −2.35 3.94 0.89 22
Lindenberg 52.16 14.12 −1.68 4.47 0.57 22
Goose Bay 53.30 −60.36 0.96 4.80 0.77 234
Whitehorse 60.70 −135.07 −3.27 6.66 0.37 34
Yellowknife 62.50 −114.48 −1.90 4.13 0.67 21
Salekhard 66.50 66.70 −0.28 4.46 0.47 84
Sodankyla 67.34 26.51 −3.68 6.03 0.61 207
Scoresbysund 70.49 −21.98 −2.50 5.67 0.58 25

This could be related to the limited availability of training
data in the tropics. However, it must be kept in mind that a
precise TCO anomaly estimation in the tropics is a challeng-
ing task because the range of the anomalies over this area is
usually small.

5.4 Contribution of OMI reflectances to the
retrieved TCO

Given the large amount of ancillary data used by the
OMITROPO3-NN, many of which are correlated with the
TCO, it is important to evaluate to what extent using OMI
reflectances improves the results with respect to using only
the ancillary data themselves in a regression. Some insight on
this point can be obtained by training a second NN using only
the ancillary data as inputs. This second network achieved a
RMSE of 6.11 DU on the test set, with a correlation coef-
ficient of 0.78. The results divided by station are shown in

Table5. It can be seen that the NN trained using only the an-
cillary data performs worse than the OMITROPO3-NN over
most of the ozonesonde stations. The use of OMI reflectances
seems to produce the most significant improvements at high
latitudes, whereas the differences between the two NNs are
less significant over the tropics. The difference between the
OMITROPO3-NN and the NN trained using only ancillary
data becomes more evident if the performances of the two
NNs are evaluated with respect to the TCO anomaly. Fig-
ure 9 shows the TCO anomalies estimated by this second
NN, compared with those measured by the ozonesondes. The
correlation coefficient between the actual and the estimated
TCO anomalies decreases from 0.72 to 0.58. Comparing
Fig. 9 with Fig. 7, it can be seen that the NN trained without
OMI data has a tendency to drastically underestimate TCO
anomalies larger than about 30 %, whereas this tendency
does not seem to be present in the OMITROPO3-NN. Ta-
ble 6 summarizes the differences in the anomaly correlation

www.atmos-meas-tech.net/6/895/2013/ Atmos. Meas. Tech., 6, 895–915, 2013



906 A. Di Noia et al.: OMI NN tropospheric ozone retrievals

Table 5.Results for the NN trained without OMI reflectances, divided by station, sorted by increasing latitude. Only stations with at least 20
measurements included in theDtestset were considered.

Bias RMSE
Station name Lat. Lon. (DU) (DU) Pearson N. data

Amundsen (South Pole) −89.98 0.00 0.48 6.55 0.83 26
Syowa −69.00 39.58 −1.27 7.37 0.84 41
Davis −68.58 77.97 1.62 5.90 0.81 169
Broadmeadows −37.69 144.95 2.85 5.78 0.72 154
La Réunion −21.08 55.48 −2.12 7.09 0.74 64
Suva (Fiji) −18.13 178.32 1.21 4.80 0.56 28
Ascension Island −7.98 −14.42 −2.15 5.73 0.73 144
Watukosek (Java) −7.57 112.65 0.32 5.95 0.42 37
Maxaranguape (Natal) −5.45 −35.33 −0.57 5.04 0.77 121
Nairobi −1.27 36.80 −1.83 4.68 0.64 23
San Cristobal −0.92 −89.60 3.05 5.83 0.66 44
Barbados 13.16 −59.43 −2.21 6.19 −0.06 21
Hong Kong Observatory 22.31 114.16−0.13 7.37 0.47 21
Naha 26.20 127.68 −1.33 6.37 0.72 28
Huntsville 34.72 −86.64 −0.69 5.31 0.85 143
Tateno-Tsukuba 36.06 140.10−2.56 10.08 0.81 24
Madrid (Barajas) 40.46 −3.65 0.04 5.31 0.78 33
L’Aquila 42.38 13.31 1.09 5.99 0.75 35
Sapporo 42.56 141.33 1.60 5.49 0.87 130
Haute Provence 43.93 5.70 2.09 7.19 0.69 146
Egbert 44.23 −79.78 1.16 5.73 0.77 136
Payerne 46.49 6.57 −2.00 6.85 0.51 60
Hohenpeissenberg 47.80 11.02−0.26 3.88 0.75 52
Regina (Bratt’s Lake) 50.21 −104.71 0.36 4.74 0.64 212
Valentia Observatory 51.93 −10.25 −2.83 5.02 0.74 22
Lindenberg 52.16 14.12 −4.19 5.77 0.60 22
Goose Bay 53.30 −60.36 1.12 5.28 0.70 234
Whitehorse 60.70 −135.07 −3.24 7.05 0.33 34
Yellowknife 62.50 −114.48 −2.63 5.13 0.43 21
Salekhard 66.50 66.70 −5.55 7.76 0.47 84
Sodankyla 67.34 26.51 −4.43 7.15 0.45 207
Scoresbysund 70.49 −21.98 −8.27 10.14 0.32 25

coefficients between the two NNs for all the ozonesonde
stations with at least 20 measurements. Again, it can be
seen that the performances of the OMITROPO3-NN with re-
spect to this parameter are considerably better than those of
the NN trained without OMI reflectances for almost all the
ozonesonde stations.

6 Examples: 17 and 26 August 2006

6.1 Global retrievals

Besides carrying out a validation against ozonesondes, it is
important to see how reasonable are the TCO spatial patterns
obtained by applying the OMITROPO3-NN to an extended
area (e.g., an OMI orbit, or the entire globe). In this section,
two examples of global TCO retrievals are discussed.

In Fig. 10, global TCO fields retrieved by the
OMITROPO3-NN algorithm on 17 (top) and 26 (bottom)
August 2006 – expressed in Dobson units – are shown. The
grey areas – where no retrieval is provided – are either non-
sunlit areas, areas where the cloud fraction exceeded the
30 % threshold, or areas over which the quality criteria im-
posed on the OMI spectra (Sect.3.3) were not satisfied. Apart
from a striping effect that can be noticed in the along-track
direction, a visual inspection of the results indicates that rea-
sonable synoptic patterns can be identified. It is likely that the
stripes are caused by several types of noise in the irradiance
data, and that the effect can be partly mitigated by replacing
standard irradiance products with composite products such as
multiyear means, as explained byVeihelmann and Kleipool
(2006). It must be noted, however, that in the ozone pro-
file retrieval algorithm byLiu et al. (2010) the use of mul-
tiyear mean irradiance did not solve the problem completely
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Table 6.Pearson correlation coefficients between observed and estimated TCO anomalies for the OMITROPO3-NN and for the NN trained
without OMI reflectances, divided by station, sorted by increasing latitude. Only stations with at least 20 measurements included in theDtest
set were considered.

OMITROPO3- Ancillary
Station name Lat. Lon. NN NN N. data

Amundsen (South Pole) −89.98 0.00 0.93 0.42 26
Syowa −69.00 39.58 0.78 0.65 41
Davis −68.58 77.97 0.82 0.73 169
Broadmeadows −37.69 144.95 0.68 0.63 154
La Réunion −21.08 55.48 0.51 0.30 64
Suva (Fiji) −18.13 178.32 0.15 0.06 28
Ascension Island −7.98 −14.42 0.29 0.12 144
Watukosek (Java) −7.57 112.65 0.64 −0.13 37
Maxaranguape (Natal) −5.45 −35.33 0.27 0.11 121
Nairobi −1.27 36.80 0.52 −0.12 23
San Cristobal −0.92 −89.60 0.54 0.27 44
Barbados 13.16 −59.43 0.40 0.00 21
Hong Kong Observatory 22.31 114.16 0.58 0.21 21
Naha 26.20 127.68 0.58 0.57 28
Huntsville 34.72 −86.64 0.58 0.37 143
Tateno-Tsukuba 36.06 140.10 0.81 0.60 24
Madrid (Barajas) 40.46 −3.65 0.61 0.55 33
L’Aquila 42.38 13.31 0.33 0.00 35
Sapporo 42.56 141.33 0.70 0.71 130
Haute Provence 43.93 5.70 0.42 0.25 146
Egbert 44.23 −79.78 0.67 0.53 136
Payerne 46.49 6.57 0.65 0.33 60
Hohenpeissenberg 47.80 11.02 0.46 0.47 52
Regina (Bratt’s Lake) 50.21 −104.71 0.72 0.54 212
Valentia Observatory 51.93 −10.25 0.80 0.59 22
Lindenberg 52.16 14.12 0.30 0.27 22
Goose Bay 53.30 −60.36 0.65 0.56 234
Whitehorse 60.70 −135.07 0.49 0.50 34
Yellowknife 62.50 −114.48 0.61 0.35 21
Salekhard 66.50 66.70 0.50 0.51 84
Sodankyla 67.34 26.51 0.57 0.40 207
Scoresbysund 70.49 −21.98 0.53 0.25 25

because also the radiometric calibration of the OMI radiances
contributes to the striping effect.

Another feature that sometimes appears is represented by
some abrupt meridional gradients in the retrieved TCOs (see,
e.g., the northern edge of the “red” region in the Central Asia
on 17 August 2006, above panel in Fig.10). This might be
due to the coarse resolution of either the tropopause or the a
priori fields used as inputs in the OMITROPO3-NN.

The day of 26 August has been chosen as a sample date
also because it allows a visual comparison with a TCO map
shown in the paper byLiu et al. (2010). For the reader’s
convenience, such a map is reported in Fig.11. A similar
color scale was used in Figs.10 and 11 in order to facili-
tate visual comparisons. For instance, it can be noticed that
the ozone peak between southern Brazil, northern Argentina,
and Paraguay is reproduced quite well by the OMITROPO3-
NN algorithm. The same holds for the high-ozone areas

around the Azores, the Eastern coast of the United States,
the Black Sea, off the coast of southwestern Africa and
south of Madagascar. Also, the ozone patterns over Australia
look similar. The main differences exist over North Africa,
where the OMITROPO3-NN seems to yield larger ozone
values, and over Central Asia, where the OMITROPO3-NN
seems to yield a more extended area of large TCO thanLiu
et al. (2010). Unfortunately, no correlative measurements
over these areas were found to assess which of the two al-
gorithms performed better.

6.2 Comparisons with the TM5 chemistry/transport
model

In order to have a more quantitative assessment, the TCO
fields retrieved on 17 and 26 August 2006 were compared
to TCO fields simulated using the chemistry/transport model
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Fig. 6. Scatter plot (top) and time series (bottom) of retrieved and
ozonesonde TCO at Goose Bay (Canada).

Fig. 7.Comparison between actual and estimated TCO anomaly.

(CTM) TM5 (Krol et al., 2005; Williams et al., 2012). The
model provided simulated ozone fields at 34 pressure lev-
els, on a grid of 3◦ in longitude by 2◦ in latitude. In order

Fig. 8.Pearson correlation coefficient between actual and estimated
TCO anomalies for all the measurement stations having at least 35
measurements included in the test set.

Fig. 9.Comparison between actual and estimated TCO anomaly for
the NN trained only with ancillary data.

to perform the comparison, both the NCEP tropopause pres-
sure and the TCO fields retrieved by the OMITROPO3-NN
were mapped on the same grid. The remapping has been done
by selecting all the OMI pixels whose center lie within each
TM5 grid cell, and associating the median non-missing TCO
to the cell. The NCEP tropopause pressure was used as upper
integration limit for the TM5 simulated ozone profiles.

The TCO fields simulated using TM5 on the two dates
are shown in Fig.12, and scatter plots of modeled versus re-
trieved TCOs are shown in Fig.13. Such statistics show that
the OMITROPO3-NN has a positive bias of about 4 DU with
respect to TM5. The Pearson correlation coefficient between
the TCO fields is slightly larger than 0.80 for both the dates.

The structure of the differences between the
OMITROPO3-NN and the TM5 estimates is shown
with more detail in Fig.14, where the histograms of the
absolute differences for the two dates are depicted.

Figure15 shows a map of the NN-TM5 absolute differ-
ences for the two dates under study.

It can be noticed that spatial patterns in the differences
between OMITROPO3-NN and TM5 exist. In particular,
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Fig. 10. Global tropospheric ozone fields retrieved by the
OMITROPO3-NN algorithm on 17 (top) and 26 August (bottom)
2006. No retrieval is performed on pixels with cloud fraction larger
than 30 %.

Fig. 11. Global tropospheric ozone field on 26 August 2006
as shown inLiu et al. (2010). From http://www.cfa.harvard.edu/
atmosphere/ozone_tropo.html.

higher TCO values than TM5 are regularly retrieved by the
OMITROPO3-NN over the southern midlatitudes. The un-
derestimations are mostly concentrated between the tropics
and, to a lesser extent, over Central Europe and the eastern
United States. Large underestimations occur over southeast-
ern Asia.

Similar analyses performed during individual days in Oc-
tober 2006 gave similar results (Di Noia et al., 2012a,b).

Fig. 12. Global tropospheric ozone fields simulated by the TM5
CTM on August 17 (top) and 26 August (bottom) 2006.

6.3 Retrieval sensitivity to tropopause pressure

Whenever a retrieval algorithm is developed, it is important
to assess its sensitivity to its input quantities. In the case of
NNs, a powerful way to do this is represented by the analy-
sis of the NN input Jacobians, i.e., the derivatives of the NN
model8W∗ with respect to its inputsx. An important prop-
erty of single hidden layer NNs is that their input Jacobians
can be written analytically (Blackwell and Chen, 2009).

Since NN mappings are nonlinear, a difficulty in using
their Jacobians for sensitivity analyses lies in the fact that
they are input dependent. One method to overcome this dif-
ficulty is to use the Jacobian to define a NN sensitivity factor
(SF) of an outputyj with respect to an inputxi as the ratio
between the fractional change ofyj with respect to its actual
value, and the corresponding fractional change ofxi :

SFj (xi) =
dyj/yj

dxi/xi

=
xi

yj

·
dyj

dxi

. (8)

As an example of the application of the NN Jacobians
to the OMITROPO3-NN, its derivative with respect to the
tropopause pressure was derived. It can be expected that the
tropopause information plays an important role in the tropo-
spheric ozone retrieval, especially outside the tropics, given
the appreciable degree of correlation between the tropopause
height and the TCO (de Laat et al., 2005). Thus, it is interest-
ing to assess whether this kind of knowledge is well incorpo-
rated in the OMITROPO3-NN.
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Fig. 13.Scatter plots of the OMITROPO3-NN retrievals versus the
TM5 TCO simulations on 17 (top) and 26 August (bottom) 2006.
The OMITROPO3-NN TCO fields are remapped on the TM5 grid.

Two maps of the algorithm SF with respect to the
tropopause pressure – for 17 and 26 August 2006 – are shown
in Fig.16. It can be seen that the SF always assumes negative
values. This result is reasonable because it indicates that the
negative correlation between tropopause pressure and TCO is
captured by the NN model. Furthermore, the SF absolute val-
ues tend to increase going from the tropics toward the poles.
An increase of|SF| indicates a larger sensitivity of the re-
trieved TCO to the tropopause pressure. The increase in|SF|
is not symmetric with respect to the Equator because of the
motion of the Intertropical Convergence Zone (ITCZ) with
the season. This could be an indication that the retrievals at
midlatitudes are more sensitive to the tropopause pressure
during winter.

7 Conclusions

A new neural network algorithm to retrieve tropo-
spheric ozone from OMI data at global scale – named

Fig. 14. Histograms of the absolute differences between the
OMITROPO3-NN retrievals and the TM5 TCO simulations on 17
(top) and 26 August (bottom) 2006. The OMITROPO3-NN TCO
fields are remapped on the TM5 grid.

OMITROPO3-NN – has been presented. The OMITROPO3-
NN inherits from previous work and adds novel character-
istics like the global coverage, the use of tropopause infor-
mation to better demarcate the actual troposphere, and the
incorporation of ancillary data and a priori information into
the NN input vector in order to improve the retrieval accu-
racy. As a result, the OMITROPO3-NN provides daily global
estimates of the tropospheric ozone column.

The algorithm has been validated against ozonesondes and
CTM simulations, and encouraging results have been ob-
tained. Overall, the NN appears to be capable of determining
the spatial and temporal TCO variability.

The OMITROPO3-NN retrievals were first compared to
ozonesonde measurements collected in several geographical
locations around the globe, both during and after the time pe-
riod covered by the training set. As for the latter point, it was
found that the OMITROPO3-NN performs reasonably well
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Fig. 15. Maps of the absolute differences between OMITROPO3-
NN and TM5 TCO fields on 17 (top) and 26 August (bottom) 2006.
The OMITROPO3-NN TCO fields are remapped on the TM5 grid.

also after the training period, even though a slight increase in
the global retrieval bias seems to be present.

Over all the latitude bands except the Arctic, a relatively
low bias against the ozonesonde measurements was noticed.
The correlation coefficients between retrieved and measured
tropospheric ozone columns range approximately between
0.75 and 0.85, and the RMS errors are between 5 and 6 DU.
On the other hand, over the Arctic a larger negative bias was
detected, whose cause is a topic of ongoing research.

The ozonesonde data were also used in order to assess the
capability of the OMITROPO3-NN to detect and estimate
departures of the tropospheric ozone columns from their cli-
matological values. A global correlation coefficient of about
0.70 was found between the actual and the retrieved relative
anomalies. A geographical analysis of this correlation coef-
ficient seems to suggest that the anomaly estimation capabil-
ity of the OMITROPO3-NN over the tropics is worse than at
other latitudes. This may indicate that an insufficient training
was obtained in this latitude band due to the relatively low
number of available ozonesonde data. Future versions of the
algorithm will have to address this problem properly. A pos-
sible approach may consist of complementing ozonesonde
data with radiative transfer simulations in tropical scenar-
ios. Another alternative is the relaxation of colocation criteria
over the tropics.

In order to assess the contribution of OMI reflectances
to the retrievals, a second NN was trained using only the

Fig. 16.Global fields of the tropopause sensitivity factor computed
for the OMITROPO3-NN algorithm on 17 (top) and 26 August (bot-
tom) 2006.

ancillary data. The estimation capabilities of this second NN
were shown to be worse than those of the OMITROPO3-NN,
especially in the estimation of TCO anomalies.

After the comparison with ozonesonde data, examples of
operational use of the OMITROPO3-NN were provided. The
tropospheric ozone fields retrieved by the OMITROPO3-NN
in two dates during August 2006 were compared with simu-
lations made with the TM5 CTM. Such comparisons suggest
that the OMITROPO3-NN has a bias of about 4 DU with re-
spect to TM5. However, the differences between retrieved
and simulated tropospheric ozone fields exhibit a peculiar
geographic pattern, with the OMITROPO3-NN that over-
estimates TM5 simulations over southern midlatitudes and
underestimates between the tropics. Despite this, the simu-
lated global spatial patterns are fairly well reproduced by the
OMITROPO3-NN, as shown by the correlation coefficients,
which are higher than 0.80.

In addition to providing daily fields of the tropospheric
ozone column, the OMITROPO3-NN product also stores the
input Jacobians of the neural model, which can be useful to
evaluate its sensitivity to the input variables, as well as to as-
sess how well the NN is incorporating the knowledge of the
relationships between the input and output variables. Exam-
ples of the retrieval derivative with respect to the tropopause
pressure show that the OMITROPO3-NN seems to capture
the tropospheric ozone sensitivity to the tropopause pressure
in a physically meaningful way. A similar procedure can be
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applied to evaluate the NN sensitivity to all the input quanti-
ties for every retrieval.

While the OMITROPO3-NN generally shows high cor-
relations and low RMS errors with respect to ozoneson-
des compared to other existing satellite products (Schoeberl
et al., 2007; Thompson et al., 2012), a possible drawback
of the current version of the algorithm is its massive use
of ancillary information to complement the OMI radiomet-
ric measurements. This was necessary in order to constrain
the retrieval problem properly as UV measurements may
not have enough sensitivity to directly retrieve tropospheric
ozone without a priori constraints.

Supplementary material related to this article is
available online at:http://www.atmos-meas-tech.net/6/
895/2013/amt-6-895-2013-supplement.zip.
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