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Abstract. Lorenz has proposed a dynamical system in two versions (I and II) that have both proved very
useful as benchmark systems in geophysical fluid dynamics. In version I of the system, used in predictability
and data-assimilation studies, the system’s state vector is a periodic array of large-scale variables that
represents an atmospheric field on a latitude circle. The system is driven by a constant forcing, is linearly
damped and has a simple form of advection that causes the system to behave chaotically if the forcing is
large enough. The present paper sets out to obtain the statistical properties of version I of Lorenz’ system
by applying the principle of maximum entropy. The principle of maximum entropy asserts that the system’s
probability density function should have maximal information entropy, constrained by information on the
system’s dynamics such as its average energy. Assuming that the system is in a statistically stationary
state, the entropy is maximized using the system’s average energy and zero averages of the first and higher
order time-derivatives of the energy as constraints. It will be shown that the combination of the energy
and its first order time-derivative leads to a rather accurate description of the marginal probability density
function of individual variables. If the average second order time-derivative of the energy is used as well,
also the correlations between the variables are reproduced. By leaving out the constraint on the average
energy – so that no information is used other than statistical stationarity – it is shown that the principle
of maximum entropy still yields acceptable results for moderate values of the forcing.

1 Introduction

The principle of maximum entropy guarantees that the
probability density function of a system reproduces all
the information given on the system but is maximally
noncommittal otherwise. The principle has been put for-
ward by Jaynes in a long series of publications, beginning
with two studies on statistical mechanics ([1,2], reprinted
in [3]). Although Jaynes has emphasized that the principle
of maximum entropy extends to systems out of statisti-
cal equilibrium, the number of studies that have explored
this possibility is relatively small. It is the purpose of the
present paper to investigate the principle of maximum
entropy in the context of a forced-dissipative dynamical
system, in particular version I of a system proposed by
Lorenz [4]. This system has proved to be very useful in
predictability and data-assimilation studies and is gener-
ally considered as a benchmark system in geophysical fluid
dynamics. As in statistical mechanics, we wish to predict
the statistics of the system’s variables (the ‘microscopic’
variables) on the basis of a few global averages that char-
acterize the overall state of the system (the corresponding
‘macroscopic’ variables).

It will be assumed that the system has been left to it-
self long enough that the statistics has become stationary.
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Ideally, the statistics is then given by a probability density
function that is a stationary solution of the Liouville equa-
tion, i.e., an invariant measure. For systems of which the
flow in phase space is nondivergent, such as the unforced
and undamped systems of Hamiltonian mechanics1, any
nonnegative normalized and sufficiently smooth function
of the system’s conserved quantities is an invariant mea-
sure. As shown in reference [1], if the measure is required
to reproduce a given value of the system’s average energy,
the principle of maximum entropy selects a unique mem-
ber out of this infinity of possibilities: Gibbs’ canonical
ensemble. For systems that are forced and damped the
flow in phase space is generally not nondivergent so that
invariant measures are much more difficult to obtain. Clos-
est to the ideal invariant measures are the Sinai-Ruelle-
Bowen (SRB) measures discussed by Ruelle [5]. However,
constructing these measures requires sophisticated math-
ematical techniques and may not be possible for every dy-
namical system. In the present paper we propose to deal
with the invariance of the probability density function in a
limited but pragmatic way: by using zero average values of
the first and possibly higher-order time-derivatives of the
energy as additional constraints in the maximization of en-
tropy. The probability density functions thus obtained are

1 In Hamiltonian mechanics nondivergence of the flow
in phase space is implied by Liouville’s theorem.
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at best approximately invariant but, as will be shown, give
quite satisfactory descriptions of the system’s statistics.

An approach that can be regarded as an early ap-
plication of the principle of maximum entropy – in the
pragmatic spirit outlined above – has been pioneered
by Burgers [6]. In a series of publications, reprinted in
Nieuwstadt and Steketee [7], Burgers endeavoured to ap-
ply the techniques of statistical mechanics to the prob-
lem of turbulent flow. He expanded the flow field in terms
of Fourier modes, introduced a phase space spanned by
the corresponding Fourier components, divided the phase
space in small compartments and searched for a statistical
configuration which can be realized microscopically in the
largest number of ways. Instead of prescribing the average
energy – which would have led to the canonical ensem-
ble of equilibrium statistical mechanics – he required that
the forcing and dissipation should balance on average. As-
suming that the damping is linear, so that the dissipation
of the energy is quadratic in the variables, he obtained as
a remarkable result that instead of the energy the dissipa-
tion of the energy is equipartitioned among the variables.

An important problem with Burgers’ method is that
the phase space of a fluid dynamical system is infinite
dimensional. Depending on whether energy or a balance
between forcing and dissipation is used as a constraint,
as a result of equipartition either the energy or the dis-
sipation diverges. Burgers proposed several solutions to
this problem but none of these completely satisfied him
and at some stage he abandoned the subject. Later, also
Onsager [8] took up the challenge of applying statistical
mechanics to turbulence; a detailed review of the scientific
context in which this took place is given by Eyink and
Sreenivasan [9]. Concerning two-dimensional turbulence,
Onsager decided to approximate the vorticity field by a fi-
nite set of point vortices. This leads to a finite-dimensional
Hamiltonian system of ordinary differential equations to
which the formalism of equilibrium statistical mechanics
can be applied without qualifications. It has led to many
interesting results such as the formation of large vortices in
two-dimensional flows, see the review by Kraichnan and
Montgomery [10]. A more recent review of the statisti-
cal mechanics of two-dimensional flows, including many
new developments since 1980, is given by Bouchet and
Venaille [11]. In the latter review due attention is given to
the work of Miller [12], Miller et al. [13] and Robert and
Sommeria ([14,15]) who developed statistical mechanical
methods to deal with the infinite dimensionality of fluid
systems.

All these approaches assume, however, that forcing and
dissipation can be ignored as a first approximation. The
question whether this is a valid procedure in studying the
long-time behaviour of even slightly dissipative fluid sys-
tems is still a fundamental one (see Frisch [16], p. 245).
The advantage of Burgers’ approach is that forcing and
dissipation are incorporated from the start. In fact, they
are essential ingredients of the formulation, a property
that it shares with the inertial range theory of turbulence
developed by Kraichnan [17] and Batchelor [18]. The study
of Verkley and Lynch [19], in which Jaynes’ principle of

maximum entropy is applied to a two-dimensional forced-
dissipative model of the atmosphere, can be seen as a re-
visit of Burgers’ approach. Representing the flow fields in
terms of basis functions (spherical harmonics) and then
truncating the representation, a finite dimensional model
was formulated. By staying within this finite dimensional
model the problem of infinite dissipation was avoided. As
constraints in the maximization of entropy the energy and
enstrophy as well as their decay rates (assumed zero in the
statistically stationary state) were used. Spectra and mean
flows were obtained from the resulting probability density
function. When the two types of constraints were com-
bined, the agreement with spectra and mean flows from
numerical simulations was reasonably good.

The principle of maximum entropy was also used by
Verkley [20] to formulate a parametrization of the average
effect of the small-scale variables on the large-scale vari-
ables in version II of the model devised by Lorenz [4]. The
large-scale variables in this version represent a meteoro-
logical field at equidistant points on a latitude circle. They
are subject to a simple constant forcing, a linear damp-
ing and nonlinear advection. Coupled to each large-scale
variable is a group of small-scale variables that obey sim-
ilar dynamics and represent the effects of motions beyond
the resolution of the large-scale variables. The coupling
goes in both directions; the small-scale variables are be-
ing forced by the large-scale variables and the large-scale
variables are being forced by the small-scale variables. To
parametrize the latter effect, the maximum entropy prin-
ciple was applied to the statistics of the small-scale vari-
ables, assuming that their statistics is stationary on the
time-scale of the large-scale variables. The small-scale en-
tropy was maximized under the constraint that the aver-
age time derivative of the small-scale variables’ energy is
zero. The resulting probability density function was then
used to calculate the average effect of the small-scale vari-
ables on the large-scale variables, yielding a simple linear
damping not unlike the damping that would have resulted
from an empirical approach.

In all cases mentioned, the probability density func-
tion is a product of independent normal distributions in
the different variables. For an individual variable this re-
sult compares reasonably well with numerically obtained
probability density functions, both in terms of averages
and in terms of variances. The predicted independence
of the variables is, however, usually not in accord with
numerical simulations. Now, it can be understood easily
that the principle of maximum entropy will not lead to
covariances between the variables if the mathematical ex-
pressions of the constraints do not involve cross-terms be-
tween the variables. Cross-terms are usually present in
higher order time-derivatives of the energy and covari-
ances will therefore result from the maximization of en-
tropy if these are used as constraints. In the context of
version I of the model devised by Lorenz [4], i.e., the ver-
sion without small-scale variables, we will study the con-
sequences of using the second-order time-derivative of the
energy as an additional constraint in the maximization of
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entropy. The present work aims at showing that this leads
to quite realistic covariances between the variables.

In the next section we give a short summary of the
maximum entropy principle, in a setting that is valid for
any finite dimensional dynamical system. We then, in Sec-
tion 3, introduce version I of the system proposed by
Lorenz [4]. As an introduction to the dynamics of this
system, we discuss the stability properties of the steady
state in which all variables are equal to the forcing. We
then show the results of a numerical simulation in a case
for which the system behaves chaotically. This case will
be used as a numerical reference in Section 4. In this sec-
tion we apply the maximum entropy principle, first using
as a constraint a given value of the average energy, then
adding a zero average first-order time-derivative of the
energy and, finally, adding a zero average second-order
time-derivative of the energy. In the latter two cases it is
also studied what the consequences are of deleting the en-
ergy constraint. The analytical and numerical results are
placed in the perspective of smaller and higher values of
the forcing in Section 5. The conclusions and an outlook
are given in Section 6. Some of the mathematical detail is
deferred to Appendices.

2 The maximum entropy principle

We consider a dynamical system described by a point
X = (X1, X2, . . . , XK) in a K-dimensional phase space.
If we are uncertain as to the exact state of the system,
then it is appropriate to represent the system by means
of a probability density function P(X). The amount of
uncertainty is quantified by the information entropy SI ,
defined as:

SI = −
∫

P(X) log
P(X)
M(X)

dX.

Here the integral is over the whole phase space, dX de-
noting a K-dimensional volume element dX1dX2 . . . dXK .
The measure M(X) embodies any a priori information
that we have on the system. Its presence implies that the
argument of the natural logarithm is dimensionless and
ensures furthermore, as emphasized by Jaynes [21], that
the information entropy SI is independent of a coordinate
transformation of X. Such a coordinate transformation
could result from a deterministic time-evolution of the dy-
namical system, implying that the information entropy SI

is independent of time in that case.
The principle of maximum entropy – see Jaynes [22]

and Pressé et al. [23] for general introductions – states
that the information entropy should be maximal under the
constraints of normalization and any other information
that is available. The normalization constraint reads:∫

P(X)dX = 1.

The other information will be assumed to have the form
of given averages

〈Kl〉 ≡
∫

P(X)Kl(X)dX = K0
l , (1)

where Kl(X) is a function of the state vector X, l =
1, 2, . . . , L, the number of averages being L. The most
important example is the energy E(X), but in this pa-
per we will pay particular attention to dE(X)/dt and
d2E(X)/dt2. We note that the constraints generally leave
so much room for the probability density function that
maximization of the information entropy SI selects a
member from a set that is usually infinitely large. The
member that is selected, however, is special in that it re-
produces the information on the system’s dynamics and,
at the same time, is as noncommittal as possible, i.e., has
not more structure than the information justifies.

Using a set of Lagrange multipliers λ = (λ1, λ2, . . . ,
λL) to take into account the constraints above, the maxi-
mization of SI leads to (see Verkley and Lynch [19], their
Eq. (12))

P(X) =
M(X)
Z(λ)

e
−

L∑
l=1

λlKl(X)
, (2)

where the partition function Z(λ) is the normalization
factor of the probability density function, given by:

Z(λ) =
∫

M(X) e
−

L∑
l=1

λlKl(X)
dX. (3)

It can be seen from the expression above that the maxi-
mum entropy probability density function reduces to the
a priori measure if there are no additional constraints of
the form (1); in this case all Lagrange multipliers are zero2.

The Lagrange multipliers must be obtained from the
values of the averages, i.e., from K0

l , l = 1, 2, . . . , L. An
important relation that can be used to relate the average
values of Kl to the Lagrange multipliers λl is the following:

〈Kl〉 = −∂ logZ
∂λl

. (4)

This identity can be derived straightforwardly from (3).

3 The system

The system to be studied is version I of a model that
Lorenz [4] devised to investigate problems in atmo-
spheric predictability, data-assimilation and parametriza-
tion. E.g., Lorenz and Emanuel [24] used this model to
study observation strategies in data-assimilation. In the
present paper we will use the same model to study the
formalism of maximum entropy as a means of obtaining
the system’s statistics without full recourse to numerical
integrations.

The model state X = (X1, X2, . . . , XK) of the system
represents a certain atmospheric field at K equidistant
points on a latitude circle. The system is assumed to be
periodic so that Xk+K = Xk−K = Xk for all k, see the
schematic in Figure 1.

2 From now on, we skip the normalization condition in count-
ing constraints as normalization is always applied and taken
care of by the partition function.
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Fig. 1. A schematic of the system variables for K = 4, the min-
imum value to allow for chaotic behaviour of the system (5).

The equations that govern the system are:

dXk

dt
= Xk−1(Xk+1 −Xk−2) −Xk + F, (5)

where k = 1, . . . ,K andK ≥ 4. The quadratic term in this
equation represents advection, the linear term represents
damping and the term F , assumed to be independent of k,
is the forcing. In order to allow for chaotic behaviour, the
dimension of the state space should be at least 4. The
variables have been nondimensionalized in such a way that
the coefficients in front of the advection and linear terms
are 1; a nondimensional unit of time corresponds to 5 days.

The most important global quantity that characterizes
the state of the system is the energy E, defined by:

E =
K∑

k=1

1
2
X2

k . (6)

It can be checked that, due to the periodicity conditions,
the quadratic term in the equations drop out if we calcu-
late the first-order time-derivative of E. We thus have:

dE

dt
=

K∑
k=1

Xk
dXk

dt

=
K∑

k=1

(−X2
k +XkF )

= −2E + F

K∑
k=1

Xk. (7)

For the second-order time-derivative of the energy we find,
in a similar fashion,

d2E

dt2
= −2

dE

dt
+ F

K∑
k=1

dXk

dt

= −2
dE

dt
+ F

K∑
k=1

(
F −Xk +Xk−1(Xk+1 −Xk−2)

)

= −2
dE

dt
+ F

K∑
k=1

(
F +Xk(Xk+2 −Xk+1 − 1)

)
. (8)

Here we used the periodicity conditions to advance from
the second to the third line in the expression above.

At this point it might be useful to note that both
Lorenz [4] and Lorenz and Emanuel [24] do not attribute
a specific physical meaning to the variables Xk. Instead,
they remark in the latter reference (p. 400) that the model
is formulated as “one of the simplest possible systems
that treats all variables alike and shares certain properties
with many atmospheric models, namely, (1) the nonlin-
ear terms, intended to simulate advection, are quadratic
and together conserve the total energy [. . . ]; (2) the lin-
ear terms, representing mechanical or thermal dissipation,
decrease the total energy; (3) the constant terms, repre-
senting external forcing, prevent the total energy from de-
caying to zero”. Be that as it may, it is to the credit of
the system that, without forcing and damping, the system
conserves energy, is time-reversal invariant and character-
ized by a nondivergent flow in phase space. As a result, the
statistics of the unforced undamped version of the system
is well described by equilibrium statistical mechanics, as
shown at the end of Section 4.1.

A rather detailed analysis of the system’s dynamics
in dependence of F , for K = 4, K = 8 and K = 40, is
presented by Orrell and Smith [25] using a special type
of bifurcation diagram. We will discuss in some detail
the starting point of any analysis of such kind, namely
the state Xs of which all components are equal to F ,
i.e., Xsk = F, k = 1, . . . ,K. This is a stationary solu-
tion (steady state) of the system (5). If we denote a small
perturbation of Xsk by xk and linearize the system (5)
around this state, we see that the dynamics of these per-
turbations is governed by (see Lorenz and Emanuel [24],
their Eq. (4))

dxk

dt
= F (xk+1 − xk−2) − xk.

Introducing a matrix A with matrix elements Akl,

Akl = −δkl + F (δk+1,l − δk−2,l) (9)

this can be written as:

dxk

dt
=

K∑
l=1

Aklxl,

where it is to be noted that the system is cyclic so that
the index k + K and k − K denote the same variable as
the index k. If all eigenvalues of the matrix A have a real
part that is negative, then all solutions of the linearized
system decay exponentially in time and the steady state
is linearly stable. If one or more eigenvalues of the matrix
A have a positive real part, then the steady state is lin-
early unstable. The special case that all eigenvalues have
a negative real part, except for one or more of which the
real part is zero, is characterized as neutrally stable.

If we write out the matrix A, we see that each row
has the same elements as the row above it but shifted one
position to the right, elements disappearing on the right
reappearing on the left due to the periodicity conditions.
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Such matrices are called circulant; the theory of these ma-
trices can be found in Davis [26], pp. 72-73. The matrix W
of normalized eigenvectors, the columns of which denote
the different eigenvectors, has elements given by:

Wlm =
1√
K
e−iω(l−1)(m−1), (10)

where
ω =

2π
K
. (11)

Note that the structure of these eigenvectors is indepen-
dent of the details of the matrix A but only depends on
the number of variablesK. The eigenvalues χm do depend
on the details of the matrix A and are given by:

χm =
K∑

n=1

A1ne
−iω(n−1)(m−1). (12)

Using (9) and the periodicity conditions we find:

χm = −(1 + Fzm) − i Fqm,

with

zm = cos(2ω(m− 1)) − cos(ω(m− 1)), (13a)
qm = sin(2ω(m− 1)) + sin(ω(m− 1)). (13b)

From these expressions it may be concluded that the
steady state is stable if, for all values of m, the quantity
1 + Fzm is positive. Otherwise, the steady state is either
unstable or neutrally stable. It can be checked straight-
forwardly that Wl,K+2−m = W ∗

lm and χK+2−m = χ∗
m.

This implies that real-valued normal modes can be con-
structed by linearly combining eigenvectors with indices
m and K + 2 −m.

Plots of zm and qm, for K = 4 (squares) and K = 36
(circles), are shown in the upper and lower panels of
Figure 2, respectively. The solid curves are the func-
tions z(x) = cos(2x) − cos(x) (upper panel) and q(x) =
sin(2x) + sin(x) (lower panel), with x expressed in de-
grees. The function z(x) has a minimum of −9/8 and a
maximum of 2, as can been shown easily by differenti-
ation. The minimum value of zm is thus close to −9/8,
while the maximum of zm is close to 2; depending on the
number of nodes K, the minimum is closer to −9/8 and
the maximum closer to 2.

Denoting the minimum (negative) value by zmin and
the maximum (positive) value by zmax it follows that the
steady state is stable as long as the forcing F satisfies

1
−zmax

< F <
1

−zmin
. (14)

When the forcing F is outside this range, the steady state
is either unstable or neutrally stable. For values of F
slightly exceeding the maximum allowed value the flow
is time-dependent and dominated by a westward trav-
eling wave of which the structure closely resembles the
first growing mode, i.e., the eigenvector of which the
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Fig. 2. Graph of z(x) = cos(2x) − cos(x) (upper panel) and
q(x) = sin(2x) + sin(x) (lower panel) with x expressed in de-
grees. In the upper panel the squares and circles denote zm for
K = 4 and K = 36, respectively; in the lower panel the squares
and circles denote qm for K = 4 and K = 36, respectively.
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Fig. 3. The time evolution of the energy in the numerical
simulation with K = 36 nodes and F = 2.5, 5, 10 and 20.

wavenumber is given by m − 1 with m the value for
which zm = zmin. If F increases further the amplitude
of the wave becomes larger and the dominant wavenum-
ber decreases. However, with increasing F the dominance
by waves gives way to increasingly chaotic behaviour, see
also Orrell and Smith [25]. Analogous statements are valid
for negative values of F .

In order to explore the nature of the system’s dynam-
ics outside the range of forcing values for which the steady
state is stable, we integrated the system (5) numerically
for the values F = 2.5, 5, 10 and 20 for a period of 20 000
time units. We used a fourth order Runge-Kutta time in-
tegration scheme with a time step of 0.001 and sampled
the model’s state every 0.1 time unit. We took K = 36,
as in Lorenz [4], and started the integration with all vari-
ables Xk equal to 0, except for X1 which was set to 0.1.
The evolution of the energy (6) of the system over the
first 1000 time units is shown in Figure 3. The graphs
show that in all four cases the energy quickly reaches a
well-defined equilibrium value over this period of time.

http://www.epj.org


Page 6 of 20 Eur. Phys. J. B (2014) 87: 7

Table 1. Overview of the results of the numerical integrations
(first set of four rows and collectively denoted by ‘Num. sim.’)
and the results of the maximum entropy analysis (next five
sets of four rows and collectively denoted by ‘Maxent’ and the
equation numbers referring to the constraints used). The dif-
ferent columns give the values of the forcing F , the average
energy E0 = 〈E〉, the average μk = γ and standard deviation

C
1/2
kk of an individual variable Xk, as well as the parameters σ

and ϕ. Values that are underlined have been used as input of
the maximum entropy analysis.

Case F 〈E〉 γ C
1/2
kk σ ϕ

Num. 2.5 48.78 1.084 1.239 − −
sim. 5 154.3 1.715 2.374 − −

10 465.2 2.586 4.385 − −
20 1199. 3.331 7.458 − −

Maxent 2.5 48.78 0.000 1.646 1.646 −
(16) 5 154.3 0.000 2.928 2.928 −

10 465.2 0.000 5.084 5.084 −
20 1199. 0.000 8.162 8.162 −

Maxent 2.5 48.78 1.084 1.239 1.239 −
(16) 5 154.3 1.714 2.373 2.373 −
(17) 10 465.2 2.584 4.378 4.378 −

20 1199. 3.331 7.451 7.451 −
Maxent 2.5 56.25 1.250 1.250 1.250 −

5 225.0 2.500 2.500 2.500 −
(17) 10 900.0 5.000 5.000 5.000 −

20 3600. 10.000 10.000 10.000 −
Maxent 2.5 48.78 1.084 1.239 0.557 0.869

(16) 5 154.3 1.714 2.373 1.843 0.680

(17) 10 465.2 2.584 4.378 3.965 0.465

(18) 20 1199. 3.331 7.451 7.043 0.355

Maxent 2.5 72.32 1.607 1.198 0.893 0.714

5 244.8 2.720 2.490 2.280 0.441

(17) 10 920.0 5.111 4.999 4.889 0.222

(18) 20 3619. 10.053 10.000 9.947 0.107

We are interested in the statistics of an individual vari-
able Xk as well as in correlations Ckl between the vari-
able Xk with any of the other variables Xl. The statistics
of an individual variable can be described by giving its
full marginal probability density function or, more com-
pactly but less complete, by giving its mean μk and vari-
ance Ckk. We note that, due to the system’s symmetry, the
mean μk is independent of the index k and the covariance
Ckl is only dependent on the difference between k and l.
All numerical averages are calculated straightforwardly by
adding the sampled values of the relevant quantity and
dividing by the total number of samples, i.e., by 200 001.
Marginal probability density functions are obtained from
histograms of Xk. An appropriate interval of Xk is di-
vided into 100 equal-sized bins, the number of samples
within each bin is counted and the result is divided by the
total number of samples and the bin size. The numerical
results corresponding to the four values of F are given in
the first set of rows of Table 1.

X
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Fig. 4. A few results of a numerical time integration of the
Lorenz system (5) for F = 10 and K = 36. A snapshot at
t = 1000 is shown in the first graph (panel a), where the vari-
ables Xk are plotted as a function of x(k) = (360/36)(k − 1).
The second panel (b) shows the marginal probability density
function for a single variable Xk, as calculated from the 200 001
sampled values of the numerical integration. The last panel
shows the correlation function Ckl as a function of l, for k = 19,
determined numerically from the same sampled values of Xk.

We will discuss in more detail the case F = 10 for
which the numerical average energy E0 is 465.2, or 12.92
for E0/K, i.e., for the energy per degree of freedom. The
outcomes of this numerical integration will be used in the
next section as illustration of the results to be discussed
there. In the first graph (panel a) of Figure 4 we show a
snapshot of the system at t = 1000, i.e., at the end of the
integration window of Figure 3. Due to the fact that the
forcing F is positive, the average value of an individual
variable Xk is positive as well. We see from this snap-
shot that a wave pattern is present, with a wave number
around 10. This wave behaves very erratically, although a
moderate westward motion can be discerned. The second
panel of Figure 4 shows the numerical marginal probabil-
ity density function, based on a histogram over the inter-
val [−30, 30], of the values of Xk, k = 1. We see that, for
F = 10, the form is not unlike a normal distribution and
is characterized by an average of 2.586 and a standard
deviation of 4.385, see Table 1.

As the presence of a moving wave pattern already in-
dicates, the variables Xk are correlated. This is confirmed
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by the last graph (panel c) of Figure 4 in which we show
the correlation coefficient Ckl for k = 19 as a function
of l. The choice of k = 19 is motivated by the wish to
have the maximum (equal to the variance or squared stan-
dard deviation) in the middle of the figure but is otherwise
arbitrary due to the system’s symmetry. The covariance
can be described as a damped oscillation away from its
reference point k = 19. In the next paragraph we will in-
vestigate to what extent the statistics, as revealed by the
marginal probability density function of Xk and the corre-
lation function Ckl, can be reproduced from the maximum
entropy principle.

4 Applying the maximum entropy principle

In this paper we are interested in the statistical properties
of (5). We will assume that the system has been integrated
numerically for a sufficiently long time so that the statis-
tics can be considered stationary. The results discussed in
the previous section support this assumption, at least for
the cases considered.

The principle of maximum entropy, as outlined in Sec-
tion 2, will be applied to calculate the system’s probability
density function P(X). We will make no a priori assump-
tions about the probability density function and thus use:

M(X) = 1.

In Section 4.1 we will derive an expression for P(X), using
as constraints the normalization condition, written as:

〈1〉 = 1, (15)

and the condition that the average energy has a given
value:

〈E〉 = E0. (16)

This is essentially a recapitulation of the approach of equi-
librium statistical mechanics and leads to Gibbs’ canonical
ensemble. It will be investigated to what extent the statis-
tics of the system is reproduced if the energy E0 is taken
from the corresponding numerical simulation.

In Section 4.2, we will discuss the consequences of
adding the constraint

〈
dE

dt

〉
= 0. (17)

This is based on the assumption that the statistics of the
system is stationary. Requiring the average time rate of
change of the energy to be zero is an attempt to bring the
probability density function closer to a stationary solution
of the Liouville equation. To what extent this is the case
is not investigated but we will see that, by adding the
latter constraint, a marked improvement is achieved in
the description of the system’s statistics.

In Section 4.3 we will study the consequences of adding
the constraint 〈

d2E

dt2

〉
= 0. (18)

This may also be justified on the basis of the system’s as-
sumed statistical stationarity and can be seen as a step
further in the direction of a stationary solution of the
Liouville equation. The use of this constraint will lead to
additional, quite realistic, structure in the statistics in the
form of correlations between the variables. In all cases con-
sidered we compare the analytical results with the numer-
ical results for F = 10 given in the previous section. The
results for the other values of the forcing are summarized
in Table 1, discussed in Section 4.4.

4.1 The case 〈E〉 = E0

Computing the maximum entropy probability density
function P(X) for the system (5) using only the normal-
ization condition (15) and condition (16) as constraints is
straightforward. From (2) and (16) it follows immediately
that:

P(X) =
1

Z(λ0)
e−λ0E , (19)

where λ0 is the Lagrange multiplier associated with the
constraint 〈E〉 = E0 and the partition function Z(λ0) is
given by:

Z(λ0) =
∫
e−λ0E dX.

By writing:

λ0E =
1

2σ2

K∑
k=1

X2
k , (20)

in which we have defined (see (A.1) and (A.2) of
Appendix A)

σ2 =
1
λ0
, (21)

the probability density function assumes the form:

P(X) =
1

Z(λ0)
e
− 1

2σ2

K∑
k=1

X2
k

.

By introducing the matrix B with matrix elements

Bkl = δkl

the probability density function can be written as:

P(X) =
1

Z(λ0)
e
− 1

2σ2

K∑
k=1

K∑
l=1

XkBklXl

. (22)

Now, a general multivariate normal distribution is defined
by (see [27], their Eq. (6.19.1))

N (μ,C,X) =
1

(2π)K/2

1
|C|1/2

× e
− 1

2

K∑
k=1

K∑
l=1

(Xk−μk)C−1
kl (Xl−μl)

, (23)
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where μ is a vector of means (μ1, . . . , μK) and C is the
covariance matrix with matrix elements Ckl and determi-
nant |C|. By definition, a multivariate normal distribution
has the following properties:

∫
N (μ,C,X) dX = 1, (24a)

∫
N (μ,C,X)Xk dX = μk, (24b)

∫
N (μ,C,X)XkXl dX = μkμl + Ckl, (24c)

and its entropy is given by (see [27], their Eq. (17.2.2))

SN =
1
2

log
[
(2πe)K |C|] .

It can thus be concluded that the sought-for probability
density function is simply given by:

P(X) = N (μ,C,X), (25)

with

μk = 0, (26a)

Ckl = σ2B−1
kl = σ2δkl, (26b)

and
|C| = σ2K .

For the maximum entropy, denoted by SM , we thus have:

SM =
1
2

log
[
(2πeσ2)K

]
, (27)

whereas for the partition function we obtain:

Z(λ0) = (2π)K/2|C|1/2 = (2πσ2)K/2. (28)

The latter result follows by equating expressions (22)
and (23) of the probability density function.

In the resulting probability density function (25) the
value of σ, related to the Lagrange multiplier λ0, is still
unknown. A relation for σ2 can be obtained by apply-
ing (4) to (28), but we prefer to follow a different route.
Using (24b), (24c) and (26), one obtains:

〈Xk〉 = μk = 0,

〈X2
k〉 = μ2

k + Ckk = σ2.

Combining the constraint (16) with (6) gives:

〈E〉 =
K∑

k=1

1
2
〈X2

k〉 =
K

2
σ2 = E0.

It thus follows that we have:

σ2 =
2E0

K
, (29)

so that
λ0 =

K

2E0
.

This completes the determination of the probability
density function.

If we substitute (29) into expression (27) for the en-
tropy SM we may calculate the entropy per degree of free-
dom (SM/K) as a function of the energy per degree of
freedom (E0/K). A grey shading plot of SM/K as a func-
tion of F and E0/K is given in the upper panel of Fig-
ure 5. The inclusion of F is in anticipation of future plots
of a similar nature, but at the moment the plot’s indepen-
dence of F may remind us that in the analytic treatment
the forcing has not entered the stage yet. The numerical
integration discussed in the previous section has F = 10
and E0/K = 12.92 and is represented by the dot in the
graph, the corresponding value of SM/K being 3.04.

When we use the numerical average value 12.92 of
E0/K, we may calculate σ2 and thus the probability den-
sity function P(X). This probability density function in-
volves all variables Xk. The marginal probability density
function of any subset of variables may be found by re-
taining only the means and covariances of this subset. If
there is only a single variable Xk in this subset, we have:

P(Xk) = N (μk, Ckk, Xk), (30)

i.e., a univariate normal distribution with mean μk = 0
and variance

Ckk = σ2 =
2E0

K
. (31)

A plot of this marginal probability density function, to-
gether with the numerically obtained probability density
function of the previous section, is shown in the second
panel of Figure 5. The analytical marginal probability den-
sity function has its maximum at the origin and not at a
finite positive value, but the width is only mildly over-
estimated, see Table 1. From (26b) we conclude that the
analytical covariance matrix is proportional to the iden-
tity matrix. The correlations between the variables, as
exemplified by the last panel of Figure 4, are thus not
reproduced.

As remarked above, the probability density func-
tion (25) is Gibbs’ canonical ensemble. This probability
density function is expected to give a proper description
of the statistics of the unforced and undamped system. To
demonstrate that this is indeed the case, we continued the
time integration discussed in the previous section for an-
other 20 000 time units but with the forcing and damping
put to zero and sampling the results over the latter period.
When comparing the flow patterns of this integration with
the flow patterns of the forced and damped integration,
it was noticed that waves remain present and continue to
behave erratically but without overall wave propagation.
This suggests that correlations between the different vari-
ables will be small and, indeed, they are: not larger in
amplitude than 0.2, in accord with the absence of corre-
lations in (25). The marginal probability density function
for a single variable is shown in the third panel of Figure 5,
together with the analytical distribution of panel b. The
match is nearly perfect. Similar results apply when this is
repeated for the other integrations.
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Fig. 5. Upper panel (a): a grey shading plot of the maxi-
mum entropy per degree of freedom (SM/K) as a function of
the forcing F and the energy per degree of freedom (E0/K)
in the case that the average energy is used as the single con-
straint in the maximization of entropy. The dependence on F
has been included in anticipation of plots of a similar nature
to be discussed in the following subsections. The dot has co-
ordinates F = 10 and E0/K = 12.92 and corresponds to the
time integration discussed in the previous section. The value
of SM/K at this point is 3.04. Middle panel (b): the corre-
sponding marginal probability density function (30) together
with the numerically obtained distribution of Figure 4, panel b.
Lower panel (c): the same marginal probability density func-
tion (30) but now combined with the numerical distribution,
obtained by setting the forcing and damping to zero and con-
tinuing the numerical integration for another 20 000 time units
with sampling over the latter period.

4.2 The case 〈E〉 = E0, 〈dE/dt〉 = 0

If we maximize the entropy under the normalization con-
dition (15) and the constraints (16) and (17) we obtain,
according to (2),

P(X) =
1

Z(λ0, λ1)
e−λ0E−λ1

dE
dt , (32)

where λ0 and λ1 are the Lagrange multipliers associated
with the constraints (16) and (17), respectively, and the
partition function Z(λ0, λ1) is given by:

Z(λ0, λ1) =
∫
e−λ0E−λ1

dE
dt dX.

The argument of the exponential can be written as:

λ0E + λ1
dE

dt
=

1
2σ2

K∑
k=1

(Xk − γ)2 − γ2, (33)

where σ2 and γ are given by (see (A.1) and (A.2) of
Appendix A)

σ2 =
1

λ0 − 2λ1
, (34a)

γ = − λ1F

λ0 − 2λ1
. (34b)

Using the matrix B introduced in the previous subsection
(with matrix elements Bkl = δkl) the probability density
function can be written

P(X) =
e

Kγ2

2σ2

Z(λ0, λ1)
e
− 1

2σ2

K∑
k=1

K∑
l=1

(Xk−γ)Bkl(Xl−γ)
.

If normalized, this distribution is seen to be a multivariate
normal distribution of the form (23) with

μk = γ, (35a)

Ckl = σ2B−1
kl = σ2δkl (35b)

and
|C| = σ2K .

The entropy is given by (27) and for the partition function
we have:

Z(λ0, λ1) = e
Kγ2

2σ2 (2π)K/2|C|1/2 =
(
e

γ2

σ2 2πσ2
)K/2

.

The resulting probability density function is thus the mul-
tivariate normal distribution (25) with a diagonal covari-
ance matrix given by (35b) and nonzero means that are
given by (35a).

In obtaining the values of σ2 and γ we might use (4)
but we prefer to reason as follows. We have:

〈Xk〉 = μk = γ,

〈X2
k〉 = μ2

k + Ckk = γ2 + σ2,

so that the constraints (16) and (17) assume the form

〈E〉 =
K∑

k=1

1
2
〈X2

k〉=
K

2
(γ2 + σ2) = E0,

〈
dE

dt

〉
=

K∑
k=1

(−〈X2
k〉 + 〈Xk〉F ) = K(−γ2 − σ2 + γF ) = 0.

From the first condition we obtain:

γ2 + σ2 =
2E0

K

and if we substitute this in this second condition we get
an expression of γ in terms of the energy E0 and the
forcing F :

γ =
2E0

FK
. (36)
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The value of γ now being known, the same condition can
be used to obtain σ2:

σ2 = γ(F − γ). (37)

From σ2 and γ2 thus obtained we may deduce the values
of the Lagrange multipliers λ0 and λ1

λ0 =
1

Fσ2

(
F − 2γ

)
, (38a)

λ1 =
1

Fσ2

(
−γ
)
. (38b)

These equations follow from (34) by dividing the expres-
sion of γ by the expression of σ2, giving λ1, and then
using the expression of σ2 to obtain λ0. This completes
the determination of the probability density function.

Substituting expression (36) of γ into (37) we obtain:

σ2 =
2E0

K

(
1 − 2

F 2

E0

K

)
. (39)

This result is quite remarkable as it shows that not all
values of the energy E0 are allowed as only values of E0

for which
E0

K
≤ F 2

2
(40)

lead to an acceptable solution, i.e., a solution for which
σ2 is nonnegative3. If the expression for σ2 is substituted
in equation (27) of the entropy, we see that the entropy
depends on the energy as well as on the forcing and that
the entropy is well-defined as long as (40) is satisfied.

In panel a of Figure 6 the entropy is plotted as a
function of the forcing and the energy. The upper solid
parabola, at which the left-hand side and the right-hand
side of (40) are equal, bounds from above the region of
allowed values of the energy. The lower dot in this panel,
at which SM/K = 2.90, denotes the values F = 10 and
E0/K = 12.92 and refers to the numerical integration dis-
cussed in the previous section. The marginal probability
density function is (30) with μk = γ and Ckk given by:

Ckk = σ2 = γ(F − γ). (41)

This probability density function is plotted as the smooth
solid curve in the second panel of Figure 6, together with
the numerically obtained probability density function dis-
cussed in the previous section. The agreement between the
analytical and the numerical curves is now much better,
especially because the analytical mean of 2.584 (based on
the numerically given value of the energy) is very close
to the numerical value of 2.586, see Table 1. Another im-
provement is that the analytical probability density func-
tion has become somewhat slimmer and has acquired a
somewhat higher maximum value. The covariance matrix
is diagonal, see (35b), so that the covariances as seen in
panel c of Figure 4 are not reproduced.

3 We note that the existence of an upper limit to the en-
ergy of a forced-dissipative system that has converged to its
attractor is also implied by equation (7) of Lorenz [28].
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Fig. 6. Upper panel (a): a grey shading plot of the maximum
entropy per degree of freedom (SM/K) as a function of the
forcing F and the energy per degree of freedom (E0/K) in
the case that both (16) and (17) are used as constraints in
the maximization of entropy. The lower dot has the same sig-
nificance as in Figure 5 and marks the coordinates F = 10 and
E0/K = 12.92; the value of SM/K at this point is 2.90. The up-
per dot denotes the coordinates F = 10 and E0/K = 25.0 and
lies on the moderately thin parabola that represents the values
of E0/K that result from a maximum entropy analysis with-
out the energy constraint (16). The two thin solid curves are
isolines of the entropy passing through the coordinates of the
upper dot; the value of SM/K at this point is 3.03. The thick
solid parabola marks the upper boundary of the allowed values
of E0/K. Middle panel (b): the analytical marginal probabil-
ity density function corresponding to the lower dot together
with the numerically obtained distribution of Figure 4, panel b.
Lower panel (c): the analytical marginal probability density
function corresponding to the upper dot in combination with
the same numerical distribution as in panel b.

For each value of the forcing F there is a value of the
energy E0 for which the entropy is larger than for other
values of E0. This energy value would be the result of our
analysis, had the energy not been used to constrain the
maximization of entropy. For any value of the forcing F ,
we may obtain this maximum by repeating the analysis
above but leaving out the constraint (16). The result can
be obtained straightforwardly by putting the Lagrange
multiplier λ0 equal to zero in (38a). It follows that:

γ =
F

2
, (42)
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so that, from (36) and (37), we have:

E0

K
=
F 2

4
, (43a)

σ2 =
F 2

4
. (43b)

The points in panel a of Figure 6 for which the first of
these relations is valid are represented by the intermedi-
ately thin parabola. It is a curve halfway between zero
and the maximum allowed value of E0/K and connects
the entropy maxima that pertain to given values of the
forcing F .

For F = 10 the value of E0/K on this curve is 25.00
and the corresponding point is denoted by the upper dot
in panel a of Figure 6. The isoline of SM/K that passes
through this point, with a value of 3.03, is displayed in the
form of a thin solid curve. The marginal probability den-
sity function that corresponds to these values is shown
in the third panel of Figure 6, along with the same nu-
merical distribution as in panel b. In accordance with the
fact that the energy is higher than the corresponding nu-
merical simulation the mean is higher than the numerical
mean. Also the width is somewhat larger. Although the
latter result is less accurate than the former is it about as
accurate as the result in the previous subsection. To the
credit of the result shown in panel c of Figure 6 is that
no information from the numerical simulation is used; it is
exclusively based on the assumption that the system has
reached a statistically stationary state.

4.3 The case 〈E〉 = E0, 〈dE/dt〉 = 0, 〈d2E/dt2〉 = 0

In this subsection we consider the case in which, apart
from the normalization condition, the conditions 〈E〉 =
E0, 〈dE/dt〉 = 0 and 〈d2E/dt2〉 = 0 are used as con-
straints in the maximization of entropy. According to (2)
the probability density function can be written

P(X) =
1

Z(λ0, λ1, λ2)
e−λ0E−λ1

dE
dt −λ2

d2E
dt2 , (44)

where λ0, λ1 and λ2 are the Lagrange multipliers as-
sociated with the constraints and the partition function
Z(λ0, λ1, λ2) is given by:

Z(λ0, λ1, λ2) =
∫
e−λ0E−λ1

dE
dt −λ2

d2E
dt2 dX.

The argument of the exponential can be written as:

λ0E + λ1
dE

dt
+ λ2

d2E

dt2
=

1
2σ2

K∑
k=1

(
(Xk − γ)2

+ ϕXk(Xk+2 −Xk+1) + ϕF − γ2
)
, (45)

with σ2, γ and ϕ given by (see (A.1) and (A.2) of
Appendix A)

σ2 =
1

λ0 − 2λ1 + 4λ2
, (46a)

γ = − (λ1 − 3λ2)F
λ0 − 2λ1 + 4λ2

, (46b)

ϕ =
2λ2F

λ0 − 2λ1 + 4λ2
. (46c)

By introducing the matrix D with the matrix elements

Dkl = δkl +
ϕ

2
(
δk−2,l − δk−1,l − δk+1,l + δk+2,l

)
,

we obtain for the probability density function (44)

P(X) =
e

K(γ2−ϕF )
2σ2

Z(λ0, λ1, λ2)
e
− 1

2σ2

K∑
k=1

K∑
l=1

(Xk−γ)Dkl(Xl−γ)
.

After normalization, this distribution becomes a
multivariate normal distribution (23) with

μk = γ, (47a)

Ckl = σ2D−1
kl , (47b)

and
|C| = σ2K |D|−1.

The entropy is given by:

SM =
1
2

log
[
(2πeσ2)K |D|−1

]
, (48)

and for the partition function we have:

Z(λ0, λ1, λ2) = e
K(γ2−ϕF )

2σ2 (2π)K/2|C|1/2

=
(
e

(γ2−ϕF )
σ2 2πσ2

)K/2|D|−1/2.

This is the same general form as obtained in the cases with
one and two constraints, but with a covariance matrix C
that has more structure as it is proportional to the inverse
of a matrix D that is not diagonal.

The matrix D is circulant like the matrix A of the lin-
ear stability problem of the steady state. Therefore, the
matrix of eigenvectors – of which the elements are denoted
by Wlm – is given by (10) and (11). For the eigenvalues,
denoted here by ψm, the expression is (12) with matrix
elements D1n instead of A1n. This yields

ψm = 1 + ϕzm,

where zm is given by (13a). As the determinant of a matrix
is the product of its eigenvalues, we have:

|D| =
K∏

m=1

ψm =
K∏

m=1

(1 + ϕzm), (49)
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which implies that

|D|−1 =
K∏

m=1

1
1 + ϕzm

.

The entropy can thus be written

SM =
1
2

log

[
K∏

m=1

2πeσ2

1 + ϕzm

]
. (50)

It also follows from (49) that

|D|−1/2 =
K∏

m=1

[
1

1 + ϕzm

]1/2

,

which gives

Z(λ0, λ1, λ2) =
K∏

m=1

⎡
⎣e

(γ2−ϕF )
σ2 2πσ2

1 + ϕzm

⎤
⎦

1/2

for the partition function.
The partition function contains square roots of ψm =

1 +ϕzm. To ensure that the partition function is real and
positive (as it should be as it is the normalization factor of
the probability density function) we require that ϕ be such
that 1+ϕzm is positive for all values ofm. We have seen in
Section 3 that the minimum zmin of zm is negative (close
to −9/8) and that the maximum zmax of zm is positive
(close to 2) so that all values of 1 + ϕzm are positive as
long as ϕ satisfies

1
−zmax

< ϕ <
1

−zmin
. (51)

This limits the range of ϕ. The values of σ2, ϕ and γ – and
therewith the Lagrange multipliers λ0, λ1 and λ2 – are to
be determined from the constraints (16), (17) and (18).
Again, we might make use of (4) to obtain the necessary
relations, but we will follow a route which, we believe, is
more clarifying.

An important ingredient in the evaluation of the con-
straints is the inverse of the matrix D. In Appendix B it is
shown that the matrix elements of D−1, denoted by D−1

kl ,
are given by:

D−1
kl =

1
K

K∑
m=1

cos(ω(m− 1)(l − k))
1 + ϕzm

. (52)

The elements Ckl of the covariance matrix C thus become

Ckl =
σ2

K

K∑
m=1

cos(ω(m− 1)(l − k))
1 + ϕzm

. (53)

We recall that it follows from the expressions (6) and (7)
that:

〈
E
〉

=
K∑

k=1

1
2
〈X2

k〉

〈dE
dt

〉
=

K∑
k=1

(
−〈X2

k〉 + 〈Xk〉F
)
.

Furthermore, it follows from the properties (24) of a
multivariate normal distribution that:

〈Xk〉 = γ,

〈X2
k〉 = γ2 + σ2D−1

kk = γ2 +
σ2

K

K∑
m=1

1
1 + ϕzm

,

where we also used (47) and (52). We thus have:

〈E〉 =
1
2

(
Kγ2 + σ2

K∑
m=1

1
1 + ϕzm

)

〈
dE

dt

〉
= −

(
Kγ (γ − F ) + σ2

K∑
m=1

1
1 + ϕzm

)
.

From (8) we deduce that:

〈d2E

dt2

〉
+ 2

〈dE
dt

〉
=

F

K∑
k=1

(
F + 〈XkXk+2〉 − 〈XkXk+1〉 − 〈Xk〉

)
.

Equations (24), (47) and (52) imply that

〈XkXk+1〉 = γ2 + σ2D−1
k,k+1

= γ2 +
σ2

K

K∑
m=1

cos(ω(m− 1))
1 + ϕzm

,

〈XkXk+2〉 = γ2 + σ2D−1
k,k+2

= γ2 +
σ2

K

K∑
m=1

cos(2ω(m− 1))
1 + ϕzm

.

This gives

〈
d2E

dt2

〉
+2

〈
dE

dt

〉
= F

(
K(F − γ) + σ2

K∑
m=1

zm

1 + ϕzm

)
.

To advance from the previous two expressions to the last
we used the definition (13a) of zm. The constraints on the
energy and on the first- and second-order time derivatives
of the energy are thus seen to lead to the following three
conditions on σ2, γ and ϕ

γ2 +
σ2

K

K∑
m=1

1
1 + ϕzm

=
2E0

K
, (54a)

γ (γ − F ) +
σ2

K

K∑
m=1

1
1 + ϕzm

= 0, (54b)

(F − γ) +
σ2

K

K∑
m=1

zm

1 + ϕzm
= 0. (54c)

Once we have obtained these parameters, the Lagrange
multipliers λ0, λ1 and λ2 can be derived from (46). Indeed,
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we see that:

λ0 =
1

2Fσ2
(2F − 4γ + 2ϕ), (55a)

λ1 =
1

2Fσ2
(3ϕ− 2γ), (55b)

λ2 =
1

2Fσ2
ϕ. (55c)

The expression for λ2 follows by dividing (46c) by (46a).
By dividing (46b) by (46a) and using the result for λ2,
one finds λ1. Expression (46a) can be used to obtain λ0.

By subtracting (54b) from (54a) we find:

γ =
2E0

FK
, (56)

which is the same expression for γ as we obtained in the
previous subsection. Substituting this value in (54a) we
see that

σ2

K

K∑
m=1

1
1 + ϕzm

=
2E0

K

(
1 − 2

F 2

E0

K

)
.

This expression resembles (39) and, as 1 +ϕzm should be
positive for all m, implies again that

E0

K
≤ F 2

2
(57)

in order for σ2 to be nonnegative. By multiplying (54c)
by γ and adding the result to (54b) we obtain, excluding
σ2 = 0,

K∑
m=1

1 + γzm

1 + ϕzm
= 0. (58)

This equation is generally nonlinear in ϕ and has to be
solved numerically. (For K = 4, however, the equation
is quadratic and can be solved analytically.) After solv-
ing (58), any of equations (54) can be used to obtain σ2

from ϕ, by which the determination of the probability den-
sity function is completed.

We noted above that, in order for 1+ϕzm to be positive
for all m, the parameter ϕ should lie between −1/zmax

and −1/zmin, see (51). Now, for a sum of fractions (58)
with positive denominators to add up to zero, at least one
of the nominators has to be negative. This implies that,
if ϕ has to have a value within the limits (51), then γ
needs to have a value outside these limits. The immediate
consequence is that

γ ≥ 1
−zmin

or γ ≤ 1
−zmax

.

The first case is relevant for positive F for which it implies
that

E0

K
≥ F

2
1

−zmin
. (59)

The second case is relevant for negative F in which case
it implies that

E0

K
≥ F

2
1

−zmax
. (60)

Given a value of F and a value of E0/K such that (57)
and either (59) or (60) are satisfied we may solve (58) for
ϕ and thus acquire all necessary parameters to determine
the probability density function.

However, when the forcing F lies between the limits
−1/zmax and −1/zmin values of E0/K such that (57) and
either (59) or (60) are satisfied do not exist because then
the conditions (59) or (60) are incompatible with (57). We
have seen in the previous section that for these values of
the forcing the steady state solution of the Lorenz system
is stable. Equation (58) cannot be solved in this case al-
though the system (54) admits the special solution (for
which the value of ϕ is not relevant)

σ2 = 0, γ = F,

implying that there is only one acceptable value for E0/K,
namely

E0

K
=
F 2

2
.

This is the situation in which the probability density func-
tion is infinitely sharply peaked at the stable stationary
stateXk = Xsk = F . It is quite remarkable that the added
constraint 〈d2E/dt2〉 = 0 identifies this special case.

As in the previous subsections, the marginal probabil-
ity density function may be found by retaining only the
means and covariances of the subset of variables in which
we are interested. For a single variable Xk, this gives (30)
in which μk = γ and in which Ckk follows from (53):

Ckk =
σ2

K

K∑
m=1

1
1 + ϕzm

= γ (F − γ). (61)

In the second equality we used (54b). The covariances be-
tween the variables Xk are given by (53). Note that the
resulting marginal probability density function is identi-
cal to the one we obtained in the previous subsection.
An important difference, however, is that the covariance
matrix (53) is no longer diagonal.

In the upper panel of Figure 7, in the form of a grey
shading plot, we show the entropy per degree of freedom
(SM/K) as a function of the forcing (F ) and the energy
per degree of freedom (E0/K). The plot is similar to the
plot shown in Figure 6, except for the lower limits of the
allowed energy. These limits, in which the left-hand sides
and the right-hand sides of (59) and (60) are equal, are
displayed by the thick solid lines. The parameters of the
numerical simulation, F = 10 and E0/K = 12.92, are rep-
resented by the lower dot; here the value of SM/K is 2.85.
The corresponding marginal probability density function
is identical to the one shown in panel b of Figure 6 and
is not shown again. Instead, we give in panel b the corre-
lation matrix Ckl as a function of l, fixing k at 19, in the
form of open dots connected by thin straight lines. The
corresponding numerical result, shown earlier in panel c
of Figure 4, is given by the filled dots. The resemblance
between the analytical and numerical correlation matrix is
quite good. With increasing |l−k|, the elements of the ana-
lytical correlation matrix decrease in amplitude somewhat
faster than their numerical counterparts.
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Fig. 7. Upper panel (a): a grey shading plot of the maximum
entropy per degree of freedom (SM/K) as a function of the
forcing F and the energy per degree of freedom (E0/K). All
three constraints (16), (17) and (18) are used to constrain the
maximization of entropy. The lower dot has the same signifi-
cance as in Figures 5 and 6 and marks the coordinates F = 10
and E0/K = 12.92, corresponding to the numerical simula-
tion discussed in Section 3; the value of SM/K at this point
is 2.85. The upper dot denotes the coordinates F = 10 and
E0/K = 25.55 and lies on the curve of intermediate thickness
that represents the values of E0/K that result from a maxi-
mum entropy analysis without the energy constraint (16). The
two thin solid curves are isolines of the entropy passing through
the coordinates of the upper dot; the value of SM/K is 3.02
at this point. The thick solid parabola and the two solid lines
mark the upper and lower boundaries of the allowed values
of E0/K. Middle panel (b): the analytical correlation func-
tion (open dots) corresponding to the lower dot in panel a, to-
gether with the numerically obtained correlation (filled dots)
of Figure 4, panel c. Lower panel (c): the analytical correla-
tion function (open squares) corresponding to the upper dot in
combination with the same numerical correlation as in panel b.

Also here we note that for each value of the forcing F ,
there is a value of E0 at which the entropy SM is largest.
Plotted as a function of F and represented by a curve of
intermediate thickness, these values are included in panel
a of Figure 7. The value of E0/K at F = 10 for which
the entropy is largest is 25.55 and is marked by the upper
dot. The entropy SM/K at this point is 3.02; the cor-
responding isoline is shown in the form of a thin curve

passing through this point. The value of E0/K at this
point is somewhat higher than the energy of the corre-
sponding point in Figure 6 – there it is 25.00 – so that its
associated marginal probability density function is slightly
shifted towards higher values. The difference between this
graph and the graph shown in panel c of Figure 6 is too
small to warrant a separate plot. Instead, we show the
analytical correlation function in panel c. In accord with
the higher value of the energy, its peak is higher than the
corresponding plot in the second panel of Figure 7.

The curve which marks the value of the energy at
which the entropy is maximal is obtained by repeating
the maximum entropy calculation without the constraint
on the energy, i.e., without (16). The results can be ob-
tained rather simply by setting the Lagrange multiplier
λ0 equal to 0. If we do this in the first equation of (55),
we see that the average γ is given directly in terms of the
forcing F and the parameter γ by:

γ =
F + ϕ

2
. (62)

The calculations proceed as before, except that (54a) is
not to be considered as a constraint but as one of the
expressions from which E0 might be calculated once γ, σ2

and ϕ are known – an alternative is (56).
The value of ϕ is obtained from (58) by substitut-

ing (62) for γ and solving directly for ϕ in terms of F .
After substitution of (62) into (58), the equation becomes:

K∑
m=1

1 + Fzm

1 + ϕzm
+K = 0. (63)

This equation will not yield acceptable values of ϕ for all
values of the forcing F ; the forcing has to lie outside the
range from −1/zmax to −1/zmin, i.e., outside the range
for which the steady state Xk = Xsk = F is stable. This
can be seen as follows. In order to have a real and positive
partition function, all denominators in (63) should be pos-
itive. But if F would lie between −1/zmax and −1/zmin,
then also all nominators are positive so that the first term
on the left-hand side of (63) cannot cancel the second term
on the left-hand side. The only option to satisfy (54) is to
have σ2 = 0 and γ = F so that E0/K = F 2/2, in accord
with what we have seen above. If F lies outside the range
from −1/zmax to −1/zmin, then an acceptable value of
ϕ can be found from (63), either analytically (if K = 4)
or numerically by a root finding procedure. From the re-
sulting value one may calculate γ using (62) and σ2 from
either the second or the third equation in (54). The energy
per degree of freedom E0/K can then be calculated by us-
ing e.g. (56). To give some insight into the corresponding
graphs for small values of F , we reproduce an enlarged
portion of panel a of Figure 7 in Figure 8.

Of central importance in the use of 〈d2E/dt2〉 = 0 as a
constraint in the maximization of entropy is (58) or, if we
leave out 〈E〉 = E0 as a constraint, its counterpart (63). If
γ or F lies outside the interval in which the steady state
is stable, then both (58) and (63) can be solved to give
acceptable values of ϕ. As remarked above, these relations
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Fig. 8. Enlarged part of Figure 7 showing the entropy in the
region of allowed values of the energy E0 for small values of
the forcing F . If the forcing is between −1/zmax and −1/zmin

the only allowed values of the energy are E0/K = F 2/2, the
energy of the stable steady state.

are generally nonlinear in ϕ and need to be solved numer-
ically. However, experience has learned us that the equa-
tions are very well behaved, the functions involved being
monotonic with a single zero if either γ of F lies in the
region of allowed values (if this is not so, the function has
singularities and multiple roots). If K = 4, then z1 = 0,
z2 = −1, z2 = 2 and z3 = −1, see Figure 2, and both
functions are quadratic. Relation (58) is then equivalent
with:

ϕ2 + (3γ − 2)ϕ− 2 = 0,

and its solutions are:

γ ≥ 1 : ϕ = 1 − 3
2
γ +

(
2 +

(
1 − 3

2
γ

)2
)1/2

,

γ ≤ −1
2

: ϕ = 1 − 3
2
γ −

(
2 +

(
1 − 3

2
γ

)2
)1/2

.

Relation (63) becomes in the case K = 4

ϕ2 +
(

3
5
F − 4

5

)
ϕ− 4

5
= 0,

and has solutions

F ≥ 1 : ϕ =
2
5
− 3

10
F +

(
4
5

+
(

2
5
− 3

10
F

)2
)1/2

,

F ≤ −1
2

: ϕ =
2
5
− 3

10
F −

(
4
5

+
(

2
5
− 3

10
F

)2
)1/2

.

With these exact results, the maximum entropy analysis
for the Lorenz system with K = 4 is fully analytical; this
may be useful in further studies. In panel a of Figure 9 we
show the solutions of (58), i.e., ϕ as a function of γ, for
K = 4 in the form of dashed curves and for K = 36 in the
form of solid curves. In panel b of Figure 9 the solutions
of (63) are shown, i.e., ϕ as a function of F , in the form
of dashed (K = 4) and solid (K = 36) curves. The graphs
for K = 4 are based on the equations above; the graphs
for K = 36 are obtained numerically.
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Fig. 9. Graphs of the solutions of (58), i.e., ϕ as a function of
γ (upper panel) and the solutions of (63), i.e., ϕ as a function
of F (lower panel). The dashed graphs refer to K = 4 and are
based on the analytical expressions given in the text, the solid
graphs refer to K = 36 and are obtained numerically.

4.4 Summary

For both F = 10, the case which was used as a reference
in the previous subsections, as well as for F = 2.5, F = 5
and F = 20 the results of the numerical simulations and
the maximum entropy analysis are given in Table 1. We
recall that the time evolution of the energy in all four
cases is shown in Figure 3. The first four rows of the table
(Num. sim.) contain the results of the numerical integra-
tion for the different values of the forcing F ; the values
of F are given in the first column of the table. The aver-
age energy E0 = 〈E〉 is given in the second column, the
mean value μk = γ of an individual variable Xk is given
in the third column and the standard deviation C

1/2
kk is

given in the fourth column. The fifth and sixth column
are reserved for the analytical variables σ and ϕ.

The second set of rows shows the analytical results ob-
tained in Section 4.1 in which the entropy is maximized
with (16) as a constraint, i.e., under the condition that
〈E〉 = E0. The values of E0 are taken from the numer-
ical simulation and are repeated in the second column.
The values are underlined to emphasize that they are in-
put of the maximum entropy (maxent) analysis. The third
set of rows refers to Section 4.2 in which the entropy is
maximized with (16) and (17) as constraints, i.e., with
〈E〉 = E0 and 〈dE/dt〉 = 0. Also here the average energy
is input of the analysis. This is different in the fourth set
of rows in which we give the analytical results in case only
(17), or 〈dE/dt〉 = 0, is used as a constraint. Here the
average energy is output of the analysis. The last two sets
of rows contain the results of Section 4.3 in which (18),
i.e. 〈d2E/dt2〉 = 0 is added as a constraint.
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Fig. 10. The marginal probability density function P(Xk) for
Lorenz’ system with K = 36 nodes and forcing values F = 2.5
(panel a), 5 (panel b), 10 (panel c) and 20 (panel d). As in ear-
lier plots of a similar nature, the numerical results are displayed
by means of stepped curves. When the maximum entropy prin-
ciple is applied with (16) and (17) as constraints, i.e., under
the conditions 〈E〉 = E0 and 〈dE/dt〉 = 0, one obtains the
smooth solid curves. If only (17) is used as a constraint, i.e.,
if only 〈dE/dt〉 = 0 is used to constrain the maximization of
entropy, one obtains the smooth dashed curves. The analyti-
cal graphs are normal distributions with mean γ and standard

deviation C
1/2
kk , of which the values are given in the third and

fourth column of Table 1. The results displayed in panel c are
also shown in the panels b and c of Figure 6.

5 Discussion

In this section we place the results for F = 10, on which
we focused in the previous section, in the perspective of
higher and lower values of F . In Figure 10 we show the
numerically obtained marginal probability density func-
tions for F = 2.5 (panel a), F = 5 (panel b), F = 10
(panel c) and F = 20 (panel d). The probability den-
sity functions were calculated numerically by dividing the
ranges [−7.5, 7.5], [−15, 15], [−30, 30] and [−60, 60] of Xk

in 100 equal-sized intervals and counting the number of
samples of the variable Xk (k = 1) within each interval.
We also show, using solid lines, the analytical marginal
probability density functions that result from the maxi-
mum entropy analysis with (16) and (17) as constraints,
i.e., using the conditions 〈E〉 = E0 and 〈dE/dt〉 = 0. The
parameters γ and C

1/2
kk that characterize these distribu-

tions are given in the third set of rows of Table 1. By
means of the dashed curves we show the marginal prob-
ability density functions in the case that only (17), i.e.,
〈dE/dt〉 = 0, is used as a constraint. The corresponding
parameters are given in the fourth set of rows in Table 1.
The two different set of theoretical curves illustrate the
differences between the cases with and without the con-
straint 〈E〉 = E0. Note that the results shown in panel c
have been shown before in panels b and c of Figure 6. They
are included here to place them in the context of similar
graphs for lower and higher values of the forcing F . We
recall that all plots refer to K = 36.

Looking at the numerical probability density functions,
it becomes evident that their resemblance with a nor-
mal distribution becomes less if the forcing decreases. At
F = 2.5 this is quite outspoken. Of the three distinct
maxima that can be discerned in the marginal probabil-
ity density function, the outer two are related to the fact,
mentioned in Section 3, that the behaviour of the system
at small values of the forcing is dominated by a (west-
ward) propagating wave. This implies that the behaviour
of an individual variable Xk is dominated by an oscilla-
tion, meaning that a relatively large amount of time is
spent at the upper and lower extremes of Xk. Generally
speaking, the solid curves demonstrate that the accurate
description of the marginal probability density functions
in the case that both 〈E〉 = E0 and 〈dE/dt〉 = 0 are taken
into account in the maximization of entropy is valid in the
whole range of forcing values shown, although, as we have
just seen, the form of the numerical marginal probability
density function can be quite unlike a normal distribution
for smaller values of F .

If the constraint 〈E〉 = E0 is left out, the average en-
ergy 〈E〉 is overestimated. This was already noted in the
previous section for F = 10, but Table 1 (fourth and sixth
set of rows) shows this to be also true for the other values
of F . It reflects itself in analytical marginal probability
density functions (dashed curves) that have mean values
that are higher than the numerically obtained ones. We
also see, and this is confirmed by a closer look at Table 1,
that the overestimation, if expressed in relative terms, is
larger for larger values of the forcing F . For moderate
values of F , say for values not larger than 10, the differ-
ence between the results with and without the constraint
〈E〉 = E0 is small enough for the results to be useful as
an estimate of the marginal probability density function
of a variable Xk. And this is quite remarkable as no in-
formation from a numerical integration is needed to pro-
duce this estimate. This is different from the case in which
〈E〉 = E0 is used as the single constraint in the maximiza-
tion of entropy. For values of F smaller than about 10 this
case yields marginal probability density functions that are
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Fig. 11. The covariance Ckl with k = 19 as a function of l.
As in similar plots shown in previous sections, the numerical
covariances are represented by filled dots connected by straight
lines. The analytical results from the maximum entropy pro-
cedure, using (16), (17) and (18) as constraints (〈E〉 = E0,
〈dE/dt〉 = 0 and 〈d2E/dt2〉 = 0) are represented by the
open dots. The results from the entropy maximization pro-
cedure with (17) and (18), i.e. with only 〈dE/dt〉 = 0 and
〈d2E/dt2〉 = 0 as constraints, are given by the open squares.
The results displayed in panel c are also shown in the panels b
and c of Figure 7.

about as accurate as those obtained by using 〈dE/dt〉 = 0,
but rely on information from a numerical integration in
the form of a value of E0.

For the same series of forcing values, i.e., for F = 2.5,
5, 10 and 20, the covariance matrix Ckl as a function of l
with k = 19 is shown in Figure 11. The numerically ob-
tained covariance matrix is displayed, as in the panels b
and c of Figure 7, by means of solid dots connected by
thin solid lines. The analytical results, from the analysis

in which both 〈E〉 = E0, 〈dE/dt〉 = 0 and 〈d2E/dt2〉 = 0
are used as constraints in the maximization of entropy, are
displayed by means of open dots connected by thin solid
lines. The analytical results from maximizing the entropy
with 〈dE/dt〉 = 0 and 〈d2E/dt2〉 = 0 are displayed by
means of open squares. The graphs in panel c of this fig-
ure were shown earlier in panels b and c of Figure 7. The
figure illustrates that the resemblance between numerical
and analytical results is generally quite good but decreases
with decreasing values of F . Indeed, the numerical results
display correlations that extend over larger differences be-
tween l and k than the analytical results, the more so for
smaller values of F . Note that the discrepancy is least seri-
ous in case the constraint 〈E〉 = E0 is taken into account.

6 Conclusions

We have used the principle of maximum entropy to ob-
tain the probability density function of a dynamical sys-
tem proposed by Lorenz [4]. The state vector X of this
system has K components Xk that represent an atmo-
spheric field on a latitude circle and satisfy an equation
that incorporates forcing, damping and advection. In the
four numerical integrations that we have studied, in which
the forcing F was varied, the system quickly reaches a sta-
tistically stationary state in which the energy E fluctuates
around a well-defined and constant average E0, see Fig-
ure 3. An important constraint in the maximization of the
entropy is thus 〈E〉 = E0, where the brackets denote the
average defined in terms of the probability density func-
tion of the system. The fact that statistical stationarity
quickly sets in also justifies the constraint 〈dE/dt〉 = 0,
a condition used previously by Burgers [6] in the context
of turbulence. Statistical stationarity furthermore justi-
fies constraints of the type 〈dnE/dtn〉 = 0, with n ≥ 2.
The constraints on the average time-derivatives of the en-
ergy enforce approximate time-invariance of the proba-
bility density function and generate additional structure
in the statistics. In the present paper we concentrate on
〈E〉 = E0, 〈dE/dt〉 = 0 and 〈d2E/dt2〉 = 0.

Using the single constraint 〈E〉 = E0, the maximum
entropy principle yields a probability density function in
the form of a multivariate normal distribution P(X) =
N (μ,C,X), in which the means μk are zero and the co-
variance matrix Ckl is proportional to the identity matrix,
see (25) and (26). The proportionality factor σ2 is given
in terms of the energy E0 and the number of variables
K by (29). The variables are therefore uncorrelated and
each variable satisfies a marginal probability density func-
tion in the form of a univariate normal distribution with
mean μk = 0 and variance Ckk = σ2. The forcing has not
been taken into account yet so that the entropy diagram
of Figure 5a, where the entropy per degree of freedom
(SM/K) is plotted as a function of the forcing F and the
energy per degree of freedom (E0/K), is independent of
F . For the case F = 10, where E0/K is 12.92, the an-
alytically obtained marginal probability density function
is somewhat too broad as compared with the numerically

http://www.epj.org


Page 18 of 20 Eur. Phys. J. B (2014) 87: 7

obtained distribution and has a zero instead of a nonzero
mean, see Figure 5b and Table 1.

Augmenting the constraint 〈E〉 = E0 with 〈dE/dt〉 =
0 leads to the same multivariate normal distribution (25),
but with nonzero means μk = γ that are given by (36)
and a diagonal covariance matrix Ckl of which the fac-
tor σ2 is given in terms of F and γ by (37). From (36)
and (37) it follows that the energy E0 cannot assume all
values but should satisfy E0/K ≤ F 2/2. This has rather
important consequences for the entropy diagram in Fig-
ure 6a, which is now bounded from above by the parabola
E0/K = F 2/2. The analytical marginal probability den-
sity function of an individual variable Xk, for F = 10 and
its corresponding numerical value of E0/K, is shown in
Figure 6b, together with the numerical distribution. The
match between the two distributions is now much better
than in the previous case. In Figure 6a the curve of inter-
mediate thickness is the parabola E0/K = F 2/4, which
gives the energy that would result if 〈E〉 = E0 is skipped
as a constraint. For F = 10 and the corresponding value
of the energy the analytical marginal probability density
function is shown in Figure 6c. In accordance with an en-
ergy that is overestimated, the probability distribution has
a mean that is too large compared with the numerical
distribution.

The use of 〈d2E/dt2〉 = 0 as a constraint in the max-
imization of entropy leads to a further limitation of the
allowed values of E0/K. For positive F , the value of
E0/K should be larger than or equal to (F/2)(−1/zmin)
and for negative F , the value of E0/K should be larger
than or equal to (F/2)(−1/zmax). Here zmin and zmax

are the minimum and maximum values of the quantity
zm, defined in (13a). For F -values between −1/zmax and
−1/zmin these conditions are incompatible with the con-
dition that E0/K be smaller than or equal to F 2/2. This
is exactly the range of F -values for which the steady state
Xk = Xsk = F is stable. In this range the probability den-
sity function collapses into a delta function at the stable
steady state. The entropy diagram for this case is shown
in Figure 7a, with an enlargement of the region around
the steady state in Figure 8.

On the condition that F lies outside the region
for which the steady state is stable, the constraint
〈d2E/dt2〉 = 0 turns out not to influence the marginal
probability density function of an individual variable Xk.
It results, however, in a covariance matrix Ckl that has
nonzero off-diagonal elements. For F = 10 and E0/K =
12.92 the function Ckl is plotted as a function of l for
k = 19 in Figure 7b (open circles) together with the nu-
merically obtained covariance matrix (solid dots). The re-
semblance between the two is quite good, the analytical
covariances decreasing in amplitude somewhat faster with
increasing |l− k| than the numerical covariances. Leaving
out the constraint 〈E〉 = E0 leads to energy values that
are determined directly in terms of the forcing. These val-
ues are represented by the curve of intermediate thickness
in Figure 7a. For F = 10 and the corresponding value
of E0/K, the associated covariance matrix is plotted in
Figure 7c, using open squares. Also here the energy is

overestimated, reflecting itself in a maximum of the ana-
lytical Ckl that is larger than its numerical counterpart.

Figures 10 and 11 place the results of the maximum en-
tropy analysis in the perspective of smaller and larger val-
ues of the forcing F . Both figures show that the marginal
probability density functions and the covariance matrices
show the best match between numerical and analytical
results if the constraint 〈E〉 = E0 is included in the anal-
ysis. Skipping this constraint leads to an overestimation
of the energy. As a consequence, the marginal probabil-
ity density functions have too large mean values and the
covariance matrices too high maxima. We note, however,
that if the forcing F is moderate, say less than about 10,
leaving out the constraint 〈E〉 = E0 gives results that are
still useful as first estimates of the corresponding numeri-
cal integration. They deserve credit in relying only on the
assumption that the system is in a statistically stationary
state.

We recall from Lorenz and Emanuel [24] that the vari-
ables of the system proposed by Lorenz are not to be asso-
ciated with a particular atmospheric field. Instead, the sys-
tem is meant to be representative of general atmospheric
models by incorporating the most basic atmospheric pro-
cesses in an elementary way. Due to its simplicity, the
system is well suited to illustrate the main message of
this article: that the fundamental principles of statistical
mechanics can be extended to systems out of equilibrium
by using the principle of maximum entropy in combina-
tion with constraints on the average time-derivatives of
the energy (or of other relevant global quantities). Future
research on Lorenz’ system might concern the use of time-
derivatives higher than second-order, as these are expected
to introduce additional detail into the probability density
function. Mathematically this could pose a challenge as
it will lead to non-normal (non-Gaussian) statistics. Of
much interest is the application of the method to con-
crete physical problems, such as atmospheric convection,
cloud physics or the climate itself, see Marston [29]. Re-
search on these subjects might yield parametrizations of
sub-grid scale processes that are less dependent on ad-hoc
assumptions and tuning. In any case, we believe that the
method holds sufficient promise to warrant testing on a
variety of physical problems.

The authors would like to thank the referees for constructively
criticizing their manuscript.

Appendix A: The argument
of the exponential

The expression for the probability density function if all
three constraints (16), (17) and (18) are applied in the
maximization of entropy is given by (44), which we repeat
here for convenience

P(X) =
1

Z(λ0, λ1, λ2)
e−λ0E−λ1

dE
dt −λ2

d2E
dt2 .
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In this expression λ0, λ1 and λ2 are the corresponding
Lagrange multipliers and Z(λ0, λ1, λ2) is the partition
function. If λ0E + λ1dE/dt + λ2d

2E/dt2 is written out
by substituting (6), (7) and (8), we obtain:

λ0E + λ1
dE

dt
+ λ2

d2E

dt2
=

K∑
k=1

(
(λ0/2 − λ1 + 2λ2)X2

k + (λ1 − 2λ2 − λ2)FXk

+ λ2F (XkXk+2 −XkXk+1) + λ2F
2

)
.

By placing the factor λ0/2 − λ1 + 2λ2 in front of the
summation sign, one obtains

λ0E + λ1
dE

dt
+ λ2

d2E

dt2
= (λ0/2 − λ1 + 2λ2)

×
K∑

k=1

(
X2

k +
(λ1 − 2λ2 − λ2)F
λ0/2 − λ1 + 2λ2

Xk +
λ2F

λ0/2 − λ1 + 2λ2

× (XkXk+2 −XkXk+1) +
λ2F

2

λ0/2 − λ1 + 2λ2

)
=

(λ0/2 − λ1 + 2λ2)
K∑

k=1

((
Xk +

(λ1 − 2λ2 − λ2)F
2(λ0/2 − λ1 + 2λ2)

)2

+
λ2F

λ0/2 − λ1 + 2λ2
(XkXk+2 −XkXk+1)

+
λ2F

2

λ0/2 − λ1 + 2λ2
−
(

(λ1 − 2λ2 − λ2)F
2 (λ0/2 − λ1 + 2λ2)

)2)
.

By defining the parameters

σ2 =
1

2(λ0/2 − λ1 + 2λ2)
, (A.1a)

γ = − (λ1 − 2λ2 − λ2)F
2(λ0/2 − λ1 + 2λ2)

, (A.1b)

ϕ =
λ2F

λ0/2 − λ1 + 2λ2
, (A.1c)

we may write

λ0E + λ1
dE

dt
+ λ2

d2E

dt2
=

1
2σ2

×
K∑

k=1

(
(Xk − γ)2 + ϕXk (Xk+2 −Xk+1) + ϕF − γ2

)
.

(A.2)

These expressions are equivalent with (45) and (46). We
recover (20), (21) by keeping in these expressions only the
Lagrange multiplier λ0, and (33), (34) by keeping only the
Lagrange multipliers λ0 and λ1.

Appendix B: The covariance matrix

In the case the constraint 〈d2E/dt2〉 = 0 is incorporated
into the analysis, the elements Ckl of the covariance matrix

C are related to the elements D−1
kl of the matrix D−1 by

(47b). In this Appendix we will derive expression (52) of
D−1

kl . Obtaining the matrix D−1 means that we have to
solve the following system of equations for Y1, . . . , YK

K∑
l=1

DklYl = Zk, (B.1)

from Z1, . . . , ZK for k = 1, . . . ,K. To accomplish this, we
use the fact that any Yk or Zk can be written in terms of
the eigenvectors Wkm, i.e.,

Yl =
K∑

m=1

UmWlm, Zk =
K∑

m=1

VmWlm,

and, conversely,

Um =
K∑

p=1

YpW
∗
mp, Vm =

K∑
p=1

ZpW
∗
mp.

The latter identities can be seen to follow from

K∑
p=1

WqpW
∗
pm = δqm,

which, in turn, is a consequence of the identity

K∑
p=1

eiω(p−1)(m−q) = Kδqm,

and the definition (10) of Wlm. By expressing Yl in terms
of Um and Zk in terms of Vm we may write for (B.1)

K∑
l=1

Dkl

( K∑
m=1

UmWlm

)
=

K∑
m=1

VmWkm =⇒

K∑
m=1

Um

( K∑
l=1

DklWlm

)
=

K∑
m=1

VmWkm =⇒

K∑
m=1

UmψmWkm =
K∑

m=1

VmWkm.

Here we used the fact thatWlm is the matrix of eigenvalues
of D and that ψm are the corresponding eigenvalues. The
solution of the latter equation is simply

Um =
Vm

ψm
.

For Yl we thus find

Yl =
K∑

m=1

Vm

ψm
Wlm =

K∑
m=1

Wlm

ψm

K∑
p=1

ZpW
∗
mp

=
K∑

p=1

(
K∑

m=1

WlmW
∗
mp

ψm

)
Zp =

K∑
k=1

(
K∑

m=1

WlmW
∗
mk

ψm

)
Zk,
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or, interchanging k and l,

Yk =
K∑

l=1

(
K∑

m=1

WkmW
∗
ml

ψm

)
Zl.

It thus follows that

D−1
kl =

K∑
m=1

WkmW
∗
ml

ψm
=

1
K

K∑
m=1

eiω(m−1)(l−k)

ψm
,

where we have substituted (10) in the last equality. Now,
writing

m = K + 2 −m′,

where m′ runs from 2 to K + 1 (we recall here that the
indexK+1 refers to the same variable as does the index 1),
we have:

D−1
kl =

1
K

K∑
m=1

1
2
eiω(m−1)(l−k)

ψm
+

1
K

K+1∑
m′=2

1
2
eiω(K+1−m′)(l−k)

ψK+2−m′

=
1
K

K∑
m=1

1
2
eiω(m−1)(l−k)

ψm
+

1
K

K+1∑
m′=2

1
2
e−iω(m′−1)(l−k)

ψm′

=
1
K

K∑
m=1

1
2
eiω(m−1)(l−k)

ψm
+

1
K

K∑
m′=1

1
2
e−iω(m′−1)(l−k)

ψm′

=
1
K

K∑
m=1

cos (ω(m− 1)(l − k))
ψm

.

Here we used that, for the matrix D, ψK+2−m′ is identical
to ψm′ . Writing ψm = 1 + ϕzm we thus have

D−1
kl =

1
K

K∑
m=1

cos(ω(m− 1)(l − k))
1 + ϕzm

.

This is the result (52).
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