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A maximum entropy approach to the parametrization of subgrid
processes in two-dimensional flow
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In numerical models of geophysical fluid systems, parametrization schemes are needed
to account for the effect of unresolved processes on processes that are resolved explicitly.
Usually, these parametrization schemes require tuning of their parameters to achieve
optimal performance. We propose a new type of parametrization that requires no tuning,
as it is based on an assumption that is not specific to any particular model. The assumption
is that the unresolved processes can be represented by a probability density function that
has maximum information entropy under the constraints of zero average time derivatives
of key integral quantities of the unresolved processes. In the context of a model of a
simple fluid dynamical system, it is shown that this approach leads to definite expressions
for the mean effect of unresolved processes on processes that are resolved. The merits of
the parametrization, regarding both short-range forecasting and long-term statistics, are
demonstrated by numerical experiments in which a low-resolution version of the model
is used to simulate the results of a high-resolution version of the model. For the fluid
dynamical system that is studied, the proposed parametrization turns out to be related to
the anticipated potential vorticity method with definite values of its parameters.
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1. Introduction

In the numerical modelling of geophysical fluid systems, one
has to deal with processes that cannot be resolved explicitly.
These processes are to be represented in some approximate
sense, a problem that is called parametrization. The problem
is difficult because of the large variety of processes that need
to be parametrized and because parametrization schemes have
to cope with different flow regimes and model parameters,
sometimes necessitating the use of different schemes under
different conditions. As discussed in section 5.6 of Stensrud
(2009), even in the limited field of turbulence and horizontal
diffusion many issues still remain. In the relatively simple context
of two-dimensional turbulence, the situation is discussed by
Thuburn et al. (2014).

An issue of particular importance is that parametrization
schemes usually have one or more parameters that need to be
tuned. For practical reasons, only limited datasets can be used
for this purpose, so that their performance will not be optimal
in all cases. It would thus be useful if tuning could be avoided
or limited as much as possible. We will argue that such tuning
might not be necessary if enough is known of the unresolved
processes to formulate global budgets of key integral quantities
that characterize the state of the unresolved processes. When
applied in a statistically average sense, these budgets can be used
to constrain the maximization of the information entropy of the
probability density function of the unresolved processes. The

probability density function can then be used to calculate the
average interaction of the unresolved processes with the resolved
processes. The procedure has proved to work well for a simple
schematic model proposed by Lorenz (Verkley, 2011).

In this study, we apply the same procedure to a model
that is somewhat more realistic than the Lorenz model: a
two-dimensional, doubly periodic flow system in flat geometry,
the same system as was studied by Thuburn et al. (2014). The
flow is divergence-free and described by the vorticity equation.
The system is forced by a fixed vorticity pattern and loses
energy and enstrophy by viscosity and an additional linear
damping term. The numerical model is a spectral form of the
vorticity equation, based on trigonometric functions. Following
the general outline of Frederiksen and Kepert (2006), we use a
high-resolution version of this model to generate an artificial
‘reality’. A low-resolution version of the model is then considered
to describe the low-resolution part of this reality, identified as the
resolved processes (resolved scales). The remaining scales of the
high-resolution model are identified with the unresolved pro-
cesses (unresolved scales). In the context of this idealized set-up,
the aim of parametrization is to reformulate the low-resolution
model in such a way that it approximates as closely as possible
the resolved scales generated by the high-resolution model.

The numerical model is described in section 2. In section 3, the
distinction between resolved and unresolved scales is discussed,
paying particular attention to the energy and enstrophy equations
related to these scales. In section 4, we outline the general
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formulation of a deterministic parametrization in terms of
a probability density function for the unresolved scales. In
section 5, the required probability density function is obtained
by maximizing its information entropy using the averaged energy
and enstrophy equations of the unresolved scales as constraints.
In section 6, we show that the resulting parametrization turns
out to be related to the anticipated potential vorticity method
(APVM), introduced by Sadourny and Basdevant (1985). The
numerical details of the high-resolution model that is used to test
the method and demonstrate its merits are specified in section 7.
The results of several numerical experiments are presented in
two parts: the short-term model forecasting skill is assessed in
section 8 and the long-term model climate statistics in section 9.
We give our conclusions in section 10.

2. The model

The system that we study is the same as the system considered
by Thuburn et al. (2014): a forced-dissipative version of the
vorticity equation for two-dimensional incompressible flow.∗
The dissipation is by viscosity and by a linear damping term. The
forcing F is combined with the linear damping to form a linear
relaxation to a given vorticity field:

∂ζ

∂t
+ v · ∇ζ = ν∇2ζ + μ(F − ζ ). (1)

Here, ζ is the vertical component of the vorticity, ζ = k · ∇ × v.
The second term on the left-hand side of Eq. (1) represents
advection by the horizontal velocity v, which, as it is assumed to
satisfy ∇ · v = 0, can be written as v = k × ∇ψ with ψ denoting
the stream function. We may thus write ζ = ∇2ψ , where ∇2 is
the horizontal Laplace operator, and v · ∇ζ = J(ψ , ζ ), where J is
the Jacobi operator. The expressions for these operators are

∇2ψ = ∂2ψ

∂x2
+ ∂2ψ

∂y2
, (2)

J(ψ , ζ ) = ∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
. (3)

The magnitude of the viscosity and of the relaxation to the forcing
F are given by ν and μ, respectively.

The system’s flow domain is periodic with period 2πL in both
x- and y-directions. Here, L is a length-scale which, together
with a time-scale T, is used to non-dimensionalize the system.
The original, dimensional, variables can then be obtained from
the non-dimensional variables by ζd = ζnT−1, vd = vnLT−1,
ψd = ψnL2T−1, etc., where the subscripts ‘d’ and ‘n’ refer
to dimensional and non-dimensional variables, respectively.
With the conversions νd = νnL2T−1 and μd = μnT−1 for the
parameters ν and μ, the vorticity equation assumes the same
form in both dimensional and non-dimensional variables. From
now on, we will refer to Eq. (1) in its non-dimensional form.

The field ζ is represented numerically by a sum of the type

ζ (x, y, t) =
+N∑

m=−N

+N∑
n=−N

ζmn(t)Ymn(x, y), (4)

where the coefficients ζmn(t) depend on time and N is the
truncation limit that determines the accuracy (resolution) of the
numerical representation. The values ζmn can be considered as
values on a rectangular grid, called T , as illustrated by Figure 1.

The functions Ymn(x, y) depend on the two spatial coordinates
and are defined by

Ymn(x, y) = Xm(x)Xn(y), (5)

∗The only difference is that the flow domain in Thuburn et al. (2014) is a
square of size 1 instead of 2π and that other values of the forcing and damping
parameters are used.

Figure 1. The spectral grid, where N is the truncation level and T represents the
spectral domain.

with

Xm(x) =

⎧⎪⎨
⎪⎩

√
2 cos(|m|x) if m > 0,

1 if m = 0,√
2 sin(|m|x) if m < 0,

(6)

and likewise for Xn(y). The functions Ymn are orthonormal with
respect to the following inner product:

(ξ , χ) =
(

1

2π

)2 ∫ 2π

0

∫ 2π

0
ξ(x, y)χ(x, y) dx dy, (7)

i.e. they satisfy

(Ymn , Ym′n′) = δmm′δnn′ , (8)

where δmm′ and δnn′ are Kronecker delta functions. We use
the parenthesis notation for inner products to avoid confusion
with the probabilistic average that will be used later. From the
orthonormality of the functions Ymn, it follows that the coefficients
ζmn can be obtained from the field ζ by the following expression:

ζmn = (Ymn , ζ ). (9)

Writing out the inner product, this yields

ζmn(t) =
(

1

2π

)2 ∫ 2π

0

∫ 2π

0
Ymn(x, y)ζ (x, y, t) dx dy, (10)

which constitutes the inverse of Eq. (4).
A major advantage of a spectral model is that derivatives of

the model fields can be calculated exactly. In particular, it can be
checked that we have

(∇2ψ
)

mn
= −(m2 + n2) ψmn, (11)

in which (...)mn denotes the spectral coefficient of the expression
between the brackets. The advection or Jacobi term can also be
calculated exactly. We have

(J(ψ , ζ ))mn = (Ymn , J(ψ , ζ )) =
(

1

2π

)2

×
∫ 2π

0

∫ 2π

0
Ymn(x, y)J(ψ(x, y, t), ζ (x, y, t)) dx dy. (12)
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Now, if ψ and ζ are written as in Eq. (4) and if we limit ourselves
to the coefficients of the Jacobian for which m and n lie between
−N and +N, then the integrand can be written in the same
form as Eq. (4) but with N replaced by 3N. In other words, the
integrand is a trigonometric series in x and y with a maximum
wave number 3N. This implies that the integration over x and y
can be carried out exactly by replacing it by a summation over K
equidistant values of x and y, with weights (2π)/K, if K ≥ 3N + 1
(Coiffier, 2011, see his eq. (4.72)). As an illustration: if K is taken
to be a power of 2, in which case the fast Fourier transform
routines that are used in the different sums are most efficient, we
have for K = 28 = 256 that N should not be larger than 85.

Writing the advection term by means of a Jacobian and
evaluating its spectral representation in the manner described
above, a spectral model of Eq. (1) would thus assume the form

∂ζ

∂t
+ PJ(ψ , ζ ) = ν∇2ζ + μ(F − ζ ). (13)

Here, P is an orthogonal projection operator that projects on
the space of functions T in terms of which ζ is represented. The
operator P in front of the Jacobian formalizes the fact that we keep
only the spectral coefficients within T , so that ζ does not leave
this space of functions. For the full infinite-dimensional system
in which N → ∞, the projection operator P can be replaced by
the identity I or left out altogether.

Energy and enstrophy are important global quantities of two-
dimensional flow. In the absence of forcing and dissipation,
i.e. if the flow is inviscid, both energy and enstrophy are
conserved. Inviscid conservation of enstrophy is a characterizing
feature of two-dimensional flow that distinguishes it from
three-dimensional flow (Bouchet and Venaille, 2012). For two-
dimensional doubly periodic flow, the energy and enstrophy
(more precisely, energy and enstrophy per unit area) are given by

E = −1

2
(ψ , ζ ), (14)

Z =1

2
(ζ , ζ ). (15)

The energy E and enstrophy Z change in time according to

dE

dt
= −ν(ζ , ζ ) − μ(ψ , (F − ζ )), (16)

dZ

dt
= ν(∇2ζ , ζ ) + μ(ζ , (F − ζ )). (17)

These results are derived in the Appendix. Equations (16) and
(17) show that the spectral model conserves energy and enstrophy
if ν and μ are zero.

3. Resolved and unresolved scales

As remarked above, the coefficients ζmn and ψmn, by means of
which the vorticity and the stream function are represented, can
be visualized as values on a rectangular grid of pairs (m, n), where
m and n are integers running from −N to +N, as illustrated
by Figure 1. For the purpose of this study, we will consider
the behaviour of the corresponding spectral model, of which
the evolution equation is given by Eq. (13), as ‘reality’. The
coefficients associated with a smaller rectangular grid, in which
the integers m and n vary between −M and +M with M < N, are
to be associated with the ‘model’ and are supposed to describe the
resolved scales. All other coefficients within the large rectangular
grid are to be associated with the unresolved scales. The set of
coefficients that is to be identified with the resolved scales is
denoted by R, while the set of coefficients that is to be identified
with the unresolved scales is denoted by U . As the set of all
coefficients within the large rectangle was called T , we might say
that T = R ∪ U . The situation is visualized in Figure 2.

Figure 2. The spectral grid T , corresponding to a truncation level N and
visualized in Figure 1, is decomposed into a resolved part R, corresponding to
a truncation level M with M < N, and an unresolved part U consisting of the
complement of R in T , i.e. consisting of all other coefficients within T .

For convenience, we will write Eq. (4) more concisely as

ζ =
∑

(m,n)∈T
ζmnYmn. (18)

We next decompose ζ into a resolved part ζR and an unresolved
part ζU :

ζ = ζR + ζU , (19)

in which we define

ζR =
∑

(m,n)∈R
ζmnYmn, (20)

ζU =
∑

(m,n)∈U
ζmnYmn. (21)

A similar decomposition is applied to ψ and F. With the sets
of coefficients R and U , we associate orthogonal projection
operators PR and PU such that P = PR + PU . These projection
operators allow us to decompose the Jacobian:

PJ = (PR + PU )J = PRJ + PU J. (22)

As the Laplacian is diagonal in the basis functions (see Eq. (11)),
the model equation, Eq. (13), can be split into two separate
equations:

∂ζR

∂t
+ PRJ(ψR + ψU , ζR + ζU )

= ν∇2ζR + μ(FR − ζR), (23)

∂ζU

∂t
+ PU J(ψR + ψU , ζR + ζU )

= ν∇2ζU + μ(FU − ζU ). (24)

These two equations, taken together, are mathematically
equivalent with Eq. (13). We see that the interaction between
the two sets of coefficients, R and U , takes place in the nonlinear
advection terms.

Substituting the decomposition Eq. (19) into Eqs (14) and (15)
and making use of the orthogonality of the resolved and
unresolved scales, we may decompose the energy and enstrophy
into resolved and unresolved contributions:
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E = −1

2
(ψR + ψU , ζR + ζU )= ER + EU , (25)

Z = 1

2
(ζR + ζU , ζR + ζU ) = ZR + ZU , (26)

where ER = − 1
2 (ψR, ζR) and EU = − 1

2 (ψU , ζU ) will be
referred to as the resolved and unresolved energy and ZR =
1
2 (ζR, ζR) and ZU = 1

2 (ζU , ζU ) as the resolved and unresolved
enstrophy. For the time derivatives of the resolved energy and
enstrophy, we have

dER

dt
= −(ψU , J(ψR, ζR)) + (ψR, J(ψU , ζU ))

− ν(ζR, ζR) − μ(ψR, (FR − ζR)), (27)

dZR

dt
= (ζU , J(ψR, ζR)) − (ζR, J(ψU , ζU ))

+ ν(∇2ζR, ζR) + μ(ζR, (FR − ζR)). (28)

These relations are derived in the Appendix. For the time
derivatives of the unresolved energy and enstrophy, we have,
analogously,

dEU

dt
= (ψU , J(ψR, ζR)) − (ψR, J(ψU , ζU ))

− ν(ζU , ζU ) − μ(ψU , (FU − ζU )), (29)

dZU

dt
= −(ζU , J(ψR, ζR)) + (ζR, J(ψU , ζU ))

+ ν(∇2ζU , ζU ) + μ(ζU , (FU − ζU )). (30)

If we add Eq. (27) to Eq. (29), we end up with Eq. (16). Similarly,
if we add Eq. (28) to Eq. (30) we end up with Eq. (17). The terms
that cancel are the terms that involve Jacobians; these are the
terms that exchange energy and enstrophy between resolved and
unresolved scales.

4. Parametrization of unresolved scales

In the following, we will focus on the behaviour of the vorticity
field ζR, as described by Eq. (23). Both detailed time evolution
(‘weather’) and statistical properties (‘climate’) will be considered.
Of course, if limitations in terms of computer resources did not
exist, the optimal approach to Eq. (23) is to solve Eq. (24)
alongside Eq. (23) and to use the resulting unresolved scales in
the Jacobian of Eq. (23). This is what is actually done if we solve
the full problem Eq. (13). The aim of parametrization is to avoid
solving Eq. (24) and instead simulate its effect on Eq. (23) by
properly modifying the latter equation.

The simplest approach is just to neglect the unresolved scales
in Eq. (23) and to set ψU = ζU = 0. However, as we will
see in section 9, this leads to an overestimation of the energy
and enstrophy in the smallest scales of the resolved model.
A more sophisticated method is the use of a scale-dependent
(hyper)viscosity (McWilliams, 1984), sometimes called an eddy
viscosity (Cushman-Roisin and Beckers, 2011). This is quite
effective, although artificial, and it requires tuning of the viscosity
parameter. We propose instead to reduce the dynamics of the
unresolved scales to their average energy and enstrophy budgets
and to describe the unresolved scales by a probability density
function, conditioned on the resolved scales, that takes these
budgets into account. On their own, these budgets do not specify
the probability density function fully and we therefore require,
as our closure assumption, that the probability density function
shall have maximum information entropy.

Replacing the spectral coefficients of ψU and ζU by a proba-
bility density function over these coefficients and then averaging
the equation for the resolved coefficients, Eq. (23), we obtain

〈∂ζR

∂t
〉 + 〈PRJ(ψR + ψU , ζR + ζU )〉
= 〈ν∇2ζR〉 + 〈μ(FR − ζR)〉, (31)

where the brackets 〈...〉 denote the average. As the probability
density function only involves the unresolved scales, we have

〈∂ζR

∂t
〉 = ∂ζR

∂t
, (32)

〈ν∇2ζR〉 = ν∇2ζR, (33)

〈μ(FR − ζR)〉 = μ(FR − ζR). (34)

With regard to the Jacobian term, we first write

PRJ(ψR + ψU , ζR + ζU )

= PRJ(ψR, ζR) + PRJ(ψR, ζU )

+ PRJ(ψU , ζR) + PRJ(ψU , ζU ). (35)

We then notice that, because the procedures of averaging and
projecting may be interchanged and the Jacobian is a bilinear
operator, we have

〈PRJ(ψR, ζR)〉 = PRJ(ψR, ζR), (36)

〈PRJ(ψR, ζU )〉 = PRJ(ψR, 〈ζU 〉), (37)

〈PRJ(ψU , ζR)〉 = PRJ(〈ψU 〉, ζR), (38)

〈PRJ(ψU , ζU )〉 = PR〈J(ψU , ζU )〉, (39)

so that we can write

〈PRJ(ψR + ψU , ζR + ζU )〉
= PRJ(ψR + 〈ψU 〉, ζR + 〈ζU 〉)
+ PR〈J(ψU , ζU )〉 − PRJ(〈ψU 〉, 〈ζU 〉). (40)

The latter result, i.e. Eq. (40), leads to the following equation for
the resolved vorticity ζR:

∂ζR

∂t
+ PRJ(ψR + 〈ψU 〉, ζR + 〈ζU 〉)
+ PR〈J(ψU , ζU )〉 − PRJ(〈ψU 〉, 〈ζU 〉)
= ν∇2ζR + μ(FR − ζR). (41)

In the next section, we will use the principle of maximum entropy
to obtain a probability density function for the unresolved scales
and calculate the mean fields involved in the expressions above.
We will see that these depend on the system parameters and on
the state of the resolved scales, so that we end up with a closed
system in terms of the resolved scales.

5. The maximum entropy approach

The basis of the probability density function with which we wish
to represent the state of the unresolved variables is the energy
and enstrophy equations, Eq. (29) and Eq. (30). To write these
equations in terms of spectral coefficients, we use the following
expression of the inner product for unresolved scales:

(ξU , χU ) =
∑

(m,n)∈U
ξmnχmn, (42)

which follows from the orthonormality of the basis functions Ymn.
Introducing the notation cmn = (m2 + n2), we obtain as a result

dEU

dt
=

∑
(m,n)∈U

ψmn(Ymn, J(ψR, ζR)) (43)

−
∑

(m,n)∈U

∑
(m′ ,n′)∈U

ψmnζm′n′(ψR, J(Ymn, Ym′n′))

− ν
∑

(m,n)∈U
ζ 2

mn − μ
∑

(m,n)∈U
ψmn(Fmn − ζmn),
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dZU

dt
= −

∑
(m,n)∈U

ζmn(Ymn, J(ψR, ζR)) (44)

+
∑

(m,n)∈U

∑
(m′ ,n′)∈U

ψmnζm′n′(ζR, J(Ymn, Ym′n′))

− ν
∑

(m,n)∈U
cmnζ

2
mn + μ

∑
(m,n)∈U

ζmn(Fmn − ζmn).

After some rearranging and replacing ψmn by −ζmn/cmn, we may
write

−dEU

dt
=

∑
(m,n)∈U

[(
μ + νcmn

cmn

)
ζ 2

mn + χmn

cmn
ζmn

]

−
∑

(m,n)∈U

∑
(m′ ,n′)∈U

ξmnm′n′

cmn
ζmnζm′n′ , (45)

−dZU

dt
=

∑
(m,n)∈U

[
(μ + νcmn) ζ 2

mn + χmn ζmn
]

+
∑

(m,n)∈U

∑
(m′ ,n′)∈U

ηmnm′n′

cmn
ζmnζm′n′ , (46)

where we have defined

χmn = (Ymn, J(ψR, ζR)) − μFmn, (47)

ξmnm′n′ = (ψR, J(Ymn, Ym′n′)), (48)

ηmnm′n′ = (ζR, J(Ymn, Ym′n′)). (49)

We see that both dEU/dt and dZU/dt are quadratic expressions
in the unresolved coefficients ζmn.

The principle of maximum entropy (Jaynes, 2003, chap-
ters 11 and 12, in particular Eq. 12.8) requires that the
probability density function for the unresolved scales, P(ζU ),
should have maximal information entropy SI , where SI is
defined by

SI = −
∫

P(ζU ) log
P(ζU )

M(ζU )
dζU . (50)

Here, we use a rather abstract notation in which ζU denotes the set
of coefficients ζmn with (m, n) ∈ U and dζU denotes an integration
element of a multiple integral over all unresolved coefficients. The
measure M, necessary for dimensional consistency, embodies
any a priori information on the values of the coefficients
and, since no such information is assumed, is taken to be a
product of constants. The first constraint is the normalization
condition:

〈1〉 =
∫

P(ζU ) dζU = 1. (51)

The other two constraints are 〈dEU/dt〉 = 0 and 〈dZU/dt〉 = 0.
This means that we assume that, on the time-scale of
the resolved scales, the unresolved scales are in a sta-
tistically stationary state that is characterized by a
mean balance between sources and sinks of energy and
enstrophy:

〈dEU

dt
〉 =

∫
P(ζU )

dEU

dt
(ζU ) dζU = 0, (52)

〈dZU

dt
〉 =

∫
P(ζU )

dZU

dt
(ζU ) dζU = 0. (53)

The maximization problem can be solved by the use of Lagrange
multipliers. The variations of the entropy, normalization
condition and the two conditions on the time rate of change of

energy and enstrophy are

δSI = −
∫

δP(ζU )

[
log

P(ζU )

M(ζU )
+ 1

]
dζU , (54)

δ〈1〉 =
∫

δP(ζU ) dζU , (55)

δ〈dEU

dt
〉 =

∫
δP(ζU )

dEU

dt
(ζ U ) dζU , (56)

δ〈dZU

dt
〉 =

∫
δP(ζU )

dZU

dt
(ζ U ) dζU . (57)

Using a Lagrange multiplier −ρ for the normalization and
Lagrange multipliers α and β for the other two constraints, we
arrive at the following condition:

δSI − ρδ〈1〉 + αδ〈dEU

dt
〉 + βδ〈dZU

dt
〉 = 0. (58)

When the expressions above are substituted, this gives (leaving
out the arguments ζU for readability)

∫
δP

[
log

P
M + 1 + ρ − α

dEU

dt
− β

dZU

dt

]
dζU = 0. (59)

As this should be valid for any variation δP , we should have

log
P
M + 1 + ρ − α

dEU

dt
− β

dZU

dt
= 0. (60)

or

P = M exp

[
−1 − ρ + α

dEU

dt
+ β

dZU

dt

]
. (61)

Now, the factor exp(−1 − ρ) is usually written as Z−1, so that
(restoring the arguments ζU )

P(ζU ) = 1

ZM exp

[
α

dEU

dt
(ζU ) + β

dZU

dt
(ζU )

]
. (62)

The function Z is called the partition function and is deter-
mined by the normalization condition Eq. (51). The Lagrange
multipliers α and β are determined by the conditions on the
time derivatives of the unresolved energy and enstrophy, i.e. by
Eqs (52) and (53). We will take M = 1.

In principle, the probability density function is now given and
from the form above, in combination with Eqs (45) and (46), we
see that it is a multivariate normal probability density function in
the variables ζmn with (m, n) ∈ U . Now, in order to simplify the
calculations, we make the approximation that in Eqs (45) and (46)
the last terms on the right-hand sides can be disregarded. This is
a rather serious approximation that is difficult to justify a priori
and has to be judged on the basis of its consequences. With this
approximation, the probability density function becomes

P(ζU ) = 1

Z
× exp {−α

∑
(m,n)∈U

[(
μ + νcmn

cmn

)
ζ 2

mn + χmn

cmn
ζmn

]

− β
∑

(m,n)∈U

[
(μ + νcmn) ζ 2

mn + χmn ζmn
]}. (63)

Collecting terms that are quadratic and linear in ζmn, we obtain

P(ζU ) = 1

Z
× exp {

∑
(m,n)∈U

− 1

cmn
(μ + νcmn)(α + βcmn)

× (ζ 2
mn + χmn

μ + νcmn
ζmn)}. (64)
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Completing the square in the factors involving ζmn then gives

P(ζU ) = 1

Z
× exp {

∑
(m,n)∈U

− 1

cmn
(μ + νcmn)(α + βcmn)

× ([ζmn + 1

2

χmn

μ + νcmn
]2 − 1

4
[

χmn

μ + νcmn
]2)}. (65)

Now, defining

λmn = −1

2
χmn

(
1

μ + νcmn

)
, (66)

σ 2
mn = 1

2
cmn

(
1

μ + νcmn

) (
1

α + βcmn

)
, (67)

the properly normalized expression of P(ζU ) reads

P(ζU ) =
∏

(m,n)∈U

N (λmn, σmn, ζmn), (68)

where the functions N are the normal distributions:

N (λ, σ , x) = 1

σ
√

2π
exp

(
− (x − λ)2

2σ 2

)
. (69)

This immediately gives us the corresponding partition functionZ :

Z =
∏

(m,n)∈U

(2πσ 2
mn)1/2 exp

(
λ2

mn

2σ 2
mn

)
. (70)

Except for the Lagrange multipliers α and β, the probability
density function of the unresolved scales is now known: it is a
product of independent normal distributions with means (66)
and variances (67).

Quite remarkably, the Lagrange multipliers α and β do not
appear in the expression for λmn and, as we will see later, it
is not necessary to determine them, as only the mean λmn is
actually needed. However, for completeness and with an eye on
possible applications to stochastic parametrizations, we explain
how α and β can be obtained from the constraints 〈dEU/dt〉 = 0
and 〈dZU/dt〉 = 0. Using the fact that for a probability density
function of the form (68), i.e. a product of independent normal
distributions, we have

〈ζmn〉 = λmn, (71)

〈ζmnζm′n′ 〉 = λmnλm′n′ + σ 2
mnδmm′δnn′ , (72)

we find

− 〈dEU/dt〉

=
∑

(m,n)∈U

(
μ + νcmn

cmn

)
(λ2

mn + σ 2
mn) + χmn

cmn
λmn, (73)

− 〈dZU/dt〉
=

∑
(m,n)∈U

(μ + νcmn) (λ2
mn + σ 2

mn) + χmn λmn. (74)

If we then substitute Eqs (66) and (67) for λmn and σ 2
mn, the

constraints 〈dEU/dt〉 = 0 and 〈dZU/dt〉 = 0 reduce to

∑
(m,n)∈U

[
1

α + βcmn
− 1

2
χ2

mn

1

cmn

1

μ + νcmn

]
= 0, (75)

∑
(m,n)∈U

[
cmn

α + βcmn
− 1

2
χ2

mn

1

μ + νcmn

]
= 0. (76)

These are two nonlinear relationships that allow us to obtain α

and β and therewith the complete probability density function of
the unresolved scales. Note that the probability density function
depends parametrically on the resolved scales ψR and ζR via
χmn as given by Eq. (47).

We now return to the equation for the resolved scales, Eq. (41).
Expressions for 〈ψU 〉 and 〈ζU 〉 are

〈ψU 〉 =
∑

(m,n)∈U
〈ψmn〉Ymn =

∑
(m,n)∈U

−λmn

cmn
Ymn, (77)

〈ζU 〉 =
∑

(m,n)∈U
〈ζmn〉Ymn =

∑
(m,n)∈U

λmnYmn. (78)

For 〈J(ψU , ζU )〉, we have, expanding ψU and ζU in terms of the
basis functions Ymn,

〈J(ψU , ζ U )〉

= −
∑

(m,n)∈U

∑
(m′ ,n′)∈U

J(Ymn, Ym′n′)

cmn
〈ζmn, ζm′n′ 〉

= −
∑

(m,n)∈U

∑
(m′ ,n′)∈U

J(Ymn, Ym′n′)

cmn
λmnλm′n′

= J(〈ψU 〉, 〈ζ U〉). (79)

In the second equality, we made use of Eq. (72) and the fact that
only the first contribution of this expression is retained, as the
Jacobian of two identical fields is zero. As a consequence, we have

PR〈J(ψU , ζ U )〉 = PRJ(〈ψU 〉, 〈ζ U〉), (80)

so that the third and fourth terms on the left-hand side of Eq. (41)
cancel. The equation for the resolved scales thus simplifies to

∂ζR

∂t
+ PRJ(ψR + 〈ψU 〉, ζR + 〈ζU 〉)
= ν∇2ζR + μ(FR − ζR). (81)

We recall that the fields 〈ζU 〉 and 〈ψU 〉 are given by Eqs (77)
and (78), respectively, where λmn is given by (combining Eq. (47)
with Eq. (66))

λmn = − 1

2

(
1

μ + νcmn

)

× (
(Ymn, J(ψR, ζR)) − μFmn

)
. (82)

If these expressions for 〈ψU 〉 and 〈ζU 〉 are used in Eq. (81), we
obtain a closed system in terms of the resolved scales.

6. The anticipated potential vorticity method†

It is of some interest to note that our parametrization is similar
to the APVM introduced by Sadourny and Basdevant (1985). In
the context of our model, their parametrized potential vorticity
equation (i.e. their eq. (5)) would take the form

∂ζR

∂t
+ PRJ(ψR, ζR) − PRJ(ψR, D) = 0, (83)

with

D = θLJ(ψR, ζ R). (84)

Here, θ is a time-scale and L a non-dimensional non-
negative linear operator. The characterizing property of this

†Readers eager to see the numerical results might skip this paragraph on a first
reading.
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parametrization is that the enstrophy ZR of the system decreases,
whereas the energy ER stays constant, as can be checked quite
readily. To compare this parametrization with ours, we make the
additional approximation that the average 〈ψU 〉 in Eq. (81) can
be neglected. Our parametrized system then becomes

∂ζR

∂t
+ PRJ(ψR, ζR) + PRJ(ψR, 〈ζU 〉)
= ν∇2ζR + μ(FR − ζR). (85)

Assuming, furthermore, that there is no forcing in the unresolved
variables, we would have, for 〈ζmn〉 = λmn, (m, n) ∈ U ,

〈ζmn〉 = −1

2

( 1

μ + νcmn

)
(Ymn, J(ψR, ζR)) (86)

= − 1

2μ

( 1

1 + (ν/μ) cmn

)
(Ymn, J(ψR, ζR)). (87)

For the field 〈ζU 〉, we may thus write, more abstractly,

〈ζU 〉 = − 1

2μ

(
1 − ν

μ
∇2

)−1
PU J(ψR, ζR). (88)

The relationship with the term D of the APVM is clear if we
identify

θ = 1

2μ
, (89)

L = (
1 − ν

μ
∇2

)−1
PU . (90)

The important difference with the APVM is that the time-scale
θ and the operator L – which is indeed a non-negative linear
operator – do not have to be chosen and tuned but are given
directly in terms of the system parameters ν and μ. We also note
that the quite special form that our operator assumes is rather
different from the forms considered by Sadourny and Basdevant
(1985) and Thuburn et al. (2014).

7. Numerical experiments

For the length-scale L of the model, we choose the Earth’s
radius, i.e. L = a, where a = 6.371 × 106 m; for the time-
scale T we choose the inverse of the Earth’s angular velocity,
i.e. T = �−1, where � = 7.292 × 10−5 s−1. These choices are
completely arbitrary, but it allows us to express time in terms
of days, hours and minutes using that 1 day is 24 × 60 × 60 s
by definition, corresponding to 24 × 60 × 60 × � = 6.300288 ≈
2π non-dimensional time units. The value of the viscosity ν of
the reference model is chosen such that a single vorticity wave,
described by one basis function Ymn with cmn = m2 + n2 = 852,
is exponentially damped with an e-folding time of 5 days. The
value μ of the reference model is chosen such that any vorticity
wave, described by a basis function Ymn, is exponentially damped
with an e-folding time of 90 days. For the non-dimensional values
of ν and μ, we thus have

ν = 1

24 × 60 × 60

1

�

1

852

1

5
= 4.394 × 10−6, (91)

μ = 1

24 × 60 × 60

1

�

1

90
= 1.764 × 10−3. (92)

The forcing F is a single basis function with m = n = 5, i.e.
F = F5,5 Y5,5 with F5,5 = 2−1/2 = 0.707 106. The time stepping
is by fourth-order Runge–Kutta with a time step of 0.065 449
non-dimensional time units, corresponding to 14.959 min.‡

‡The question of why 15 min was not chosen has the somewhat unsatisfactory
answer that it is the consequence of some confusion concerning sidereal and
solar days at the beginning of this work. It has no serious consequences for
anything that follows, except that when the horizontal axis of some of the
figures shows ‘days’, actually sidereal days are meant.
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Figure 3. Time evolution of the energy and enstrophy of the reference model, run
at truncation N = 85. The energy and enstrophy first increase, but after some time
the flow becomes unstable and changes into a turbulent state that later becomes
statistically stationary. The small panels below the graphs are the vorticity fields
at t = 200, 400, 600, 800 and 1000 days. These fields, referred to as initial states 1,
2, 3, 4 and 5, are used as initial fields for the simulations with the different model
versions.

The model that we consider as ‘reality’ will be run with
N = 85, using a 256 × 256 computational grid to calculate the
Jacobian without aliasing. This model, of which the fields are
used at the lower truncation M = 42, will be called the ‘reference’
model. The same model, run with M = 42, will be referred to
as the ‘model’ and will be considered in three variants. If the
truncation M = 42 is all that distinguishes it from the reference
model, the model will be referred to as the ‘unparametrized’
model. If the viscosity is increased by replacing 85 in Eq. (91)
by 42 (giving a value ν = 1.800 × 10−5), we obtain the second
variant of the model, called the ‘conventional’ model. If we
use Eq. (81) with 〈ψU 〉 and 〈ζU 〉 given by Eqs (77), (78)
and (82) instead of increasing the viscosity, we obtain the third
variant, referred to as the ‘maximum entropy’ model. In all
three variants of the model (unparametrized, conventional and
maximum entropy), the computational grid of 256 × 256 points
of the reference model is used for reasons of simplicity and
consistency, although for the unparametrized and conventional
model a coarser grid would have sufficed. The same grid is
used to produce plots of vorticity fields and to calculate the
statistics.

The basis of the numerical experiments to be discussed in
the next two sections is an integration of the reference model
for a period of 1000 days, starting from the state of rest. The
result in terms of the energy and enstrophy as a function of time
and five snapshots of the vorticity field are shown in Figure 3.
These five snapshots are referred to as initial states 1, 2, 3, 4
and 5 and are the vorticity fields at t = 200, 400, 600, 800 and
1000 days. We will first investigate how the three low-resolution
models perform in reproducing the low-resolution vorticity fields
as generated by the reference model. We then consider how well
the low-resolution models reproduce the climate of the reference
run, where the climate is defined in terms of the mean and
variance of the energy and enstrophy as well as their spectra.
More details on the numerical experiments can be found in
Kalverla (2015).

8. Forecast skill

For each of the five initial states shown in Figure 3, we start a
100 days run with the reference model, the unparametrized model,
the conventional model and the maximum entropy model. For
the latter three models, the initial fields are truncated to M = 42.
The aim of these small ensembles of runs is to investigate to what
extent the three models, with their different parametrizations, are
able to reproduce the resolved scales as generated by the reference
model.
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Reference(a) (b)

(c) (d)Conventional Maximum entropy

Unparametrized

Figure 4. Vorticity fields from four model simulations at day 30 of the integration, starting from initial field 3, i.e. from the reference run after 600 days. A T42
truncation has been used to plot the vorticity fields, including the reference, on a 256 × 256 grid from 0–2π in both directions. (a) Reference run, (b) unparametrized
run, (c) conventional run and (d) maximum entropy run. The circle in the upper left panel highlights a dipole structure that is only reproduced in the maximum
entropy run.

8.1. Qualitative analysis of vorticity fields

The vorticity fields at day 30 of the model runs that started from
initial state 3, i.e. from t = 600 days in Figure 3, are shown in
Figure 4. A feature that stands out is the grainy texture of the
flow field in the unparametrized run. This is a manifestation of
the smallest scales of the model (near the truncation limit) and
is clearly unrealistic. Both parametrizations reduce this noise; the
conventional parametrization, in particular, is very effective and
damps all the small-scale structures rigorously. The maximum
entropy parametrization is not completely smooth, but it is
still a considerable improvement over the unparametrized run.
We also note that the conventional parametrization tends to
reduce the extremes in the vorticity fields rather drastically. In
contrast, the maximum entropy parametrization is less diffusive
and keeps the vorticity extremes more closely at their values in the
reference run.

If we analyze the vorticity fields in the course of time (not
shown) and focus on individual vortices, we see that at day 10
all fields are still more or less the same. After 20 days, the first
discrepancies can be identified, but they are more clear after
30 days. We might focus, for example, on the two small, strong
vortices of opposite sign near the top boundary, highlighted by
the circle in Figure 4(a). They are nearly identical in the reference
and maximum entropy simulations, whereas the other two runs
fail to reproduce this feature. At day 50, the maximum entropy
simulation still closely resembles the reference run, whereas the
conventional parametrization has damped out most small-scale
features. At day 60, most of the correlation with the reference run
is lost for all parametrizations.

8.2. Quantitative analysis of vorticity fields

To quantify the performance of the three low-order models in
reproducing the time evolution of the high-resolution model,
we calculated the root-mean-square difference (RMSD) and the
correlation (CORR) between the vorticity fields of the latter
models and the reference model. This was done on the basis of
the low-resolution representation of the fields and making use
of the 256 × 256 grid for the calculations. For each model, the
results are averaged over the ensemble of five runs and are shown
in Figure 5. All models show a steep rise in RMSD and a decrease
in correlation within the first 70 days. In line with our previous
qualitative analysis, we see that both the rise in RMSD and the
drop in correlation come about 20 days later in the maximum
entropy simulation than in the other runs. Also note that, in
terms of correlation, the conventional parametrization does not
seem to improve the simulation at all.

9. Model climate

We now consider the question as to what extent the three low-
resolution models reproduce the statistics of the high-resolution
reference model. We do this by analyzing long 5000 day
integrations with the reference model and the other models, all
starting from initial state 3, i.e. from t = 600 days in Figure 3. We
will define the climate of the models in terms of the distribution
of the energy and enstrophy as well as their spectra. The results
are obtained by sampling the runs twice every day for the
energy and enstrophy distribution and once every ten days for
the spectra.
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Figure 5. (a) Time evolution of the root-mean-square difference (RMSD) between the vorticity fields generated by the three models (unparametrized, conventional
and maximum entropy) and the reference model, calculated on the basis of 256 × 256 grid points using truncation M = 42 and averaged over the ensemble of five
runs. (b) Time evolution of the ensemble-averaged correlation (CORR) between the three models and the reference model, based on the same grid and truncation.
The dotted curves refer to the unparametrized model, the dashed curves to the conventional model and the dash–dotted curves to the maximum entropy model.
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Figure 6. Normal distributions based on the mean and variance of a large series of energy and enstrophy values from climate simulations with four different models.
The data are obtained from 5000 day runs starting from initial state 3, sampling the output twice every day. The distribution of the reference run is displayed by a solid
curve, the distribution of the unparametrized run by a dotted curve, the distribution of the conventional run by a dashed curve and the distribution of the maximum
entropy run by a dash–dotted curve. Panel (a) refers to the energy, panel (b) to the enstrophy.

9.1. Energy and enstrophy distributions

In all model runs, the energy and enstrophy fluctuate around a
mean value. The fluctuations can be characterized by a variance
which, together with the mean, can be used to construct normal
distributions representing the probability density function for
the energy and enstrophy.§ These distributions are shown in
Figure 6. The conventional parametrization results in a model
climate with too little energy and enstrophy, as was already
indicated by the results of the previous section. The mean energy
in the unparametrized run is quite similar to the reference run,
but the distribution is somewhat broader. The enstrophy in the
unparametrized run is overestimated. The near-coincidence of
the maximum entropy and reference distributions of both energy
and enstrophy was not possible to achieve by modifying the
viscosity in the conventional parametrization and demonstrates

§We checked that, after a long integration as used here (5000 days), the
values of the mean and variance stabilized and the histograms of energy
and enstrophy converged towards the bell-shape characteristic of a normal
distribution.

that the maximum entropy parametrization performs best in
reproducing the reference climate.

9.2. Energy and enstrophy spectra

The energy and enstrophy spectra of the four model runs are
shown in Figure 7. The spectra are calculated by adding the
energy and enstrophy contributions of all spectral coefficients
(m, n) for which k − 1/2 ≤ (m2 + n2)1/2 < k + 1/2, for k = 1
to k = 21/2M with M = 42 and then averaged over all samples.
Note that, between k = M and k = 21/2M, marked by the vertical
dashed lines in Figure 7, all spectra steepen because of the
rectangular shape ofR. This is an artefact of the square truncation
and this part of the spectra will not be considered. The results
show that the energy and enstrophy on larger scales are nearly
identical in all model simulations, but on smaller scales substantial
differences occur. For the model with no parametrization, too
much energy and enstrophy piles up in the smallest scales, but
the conventional parametrization, on the other hand, reduces the
energy and enstrophy at the smallest scales too much. Again,
the maximum entropy parametrization improves the simulation:
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Figure 7. Energy and enstrophy spectra of the flow field as simulated with the reference model (solid lines), the unparametrized model (dotted lines), the conventional
model (dashed lines) and the maximum entropy model (dash–dotted lines). All spectra are based on long 5000 day integrations, starting from initial state 3 in Figure 3,
the spectra being averages over the data ten days apart. The insets show the differences between the spectra close to the truncation limit. Panel (a) refers to the energy,
panel (b) to the enstrophy.

the representation of the spectra is rather accurate, even at the
smallest scales.

10. Conclusions

We have implemented a new parametrization of the effects of the
unresolved scales on the resolved scales in a simple model of a
fluid dynamical system. The model is a spectral representation of
a forced-dissipative version of the vorticity equation on a doubly
periodic flow domain. The parametrization that we propose is
based on a probability density function for the unresolved scales.
This probability density function is derived from the principle
of maximum entropy, in which zero-average time derivatives
of the energy and enstrophy at unresolved scales are used as
constraints. If terms in the energy and enstrophy equations
that involve Jacobians of unresolved variables are ignored, the
probability density function is a product of independent normal
distributions, the parameters of which depend on the model and
the state of the resolved scales. The resulting parametrization is a
closed system in terms of the resolved scales that resembles the
anticipated potential vorticity method (APVM) of Sadourny and
Basdevant (1985).

We have shown that, in terms of both short-range performance
and long-range statistics, the maximum entropy parametrization
represents the interaction of the unresolved scales with the
resolved scales realistically in the simple model that we considered.
It performs better than a model with no interaction at all or
a model with a conventional parametrization in terms of a
higher value of viscosity. Most importantly, however, the method
achieves this without any tuning of the parameters. Once the
decision is made to base the unresolved-scale probability density
function on maximum entropy in combination with constraints
on the time derivatives of energy and enstrophy, the procedure
leads to unique values of the parameters. In particular, it fixes the
form of the non-negative linear operator in the corresponding
APVM, which, for that matter, is rather different from the class of
linear operators considered by Sadourny and Basdevant (1985)
and Thuburn et al. (2014).

Requiring that the probability density function of the
unresolved scales has maximum entropy, constrained by the
average budgets of energy and enstrophy, is the fundamental
closure assumption of our approach. We made an additional
simplifying approximation by neglecting terms in the budgets
that involve Jacobians and would lead to correlations between

the unresolved variables if retained. This approximation – which
in future work might be avoided – enabled us to proceed with
the calculations rather straightforwardly. The resulting absence
of correlations implied that the equation for the resolved scales
assumed a form in which only the average stream function
and vorticity of the unresolved scales are involved. That this
worked so well is actually quite surprising. It might be related to
the particular choice of basis functions (sines and cosines) that
naturally fit the dynamics and boundary conditions of the two-
dimensional flow system. This and other aspects of the problem
need further scrutinizing.
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Appendix

Energy and enstrophy

In this Appendix, we recapture the derivation of a few results
regarding energy and enstrophy conservation in two-dimensional
incompressible flow.

The energy (actually energy density) is defined by

E =
(

1

2π

)2 ∫ 2π

0

∫ 2π

0

1

2
v2 dx dy

= −
(

1

2π

)2 ∫ 2π

0

∫ 2π

0

1

2
ψζ dx dy = −1

2
(ψ , ζ ). (A1)

The second equality in Eq. (A1) is the result of the following series
of identities:

v · v = ∇ψ · ∇ψ =∇ · (ψ∇ψ) − ψ∇2ψ

=∇ · (ψ∇ψ) − ψζ , (A2)

in combination with Gauss’ theorem and the assumption of
doubly periodic flow. The third equality in Eq. (A1) is the result
of the definition of the inner product, i.e. Eq. (7). In an analogous
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way, we have for the time derivative of the energy

dE

dt
=

(
1

2π

)2 ∫ 2π

0

∫ 2π

0
v · ∂v

∂t
dx dy

= −
(

1

2π

)2 ∫ 2π

0

∫ 2π

0
ψ

∂ζ

∂t
dx dy = −(ψ ,

∂ζ

∂t
). (A3)

Substituting Eq. (13), we obtain:

dE

dt
= (ψ , PJ(ψ , ζ ))

− ν(ψ , ∇2ζ ) − μ(ψ , (F − ζ )). (A4)

This expression can be simplified by making use of the fact
that both the orthogonal projection operator P and the Laplace
operator ∇2 are self-adjoint with respect to the inner product
defined in Eq. (7), i.e.

(ξ , Pχ) = (Pξ , χ), (A5)

(ξ , ∇2χ) = (∇2ξ , χ). (A6)

Furthermore, for the Jacobian it can be shown by integration by
parts and by using the periodic boundary conditions that

(ψ , J(ξ , χ)) = (J(ψ , ξ) , χ). (A7)

For the first term on the right-hand side of Eq. (A4), we thus
have

(ψ , PJ(ψ , ζ )) = (Pψ , J(ψ , ζ )) = (ψ , J(ψ , ζ )) = 0. (A8)

In the second equality of Eq. (A8), we use that Pψ = ψ , as ψ

already belongs to the space of functions on to which P projects.
The last equality of Eq. (A8) is a consequence of Eq. (A7) and
the fact that the Jacobian of two identical fields is zero. For the
second term on the right-hand side of Eq. (A4), we have

(ψ , ∇2ζ ) = (∇2ψ , ζ ) = (ζ , ζ ). (A9)

Taken together, this yields Eq. (16).
The enstrophy of the flow is defined as the integrated squared

vorticity. Its density is given by

Z =
(

1

2π

)2 ∫ 2π

0

∫ 2π

0

1

2
(ζ )2 dx dy = 1

2
(ζ , ζ ). (A10)

For its time derivative, we have

dZ

dt
=

(
1

2π

)2 ∫ 2π

0

∫ 2π

0
ζ

∂ζ

∂t
dx dy = (ζ ,

∂ζ

∂t
). (A11)

When substituting Eq. (13) we obtain, in analogy to Eq. (A4),

dZ

dt
= − (ζ , PJ(ψ , ζ ))

+ ν(ζ , ∇2ζ ) + μ(ζ , (F − ζ )). (A12)

As in the case of the energy, the Jacobian term vanishes:

(ζ , PJ(ψ , ζ )) = (Pζ , J(ψ , ζ )) = (ζ , J(ψ , ζ )) = 0. (A13)

The last equality follows if we interchange the arguments of the
Jacobian and use Eq. (A7) and the fact that the Jacobian of two
identical fields is zero. The result is Eq. (17).

We next consider the energy and enstrophy equations for the
resolved and unresolved scales of the model. Taking the time

derivative of the resolved energy, the expression for which is
given after Eqs (25) and (26), and then substituting Eq. (23), we
obtain

dER

dt
= − (ψR,

∂ζR

∂t
) = (ψR, PRJ(ψR + ψU , ζR + ζU ))

− ν(ψR, ∇2ζR) − μ(ψR, (FR − ζR)). (A14)

The Jacobian term can be worked out as follows:

(ψR, PRJ(ψR + ψU , ζR + ζU ))

= (PRψR, J(ψR + ψU , ζR + ζU ))

= (ψR, J(ψR + ψU , ζR + ζU )). (A15)

For the latter expression, we have

(ψR, J(ψR + ψU , ζR + ζU ))

= (ψR, J(ψR, ζR)) + (ψR, J(ψR, ζU ))

+ (ψR, J(ψU , ζR)) + (ψR, J(ψU , ζU )). (A16)

The first two of the four terms on the right-hand side of this
expression vanish as a consequence of Eq. (A7) and the fact that
the Jacobian of two identical fields is zero. The third term can be
rewritten as

(ψR, J(ψU , ζR)) = −(ψR, J(ζR, ψU ))

= −(J(ψR, ζR), ψU )) = −(ψU , J(ψR, ζR)). (A17)

This yields for the time derivative of the resolved energy, also
using Eq. (A6) to rewrite the viscosity term,

dER

dt
= − (ψU , J(ψR, ζR)) + (ψR, J(ψU , ζU ))

− ν(ζR, ζR) − μ(ψR, (FR − ζR)). (A18)

The equations for the time derivative of the unresolved energy
and the resolved and unresolved enstrophy can be obtained in an
analogous way.

References

Bouchet F, Venaille A. 2012. Statistical mechanics of two-dimensional and
geophysical flows. Phys. Rep. 515: 227–295.

Coiffier J. 2011. Fundamentals of Numerical Weather Prediction. Cambridge
University Press: Cambridge, UK.

Cushman-Roisin B, Beckers JM. 2011. Introduction to Geophysi-
cal Fluid Dynamics – Physical and Numerical Aspects, Vol. 101.
Academic Press: Cambridge, MA.

Frederiksen JS, Kepert SM. 2006. Dynamical subgrid-scale parame-
terizations from direct numerical simulations. J. Atmos. Sci. 63:
3006–3019.

Jaynes ET. 2003. Probability Theory – The Logic of Science. Cambridge
University Press: Cambridge, UK.

Kalverla P. 2015. ‘A maximum entropy approach to the parameteri-
zation of subgrid-scale processes in two-dimensional flows’. KNMI
Internal Report IR-2015-01. http://bibliotheek.knmi.nl/internrapport.
html (accessed 5 May 2016).

McWilliams JC. 1984. The emergence of isolated coherent vortices in turbulent
flow. J. Fluid Mech. 146: 21–43.

Sadourny R, Basdevant C. 1985. Parameterization of subgrid scale barotropic
and baroclinic eddies in quasi-geostrophic models: Anticipated potential
vorticity method. J. Atmos. Sci. 42: 1353–1363.

Stensrud DJ. 2009. Parameterization Schemes – Keys to Understanding
Numerical Weather Prediction Models. Cambridge University Press:
Cambridge, UK.

Thuburn J, Kent J, Wood N. 2014. Cascades, backscatter and conservation in
numerical models of two-dimensional turbulence. Q. J. R. Meteorol. Soc.
140: 626–638.

Verkley WTM. 2011. A maximum entropy approach to the problem of
parametrization. Q. J. R. Meteorol. Soc. 137: 1872–1886.

c© 2016 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2016)


