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Abstract. In this paper we present the first contiguous high-
resolution spectra of the Earth’s polarisation observed by
a satellite instrument. The measurements of the Stokes frac-
tion Q/I are performed by the spectrometer GOME-2 on-
board the MetOp-A satellite. Polarisation measurements by
GOME-2 are performed by onboard polarisation measure-
ment devices (PMDs) and the high-resolution measurements
discussed in this paper are taken in the special “PMD RAW”
mode of operation. The spectral resolution of these PMD
RAW polarisation measurements varies from 3 nm in the
ultraviolet (UV) to 35 nm in the near-infrared wavelength
range. We first compare measurements of the polarisation
from cloud-free scenes with radiative transfer calculations
for a number of cases. We find good agreement but also
a spectral discrepancy at 800 nm, which we attribute to re-
maining imperfections in the calibration key data. Secondly,
we study the polarisation of scenes with special scattering ge-
ometries that normally lead to near-zeroQ/I . The GOME-2
polarisation spectra indeed show this behaviour and confirm
the existence of the small discrepancy found earlier. Thirdly,
we study the Earth polarisation for a variety of scenes. This
provides a blueprint ofQ/I over land and sea surfaces for
various degrees of cloud cover. Fourthly, we compare the
spectral dependence of measurements ofQ/I in the UV with
the generalised distribution function proposed bySchutgens
and Stammes(2002) to describe the shape of the UV polari-
sation spectrum. The GOME-2 data confirm that these func-
tions match the spectral behaviour captured by the GOME-2
PMD RAW mode.

1 Introduction

Measurements of the atmospheric state of polarisation form
an important addition to knowledge of the intensity of the
backscattered sunlight as it completes the description of
the top of atmosphere (TOA) signal and (therefore) enables
a more accurate retrieval of atmospheric properties and con-
stituents (Mishchenko and Travis, 1997). A good example
of this is the retrieval of aerosol properties over land made
possible by measurements of polarisation performed by the
POLDER (Deschamps et al., 1994) instruments (Deuzé et al.,
2001; Hasekamp and Landgraf, 2007; Tanré et al., 2011). The
POLDER instruments were designed to measure the state of
polarisation for the purpose of improving retrieval possibili-
ties.

There are also instruments that measure the state of polari-
sation primarily for the purpose of improving their radiomet-
ric calibration. Examples are GOME (Burrows et al., 1999),
SCIAMACHY (Bovensmann et al., 1999), and the GOME-2
instruments (Callies et al., 2000) onboard the MetOp range of
satellites. The spectral detectors of these instruments, which
are responsible for the detection of the Earth radiances, are
not only sensitive to the intensity of the detected light, but
also to its polarisation. Knowledge of the state of polarisation
is therefore required to be able to perform a correction for
the polarisation sensitivity (Schutgens and Stammes, 2003;
Lichtenberg et al., 2006; Munro and Lang, 2011).

Essential for both purposes is (good knowledge of) the
quality of the polarisation measurements. Validation of at-
mospheric polarisation measurements is generally speak-
ing more challenging than validation of Earth reflectance
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measurements. For instance, satellite intercomparisons be-
tween the small fleet of polarisation-measuring satellite in-
struments are complicated or even impossible because of the
strong dependence of the state of polarisation on the scatter-
ing geometry. A reliable intercomparison would require the
instruments to record the same footprint at approximately
the same time with more or less identical viewing and so-
lar geometries (as in e.g.Tilstra and Stammes, 2007). An-
other method used for polarisation validation is based on
analysing the polarisation for (the few) special geometries
along the orbit for which the state of polarisation can be pre-
dicted (Aben et al., 2003). Strictly speaking, this only val-
idates the atmospheric polarisation measurements for these
special geometries. Other methods of validation rely on sim-
ulations based on radiative transfer calculations or employing
alternative approaches of polarisation retrieval (Tilstra and
Stammes, 2005).

This paper focuses on the polarisation measurements of
the GOME-2 instrument. More specifically, it focuses on its
so-called “PMD RAW” mode, which is a special mode in
which the entire, contiguous spectrum of polarisation is mea-
sured from 300 to 850 nm with a high to moderate spectral
resolution between 3 and 35 nm. Contiguous spectra of at-
mospheric polarisation have been measured before over the
(UV–)VIS–NIR wavelength range with high spectral resolu-
tion (Aben et al., 1999; Boesche et al., 2006). However, these
measurements of the scattered skylight were performed us-
ing ground-based instruments. All of the satellite instruments
that were mentioned earlier in this section perform their po-
larisation measurements for specific wavelength bands in the
spectrum. Other remote-sensing spectrometers exist that do
measure contiguous polarisation spectra, such as the GOSAT
instrument (Kuze et al., 2009), but only in specific small
wavelength windows. The GOME-2 instrument in its PMD
RAW mode is the first instrument that observes the Earth
polarisation at the TOA over the entire UV–VIS–NIR wave-
length range.

The goal of this paper is twofold. First, to introduce the
measurements of polarisation spectra taken by GOME-2 and
to validate the quality of the polarisation spectra. Validation
of the spectra is not only relevant to applications making use
of the measured spectra. It is also a check of the calibration
of the normal polarisation measurements, as the radiomet-
ric calibration data used for the normal polarisation mea-
surements has been partly derived from PMD RAW mea-
surements (Lang, 2010). Secondly, we want to present the
first measured contiguous polarisation spectra taken from
the TOA and present (measured) blueprints of atmospheric
polarisation for typical Earth scenes under typical circum-
stances.

The outline of this paper is as follows. In Sect.2 we start
off with a short introduction of atmospheric polarisation in
terms of Stokes fractions. Section3 briefly introduces the
GOME-2 satellite instrument, and describes how the PMD
RAW polarisation measurements are performed. Sections4

and5 both present the results of validation studies. The vali-
dation in Sect.4 is based on comparisons with model simula-
tions. The validation in Sect.5 is based on the use of special
geometries along the orbit for which the Stokes fractionQ/I

is close to zero irrespective of the underlying scene charac-
teristics. In Sect.6 we present high-resolution polarisation
spectra of Stokes fractionQ/I for a range of typical Earth
scenes. In Sect.7 we use the high-resolution spectral mea-
surements in the UV wavelength range to confirm that the
spectrum of Stokes fractionQ/I can be described well in the
UV by a generalised distribution function (GDF). The paper
ends with a summary and conclusions.

2 Definitions

The amount of circularly polarised light reflected by the
Earth’s atmosphere is negligible (Coulson, 1988), and there-
fore only linearly polarised light needs to be considered in
the current context. Linearly polarised light can be described
by the Stokes parameters{I,Q,U}. These three parameters
are defined as follows (van de Hulst, 1981; Hovenier et al.,
2004):

I = I‖ + I⊥ = I0◦ + I90◦ , (1)

Q = I‖ − I⊥ = I0◦ − I90◦ , (2)

U = I45◦ − I135◦ , (3)

whereI is the total intensity of the light andQ andU to-
gether contain all the information about the linear polarisa-
tion. In Eqs. (1)–(3) the angles denote the direction of the
transmission axis of a linear polariser, relative to some ref-
erence plane. In this paper, and for GOME-2, this reference
plane is the local meridian plane, defined as the plane con-
taining the local zenith and the spectrometer’s viewing direc-
tion. The Stokes parametersQ andU can also be expressed
in terms of the degree of linear polarisationP and the direc-
tion of linear polarisationχ (van de Hulst, 1981):

Q/I = P cos2χ (4)

U/I = P sin2χ. (5)

In this representation, the degree of linear polarisationP

and the direction of linear polarisationχ are defined as

P =

√
Q2 + U2/I ; tan2χ = U/Q. (6)

The normalised quantitiesQ/I and U/I are referred to
as Stokesfractions. The direction of linear polarisationχ
is mainly determined by the geometry that defines the sun–
atmosphere–satellite system. A study has shown that it de-
viates very little from its theoretical single scattering value
(Schutgens et al., 2004). This means that we can useχ ≈ χss
in good approximation, whereχss is calculated from geom-
etry only. As for the degree of linear polarisationP , in gen-
eral it not only depends on the scattering geometry, but also
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on the properties of the observed scene. Inside strong gaseous
absorption bands, e.g. below∼ 300 nm, where ozone absorp-
tion is so strong that single scattering is a good approxima-
tion, the degree of polarisation does only depend on the scat-
tering geometry, and is given by (e.g.Chandrasekhar, 1960;
Schutgens and Stammes, 2002)

Pss=
1− cos22

1+ 1 + cos22
, (7)

where2 is the single scattering angle, and1 = 2ρn/(1−

ρn) is a correction factor for depolarisation due to molecular
anisotropy. The parameterρn is the depolarisation factor for
natural light which may be calculated directly (van de Hulst,
1981) from the reported values of the King correction factor
FK found in, for instance,Bates(1984). At 300 nm,FK =

1.055 leading toρn = 0.03178. The correction factor1 thus
amounts to 0.0656 at this wavelength.

In this paper, the Earth’s reflectance is defined as

R =
πI

µ0E
, (8)

whereI is the radiance reflected by the Earth atmosphere (in
W m−2 sr−1 nm−1), E is the incident TOA solar irradiance
perpendicular to the solar beam (in W m−2 nm−1), andµ0 is
the cosine of the solar zenith angleθ0. The viewing zenith
angle is denoted asθ , the relative azimuth angle asφ − φ0,
and the single scattering angle as2.

3 Description of GOME-2

3.1 Instrument

The spectrometer GOME-2 (Callies et al., 2000) was
launched on 19 October 2006 onboard the MetOp-A satellite.
The MetOp-A satellite is kept in a polar sun-synchronous or-
bit at an altitude of 800 km, with a local crossing time of the
equator of 9.30 a.m. for the descending node. MetOp-A was
launched as the first satellite in a series of three Meteoro-
logical Operational (MetOp) satellites. The second satellite
platform, MetOp-B, was launched successfully in Septem-
ber 2012, and placed in the same orbit as MetOp-A but with
a head start of 50 min (half an orbit) on MetOp-A. The third
MetOp satellite, MetOp-C, is scheduled to be launched in
2017. All three MetOp satellites host identical versions of
the GOME-2 instrument.

GOME-2, like its predecessor GOME (in this paper also
called GOME-1 for clarity) on the ERS-2 satellite (Burrows
et al., 1999), measures the sunlight reflected by Earth in
the wavelength range between about 240 and 790 nm, with
a spectral resolution (FWHM) ranging from 0.2 nm in the UV
to 0.4 nm in the NIR. The instrument scans the Earth from
east to west in 4.5 s and back in 1.5 s by rotating an internal
scanner mirror. The orbit swath sensed this way is 1920 km
wide. The typical measurement footprint in the forward scan

is 80 km×40km (across track×along track). The sunlit part
of an orbit track consists of about 11 000 measurement foot-
prints. Global coverage is achieved in three consecutive days.

The scientific goal of the GOME-2 instrument is to per-
form global measurements of trace gases in troposphere and
stratosphere for support of meteorological operations and cli-
mate studies. The list of trace gases currently retrieved in-
cludes ozone, NO2, BrO, SO2 and HCHO. Next to these
gases, GOME-2 also monitors aerosol presence and retrieves
cloud information.

3.2 GOME-2 polarisation measurements

The GOME-2 instrument is, like its predecessors GOME-1
and SCIAMACHY (Bovensmann et al., 1999), not only sen-
sitive to the intensity of the detected light, but also to its
state of polarisation. Other instruments such as OMI (Ozone
Monitoring Instrument,Levelt et al., 2006) are equipped with
a polarisation scrambler to remove the instrumental polarisa-
tion dependence. For the GOME-2 instrument the polarisa-
tion sensitivity is corrected for in the on-ground processing.
For this purpose, the response of the spectral channels to both
the intensity and the polarisation of radiation was measured
during on-ground calibration campaigns. This in principle al-
lows a correction, provided, of course, that the polarisation of
the incoming light is known.

Knowledge of the state of polarisation of the incident radi-
ation is therefore essential. For this reason, the GOME-2 in-
struments were equipped with two additional detector arrays
to measure the parallel componentI‖ and the perpendicular
componentI⊥ of the incident light. From Eqs. (1) and (2)
it follows that Stokes fractionQ/I can be determined from
these. Stokes fractionU/I is not known, but GOME-2 was
designed in such a way that the dependence onU/I is much
smaller than the dependence onQ/I . Moreover,U/I is not
neglected but scaled toQ/I using the theoretical single scat-
tering ratio(U/Q)ss (Munro and Lang, 2011).

The two detector arrays on board GOME-2 are officially
called polarisation measurement devices (PMDs). PMD-p
measures the parallel componentI‖ and PMD-s measures
the perpendicular componentI⊥. Both PMD-p and PMD-s
consist of 1024 detector pixels, of which 256 can be read
out to produce radiance spectra theoretically spanning the
wavelength range 300–1200 nm. In practice, the useful wave-
length range is limited to 300–850 nm. The integration time
(IT) of the PMDs in this mode is 23.4 ms and the associated
footprint size in the forward scan amounts to 10 km× 40km
(across track× along track). This is eight times smaller than
the typical footprint size of the main science channels.

In the normal mode of operation, the detected polarisation
spectra arenot transferred down to Earth. Instead, the spectra
are down-linked in 15 programmable spectral bands (Munro
and Lang, 2011). This reduces the data rate consumption.
The current definition of these 15 PMD bands (Lang, 2010)
is given graphically in Fig.1. Here the top bar shows the
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Fig. 1. Illustration showing the spectral coverage of the fifteen GOME-2 PMD bands, on the

PMD detector arrays (top bar), and on the wavelength grid (bottom bar). The PMD RAW

mode in principle covers the entire GOME-2 wavelength range between 300 and 800 nm

with a spectral resolution ranging between 3 nm in the UV up to 35 nm in the NIR.

Fig. 2. Geophysical location of the three cases in North America studied in this paper.

Case 1: 67.2◦N, 146.3◦W; Case 2: 60.4◦N, 113.6◦W; Case 3: 67.9◦N, 146.3◦W. All

three cases constitute cloud-free scenes over land. The two white curves indicate the edges

of the GOME-2 orbit swath. Each of the three windows contains a different background.

This background represents the 772 nm surface LER product of GOME-1, MERIS, and

GOME-2, respectively, for the month May. Obviously, there are significant differences

which can have a large impact on the outcome of the simulations performed in this paper.

25

Figure 1. Illustration showing the spectral coverage of the fifteen
GOME-2 PMD bands, on the PMD detector arrays (top bar), and
on the wavelength grid (bottom bar). The PMD RAW mode in prin-
ciple covers the entire GOME-2 wavelength range between 300 and
800 nm with a spectral resolution ranging between 3 nm in the UV
up to 35 nm in the NIR.

definition of the PMD bands in terms of the PMD detector
pixels that make up a PMD band. The bottom bar presents
the same but then in wavelength space. Note the many PMD
bands located in the UV wavelength range. This is a huge
improvement over the GOME-1 situation, where only three
broadband PMD bands were available for the entire UV–NIR
wavelength range.

However, this paper is not concerned with the GOME-2
polarisation measurements that are performed in the normal
mode of operation. Our interest is in the so-called “PMD
RAW” mode in which the full polarisation spectrum is mea-
sured. Employing this mode could only be achieved within
roughly the same data rate by reducing the spatial coverage:
only every 16th spectrum is actually down-linked, and the 15
spectra before that are discarded. As a result, the footprint
size is the same as it is for the normal operation mode. Only
one orbit per month is observed in PMD RAW mode.

The PMD RAW spectra that are contained in the GOME-2
level-1b data product are those recorded directly by PMD-p
and PMD-s, and are only partly calibrated. The radiances and
Stokes fractionsQ/I are not given directly, and they have to
be calculated from the PMD-p and PMD-s signals. For this,
we follow the description given in the Product Generation
Specification (PGS) document (Munro and Lang, 2011) but
then adapted to the PMD RAW situation. The steps that are
needed to calculate the radiances and Stokes fractions are:

1. Determine the raw signals for PMD-p and PMD-s.

2. Perform a dark current correction.

3. Correct for pixel-to-pixel gain (PPG).

4. Determine the spectral calibration of the PMDs.

5. Perform an etalon correction.

6. Correct for stray light.

7. Determine the viewing and solar angles.

8. Calculate the single scattering(U/Q)ss ratio.

9. Determine the Mueller matrix elements (MMEs).

10. Calculate Stokes parameterQ/I using Eq. (167) (PGS-
7.0).

11. Calculate the radianceI using Eq. (216) (PGS-7.0).

Steps 1–7 are already performed for the PMD RAW data
inside the GOME-2 level-1b product. The MME key data can
be found in the GOME-2 level-1a product. The version of the
level-1 data which we used was version 5.3. In this paper, we
only present data from 2007 and 2008. Data from later years
may be affected by instrument degradation.

4 Case studies and radiative transfer simulations

In this section we study the polarisation measurements that
are performed by the GOME-2 instrument in its special PMD
RAW mode. We also study the Earth reflectance that may be
derived from the PMD measurements in this special observa-
tion mode. We do this for a number of cases, and we compare
the results with simulations performed by a radiative transfer
model. As mentioned before, the PMD RAW mode is only
active for one orbit per month, and the orbit paths of all PMD
RAW mode orbits collected so far have been nearly identical.
In each of the three panels in Fig.2 the associated orbit swath
is drawn over the region containing Northern America. The
locations of three scenes that will be studied are indicated by
the three white circles.

The three panels in Fig.2 each have a background that
represents the Lambert-equivalent reflectivity (LER) of the
surface at 772 nm for the month May, determined from the
GOME-1, MERIS, and GOME-2 instruments, respectively
(Koelemeijer et al., 2003; Popp et al., 2011). The surface
LER is an essential input parameter for the radiative trans-
fer calculations of clear-sky scenes that will be presented in
this section and represents the largest source of uncertainty
(see, e.g.Tilstra et al., 2005, Fig. 4). Clearly, Fig.2 poses
a warning that there are large differences between the three
surface LER databases.

4.1 Case 1

The first case to be studied is that of scene 1 as defined in
Fig. 2. The scene was observed on 8 August 2007 around
19:12 UTC and was cloud free at that time. This was checked
using AVHRR cloud fraction data, which had been mapped
to the GOME-2 footprints. The scene was observed by the
last forward-scan PMD RAW measurement inside the re-
spective scan from east to west. In the left panel of Fig.3
the red curve shows the Earth reflectance spectrum retrieved
from the PMD RAW measurements, presented as a function

Atmos. Meas. Tech., 7, 2047–2059, 2014 www.atmos-meas-tech.net/7/2047/2014/



L. G. Tilstra et al.: GOME-2 Earth polarisation spectra 2051

Fig. 1. Illustration showing the spectral coverage of the fifteen GOME-2 PMD bands, on the

PMD detector arrays (top bar), and on the wavelength grid (bottom bar). The PMD RAW

mode in principle covers the entire GOME-2 wavelength range between 300 and 800 nm

with a spectral resolution ranging between 3 nm in the UV up to 35 nm in the NIR.

Fig. 2. Geophysical location of the three cases in North America studied in this paper.

Case 1: 67.2◦N, 146.3◦W; Case 2: 60.4◦N, 113.6◦W; Case 3: 67.9◦N, 146.3◦W. All

three cases constitute cloud-free scenes over land. The two white curves indicate the edges

of the GOME-2 orbit swath. Each of the three windows contains a different background.

This background represents the 772 nm surface LER product of GOME-1, MERIS, and

GOME-2, respectively, for the month May. Obviously, there are significant differences

which can have a large impact on the outcome of the simulations performed in this paper.

25

Figure 2. Geophysical location of the three cases in North America studied in this paper. Case 1: 67.2◦ N, 146.3◦ W; case 2: 60.4◦ N,
113.6◦ W; case 3: 67.9◦ N, 146.3◦ W. All three cases constitute cloud-free scenes over land. The two white curves indicate the edges of the
GOME-2 orbit swath. Each of the three panels contains a different background. This background represents the 772 nm surface LER product
of GOME-1, MERIS and GOME-2, respectively, for the month May. Obviously, there are significant differences which can have a large
impact on the outcome of the simulations performed in this paper.

of wavelength. The green spectrum was calculated by the ra-
diative transfer code DAK (“Doubling-Adding KNMI”) (de
Haan, 1987; Stammes, 2001). All relevant scene parameters
that were known were fed to the code. These parameters
include ozone column (293 DU, obtained from the TEMIS
website,http://www.temis.nl), the viewing and solar angles,
surface pressure, surface albedo and aerosol optical thickness
(AOT).

The surface albedo was taken from the GOME-1 surface
LER database (Koelemeijer et al., 2003). Aerosol presence
was introduced by including Lowtran-7 tropospheric aerosol.
We assumed an AOT value of 0.03, somewhat smaller than
the estimated value of 0.05 which we deduced from AOT
observations made by the nearby AERONET station of “Bo-
nanza Creek”. Note that the surface albedo of the GOME-1
surface LER database may actually partly represent back-
ground aerosol as aerosol presence was not filtered out in
the surface LER retrieval (Koelemeijer et al., 2003). Further-
more, to get an as good as possible comparison, we included
not only ozone absorption, but also absorption by oxygen
(O2-O2, O2-A, and O2-B band) and water vapour. From the
left panel of Fig.3 we conclude that there is a reasonable
agreement between the measured spectrum and the simulated
spectrum, especially in the UV, below 450 nm. Above this
wavelength there is certainly some disagreement.

To try to understand the differences between measure-
ment and simulation, we improve the simulated spectrum by
taking the slit function of the GOME-2 instrument into ac-
count. The response functions of the PMD detector pixels
are known and the simulated DAK spectrum was convolved
with these (wavelength dependent) slit functions. The result
is the dashed blue curve shown in Fig.3. As can be seen, the
features around the O2-A and water vapour absorption bands
are described accurately by the simulated spectrum. How-
ever, the result still points to a quantitative disagreement be-
tween measurement and model. This could be a calibration

problem, but it is at this point more likely to be caused by
inaccuracies in the provided surface albedo spectrum.

To verify whether inaccuracies in the surface albedo spec-
trum could indeed explain the differences between measure-
ment and simulation, we redo our analyses using surface
albedo input from the GOME-2 and MERIS surface albedo
databases. The results are shown in Fig.3. Here, the solid
and dotted blue curves represent simulation results convolved
with the PMD slit function and based on the GOME-2 and
MERIS surface albedo databases, respectively. Only above
500 nm are there significant differences. The analysis con-
firms that inaccuracies in the surface albedo have a large im-
pact for the longer wavelengths, and that it is hard to draw
quantitative conclusions for wavelengths above 500 nm. Be-
low 500 nm the PMD RAW reflectance is found to be accu-
rate within 2 %.

We now shift our attention to the PMD RAW polarisation
measurements. The right panel of Fig.3 presents the spec-
trum of the measured Stokes fractionQ/I (in red). The po-
larisation spectrum shows a lot of detail. The green horizon-
tal lines indicate the situation of unpolarised light, for which
Q/I = 0, and the situation of singly scattered light, for which
Q/I = (Q/I)ss. For most of the wavelengths, the measured
Stokes fraction is found to lie in between these two limits, as
one would expect based on considerations given inKrijger
et al.(2005). For part of the wavelength range, however, this
rule of thumb is violated, because of multiple scattering of
the light. To further study the spectrum, we plot the simu-
lated Stokes fraction spectrum (in green) and also the three
convolved versions (in blue). The conclusion is that there is
a good agreement between the measured and the simulated
polarisation spectra for all wavelengths. The spectrum nicely
demonstrates the depolarising effect of the surface (albedo)
on the Stokes fraction. A feature is present in the polarisation
spectrum around 800 nm. Note that the simulated spectrum
also violates the rule of thumb mentioned earlier.
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Fig. 3. Earth reflectance (left window) and polarisation Stokes fraction Q/I (right window)

derived from GOME-2 PMD RAW mode measurements for case “1” in Fig. 2 (in red). The

green curves represent the high-resolution simulated reflectance and polarisation spectra,

based on surface albedo input from the GOME-1 surface LER database. The dashed blue

curve represent the same, but convolved with the PMD slit function. The FWHM of this slit

function typically ranges between 3 nm in the UV up to 35 nm in the NIR. The solid and

dotted blue curves also represent convolved simulation results but for these simulations the

surface albedo input was taken from the GOME-2 and MERIS surface reflectivity databases,

respectively. The two horizontal green lines in the right window indicate the unpolarised

situation, for which Q/I = 0, and the single scattering situation, for which Q/I = (Q/I)ss.

Fig. 4. Earth reflectance and polarisation Stokes fraction Q/I measured by GOME-2 for

case “2” indicated in Fig. 2 (in red). The simulated spectra (in blue) were calculated with

different surface albedo inputs (see legend) and were convolved with the PMD slit function.

For the Stokes fraction Q/I the agreement between measurement and simulation is good in

the UV but less good for the longer wavelengths.
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Figure 3.Earth reflectance (left panel) and polarisation Stokes fractionQ/I (right panel) derived from GOME-2 PMD RAW mode measure-
ments for case 1 in Fig.2 (in red). The green curves represent the high-resolution simulated reflectance and polarisation spectra, based on
surface albedo input from the GOME-1 surface LER database. The dashed blue curve represent the same, but convolved with the PMD slit
function. The FWHM of this slit function typically ranges between 3 nm in the UV up to 35 nm in the NIR. The solid and dotted blue curves
also represent convolved simulation results but for these simulations the surface albedo input was taken from the GOME-2 and MERIS
surface reflectivity databases, respectively. The two horizontal green lines in the right panel indicate the unpolarised situation, for which
Q/I = 0, and the single scattering situation, for whichQ/I = (Q/I)ss.

4.2 Case 2

The reflectance spectrum that was measured for scene 2 is
shown in the left panel of Fig.4, again in red. This time
the scene was observed by the first forward-scan PMD RAW
measurement inside the scan from east to west, leading to an
entirely different scattering geometry than for scene 1. The
difference with respect to the spectrum of Fig.3 is mostly
caused by a difference in surface albedo, though. The simu-
lation results that are represented in Fig.4 by the blue curves
were all convolved with the PMD slit function, but differ-
ent surface albedo spectra were used in the radiative transfer
calculations. The dashed curve represents the case calculated
with the GOME-1 surface LER, the solid curve was calcu-
lated using the GOME-2 surface LER, and the dotted one
using the surface albedo from the MERIS database. Clear
from Fig.4 is that the particular choice of surface albedo in-
put for the radiative transfer model (RTM) is essential at the
longer wavelengths (say, above 400 nm). Apparently, there
are quite some differences in the surface albedo databases
(such differences were visualised already in Fig.2). From
the comparison between the GOME-2 measured and simu-
lated reflectances we have to conclude that there seems to
be a satisfactory agreement when we take into account the
uncertainty in surface albedo.

We now look at the spectrum of the Stokes fractionQ/I

which is given in the right panel of Fig.4. Because of the
difference in scattering geometry, the shape of the polar-
isation spectrum is very different from the one shown in
Fig. 3. The simulated polarisation spectra, convolved with
the PMD slit function and given in blue, are in reason-
able agreement for all three surface albedo inputs. There
is quite a good agreement with the measuredQ/I , with

a maximum disagreement of 0.05. This maximum disagree-
ment is found for the longer wavelengths (above 650 nm),
and is perhaps caused by the fact that we have a Lambertian
(non-polarising) surface included in the simulations. This un-
derestimates the contribution of the surface to the TOA po-
larisation. However, the non-Lambertian (polarising) nature
of the real surface cannot explain the feature that is found
around 800 nm. The existence of this feature is pointing to
a discrepancy in the GOME-2 calibration key data.

4.3 Case 3

The results for scene 3 are shown in Fig.5. The scene was
observed by the westernmost PMD RAW measurement in-
side the scan. For the reflectance we find good agreement
with the simulations based on the GOME-1, GOME-2, and
MERIS surface albedos. Deviations are very small in the UV,
but go up to 0.05 in the visible wavelength range. These de-
viations are explained completely by the uncertainty in the
surface LER spectra used. For the scattering geometry at
hand, the degree of polarisation is modest. The simulated and
measuredQ/I are close together for each of the three sur-
face albedo input spectra. The GOME-2 surface LER seems
to generate the best results. There clearly is a wavelength-
dependent difference between measurement and simulation.
This small difference (of up to 0.02 inQ/I ) may be ex-
plained by inaccuracies in the (assumed) surface albedo, or it
may be partly a consequence of the Lambertian (unpolarised)
surface reflection. Note that the feature around 800 nm is
again present in the polarisation spectrum.
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Fig. 3. Earth reflectance (left window) and polarisation Stokes fraction Q/I (right window)

derived from GOME-2 PMD RAW mode measurements for case “1” in Fig. 2 (in red). The

green curves represent the high-resolution simulated reflectance and polarisation spectra,

based on surface albedo input from the GOME-1 surface LER database. The dashed blue

curve represent the same, but convolved with the PMD slit function. The FWHM of this slit

function typically ranges between 3 nm in the UV up to 35 nm in the NIR. The solid and

dotted blue curves also represent convolved simulation results but for these simulations the

surface albedo input was taken from the GOME-2 and MERIS surface reflectivity databases,

respectively. The two horizontal green lines in the right window indicate the unpolarised

situation, for which Q/I = 0, and the single scattering situation, for which Q/I = (Q/I)ss.

Fig. 4. Earth reflectance and polarisation Stokes fraction Q/I measured by GOME-2 for

case “2” indicated in Fig. 2 (in red). The simulated spectra (in blue) were calculated with

different surface albedo inputs (see legend) and were convolved with the PMD slit function.

For the Stokes fraction Q/I the agreement between measurement and simulation is good in

the UV but less good for the longer wavelengths.
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Figure 4. Earth reflectance and polarisation Stokes fractionQ/I measured by GOME-2 for case 2 indicated in Fig.2 (in red). The simulated
spectra (in blue) were calculated with different surface albedo inputs (see legend) and were convolved with the PMD slit function. For the
Stokes fractionQ/I the agreement between measurement and simulation is good in the UV but less good for the longer wavelengths.

Fig. 5. Reflectance and polarisation spectrum measured by GOME-2 for case “3”. The

agreement between measurement and simulation is good for both reflectance and polarisa-

tion for all three surface albedo inputs.

Fig. 6. Left window: reflectance spectrum measured by GOME-2 for a special geometry

case over the ocean for which we expect Q/I to be close to zero based on geometrical con-

siderations. The agreement between measurement and simulation is good. Right window:

polarisation Stokes fraction Q/I . Here the simulation results are not shown. Instead, the

brown horizontal lines indicate the small range in Stokes fractions in which we expect to

find the Q/I measurement. The dashed horizontal lines indicate the 0.01 accuracy level.
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Figure 5. Reflectance and polarisation spectrum measured by GOME-2 for case 3. The agreement between measurement and simulation is
good for both reflectance and polarisation for all three surface albedo inputs.

5 Special polarisation geometries

In the previous section the goal was to verify the GOME-2
PMD RAW polarisation measurements by comparison with
simulations. The quality of the simulated reflectance and po-
larisation is limited by the uncertainty in the surface albedo.
This is especially the case for the longer (visible) wave-
lengths, where the impact of the surface albedo is the largest.
Because of this, the focus was restricted to cloud-free scenes
over land. In this section, we do not use radiative transfer
calculations, but employ a method which focuses on special
scattering geometries for which the Stokes fractionQ/I can
be expected to be close to zero based on geometrical consid-
erations (see, for instance,Aben et al., 2003).

This special geometry method relies on the knowledge that
the direction of linear polarisationχ in most situations devi-
ates very little from its theoretical single scattering valueχss
(Schutgens et al., 2004). This means that we can useχ ≈ χss,
whereχss is calculated from geometry only (Tilstra et al.,
2003). Picking out all scenes for whichχss is close to 45◦ or

135◦ we end up with a collection of “validation” scenes for
which Q/I should be close to zero irrespective of the value
of the degree of linear polarisationP (see Eq.4). Strictly
speaking, this only validates the subset of measurements and
scattering geometries for whichQ/I ≈ 0. However, a study
(Tilstra, 2008) has shown that, at least for the GOME-2 PMD
bands, the quality of theQ/I for these special geometries is
comparable to the quality ofQ/I for all scattering geome-
tries.

In Fig. 6 we present the Earth reflectance of one of the
GOME-2 PMD RAW special geometry observations. In this
case the scene was selected also based on the grounds that
it was located over sea and cloud free at the time of mea-
surement. The results of radiative transfer calculations are
also given, in the same way as was done for Fig.3. There
seems to be a reasonable agreement. However, at 750 nm
measurement and simulation of the reflectance differ from
each other by more than 0.01 (∼ 25 %). In Fig.6 we also
show the Stokes fractionQ/I of the same scene. The sim-
ulation results are not shown, because accurate modelling
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Fig. 5. Reflectance and polarisation spectrum measured by GOME-2 for case “3”. The

agreement between measurement and simulation is good for both reflectance and polarisa-

tion for all three surface albedo inputs.

Fig. 6. Left window: reflectance spectrum measured by GOME-2 for a special geometry

case over the ocean for which we expect Q/I to be close to zero based on geometrical con-

siderations. The agreement between measurement and simulation is good. Right window:

polarisation Stokes fraction Q/I . Here the simulation results are not shown. Instead, the

brown horizontal lines indicate the small range in Stokes fractions in which we expect to

find the Q/I measurement. The dashed horizontal lines indicate the 0.01 accuracy level.
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Figure 6. Left: reflectance spectrum measured by GOME-2 for a special geometry case over the ocean for which we expectQ/I to be
close to zero based on geometrical considerations. The agreement between measurement and simulation is good. Right: polarisation Stokes
fractionQ/I . Here the simulation results are not shown. Instead, the brown horizontal lines indicate the small range in Stokes fractions in
which we expect to find theQ/I measurement. The dashed horizontal lines indicate the 0.01 accuracy level.

in the visible under these conditions (low surface albedo)
is not possible anyway. Instead, two horizontal brown lines
that indicate theQ = 0 andQ = (Q/I)ss limits are shown
and, as explained, the red PMD RAW special geometry mea-
surements are expected to fall in between these two limits:
Q/I ≈ 0. This is almost completely the case. Some devia-
tion is certainly there, though, and the spectral shape of the
discrepancy resembles the spectral shape of the differences
between measurement and simulation presented in the pre-
vious section, where the measured Stokes fractionQ/I was
compared with simulatedQ/I . From this we conclude that
the Stokes fractionQ/I – of the PMD RAW mode – is suf-
fering from detectable radiometric calibration problems. The
problems are not large: the accuracy ofQ/I appears to be
within 0.01 for most wavelengths, which is well within the
pre-flight expected accuracy of±0.05. The dashed horizon-
tal lines in Fig.6 indicate the “0.01” accuracy levels.

In the left panel of Fig.7 we present the measured Stokes
fraction spectrum for all collected special geometry obser-
vations in the years 2007 and 2008. The selection criteria
used were|cos2χss| < 0.005 and2 < 175◦, which resulted
in a total of 470 spectra. The second criterion on the single
scattering angle2 was added to filter out backscatter geome-
tries. Also given, in black, is the mean of the spectra, and the
standard deviationσ , visualised by the two blue curves. The
result confirms that there are indeed spectral features present
in the Stokes fractions. Further analyses of the data did not
point to a clear dependence on, for instance, viewing angle.

An alternative validation approach is to focus on backscat-
ter geometries. For these situations, where2 ' 180◦, the de-
gree of linear polarisationP may be expected to be small
based on symmetry arguments, resulting inQ/I close to zero
independent of the properties of the scene. The right panel
of Fig. 7 presents the measured Stokes fraction spectra for
all collected backscatter geometry observations in the years
2007 and 2008. This time we used the selection criterion

2 > 178◦ and|cos2χss| > 0.03, where the second criterion
makes sure that there is no overlap with the special geome-
try observations presented in the left panel of Fig.7. A total
of 155 backscatter geometry spectra were found. Comparing
the results with the results in the left panel of Fig.7 we see
that there are clear differences. Especially in the UV, below
∼ 400 nm, the backscatter observations systematically show
an offset inQ/I .

This discrepancy is, however, not caused by imperfections
in the GOME-2 data. It is a result of the fact that backscat-
ter geometries do not always lead to completely unpolarised
light. To explain, for backscatter situations whereθ = θ0 > 0
the axis of rotational symmetry (with respect to the scatter-
ing geometry) makes an angle with the zenith axis, which is
the symmetry axis of rotational symmetry of the atmosphere.
In this situation the multiple scattering terms do not cancel
out any more, and the backscattered light at the TOA is not
completely unpolarised. This phenomenon is captured well
by radiative transfer simulations. The result of such a (repre-
sentative) calculation is given by the brown spectrum in the
right panel of Fig.7. Therefore, backscatter geometries in
general do not always lead to completely unpolarised light
and theQ/I to be expected is in general small but not zero.
Note that a similar effect is present for the special geometry
situations shown in the left panel of Fig.7. A calculation of
Q/I for a representative special geometry situation is given
here by the brown spectrum. Taking all this into account ex-
plains most of the discrepancies between the two results in
Fig. 7. The conclusion is that both approaches point to the
same systematic spectral features and indicate that the error
on Stokes fractionQ/I is below 0.01 for most wavelengths.
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Fig. 7. Left window: Stokes fraction Q/I for special geometries along the GOME-2 PMD

RAW orbit for which we expect Q/I to be close to zero based on geometrical considera-

tions. The plot shows 470 spectra, their mean, and the standard deviation σ. Right window:

Stokes fraction Q/I for 155 backscatter geometries for which we expect Q/I to be close

to zero based on symmetry arguments. Brown curves (shifted downwards by 0.09 for clar-

ity): simulated Q/I for a typical special geometry/backscatter geometry, showing that the

expected Q/I is not completely equal to zero.

Fig. 8. Stokes fraction Q/I as a function of wavelength for ocean scenes with various

degrees of cloud contamination but otherwise comparable conditions. The numbers indicate

effective cloud fractions. The blue horizontal lines are explained in the text.
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Figure 7. Left: Stokes fractionQ/I for special geometries along the GOME-2 PMD RAW orbit for which we expectQ/I to be close to zero
based on geometrical considerations. The plot shows 470 spectra, their mean, and the standard deviationσ . Right: Stokes fractionQ/I for
155 backscatter geometries for which we expectQ/I to be close to zero based on symmetry arguments. Brown curves (shifted downwards
by 0.09 for clarity): simulatedQ/I for a typical special geometry/backscatter geometry, showing that the expectedQ/I is not completely
equal to zero.

Fig. 7. Left window: Stokes fraction Q/I for special geometries along the GOME-2 PMD

RAW orbit for which we expect Q/I to be close to zero based on geometrical considera-

tions. The plot shows 470 spectra, their mean, and the standard deviation σ. Right window:

Stokes fraction Q/I for 155 backscatter geometries for which we expect Q/I to be close

to zero based on symmetry arguments. Brown curves (shifted downwards by 0.09 for clar-

ity): simulated Q/I for a typical special geometry/backscatter geometry, showing that the

expected Q/I is not completely equal to zero.

Fig. 8. Stokes fraction Q/I as a function of wavelength for ocean scenes with various

degrees of cloud contamination but otherwise comparable conditions. The numbers indicate

effective cloud fractions. The blue horizontal lines are explained in the text.
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Figure 8.Stokes fractionQ/I as a function of wavelength for ocean
scenes with various degrees of cloud contamination but otherwise
comparable conditions. The numbers indicate effective cloud frac-
tions. The blue horizontal lines are explained in the text.

6 Earth polarisation spectra

In this section we illustrate the potential of using the
GOME-2 PMD RAW mode for the study of high-resolution
Earth polarisation spectra. For this, we study the Stokes frac-
tion Q/I spectrum of a few typical Earth scenes under typ-
ical conditions. In Fig.8 we present eight scenes observed
over the ocean with different degrees of cloud cover, but
with otherwise comparable conditions. The eight observa-
tions were recorded within a time interval of three minutes
(27 scans) and for the exact same scan mirror angle. There-
fore, the viewing and solar geometries are very similar and
so are the single scattering angles and the theoretical single

scattering Stokes fractions. The range in(Q/I)ss is illus-
trated graphically in Fig.8 by the horizontal blue bar.

For the spectra an effective cloud fractionceff is provided
to give an idea of the cloudiness of the scenes. This effective
cloud fraction was calculated for the PMD RAW footprints
in a way similar to that followed in the FRESCO retrieval
algorithm (Wang et al., 2008), with the difference that the
retrieval was fed beforehand with the official FRESCO cloud
pressure that was measured for the (eight times) bigger main
science channel footprints. This approach was needed as the
O2-A band is not resolved properly by the PMD RAW mode
measurements, allowing only cloud fraction to be derived for
the smaller PMD RAW footprints.

The nearly cloud-free spectrum (ceff = 0.01) shows the
typical wavelength behaviour of atmospheric polarisation
over a relatively dark surface: just above 300 nm depolarisa-
tion sets in rapidly caused by the onset of multiple Rayleigh
scattering and the increased surface reflection, both made
visible by the decrease of ozone absorption. As the wave-
length increases further, the Rayleigh optical thickness de-
creases further and, because of the low surface albedo, single
Rayleigh scattering is again the dominant process. As a re-
sult, the spectrum moves in the direction of the single scat-
tering limit (Q/I)ss again.

With increasing cloud cover (i.e. with increasingceff), the
depolarisation increases, and the curves are positioned closer
to the lineQ/I = 0 (given in blue). For the longer wave-
lengths, this effect is larger than for the shorter wavelengths
because of the lower atmospheric contribution. At the highest
effective cloud fraction (ceff = 0.47) the scene is dominated
entirely by the high reflectivity of the (mainly depolarising)
cloud layer. The picture shown in Fig.8 by the eight traces
is quite generic in the sense that the traces describe the typi-
cal behaviour ofQ/I for scenes over the ocean with variable
cloudiness.
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Fig. 9. Spectra of Q/I for scenes over (vegetated) land. Cloud presence varies from one

scene to the other. For the rest the scene properties are comparable. As before, the numbers

indicate effective cloud fractions. For low effective cloud fractions the spectra show the

chlorophyll “bump” at ∼ 500 nm and the vegetation red edge at ∼ 700 nm.
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Figure 9. Spectra ofQ/I for scenes over (vegetated) land. Cloud
presence varies from one scene to the other. For the rest the scene
properties are comparable. As before, the numbers indicate effective
cloud fractions. For low effective cloud fractions the spectra show
the chlorophyll “bump” at∼ 500 nm and the vegetation red edge at
∼ 700 nm.

Now we focus on a selection of scenes over land with var-
ious degrees of cloud coverage. The resultingQ/I spectra
are given in Fig.9. Again the scenes were taken at the same
position of the scanner mirror. The time interval in which the
measurements were performed was smaller than in the ocean
case (8 scans; less than one minute). The range in the calcu-
lated(Q/I)ss, illustrated by the blue bar, is a bit larger, due
to the higher solar zenith angles. Nevertheless, the scenes are
highly comparable, apart from the (selected) differences in
cloud cover. An effective cloud fractionceff as indication of
this cloud cover is provided in Fig.9 for each scene.

In the nearly cloud-free spectrum (ceff = 0.01) we can dis-
cern the typical wavelength behaviour of atmospheric polar-
isation over a (mainly depolarising) surface of type “vegeta-
tion” (see, for instance,Aben et al., 2003). As in the ocean
case, theQ/I spectrum moves away from the single scat-
tering value(Q/I)ss as the wavelength exceeds 300 nm, and
around 330 nm it slowly starts to bend back. The major dif-
ference compared to the ocean case is that the surface albedo
of vegetated land is higher than that of the ocean for wave-
lengths above about 400 nm. As the surface is mostly depo-
larising, Q/I starts to move towards the unpolarised limit
Q/I = 0 again, at a rate controlled mainly by the magni-
tude of the surface albedo. In Fig.9 we clearly see theQ/I

spectrum forceff = 0.01 respond to the chlorophyll “bump”
at∼ 500 nm and the vegetation red edge at∼ 700 nm.

Looking at the traces with higherceff, we see that the
features introduced by the shape of the “vegetation” albedo
spectrum fade away from theQ/I spectra. The spectra ba-
sically start to adopt the shape of theQ/I spectra of the
clouded ocean scenes. Note that the (probably instrumental)

Fig. 10. Stokes fraction Q/I for cloud-free scenes over snow (blue), permanent ice (black),

and sea ice (red).
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Figure 10. Stokes fractionQ/I for cloud-free scenes over snow
(blue), permanent ice (black) and sea ice (red).

feature around 800 nm that was discussed in Sect.4 is clearly
present in all the spectra presented in Fig.9.

Finally, in Fig. 10 we study the TOAQ/I spectrum of
snow and ice surfaces. More precisely, the surfaces studied
are “snow”, “permanent ice” and “sea ice”. All three scenes
were cloud free, and taken at the same scan mirror position
and within 34 scans (∼ 3 min). Clearly, the spectra of snow
and permanent ice mimic each other in great detail. The sea
ice case shows a higherQ/I for wavelengths above 400 nm.
This can be explained by the lower albedo of sea ice com-
pared to the albedo of snow or pure ice. This leads to a higher
degree of polarisation as explained earlier. On the other hand,
the surface can also actively contribute to the polarisation of
the scene. Spectra as in Fig.10 can provide information on
the polarisation contribution of the snow/ice surface.

In conclusion, the GOME-2 PMD RAW mode can provide
high-quality high-resolution Earth polarisation spectra.

7 Parameterisation of UV polarisation

The GOME-2 PMD RAW mode provides unique measure-
ments of the polarisation spectrum at the top of the atmo-
sphere. According toSchutgens and Stammes(2002) the de-
gree of polarisationP in the UV wavelength range can be pa-
rameterised using a generalised distribution function (GDF).
Essentially, the TOA degree of polarisationP can be well
described (in the UV) by the following function:

P(λ) =

{
Pss, λ ≤ λss,

Pss− α
(
1−

4e−(λ−λss)/1λ

(1+e−(λ−λss)/1λ)2

)
, λ > λss,

(9)

whereλ is the wavelength, andα, λssand1λ are in principle
fit parameters. Parameterisations forλss and1λ are, how-
ever, provided in the referenced paper. As explained in this
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Fig. 11. Polarisation Stokes fraction Q/I for scene “2” defined in Fig. 2 (red points) and

GDF function based on parameterisation (blue curve). Fit parameters are given in the plot.

The agreement is good.
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Figure 11. Polarisation Stokes fractionQ/I for scene 2 defined
in Fig. 2 (red points) and GDF function based on parameterisation
(blue curve). Fit parameters are given in the plot. The agreement is
good.

reference, expressions similar to Eq. (9) can be written down
for the Stokes fractionsQ/I andU/I .

The idea bySchutgens and Stammes(2002) to propose
the GDF as a description of the UV polarisation originated
from a study of simulated polarisation spectra. In Fig.11 we
verify the correctness of Eq. (9) using GOME-2 PMD RAW
polarisation data. The figure presents the measured Stokes
fraction Q/I already shown in Fig.4, but now accompa-
nied by a blue curve which represents the GDF defined in
Eq. (9). The fit parameters wereα = −0.20,λss= 300.8 nm,
and 1λ = 5.3 nm. Schutgens and Stammes(2002) provide
a recipe for calculating the parametersλss and1λ. Follow-
ing this recipe, using a geometrical air-mass factorM of 2.9
and a surface albedoA of 0.05, we findλss= 300.7 nm and
1λ = 4.2 nm. The fit based on these numbers is represented
in Fig. 11 by the dotted curve. The differences may be ex-
plained by the fact that the scene is observed from an off-
nadir viewing geometry (µ = 0.65), while the referenced pa-
per is restricted to scenes for whichµ > 0.92.

Nevertheless, the agreement between the GDF and the
measured polarisation spectrum is good, except for the spec-
tral features that are seen in the measured polarisation spec-
trum. These features are not caused by ozone absorption, but
presumably by (i) spectral misalignment between the two
PMD detector arrays and (ii) inaccuracies in the radiometric
calibration. Outside the UV these spectral features are seen
to disappear. It is important to understand the origin of these
spectral features and this should be investigated in the future.

In summary, the above result confirms that the UV polar-
isation spectrum can indeed be described by the proposed
GDF.

8 Conclusions

The spectra of Stokes fractionQ/I measured by GOME-2
in its PMD RAW mode and studied in this paper are the
first high-resolution top of atmosphere contiguous polarisa-
tion spectra covering the entire UV–NIR wavelength range
between 300 and 850 nm. The GOME-2 polarisation spectra
may be useful to the validation of polarised radiative transfer
models and to the development of satellite instruments. This
paper started with a validation of the Stokes fraction spectra
using radiative transfer calculations and a method based on
special geometries. From the validation results we concluded
that the polarisation spectra are of good quality:Q/I is ac-
curate within 0.01 for most wavelengths. There is also room
for improvement – we mention explicitly the feature around
800 nm which points to a systematic error in the radiomet-
ric calibration and the spectral features that are seen in the
UV. The origin of the spectral features in the UV needs to be
further investigated.

Using the high-resolution spectra of Stokes fractionQ/I

recorded in the GOME-2 PMD RAW mode we studied the
behaviour of atmospheric polarisation for typical scenes over
sea, (vegetated) land and snow/ice surfaces. The behaviour
could be explained qualitatively and the measured traces, ob-
served for various degrees of cloud cover, provide a concep-
tual model of the Earth’s polarisation. As an example of the
potential of the PMD RAW mode, we made use of the high
spectral resolution in the UV to test if the polarisation can
be described in terms of a generalised distribution function
(GDF). This is indeed the case.
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