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Summary 
 

The Advanced Scatterometer (ASCAT) onboard the Metop satellite series is designed to measure 
the ocean surface wind vectors globally. Generally, ASCAT provides wind products at excellent 
quality. The quality of the Advanced Scatterometer (ASCAT) derived winds is known to be 
generally degraded with increasing values of the inversion residual or maximum likelihood 
estimator (MLE). In the current ASCAT Wind Data Processor (AWDP), an MLE-based Quality 
control (QC) is adopted to filter poor-quality winds, which has proven to be effective in screening 
artifacts in the ASCAT winds, associated with increased sub-cell wind variability, notably under 
rain conditions. However, some poorly verifying winds, which appear in areas with convection, are 
not screened by the operational QC.  

Identification of rain can help to better understand the impact of geophysical effects associated with 
rain on scatterometer wind quality, and to develop an improved QC approach for scatterometer data 
processing. In the first part of this report, an image processing method, known as singularity 
analysis (SA), is used to detect the geophysical effects associated with rain. The performance of SA 
for rain detection is validated using ASCAT Level-2 data collocated with satellite radiometer rain 
data. The rain probability as a function of SA-derived singularity exponent (SE) parameter is 
calculated and compared with other rain-sensitive parameters, such as the MLE. The results indicate 
that the SA is effective in detecting the presence of rain in ASCAT wind vector cells (WVCs). 
Moreover, SA is a complementary rain indicator to the MLE parameter, thus showing great 
potential for an improved scatterometer QC. 

In the second part of the report, SA is proposed to complement the current ASCAT QC. The 
implementation of this new joint QC procedure is investigated, based on a comprehensive analysis 
of quality-sensitive parameters using the European Centre for Medium-range Weather Forecasts 
(ECMWF) model winds, the Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager 
(TMI) rain data, and tropical buoy wind and precipitation data as reference, taking into account 
their spatial and temporal representation. The buoy validation results show that the proposed 
method indeed effectively removes ASCAT winds in spatially variable conditions. It filters three 
times as many wind vectors as the operational QC, while preserving verification statistics with local 
buoys. Indeed, rain and wind variability as measured by the ASCAT SE appear well correlated. 
Besides rain-induced large wind variability, which is shown to degrade the quality of ASCAT-
derived winds, no evidence of rain-contamination effects (e.g., rain splashing) have been found. 
Further analysis is required to exclude rain contamination for ASCAT. 

Variable winds are a potential hazard in some applications, such as data assimilation, and the 
methods developed here may be useful for those applications. For other applications, such as 
nowcasting and oceanography it may be relevant to keep the flagged wind data since they provide 
essential information on (highly variable) air-sea interaction processes that cannot be spatially 
captured by any other wind observing system. 
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1 Introduction 
 

Space-borne scatterometers are known to provide accurate mesoscale 10-m equivalent-neutral wind 
speed and direction. The wind field inferred from scatterometer measurements is used in a variety 
of applications, including Numerical Weather Prediction (NWP), nowcasting, climate and air-sea 
interaction modelling. The wind retrieval procedure is carried out by inverting the non-linear 
relationship between the averaged radar backscatter cross-sections (σ) and the mean sea surface 
wind vector in a Wind Vector Cell (WVC). However, geophysical phenomena other than WVC-
mean wind, such as rain, sub-WVC wind variability, confused sea state, and land/ice contamination 
within the radar footprint, may also significantly contribute to the backscatter signal measured by 
scatterometers, and in turn, distort the mean wind-induced signal, leading to poor-quality retrieved 
winds. Elimination of poor-quality winds and assessing their effect is the prerequisite for using 
scatterometer data in the already mentioned applications. 

Over the last decade, broad studies have sought to better understand the physics of poor-quality 
scatterometer winds. In particular, the presence of rain is known to degrade scatterometer-derived 
sea-surface wind quality. Rain drops both attenuate and scatter the microwave signal. Those effects 
are relevant for Ku-band scatterometers, but relatively small for C-band systems (except for heavy 
rain conditions). In addition, the splashing of rain alters the wind-induced scatterometer backscatter 
signature on the ocean surface. At the same time, the wind variability within a wind vector cell 
(WVC) is enhanced in rain scenarios, which, in turn, increases the measurement variance. If the 
wind retrieval does not take rain effects into account, the rain contributions are interpreted as wind 
features, and in turn, the retrieved wind quality is degraded. Over the last decades, several 
approaches have been proposed to address the mentioned rain effects on scatterometers, especially 
for Ku-band systems. The first approach consists of identifying the parameters that are sensitive to 
rain (e.g., retrieved wind speed, MLE, backscatter dependence on incidence angle, etc.), estimating 
the rain probability or the retrieved wind quality as a function of those parameters by using a 
training dataset, and then applying the probability estimation of rain or wind quality indicator to 
flag data as ‘rain-contaminated’ [1][2]. The second methodology is based on assessing the rain 
effects on scatterometer backscatter measurements by using collocated scatterometer wind data, 
satellite microwave-derived rain data, and Numerical Weather Prediction (NWP) wind data, and 
then correcting the rain-induced backscatter contribution before wind retrieval [3][4]. The third 
strategy also uses collocated scatterometer, rain and NWP wind data to model both wind- and rain-
induced backscatter, with the objective of retrieving wind and rain parameters simultaneously 
[5][6]. Moreover, there are techniques which are based on the use of a single parameter, i.e., the 
Normalized Radar Cross Section (NRCS, σ0), for rain detection purposes. For instance, the 
difference between horizontally polarized and vertically polarized σ0 can be used to define the rain 
flag [7]. In [8], multi-fractal exponents are computed from the QuikSCAT σ0 images, and then a 
threshold is set to separate the rainy cases from the rain-free cases. 

For the identical C-band Advanced Scatterometers onboard Metop-A and Metop-B, i.e., ASCAT-A 
and ASCAT-B, a quality control (QC) based on the wind inversion residual or maximum-likelihood 
estimator (MLE) is developed to screen the poor-quality winds [9]. The MLE depicts the closest 
distance between the ASCAT measurement triplets (corresponding to the three antenna beam 
signals at each side of the ASCAT swath) and the geophysical model function (GMF). A large MLE 
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value indicates a large inconsistency of the measurement triplet with the GMF, i.e., a low 
probability that they can be explained by the WVC-mean wind vector. In particular, note that the 
current operational QC threshold is set for MLE>+18.6. The MLE is proved to be sensitive to rain, 
i.e., it generally increases with rain rate (RR) [10]. However, many WVCs with low MLE values 
(and therefore not QC-ed) are also affected by rain (i.e., the retrieved wind quality is degraded). 
Moreover, the MLE histogram peak of rain-contaminated WVCs is close to that of rain-free cases, 
which indicates that the MLE itself is ineffective in flagging rain-contaminated ASCAT WVCs in 
general [10]. Particularly, at low winds backscatter triplets affected by rain may still result in low or 
negative MLE values. At low winds, rain may cause enhanced spatial variability and techniques 
using spatial derivatives may be complementary in QC of rain cases. 

An image-processing technique, known as singularity analysis (SA), has been recently proposed as 
a complementary ASCAT QC tool [10]. SA provides quantitative information about the local 
regularity or irregularity of the signal. It is therefore able to detect not only existing geophysical 
structures, characterized as singularity fronts, but also any transition due to the presence of retrieval 
errors. In [10], preliminary results show that SA can potentially be used for ASCAT rain 
identification.  

In this study, the SA method is further developed for optimizing ASCAT rain identification and 
then further adapted and tested for QC purposes. A complementary approach using both singularity 
exponent (SE) and MLE is proposed to improve the current ASCAT QC. Section 2 introduces the 
different types of wind and rain data sources used in this study. In section 3, the singularity analysis 
method is briefly introduced and then applied and optimized for ASCAT data. In section 4, the 
experimental results of singularity analysis on rain flagging are presented and a comparison with 
the MLE-based rain identification is carried out. In section 5, two different QC procedures based on 
the combination of several quality-sensitive parameters, i.e., MLE, the measurement variability 
factor Kp, and the singularity exponent (SA output), are proposed and validated using collocated 
ASCAT data and buoy winds, taking account of the enhanced local spatial and temporal variability 
of the QC cases. Finally, the conclusions can be found in section 6. 
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2 Data 
 

For the rain identification study, 8 months (from September 2008- May 2009) of collocated ASCAT 
12.5-km Level 2 (L2) wind product, Tropical Rainfall Measuring Mission’s (TRMM) Microwave 
Imager (TMI) rain rate (RR) data, and European Centre for Medium-range Weather Forecasts 
(ECMWF) winds are analyzed. The ASCAT data in Binary Universal Format Representation 
(BUFR) are provided by the European Organisation for the Exploitation of Meteorological 
Satellites (EUMETSAT) Ocean and Sea Ice (OSI) Satellite Application Facility (SAF). They 
already include ECMWF winds, which are acquired by interpolating three ECMWF 3-hourly 
forecast winds on a 62.5-km grid both spatially and temporally to the ASCAT data acquisition 
location and time, respectively. The collocation criteria for TMI rain data are less than 30 minutes 
distance in time and 0.25° distance in space from the ASCAT measurements. Generally, multiple 
WVCs are collocated with one rain measurement of TMI. The total amount of collocations is about 
17 million, with 15.6 million under rain-free conditions (i.e., TMI RR=0 mm/hr) and 1.4 million 
under rainy conditions (i.e., TMI RR>0 mm/hr). 

To study the quality of ASCAT derived winds and the performance of the improved QC, two 
different collocation datasets are examined, in which ECMWF winds and buoy winds are used as 
reference respectively. ECMWF does not well resolve the wind field in the presence of rain [10]. 
Buoy data are generally more reliable than ECMWF under rainy conditions, although in case of 
increased wind variability the buoy wind is less representative of an area mean wind such as that of 
ASCAT. Therefore, in order to better verify the QC approaches, both datasets should have 
collocated rain data, either satellite derived or in-situ measured RR data.  

 The first dataset consists of 15 months (September 2008-December 2009) of ASCAT 12.5-
km L2 BUFR data collocated with ECMWF winds and TMI rain data. The total amount of 
collocations is about 27 million, with 24.6 million under rain-free conditions and 2.4 million 
under rainy conditions. 

 The second dataset consists of three years (March 2009-February 2012) of ASCAT 12.5-km 
L2 BUFR data collocated with tropical moored buoy wind/precipitation data over the open 
ocean, and TMI RR data. Since not all the buoys are equipped with a rain gauge, only part 
of the ASCAT-buoy collocations has rain information. The total amount of collocations in 
this dataset is about 60 thousand, in which only 3600 contain rain information, either buoy 
RR parameter or TMI RR data. Note that different rain parameters are only used to identify 
whether a WVC is rain impacted or not, but not for quantitative analysis. The studied buoys 
include the National Oceanic Atmospheric Administration (NOAA) Tropical Ocean 
Atmosphere (TAO) buoy arrays in the tropical Pacific, the Prediction and Research Moored 
Array in the Atlantic (PIRATA), and the Research Moored Array for African–Asian–
Australian Monsoon Analysis and Prediction (RAMA) at the tropical Indian Ocean. Note 
that buoy wind and rain time series around the collocation time are also used. 
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3 Singularity analysis 
 

Given a scalar signal s, the singularity exponent (SE) h(x) depicts a dimensionless and scale 
invariant measure of the degree of local regularity around a given point x. It can be evaluated 
according to the following function [11], 

   )()()()(
1 xxxxx hh rorsrs
r

                   (1) 

where )(x  is a dimensional and signal-dependent amplitude factor, and that the notation  )(xhro  

means a quantity that decreases to zero faster than )(xhr  when r goes to zero. The left part of Eq. (1) 
is the gradient estimated at half the radius r. Therefore, the singularity exponent roughly behaves as, 
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Since the presence of long-range correlations in real data can mask the value of )(xh , a wavelet 
projection is used to filter the signal and to provide a stable interpolation scheme in a continuous 
range of scales. Given a wavelet (x), the wavelet projection of Eq. (1) becomes 
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Since we are mainly interested in the most singular structures, the singularity exponents can be 
estimated in the following way to avoid projecting across multiple scales, 
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where  0, rs   is the mean value of the wavelet projection over the whole signal. The scale r0 is 

defined as the smallest accessible scale, i.e., one pixel scale for a discrete 2D image. The numerical 
implementation of Eq. (5) is described in [12]. Negative singularity exponents derived from Eq. (5) 
depict that the function is less regular, while the positive values indicate a more regular behavior. 

SA can be applied to any satellite-derived image. In this study, SA is applied to ASCAT data. All 
the ASCAT-derived parameters, such as the σ0 measurements, the inversion residual (MLE), the 
measurement variability parameter (i.e., Kp as estimated in [13]), and the retrieved wind 
components (i.e., U, V, speed and direction) can be used to generate singularity maps. Different 
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singularity maps are used for different purposes. Thus, SA optimization is required for rain 
identification. 

 

3.1 Adaption of SA to ASCAT data 

In general, the SA algorithm described in [12] works well on ASCAT data. However, it shows in 
[14] that SA overestimates the irregularity (very negative singularity exponents) of ASCAT 
measurements at the edge of the swath. A similar effect is found at the edges of non-ocean areas, 
such as, coastlines, islands, sea ice margin. To overcome such drawbacks, the following processing 
is performed prior to SA: 

a) Within the ASCAT image, the meaningless non-ocean WVC values are replaced by the mean of 
the input ASCAT parameters over all ocean WVCs within a centered 3x3 box. If the non-ocean 
WVC is at the corner (or edge) of the image, a closest 2x2 (or 3x2) box is used; 

b) The image is extended to the left and right sides of the swath by one node at each row, and the 
extrapolation point is filled using the mean of ASCAT parameter over all ocean WVCs within the 
closest 3x2 box (or 2x2 box in case the extrapolation is performed at a swath corner point); 

c) The image is also extended before the first row of WVCs and after the last row of WVCs by one 
point at each column, and the extrapolation point is filled using the mean of ASCAT parameter over 
all ocean WVCs within the closest 2x3 (2x2 for corner WVCs) box. 

Considering the study on ASCAT 12.5-km product, each image consists of ~100x41 WVCs, 
corresponding to a 3-min long set of WVC rows from one individual swath. Such pre-processing 
steps remove potential edge artifacts in SA while preserving the information content of the image 
elsewhere (e.g., singularity fronts associated with rain). As such, SA is applied on the pre-processed 
image using Eq. (3). And, SE is computed over all ocean WVCs of the original input image.  

Due to the noisy nature of the ASCAT parameters (for example over rainy areas), there may be 
isolated extremely positive or negative SE values after singularity analysis. Therefore, the mean SE 
value within a centered 3x3 window, i.e., 3x3 WVCs, is taken to generate the final singularity 
exponent for each WVC. If the ocean WVC is at the corner (or edge) of the image, a closest 2x2 (or 
3x2) box is used. 

 

3.2 SA optimization for rain identification 

As already mentioned, all the ASCAT-derived parameters can be used to generate singularity maps. 
In [14], the lowest (most negative) singularity exponents from the singularity maps of the ASCAT 
zonal (u) and meridional (v) wind components are used to generate the singularity map. 
Singularities indeed appear in areas of wind convergence or divergence, which represent fronts or 
downbursts (as observed by ASCAT) that may be associated with rain. In this section, other rain-
sensitive ASCAT parameters are assessed before choosing the most optimal singularity maps for 
rain identification over the ocean surface. 
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Fig. 1(a) Map of collocated ASCAT-TMI data. The grayscale square areas superimposed 
correspond to different TMI RRs (see the legend, mm/hr). Note that the white background 
corresponds to no TMI RR data. The acquisition date was September 24, 2008, at 20:30 UTC; (b) 
the corresponding MLE distribution and (c) Kp (mean value of fore and aft beams, %) distribution; 
(d) Singularity map of the ASCAT-retrieved wind field shown in (a). At every grid point, the 
minimum SE value from the wind speed, wind direction, and MLE SEs is used to generate the map. 
The RR contour lines depict the rainy areas. 

As an example, Figure 1(a) shows a particular ASCAT-retrieved wind field (ASCAT 12.5-km 
product, observed at 20:30 September 24, 2008) with the Tropical Rainfall Measuring Mission’s 
(TRMM) Microwave Imager (TMI) collocated rain rate values superimposed. The collocation 
criteria for TMI rain data are less than 30 min distance in time and 25 km distance in space from the 
ASCAT measurements. Typical wind responses, including increased wind variability and wind 
fronts, are found in the rainy areas. Figures 1 (b) and (c) illustrate the corresponding MLE and Kp 
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(i.e., the mean Kp of the fore and the aft beams) values. At low wind speed conditions, the raindrop 
“splashing” causes additional roughening of the sea surface and in turn an increase of the ocean 
backscatter from scatterometers. This results in a remarkable increase of the retrieved wind speed. 
In contrast, at high wind speed conditions, the rain splashing effect is relatively small. Therefore, 
singularity exponents of the wind speed field can be used to assess the irregularities associated with 
low wind speed conditions (Fig. 1, areas around [164.5°W 18.5°S] and [161.5°W 21.5°S]). In order 
to distinguish the wind front associated to the rain-induced flow, SA is then applied on the wind 
direction field. Singularities can be detected over the sharp transition areas (Fig. 1(a), the 
convergence goes from [164°W 18°S] to [160.5°W 21°S]). 

Meanwhile, the rain-impacted ASCAT measurements are generally more inconsistent with the 
empirical Geophysical Model Function (GMF) than rain-free measurements. This inconsistency 
results in an increase of the inversion residual and a decrease of the retrieved wind quality. An MLE 
sign has been defined in [9] to improve the ASCAT MLE-based QC. For low wind speed conditions 
and in case of heavy rain, the measured σ0 triplets are generally located outside the cone surface 
[15] (i.e., negative MLE values) as defined by the GMF. Therefore, the singularity exponent of the 
MLE field is also examined to better identify rain. 

Regarding the measurement variability factor, as the wind variability within a certain WVC 
increases with rain rate, Kp value increases with RR in general (see the white areas in Fig. 1(c)). 
However, at low wind speed conditions, high Kp value are also found due to the high wind 
variability (see the area around [161°W 18°S] in Fig. 1(c)). Moreover, the estimation of Kp is rather 
noisy as indicated by the granularity of the Kp map, thus making the rain signature in Kp less 
evident. As such, the singularity map of Kp is not used in this study. 

In this study, singularity maps of the inversion residual and the retrieved wind components (speed 
and direction) are examined independently for the particular wind field. Then at every grid point, 
the minimum SE value from the wind speed, wind direction, and MLE SEs is used to generate the 
final singularity map. Through this approach, the rain-induced wind front and the patchy structure 
of rainy areas can be detected by singularity analysis simultaneously. Figure 1(d) shows the 
singularity map corresponding to the ASCAT wind and MLE fields shown in Figs. 1(a) and 1(b). It 
is also clear that the TMI rain contours in Fig. 1(d) well corresponds with the negative SE values. 
Note that the comparison between SE and TMI RR is intended only to validate the presence of rain, 
but not the rain rate. 
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4 SA-based rain flagging results 
 

To estimate the probability of rain (R) p(R) as a function of SE, 8 months (from September 2008- 
May 2009) of collocated ASCAT 12.5-km product, TMI RR and European Centre for Medium-
range Weather Forecasts (ECMWF) winds are explored in this study. ECMWF winds are acquired 
by interpolating three surrounding ECMWF forecast winds (selected from +3 h to +18 h forecast 
range in 3-hour steps) on a 62.5-km grid both spatially and temporally to the ASCAT data 
acquisition location and time, respectively. p(R) is estimated by accumulating two histograms. The 
first histogram contains the total number of WVCs in the studied category. The second one contains 
the number of rain-affected WVCs. By dividing the second histogram by the first one, we obtain an 
estimate of the rain probability. 

Figure 2(a) illustrates the PDF of  RSEp |  (left panel) and the rain probability  SERp |  (right 

panel) for low wind speeds (4≤ V<6 m/s). Figure 2(b) shows the same plots for high wind speeds 
(V≥ 10 m/s). Two kinds of rain conditions, i.e., TMI-RR>0 mm/hr and TMI-RR≥ 3 mm/hr, are 
studied. There is an increasing shift of the SE distributions towards negative SE values with 
increasing RR. The PDF peak of rain-contaminated WVCs is distinct from that of rain-free cases. 
As noted by the difference between the dashed and the dotted curves in the right panel of Fig. 2(a), 
the anomalies associated with negative SE values are generally associated with light rain 
contamination at low wind speeds condition. However, at high winds, such anomalies are 
associated with heavy rain contamination (see right panel of Fig. 2(b)). 

For comparison, Fig. 3 shows the same PDFs as Fig. 2 but for the MLE parameter. At low and high 
wind speed conditions, the extreme (positive or negative) MLE values are generally associated with 
heavy rain contamination (TMI-RR≥ 3 mm/hr). At low winds, heavy rain contamination is mainly 
present at large negative MLE values (measurement triplets located outside the cone surface [9]), 
whereas at high winds, it is present at large positive MLE values (triplets located inside the cone). 
From the right panels, it seems appropriate to set a MLE threshold to separate rainy cases from rain-
free ones. However, since the PDF peaks of rain-free WVCs and rain-contaminated WVCs are quite 
close to each other (as shown in the left panels, the peaks are around MLE=0), a low MLE 
threshold will cause substantial false alarm rate. 

In contrast, since SE distributions shift considerably with RR (see left panels of Fig. 2), setting a SE 
threshold can be very effective in filtering rain while keeping a low false alarm rate for low winds. 
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(b) 

Fig. 2 Illustrations of the PDF of  RSEp |  (left panels) and the rain probability  SERp |  (right 
panels) for (a): low wind speeds (4≤V<6 m/s) and (b): high wind speeds (V≥10 m/s) conditions 
respectively 
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(b) 

Fig.3 Illustrations of the PDF of  RMLEp |  (left panels) and the rain probability  MLERp |  
(right panels) for (a): low wind speeds (4≤V<6 m/s) and (b): high wind speeds (V≥10 m/s) 
conditions respectively. 

 

Table 1 shows the statistics of SE-based and MLE-based flags respectively. An SE threshold of -
0.45 is used, i.e., WVCs with SE<-0.45 are flagged. The threshold of the MLE-based flag is that 
used in the operational QC, i.e., WVCs with MLE>+18.6 are flagged. For the given thresholds, 
singularity analysis flags a bit more rain-contaminated WVCs than MLE. However, the latter flags 
slightly more heavy rain contaminated cases than SA. Another interesting result is that WVCs 
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flagged by MLE-based filter and WVCs flagged by SE-based filter do generally not coincide 
(coincidence ratio less that 20% for the given thresholds in table 1), indicating that SE is not only a 
good rain indicator but also very complementary to the operational MLE-based QC. The VRMS 
differences between the ASCAT winds and the ECMWF winds are also presented in the table. It 
shows that low SE values also correlate well with high VRMS scores. Note though that [10] has 
shown that ECMWF winds show poor verification in rainy areas and are thus a poor proxy for 
ASCAT wind data quality.  

Note that both flags filter a small portion of apparent poor-quality WVCs (i.e., large VRMS values) 
in the absence of rain. These ASCAT-derived winds are affected by increased local wind 
variability, confused sea state, and/or radar footprint contaminated by land or ice, which increase 
the measurement variance, and lead to large discrepancies between the measured triplets and the 
GMF (i.e., high MLE values), and low negative SE values. In the presence of rain, the associated 
rain splash and wind downbursts may change the characteristics of the SE and MLEs and which is 
the focus of this section. In the next section, SA will be further explored for QC purposes. 
Moreover, further experiments will be carried out to determine whether ASCAT wind quality 
degradation is dominated by increased wind variability or rain contamination effects. 

Table 1. Statistics of the ASCAT rain flagging using the singularity analysis (SE threshold: -0.45) 
and the operational MLE-based (MLE>+18.6) methods. The second and third rows show the vector 
root-mean-square (VRMS) differences between the ASCAT winds and the ECMWF winds. The last 
two rows present the percentage of flagged WVCs contaminated by rain, according to different TMI 
RR intervals. 

 SE MLE 

Flagging ratio (%) 0.42 0.31 

VRMS, Non-flagged (m/s) 2.28 2.28 

VRMS, flagged (m/s) 5.91 6.07 

% of flagged WVCs with TMI-RR>0 mm/hr 82.3 72.7 

% of flagged WVCs with TMI-RR≥ 3 mm/hr 44.5 46.0 
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5 SA-based complementary QC 
 

In section 4, the SA method has been further developed for the optimization of ASCAT rain 
identification [16]. It turns out that SA is sensitive to increased inter-WVC wind variability at very 
local scales (mostly within the nearest neighbor WVCs), generally associated with rain events and 
frontal structures. Due to the large spatial variability of rain, SA is proven to be more effective than 
MLE in terms of exploiting the rain signatures present in ASCAT parameters, especially for the 
lower rain rate and low wind conditions, where the MLE is less sensitive to these cases. As a result, 
SA mostly detects rain-contaminated WVCs when the MLE-based QC does not, and vice versa, 
indicating that these two techniques are very complementary for the purposes of both rain detection 
and quality control.  

Using spatial derivatives (like in SA) is however potentially detrimental, as steep wind gradients 
may be removed, while particularly relevant for some applications. This poses a challenge in 
verification of the QC scheme as spatial and temporal representativeness are dominating the quality 
indices. Moreover, where rain is spatially erratic, it induces downbursts of wind on the ocean 
surface with strong gust fronts and as such rain is associated with enhanced wind variability. Wind 
verification of a QC scheme by buoy data thus may be penalizing conditions with such high wind 
variability, since the wind vector measured at a buoy location is generally expected to differ much 
from the scatterometer wind in case of high wind gradients. Equally, [10] has shown that the 
European Centre for Medium-range Weather Forecasts (ECMWF) winds show poor verification in 
rainy areas and are thus a poor proxy for ASCAT wind data quality. Another inherent problem in 
scatterometer wind processing near steep gradients resides in the ambiguity removal [17], which is 
most challenging in variable wind conditions. 

In this section, the SA is further adapted and tested for QC purposes. A complementary approach 
using both singularity exponent (SE) and MLE is proposed to improve the current ASCAT QC. 
Section 5.1 identifies and describes the quality-sensitive parameters, including MLE, the 
measurement variability factor Kp, and the singularity exponent (SA output), independently. A 
measure of ASCAT wind quality is presented as a function of each mentioned parameter. Here, the 
VRMS difference between ASCAT and ECMWF winds is used as a quality indicator. In section 
5.2, a complementary QC approach using SE and MLE is firstly proposed to improve the current 
ASCAT wind QC. This approach can be further improved by analyzing its performance in separate 
wind speed and Kp categories, leading to the development of a multi-dimensional histogram 
(MUDH) technique. Section 5.3 evaluates the performances of the proposed QC approaches using 
collocated ASCAT data and buoy winds, taking account of the enhanced local spatial and temporal 
variability of the QC cases. 

 

5.1 Quality-sensitive parameters 

This section describes three ASCAT quality-sensitive parameters separately. The goal is to see 
general trends in data quality. Buoy data is too scarce to show parameter sensitivity to rain and data 
quality. Thus the VRMS difference between ASCAT and ECMWF winds is presented as a function 
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of each parameter for different wind speed and rain conditions, in order to better understand the 
sensitivity of each parameter to the wind quality. As already mentioned in section 4, note that 
although the ASCAT wind retrieval quality is known to be somewhat degraded under large small-
scale wind variability and heavy rain conditions, [10] shows that the ECMWF winds do not resolve 
at all such conditions. As such, discrepancies between ASCAT and ECMWF can be mainly 
attributed to the ECMWF model not representing the local convective features. Wind speeds below 
4 m/s are not considered in this study, since low winds generally correspond to high wind 
variability and poor wind direction skill, which makes the analysis much more challenging, i.e., 
beyond the scope of this study. 

 

5.1.1 MLE 

For ASCAT, the wind inversion is implemented by searching for the minimum distance between 
the backscatter triplet and the GMF in a transformed 3-dimensional (3D) measurement space 
(namely z-space), i.e., the following MLE function is minimized [15], 

 
23

13

1



i

simi zzMLE                     (6) 

where   625.00
mimiz   is the backscatter measurement of the ith beam in z-space, and   625.00

sisiz   

is the backscatter simulated through the GMF, i.e., CMOD5n [18], using the solution wind vector as 
input. In general, the ASCAT backscatter triplets are close to the GMF, corresponding to low 
inversion residuals or MLE values. To account for noise, the expectation value of the MLE is 
normalized to one [19]. Occasionally, a large inconsistency with the GMF is induced by 
geophysical conditions that are not modelled by the GMF, such as increased local wind variability, 
confused sea state, rain, or land/ice contamination, resulting in large MLE values. Consequently, 
the MLE is a good indicator of the retrieved wind quality in a WVC. An MLE sign is defined in [9] 
to improve the MLE-based QC. The sign works as follows: triplets located inside the cone surface 
constructed by the GMF in measurement space [15] are assigned with a positive MLE value, while 
those located outside the cone are assigned with a negative MLE value. The MLE is generally a 
proxy for WVC wind variability, where negative MLEs denote stable flows and positive MLEs 
unstable flows. Excessive positive MLEs are generally found near (gust) fronts, squall lines and 
convective systems. 

Figure 4 shows the mean VRMS difference between ASCAT and ECMWF winds as a function of 
MLE for different wind speed regions at rain-free and rainy conditions respectively. There is a clear 
distinct behaviour for MLE values in terms of wind quality in both panels. Under rain-free 
conditions, ASCAT winds retrieved from the triplets inside the cone (associated with positive MLE 
values in Fig. 4(a)) increase rapidly in VRMS difference as the triplet’s distance to the GMF 
increases. However, for the triplets outside the cone (associated with negative MLE values), the 
wind VRMS difference is generally small regardless the triplet’s distance to the cone. In line with 
this, the current MLE-based QC which uses a threshold of +18.6 to filter poor-quality WVCs works 
well for the measurements under rain-free condition [9]. Under rainy conditions, ASCAT winds 
above 4 m/s have rapidly increasing VRMS difference (w.r.t. ECMWF) as the triplet’s distance to 
the cone increases, regardless the triplet’s location. The apparent quality degradation toward 
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negative MLE values is especially sharp for wind speed region of [4 7) m/s. This may be 
understood from the fact that stable flow (negative MLE) will be associated with relatively dry air 
descending from the rain clouds and spreading over the ocean, which process is not resolved by the 
ECMWF model, thus leading to large VRMS differences in rainy areas. Another reason could be 
due to triplets that are moved away from the cone due to rain contamination. 

 

     (a)               (b) 

Fig. 4. Mean VRMS difference between ASCAT and ECMWF winds as a function of MLE for (a) 
TMI rain-free collocated WVCs and (b) TMI rain-contaminated WVCs. The MLE binning is set to 
be 1. In case that the number of collocations in a studied bin is less than 100, the bin is merged with 
its closest bin. 

The VRMS differences of the current MLE-based QC are summarized in table 2. As discussed in 
[9], on the one hand, large positive MLE values correspond to increased sub-WVC variability and 
in turn somewhat degraded ASCAT-retrieved wind quality; on the other hand (and as already 
discussed), increased small-scale wind variability is not resolved at all by ECMWF. VRMS scores 
are consequently high. Therefore, the table mainly indicates the degraded quality in ECMWF winds 
in case of ASCAT QC. The total scores of the operational QC are presented in the last row of table 
2. Regarding that ~10% of the collocations are with RR>0 mm/h, it is evaluated that more than two 
thirds of QC-ed WVCs are in convective areas with rain. Especially, more than 90% of QC-ed 
WVCs are in variable wind conditions near rain for the cases with wind speeds  7 m/s, indicating 
that convection is the main factor in complicating ASCAT wind verification under these high wind 
conditions in the tropics. 
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Table-2: Percentage and mean VRMS difference (m/s) between ASCAT and ECMWF winds for QC-
accepted and rejected data for different wind speed regions and rain conditions. 

Wind 
speed(m/s) 

TMI rain free TMI rain contaminated TMI all weather conditions 
VRMS-

Kept 
VRMS-
Rejected 

QC-ed 
ratio(%) 

VRMS-
Kept 

VRMS-
Rejected 

QC-ed 
ratio(%) 

VRMS-
Kept 

VRMS-
Rejected 

QC-ed 
ratio(%) 

[4 7) 1.72 4.42 0.18 3.07 4.68 2.18 1.81 4.54 0.31 
[7 10) 1.55 5.65 0.04 3.19 5.59 3.10 1.68 5.60 0.29 
≥ 10 1.84 8.40 0.02 3.64 6.90 2.16 2.12 6.95 0.36 

≥ 4 1.67 4.69 0.10 3.28 5.65 2.51 1.80 5.37 0.31 
 

5.1.2 Singularity exponent 

Since the MLE is generally a proxy for sub-WVC wind variability where large positive MLEs are 
generally found near (gust) fronts, squall lines and convective systems, one might expect that the 
MLE and SE values are inversely proportional and thus redundant. However, note that the MLE is a 
local measure, whereas SE is based on spatial derivatives between WVCs and therefore may indeed 
be complementary to MLE values. 

Figure 5 shows the mean VRMS difference between ASCAT and ECMWF winds as a function of 
the SE value derived from section 3. ECMWF winds are less representative of ASCAT winds as the 
SE value decreases, which is in line with the general smoothness of the ECMWF model near 
convection [10]. The apparent quality degradation rate is larger at high wind speeds than that at low 
wind speeds, as the former implies deeper convection. Another interesting result is that WVCs 
flagged by MLE-based filter and WVCs flagged by SE-based filter with a threshold of -0.45 do 
generally not coincide (45% of the operationally QC-ed WVCs are with SE<-0.45; while 32% of 
the WVCs which correspond to SE<-0.45 are with MLE>+18.6), indicating that SE is potentially 
very complementary to the operational MLE-based QC. In section 5.2, SE is further used to 
complement the current MLE-based QC. Then, a more comprehensive study using SE, MLE, Kp 
and wind speed is developed to refine the complementary QC approach. 
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     (a)               (b) 
Fig. 5. Mean VRMS difference between ASCAT and ECMWF winds as a function of SE (bins of 
0.05) for (a) TMI rain-free collocated WVCs and (b) TMI rain-contaminated WVCs. 

 

5.1.3 Measurement variability factor (Kp) 

The variability of ASCAT backscatter σ, namely Kp, is defined as the normalized standard 
deviation of the measurements, i.e.,  

 
0

0var




pK                      (7) 

where 0  is the mean backscatter of a beam in a WVC and  0var   is its estimated variance . The 
Kp value can be regarded as a measure of the error in the mean backscatter caused by speckle noise, 
instrument characteristics, data processing, and spatial heterogeneities of the target [13], such as 
wind variability.  

Similar to Fig. 4, the behaviour of Kp in terms of wind VRMS difference is shown in Fig. 6 for rain-
free and rainy conditions separately, in which the horizontal axis indicates the mean Kp value of the 
fore and aft beams. As expected, the VRMS wind difference generally increases as the 
measurement error increases. The apparent wind quality degradation rate in Fig. 6 is smaller than 
that in Fig. 4, except for wind speeds ≥ 10 m/s under rain conditions. This indicates that Kp may be 
helpful to detect spatially variable weather conditions. In section 5.2.2, Kp is adopted by the MUDH 
QC algorithm to improve the filtering of poor-quality winds. 
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     (a)               (b) 
Fig. 6. Mean VRMS difference between ASCAT and ECMWF winds as a function of Kp (bins of 1%) 
for (a) TMI rain-free collocated WVCs and (b) TMI rain-contaminated WVCs. 

 

5.2 Improved QC methods 

Although the VRMS difference between ASCAT and ECMWF is not necessarily a good indication 
of ASCAT quality, it does indicate extreme wind variability and convection, where SE (as MLE) 
may be effective in detecting unrepresentative ASCAT winds, and it is therefore used below. This 
section presents two approaches to improve the single parameter (MLE-) based QC. The first one is 
based on a combination of the singularity exponent and the MLE. The second methodology uses all 
the mentioned quality-sensitive parameters in Section 5.1 (including SE, MLE, Kp and wind speed) 
to develop a Multi-dimensional Histogram (MUDH) QC flag. The idea behind these two 
approaches is as follows: the mean VRMS difference between ASCAT and ECMWF winds is 
estimated in a 2-D (first approach) or 4-D (second approach) space. Then a flag table is derived by 
setting the 2-D or 4-D bins which VRMS difference is higher than the threshold Tvrms to be flagged, 
and setting the bins which VRMS difference is lower than Tvrms to be unflagged. Note that we do 
not intent to perform QC for WVCs with MLE value less than +18.6 and SE value larger than -0.2. 
Due to the lack of data in certain bins, the corresponding VRMS values may be extremely high or 
low, leading to isolated flag bins in the table. A neighbour filtering is then applied to the flag table. 
If the number of data in a certain bin is higher than 50, its corresponding flag value is kept. 
Otherwise, if the mean VRMS of this bin is above the threshold value Tvrms, the bin is initially set as 
QC flagged. Then, the number of adjacent bins within a 3x3 box which are set to filter data is 
accounted for. If more than half of the adjacent bins are set as QC flagged, we consider it to be 
sufficient evidence for filtering winds associated with this bin, or else we leave the flag unset for 
this bin. Finally, the processor simply uses the derived quality-sensitive parameters, converts them 
into table indices, and checks for the corresponding bin value in the flag table. 
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5.2.1 Combined SE/MLE approach 

 

As introduced in [16] and mentioned in section 5.1.2, SE is complementary to MLE in terms of 
quality control. Figure 7(a) shows the mean VRMS difference as a function of SE and MLE for 
wind speeds above 4 m/s. The white areas are due to the lack of data in the corresponding bins, in 
which the number of collocations is less than five. It is consistent with the established fact that 
ASCAT wind quality generally decreases as the MLE value increases and it shows increased 
VRMS differences as the SE value decreases. Large VRMS differences occur for a set of ASCAT 
winds derived from triplets that are close to the GMF cone surface (low absolute MLE value and 
low SE value) that are now detected by the combined analysis, but which have not been examined 
before.  

A threshold of Tvrms=4.5 m/s is used to produce the flag table (see Fig. 7(b)). To inherit the current 
QC, WVCs with MLE above +18.6 are always rejected. The dark gray corresponds to the bins set 
for filtering (QC-rejection criterion), while the light gray corresponds to the bins unset for filtering 
(QC-acceptance criterion). A verification of this QC approach is summarized in table 3. When 
compared with the MLE-based QC statistics in table 2, it is clear that in general the new algorithm 
is rejecting more points than the MLE-based QC. By construction, the VRMS scores for filtered 
data are comparable in both algorithms, since VRMS differences will be large for low SE mainly 
due to the large spatial representativeness error of the ECMWF winds near convection. Therefore, 
the new algorithm filters many more winds near rain at low and moderate wind speed (v<10 m/s) 
categories. For wind speeds below 10 m/s, the VRMS scores of filtered WVCs are slightly lower 
than those filtered by the MLE-based QC, while for wind speeds above 10 m/s, the VRMS scores 
are higher. 
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     (a)               (b) 
Fig. 7. (a) Mean VRMS difference between ASCAT and ECMWF winds as a function of SE and 
MLE. The blank area is due to the lack of data in the corresponding bins. The grayscale 
corresponds to different VRMS values (see the legend). (b) A simple QC flag table derived from (a). 
The dark gray corresponds to the bins set for filtering (QC-rejection criterion); the light gray 
corresponds to the bins unset for filtering (QC-acceptance criterion). 
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Table-3: Percentage and mean VRMS difference between ASCAT and ECMWF winds for QC-
accepted and QC-rejected WVCs using the combined SE/MLE flag table in Fig. 7. 

Wind 
speed(m/s) 

TMI rain free TMI rain contaminated TMI all rain conditions 
VRMS-
Kept 

VRMS-
Rejected 

QC-ed 
ratio(%) 

VRMS-
Kept 

VRMS-
Rejected 

QC-ed 
ratio(%) 

VRMS-
Kept 

VRMS-
Rejected 

QC-ed 
ratio(%) 

[4 7) 1.71 4.03 0.33 3.03 4.47 5.02 1.80 4.26 0.64 
[7 10) 1.54 4.83 0.09 3.12 5.53 5.74 1.67 5.43 0.55 
≥ 10 1.83 7.13 0.06 3.56 7.35 3.94 2.10 7.34 0.69 

≥ 4 1.66 4.32 0.19 3.22 5.58 4.97 1.79 5.22 0.61 
 

The rain impact on VRMS wind difference can also be understood using the combined SE/MLE 
analysis. Figure 8 shows the mean TMI RR as a function of SE and MLE value. Similar to the 
VRMS difference between ASCAT and ECMWF winds, the mean TMI RR increases as the triplet’s 
distance to the cone surface increases and the SE value decreases, indicating that more rain is 
present for both high sub-WVC variability (MLE) and high inter-WVC variability (low SE). In fact, 
as shown in section 5.3.2, high inter-WVC variability implies high sub-WVC variability and SE is 
complementary to MLE. So, high rain rates associate well with small SE values and large MLE 
values. 

One should also note that the distribution of large mean TMI RR in Fig.8 does not align exactly 
with the VRMS score in Fig. 7.The VRMS differences in Fig. 7 are most likely due to the local 
increase of wind variability, which is mostly associated with rain events. However, as already 
mentioned, ECMWF does not well resolve the ocean wind field under rainy conditions. As such, 
other independent and reliable wind sources, such as buoy winds, should be used to assess the 
ASCAT wind quality in the presence of rain (see section 5.3).  
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Fig. 8. The mean TMI RR as a function SE and MLE. Only the collocations with wind speeds above 
4 m/s are used. 
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5.2.2 MUDH approach 
 

To refine the QC approach introduced in Section 5.2.1, an extended analysis is presented in this 
section by also taking the measurement variability (Kp) and wind speed parameters into account, 
leading to the development of the Multidimensional Histogram (MUDH) technique. MUDH was 
first developed in the context of scatterometry to flag rain contamination for SeaWinds on 
QuikSCAT [1]. It identifies parameters that are sensitive to rain, estimates the probability of rain as 
a function of them using a training data set, and then uses the rain probability to flag for rain.  
MUDH is adapted here to improve ASCAT QC. As such the VRMS difference between ASCAT 
and ECMWF winds, instead of the rain probability, is estimated during the development of MUDH 
for ASCAT. Then, a VRMS threshold introduced before is used to flag data.  

Figure 9 illustrates the ASCAT VRMS scores as a function of SE and MLE for the categories of 
moderate wind speed/small Kp value, moderate wind speed/large Kp value, high wind speed/small 
Kp value, and high wind speed/large Kp value respectively. The white areas are due to the lack of 
data in the corresponding bins (number of data <5). The behavior of SE and MLE in terms of wind 
VRMS difference clearly varies with Kp and wind speed. On the one hand, the causes for increased 
VRMS scores are different for each category. For instance, convection is the main cause of apparent 
quality degradation for the category of high wind speed and large Kp value, in which the mean rain 
rate is generally higher than 3 mm/h (not shown) over all the SE/MLE bins and thus more 
convective activity is present. Since the winds are high, the large VRMS value is not likely due to 
rain splash, but more likely due to large ECMWF errors and sub-WVC wind variability effects on 
ASCAT-retrieved quality. The large VRMS distributions in Fig. 9(b)-(c) are also associated with 
relatively high mean TMI RR (not shown). However, the mean TMI RR is really low for the 
category of low wind speed and small Kp value (less than 0.5 mm/h for all the SE/MLE bins, except 
for those bins in the left lower corner of Fig. 9(a)). Also here the elevated VRMS scores may be 
caused by increased local wind variability. On the other hand, the rain splash produces different 
effects on MLE for different wind speed conditions. Apparent poor-quality winds induced by rain 
are generally associated with low negative MLE values under low wind speeds (see the lower left 
corner of Fig. 9(b)), and associated with only small effects at high wind speeds.  
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     (c)               (d) 
Fig. 9. Mean VRMS difference between ASCAT and ECMWF winds as a function of SE and MLE 
for (a) moderate wind speeds (4≤v<7 m/s) and small Kp values (Kp<4%); (b) moderate wind speeds 
(4≤v<7 m/s) and large Kp values (Kp>7%); (c) high wind speeds (v>10 m/s) and small Kp values 
(Kp<4%); and (d) high wind speeds (v>10 m/s) and large Kp values (Kp>7%). The gray scale 
indicates the VRMS values (see the legend); the blank area is due to the lack of data in the 
corresponding bins. 
 

To implement the MUDH QC approach, the binning of MLE and SE are set according to the axis 
labels of Fig. 9. The wind speeds are roughly separated into three categories, i.e., 4≤v<7 m/s; 
7≤v<10 m/s; and v≥10 m/s. The Kp (mean value of the fore- and aft-beams) bins are set as follows: 
Kp<3%, Kp≥15%, and bins of 2% for Kp in the range [3% 15%). Since the VRMS scores depend on 
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wind speed, a set of thresholds Tvrms=4.0, 4.4, and 6.2 m/s are used for the wind speed categories 
4≤v<7 m/s, 7≤v<10 m/s, and v≥10 m/s, respectively, in order to produce the multi-dimensional QC 
flag table and account for the variable ECMWF errors. A verification of the MUDH technique on 
ASCAT QC is summarized in table 4, which can be compared to that of the MLE-based QC (table 
2) and the SE/MLE QC (table 3). It shows that the MUDH technique filters nearly three times as 
many WVCs as the MLE-based QC and 50% more than the SE/MLE QC, while the VRMS 
difference of the filtered WVCs is similar for the three QC techniques. Similar conclusions can be 
drawn when splitting the analysis into different wind speed categories. Moreover, MUDH filters 
many more ASCAT measurements in variable wind areas with rain, especially for wind speeds 
below 7 m/s.  

Table-4: Percentage and mean VRMS difference between ASCAT and ECMWF winds for QC-
accepted and rejected data using the MUDH algorithm. 

Wind 
speed(m/s) 

TMI rain free TMI rain contaminated TMI all rain conditions 
VRMS-
Kept 

VRMS-
Rejected 

QC-ed 
ratio(%) 

VRMS-
Kept 

VRMS-
Rejected 

QC-ed 
ratio(%) 

VRMS-
Kept 

VRMS-
Rejected 

QC-ed 
ratio(%) 

[4 7) 1.71 3.96 0.44 2.98 4.49 8.32 1.79 4.26 0.96 
[7 10) 1.54 4.61 0.13 3.04 5.63 8.38 1.66 5.48 0.80 
≥ 10 1.83 7.00 0.08 3.52 7.35 5.02 2.10 7.32 0.88 

≥ 4 1.66 4.22 0.26 3.16 5.53 7.39 1.78 5.17 0.88 
 

 

5.3 Validation results 

5.3.1 Validation with 10-min buoy wind measurements 

 

As discussed in section 5.2, in [10] Portabella et al show that ECMWF does not well resolve the 
rain-induced wind flow and, as such, is not a reliable wind reference for assessing the ASCAT QC 
in the presence of convection. To better assess the performance of the proposed complementary QC 
algorithms, an independent wind source, such as buoy data, is required. However, since the number 
of ASCAT-buoy collocations (especially those with rain information) is much smaller than that of 
ASCAT-TMI collocations, it is not possible to make an as thorough analysis as in section 5. 
Consequently, a set of larger MLE bins is used in this section.  

Figure 10(a) shows the VRMS difference between ASCAT and buoy (solid), ASCAT and ECMWF 
(dashed), for the collocations of the second data set (ASCAT-ECMWF-Buoy), as introduced in 
Section 2. It confirms that WVCs with the most negative singularity exponents are in areas with 
large wind variability, as expected. The dash-dotted line associated to the right y-axis shows the 
percentage of rainy collocations with RR ≥ 3 mm/h. As before, high probability of rain is found for 
the most negative singularity exponents indicating high WVC variability. In general, the reduced 
correspondence of buoy, ASCAT and ECMWF winds with decreasing SE values is further 
confirmed. Figure 10(b) presents the VRMS difference between ASCAT and buoy winds as a 
function of SE and MLE. It shows a similar pattern to that in Fig. 7(a), which again indicates that 
SE and MLE parameters are complementary in terms of quality control.  
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     (a)               (b) 
Fig. 10. (a) The VRMS difference between ASCAT and buoy winds (thin solid); ASCAT and 
ECMWF winds (dashed); the dash-dotted line shows the percentage of rain contaminated WVCs 
(TMI RR or averaged 2-hourly buoy RR ≥ 3 mm/h) in each bin for the 3000 ASCAT-buoy 
collocations with rain information; (b) the mean VRMS difference between ASCAT and buoy winds 
as a function of SE and MLE. 

Table 5 presents the QC results of the collocated ASCAT-buoy data set using the three mentioned 
methods, i.e., the current MLE-based QC (threshold of +18.6), the combined SE/MLE analysis, and 
the MUDH technique. Regarding the complementary QC approaches, the flag tables derived in 
Section 5.2 (using collocated ASCAT-ECMWF-TMI dataset) are used to filter the dataset with 
collocated ASCAT-buoy measurements. Buoy winds are adopted as reference in the statistics.  

The percentage of QC-rejected WVCs in the second dataset is similar to those presented in table 2-
4. The simple combination of SE and MLE filters twice as many WVCs as the MLE-based method, 
while the MUDH algorithm filters three times more data. In contrast with the VRMS scores of the 
QC-ed WVCs in table 2-4, the filtered WVCs with the new approaches have a higher VRMS score 
(see the upper row in each wind speed category) than those filtered by the MLE-based method, 
indicating that the algorithms proposed in Section 5.2 are very effective in filtering spatially 
variable winds over all of the wind speed regions. 

 

Table 5. VRMS difference between ASCAT and buoy winds for three different quality control 
methods. 

Wind speed 
(m/s) 

VRMS of rejected WVCs (m/s) VRMS of kept WVCs (m/s) QC-ed ratio (%) 
MLE SE/MLE MUDH MLE SE/MLE MUDH MLE SE/MLE MUDH 

4≤v<7  4.07 4.12 4.18 1.53 1.52 1.51 0.31 0.66 1.12 
7≤v<10  5.08 5.28 5.28 1.53 1.52 1.51 0.37 0.68 1.08 
v≥10 7.32 7.81 7.68 1.98 1.95 1.94 0.24 0.56 0.81 

v≥4 5.04 5.28 5.21 1.63 1.62 1.61 0.32 0.65 1.04 
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The verification of the MUDH algorithm on the 3000 ASCAT-buoy-ECMWF collocations with 
rain information is presented in table 6. The conclusion is the same as per table 4, i.e., the filtered 
rain-free ASCAT winds compare worse to buoys than the non-filtered rain-contaminated winds. It 
proves that the MUDH algorithm is effective in detecting WVCs with enhanced variability in both 
rainy and rain-free conditions. 

Table 6. The VRMS difference between ASCAT and buoy winds for QC-accepted and rejected data 
using the MUDH algorithm under different rain conditions. 

Wind speed (m/s) 
Rain free Rainy 

VRMS-Kept VRMS-Rejected VRMS-Kept VRMS-Rejected 

v≥ 4 1.48 3.11 2.58 5.58 
 

5.3.2 Validation with 25-km-equivalent buoy winds  

 

The ten-minute (10-min) buoy wind point measurement is not representative of the scatterometer 
25-km area-mean measurement in case of large sub-WVC wind variability, which usually 
corresponds to quality-controlled ASCAT retrieved winds. However, buoy wind time series can be 
used to estimate 25-km equivalent WVC winds. That is, 10-min continuous buoy wind series are 
averaged to 25-km-equivalent scale and used as reference in the validation. The mean wind 
direction is computed as follows: 
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where M is the number of 10-min buoy measurements, which is determined by expanding the 10-
min-equivalent distance vector in the adjacent time bins (centered on the ASCAT measurement 
time), until the length of the distance vector reaches the WVC size. The minimum value M is set to 
be 5 (i.e., buoy time series averages within ±20 min of the ASCAT measurement time).  and  
represent the wind speed and direction of the ith measurement respectively. The mean wind speed 
can be derived using either Eq. (10) or Eq. (11), 
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In the presence of large sub-WVC wind variability conditions, the mean wind speed estimated by 
Eq. (10) is usually lower than that estimated by Eq. (11). The latter is more representative of the 
scatterometer measurements since it well correlates with the integrated sea surface roughness within 
the WVC. For example, highly variable winds, i.e., blowing at very different and opposed wind 
directions, lead to very low mean wind speed according to Eq. (10) (average of the wind 
components) and relatively higher mean wind speed according to Eq. (11) (average of the wind 
speeds). The scatterometer receives energy from the different sea-surface wind/roughness 
contributors within the WVC and, as such, well correlates with Eq. (11). In this paper, the mean 
buoy wind speed is therefore calculated using Eq. (11). 

In Table 7, the mean standard deviations of the continuous buoy wind components are presented for 
the operational QC-ed WVCs, SE/MLE QC-ed WVCs, MUDH QC-ed WVCs, and for WVCs with 
|MLE|<0.5 and SE>0. It shows that the proposed QC methods are filtering WVCs with similar high 
sub-WVC wind variability than those filtered by the MLE-based QC. As expected, the filtered 
WVCs by the different QC approaches have much higher local wind variability than those with 
|MLE|<0.5 and SE>0 (last row), further confirming that combining MLE and SE results in a good 
sub-WVC variability indicator. 

Table-7: The mean SD values of the continuous buoy wind components for different categories 
 SD (speed, m/s)  SD (direction, °) SD (u, m/s) SD (v, m/s) 
MLE 1.24 27.7 1.66 1.62 
SE/MLE 1.27 32.1 1.62 1.61 
MUDH 1.29 34.9 1.60 1.73 
|MLE|<0.5, SE>0 0.37  6.3 0.47 0.52 

 

Table 8 presents the same VRMS scores as the last row of Table 5 but using the 25-km-equivalent 
buoy winds instead of the 10-min buoy winds as reference. The VRMS scores are smaller in Table 
8 than in Table 5 (last row) indicating that the 25-km-equivalent buoy winds are indeed more 
representative of ASCAT winds than the 10-min buoy wind point measurements, notably in high 
sub-WVC wind variability conditions (i.e., the rejected WVCs). In [20], Vogelzang et al estimated 
the quality of ASCAT and 10-min buoy winds on the scatterometer scale and found that the buoy 
error variance contribution to the vector difference variance is 72 % while the ASCAT 12.5-km 
contribution is only 28% for the accepted WVCs, i.e., scatterometer winds are in general of much 
higher quality than buoy point-measurement winds at scatterometer scales. The time averaging 
presented here reduces the variance of the ASCAT and buoy vector difference around 38% and 
29% for both accepted and rejected WVCs, respectively. Following [20], this would imply that the 
time-averaged buoy error and the ASCAT 12.5-km contribution would be resp. 55% and 45% for 
accepted WVCs, i.e., scatterometer winds are in general of similar quality to that of time-averaged 
buoy winds at scatterometer scales. Temporally averaged buoy winds thus do clearly better 
represent 25-km spatially-averaged winds. Since the time averaging reduces both the rejected and 
accepted WVC variances in similar amounts, the wind variances appear rather scalable and wind 
errors appear mainly due to enhanced wind variability rather than rain contamination and other 
effects associated with convection, for the rejected cases. In other words, the VRMS scores are 
dominated by representativeness errors, which explains the large VRMS differences between 
accepted and rejected WVCs. As such, all wind measurements (ASCAT, buoys and ECMWF) are 
expected to be of lower quality for rejected cases than the equivalent qualities for accepted WVCs. 
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Table-8: VRMS difference between ASCAT and 25-km-equivalent buoy winds for three different 
quality control methods 

Wind speed (m/s) VRMS of rejected WVCs (m/s) VRMS of kept WVCs (m/s) 

v≥ 4 
MLE SE/MLE MUDH MLE SE/MLE MUDH 

4.14 4.34 4.39 1.29 1.28 1.27 
 

The quality of the rejected WVCs category however is not the same for the three wind data sources. 
In particular, ECMWF winds are shown in [10] to be of very poor quality under high wind 
variability conditions. The already discussed VRMS reduction after buoy temporal averaging 
suggests that indeed buoy errors increase with wind variability since a one-dimensional or 1-D 
(temporal) averaging becomes less representative of a true 2-D WVC-mean wind (i.e., ideally 
measurable by spatially averaging a set of buoys evenly distributed over a 25-km WVC) as the sub-
cell wind variability increases. However, to conclude on the actual contribution of both ASCAT and 
buoy wind errors to the high VRMS scores shown in Table 8 (rejected category), further analysis is 
required, e.g., triple collocation [20]. 

 

5.3.3 Test case 

 

Figure 11(a) shows an ASCAT wind field with TMI RR values superimposed. The operational QC 
rejects some WVCs under heavy rain (see the gray arrows around 6.0N and 177.5E), but those 
appear quite consistent spatially. Many other WVCs with more or less rain are not rejected, but 
those are more erratic. As presented in [10], a more constrained MLE threshold may not be 
effective in filtering the wind artifacts. For example, at the position denoted by a triangle (where 
TMI RR=8.9 mm/h), the ASCAT wind inversion residual is relatively low (MLE=-5.5) and the 
retrieved wind speed and direction are 5.51 m/s and 15.3 respectively. While the collocated buoy 
measurement shows a wind speed = 3.4 m/s, and wind direction= 280 (the temporally averaged 
buoy wind and direction are 4.1 m/s and 265.5 respectively), indicating that the ASCAT-retrieved 
wind is not representative of the buoy wind over there. Fig. 11(b) illustrates the time series of 10-
min buoy winds (see the solid line with triangle markers) as compared to the ASCAT measurement 
(see the square marker, first-rank/selected solution; and the circle marker, second-rank solution) for 
this particular ASCAT-buoy collocation.  

Fig. 12(a) and (b) illustrate the rejected winds (gray arrows) using the QC methods that are 
presented in Section 5.2.1 and 5.2.2, respectively. It is clear that the new methods reject more 
WVCs than the operational QC in rainy regions and their vicinity, in line with the increased wind 
variability denoted by SE. The MUDH algorithm indeed filters more WVCs than the SE/MLE (e.g., 
the areas around 2.9N and 177.5E, 6.2N and 180E). The WVC at the position denoted by a 
triangle, which corresponds to high wind variability, is also filtered by the MUDH technique. 
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Fig. 11. (a) ASCAT wind observed on December 15, 2009, at 21:17 UTC, with collocated TMI RR 
superimposed (see the legend). The black arrows correspond to QC-accepted WVCs, and the gray 
ones correspond to QC-rejected WVCs. The buoy measurements (denoted by the triangle) were 
acquired at 21:20±2 hours UTC, as shown in the polar coordinate plot (b). The square marker 
indicates the ASCAT first-rank solution, which is also the selected solution; the circle marker shows 
the ASCAT second-rank solution. 
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Fig. 12. Illustration of the rejected WVCs (gray arrows) using (a) the combined SE/MLE analysis 
and (b) the MUDH technique. The gray ones correspond to QC-rejected WVCs. The buoy 
measurements (denoted by the triangle) were acquired at 21:00 UTC. 
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6 Conclusions 
 

In this study, a new image processing technique, the so-called singularity analysis, is adapted for 
ASCAT for the detection of geophysical effects associated with rain and tested for QC purposes. It 
is shown that SA successfully exploits the rain information content (rain signatures) present in the 
different ASCAT parameters, and thus an effective rain-contamination detection tool emerges. 
Moreover, SA detects some rain-impacted WVCs when the MLE-based QC does not, and vice 
versa, indicating that both techniques have complementary properties. 

The correlation between the ASCAT wind quality and a few ASCAT-derived parameters, i.e., 
MLE, Kp and SE, is also investigated. The three parameters are indeed well correlated with sub-
WVC wind variability. MLE detects increased sub-WVC wind variability notably at low and 
medium wind speeds while SE and Kp detect it at a wider wind speed range. According to the 
assessment of the MLE-based QC under rainy conditions [10], there is a substantial number of 
WVCs with low MLE value in heavy rain with poor validation, which needs further evaluation. In 
order to improve the filtering of ASCAT poor-quality winds, two new algorithms are proposed, 
which combine MLE with other quality-sensitive parameters.  

The SE is proven to be a complementary parameter to MLE for ASCAT QC purposes, particularly 
in finding large sub-WVC variability cases under rainy conditions. The combination of SE and 
MLE is first investigated to improve the QC. This method can be refined by taking the Kp and wind 
speed parameters into account, leading to the development of the MUDH algorithm. The multi-
parameter-based QC approaches are developed using ECMWF wind reference and validated using 
buoy wind reference. The 10-min buoy validation results show that the proposed SE/MLE and 
MUDH methods filter, respectively, twice and three times as many WVCs as the current MLE-
based QC for ASCAT wind speeds above 4 m/s. In particular, more data are filtered by the new 
methods near convection (rain). The filtered WVCs compare as well to buoys as those screened by 
the operational MLE-based method. 

However, spatial and temporal representativeness are dominating the quality indices, therefore 
posing a challenge in verification of the QC scheme, i.e., are local buoys or the ECMWF model 
representative of the scatterometer area-mean vector wind? In particular, where rain is spatially 
erratic, it induces downbursts of wind on the ocean surface with strong gust fronts and as such rain 
is associated with enhanced wind variability. Wind verification of a QC scheme by buoy data thus 
may be penalizing conditions with such high wind variability, since the wind vector measured at a 
buoy location is generally expected to differ much from the scatterometer wind in case of high wind 
gradients. A method to convert 10-min buoy wind data to 25-km equivalent winds is proposed and 
used for QC verification. Temporally-averaged buoy winds do clearly better represent 25-km 
spatially-averaged winds. Since the time averaging reduces both the rejected and accepted variances 
in similar relative amounts, wind variances appear scalable and wind errors appear mainly due to 
enhanced wind variability for the rejected cases, i.e., representativeness errors dominate the VRMS 
differences between ASCAT and buoy winds. Therefore, all wind measures (ASCAT, buoys and 
ECMWF) are expected to be of lower quality than the equivalent qualities in kept WVCs. While it 
is clear that, at scatterometer scales, ECMWF wind errors are high and buoy errors considerably 
increase under large sub-cell wind variability, ASCAT errors remain unassessed. The proposed 
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methods are effective in detecting variable winds over all the wind speed and RR regimes. Variable 
winds are a potential hazard in some applications, such as data assimilation and the methods 
developed here may be useful for those applications. For other applications, such as nowcasting and 
oceanography, it may be relevant to keep the flagged WVCs since they provide essential 
information on (highly variable) air-sea interaction processes that cannot be captured by any other 
wind observing system. 

As already mentioned, the ASCAT wind quality seems to be mainly associated with large sub-
WVC wind variability. Further work to quantify independent ASCAT, buoy, and ECMWF wind 
errors (e.g., triple collocation analysis) needs to be carried out. Also, no evidences of a rain 
splashing signature and/or and other effects associated with convection (e.g., sea state) have been 
found in this study. Future work will focus in determining whether these effects do significantly 
contribute to ASCAT wind quality degradation or not, notably at low winds. 

SeaWinds rain studies at Ku-band [1][2][4][6] have all used buoy and NWP model comparison for 
detecting rain contamination. Although rain effects will be much more prominent in SeaWinds, the 
effects of wind variability elaborated in this manuscript, will certainly contribute to the trade-off 
exercise that led in these studies to the QC scheme implementation. Therefore, SeaWinds QC needs 
to be revisited too in the light of the findings described in this report.  

Further analysis is required when applying the proposed method on ASCAT products. Although the 
edge effects of singularity analysis have been reduced by the description in section 3.1, its 
performance has not yet been examined specifically. Furthermore, future work will also focus on 
analysing the correlation between singularity fronts and ASCAT backscatter measurements in 
particular, since they have not yet been adopted by the singularity analysis. For such purpose, 
ASCAT Level 1B Full Resolution backscatter data will be exploited, since at smaller footprints the 
rain splashing signal (among other non-wind signals), being patchy and intermittent, is expected to 
become more evident. 

SA uses the information present in the ASCAT data itself and, as such, is useful for both ASCAT 
near-real-time products and offline products. The SA code has been optimized for near-real-time 
processing. 

Note that this report is based on references [16] and [21]. 
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Acronyms and abbreviations 

 

 

Name Description 

AMI Active Microwave Instrument

ASCAT Advanced scatterometer

AWDP ASCAT Wind Data Processor

BUFR Binary Universal Form for Representation (of meteorological data) 

CMOD C-band geophysical model function used for ERS and ASCAT 

CSIC Consejo Superior de Investigaciones Científicas

ECMWF European Centre for Medium-Range Weather Forecasts 

ERS European Remote sensing Satellite

ESA European Space Agency

EUMETSAT European Organization for the Exploitation of Meteorological Satellites

GMF Geophysical Model Function

GTS Global Telecommunication System

KNMI Koninklijk Nederlands Meteorologisch Instituut 

(Royal Netherlands Meteorological Institute) 

METOP Meteorological Operational satellite

MLE Maximum likelihood estimator

NWP Numerical Weather Prediction

OSI Ocean and Sea Ice

QC Quality Control 

RR Rain rate 

SA Singularity Analysis

SAF Satellite Application Facility

SD Standard Deviation

SE Singularity Exponent

TMI Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager 

WVC Wind Vector Cell 
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